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Abstract s U16 

Codes involving one and two spatial dimensions and three velocity

dimensions are used to model the earth's magnetotail. It is shown that the

magnetotail can become inflated as a consequence of low energy plasma

convection toward the neutral plane. 	 The two-dimensional code shows the

development of small-scale turbulence. However. the growth of the turbulence

appears limited, and does not lead to substantial dissipation. 	 A one-

dimensional model was used to simulate a particle population consisting of

plasma sheet ions and cold lobe plasma. An applied convection electric field

causes plasma sheet thinning and later expansion, consistent with observed

substorm morphology.	 During the course of a simulated substorm the cold

particles are heated and merge with the plasma sheet population. The magnetic

field energy shows a slight increase, followed by a more rapid decrease as all

of the cold particles are swept into the magnetotail. The code exhibits a

conversion of both magnetic field energy and of energy supplied by the

convection electric field into particle energy. The simulations suggest that

much of the magnetotail substorm morphology, may be a simple consequence of an

increase, followed by a decrease, in the convection electric field, without

the requirement of any magnetospheric: size scale plasma instability or other

disruptive processes.	 It is also concluded that the presence of the ^b

convection electric field and a continuing replenishment of low energy 	 j

particles in the s agnetotai 1 lobes are both necessary for maintenance of the

magnetotail.
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1. Introduction.

Ever since the discovery of the neutral and plasma sheets in the earth's

magnetotail considerable attention has been focused upon the relationships
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between the morphology of these features and the dynamics of auroral

substorms. For a comprehensive review of this subject, see Akasofu (1979).

It is generally accepted that (Akasofu, 1979; Fairfield et al., 1981) that the

onset of a substorm, as determined from ground-based indicators, coincides

with the thinning of the plasma sheet followed by a subsequent expansion. The

substorm morphology of the magnetic field in the lobe does not seem to show as

constant a pattern of increase or decrease ( Akasofu, 1979). A southward

turning of the field in the magnetotail is sometimes seen, which has been

interpreted as a consequence of the formation of an x-type neutral line

earthward of the point of observation (Honor, 1979). Others (.Akasofu, 1979,

and references contained therein) have interpreted the sduthward turning as

simply the tilting of the magnetic field.

One intriguing feature of the earth's magnetotail is that it contains a

large amount of free magnetic energy that could be converted to particle

energy if the plasma sheet dynamics were to permit a relaxation to a more

"dipolar" configuration. Schindler (1974) has suggested that the plasma sheet

thinning during the growth phase of a substorm leads to an ion tearing mode.

instability which results in a release of magnetic energy. airn (1980) has

developed a numerical fluid model for the magnetotail. This model indicates

stability if there is no viscous or resistive dissipation in the plasma; but a

conversion of magnetic or kinetic energy does occur when the model contains

dissipation.

Akasofu (1980a, b), on the other hand has identified a solar wind

parameter, e, involving the solar wind velocity and interplanetary magnetic
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field, with the dimensions of energy flux, that shows a remarkable correlation

with the magnetospheric substorm AE index. 	 The fact that the c and AE

parameters have such a similar variation suggests that the substorm is

externally driven, rather than the results of an instability internal to the

magnetosphere (Swift, 1979).

For this reason, this paper adopts a very different approach to

magnetotail dynamics by allowing energy input into the magnetotail by a

convection electric field, and investigating processes that may lead to the

formation of the highly stretched tail. The model also includes processes for

energy exchange between the tail field and particles, so that processes

investigated by Schindler (1974) and Birn (1980) can occur in the model to be

described below. However, since a particle model will be used, there are no

dissipation processes other than that allowed by the equations of motion of a

charged particle in the electromagnetic field. Moreover, the model does not

describe equilibrium processes or departures from equilibrium so the results

are not easily compared to results of stability analysis.

'The approach taken follows along some of the ideas expressed by Cowl ey A

(1980). He suggests that very low energy plasma, of solar wind or ionospheric

origin finds its way into the lobes of the earth's magnetotail, whence it i s

swept into the neutral sheet by the convection electric field.	 to the

nonadiabatic encounter with the neutral sheet, the plasma is accelerated

earthward and heated (Swift, 1977), thus converting cold `lobe plasma into a

population with the characteristics of the plasma sheet. 	 These ideas are

given further support by the recent observations with the Hawkeye satellite.

Anderson and Eastman (private communication) have made measurements of the

plasma line cutoff in the lobes of the magnetotail which indicate plasma

densities in the range of 0.1 to 1.2 cm-3 . Since the presence of these
	 z(
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particles is not indicated by the particle detectors, their energy must be

below detection threshold, hence they are likely of ionospheric origin.

In summary, the calculations will be directed toward answering the

question of whether the main characteristics of the observed tail morphology

can be understood in terms of a process of polar wind, or magnetosheath ions
ti

being swept from the lobes into the neutral sheet region by a convection

electric field: To this end, we shall consider both one and two-dimensional

models in a plane continuing the magnetic field, which is assumed to be the

magnetospheric noon-midnight meridian plane. The two-dimensional code can be

used to investigate possible development of turbulence and p- and X-type

neutral lines (stern, 1979; Vasyliunas, 1980). The one-dimensional code can

be used, because of the much greater economies of operation, to observe the

system over a much longer time ► span in relation to the particle gyroperiod.

It turns out that turbulence does develop in the two-dimensional simulation,

but that the turbulence dyes not seem to affect the large-scale morphology.

As a result, the one-dimensional model appears to offer a good representation

of the total dynamics.

In the next section., the model will be -described, along with a brief

description of the numerical procedures. The following section will present

the results of the calculations, and the final section will present a

comparison between the model results and the observed substorm morphology of

the earth's magnetotail.

2. Calculation Procedure.

2.1 Formulation of the Model.

The basic code used is a nonradiative electromagnetic code similar to

that described by Nielson and Lewis (1976) in which we neglect all

electrostatic interactions among particles and assume uniformity in the y
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direction.	 Electrostatic interactions are neglected because , we also assume

the existence of a highly mobile population of cold electrons which is capable

of shorting out potentials developed along field lines.. 	 Possible

electrostatic effects will be described in the concluding section. We further

assume that the magnetic field is confined to the x-z planes. This and the

assumption of y-symmetry implies Viat the only allowed currents are in the y-

direction. This also means that currents carried by E x d and field-aligned

motion of ions and electrons cancel and that the x and z -components of the

current due to gyrational motion and polarization drifts of the ions average

to zero. The assumption of y-symmetry also precludes instabilities excited

by cross-tail current flow (Hubs et al., 1978; Tanaka et al, 1981) which may

lead to anomalous resistivity and electron heating.

These assumptions make it possible,to describe the entire system in terms

of the y-component of the vector potential of which the only source is the y

component of the ion motion. We therefore. consider the following system of

equations for the ion motion»

dv	 e

3t mc— vy Bz	 (1a

Tt^ - m Ey
 + me (v z Bx - 

vx Bz )	 (1b

dv z	e

^-- F V  3 	 (1c

where Ey is the electric field, which includes both a convection electic field

and the solenoidal field due to the time rate of change of 	 The magnetic

field I is expressed in terms of the vector potential
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Bz) - (- az Ay' 0$ ax Ay)	 (2

where Ay is the y-component of the vector potential, which satisfies the

equation

V Ay(r) - - 41te^ SO -
 +k

Ay vyk	 (3

where the sum is over all particles present in the system, and rk is the

instantaneous position of the particle, and vyk its velocity along y. S(r) is

a normalized density function which differs from a simple 6-function because

in a numerical simulation the charge must be assigned to neighboring grid

points. rk is found by integrating

Tr
dtk ' 

vk	 (^

with v calculated from (1).	 In (1) the field terms are actually evaluated

according to

(rk) ^^ (r) 5 (r- rk ) dxdz	 (S

At this stage it is useful to introduce dimensionless units in order that

the system can be scaled to run with economically practical particle numbers,

and distance and time scales.	 To this end, we introduce dimensionless

position and time coordinates.

r/p	 (6a
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a = 4'-,f
MC

ti= wt
	

(6b

M

where p and w are a nominal gyroradius and gyrofrequency. The dimensionless

velocity becomes

The equations of motion (1) become

i (E + v x)/w	 (7

where	 e^/(mc), and a is the electric field acceleration E :Met/(mwp). A

dimensionless vector potential Xy is introduced

e^Cy Ay me Wp	
( 8

such that

0t x (AyTy) _ ^/w	 (9

with these substitutions, the equation for X  is given by

Q2 y = -avyn
	

(10

where a is the coupling -constant
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and

vyn = p2 ^ S (t - YVyk
k

	 (12

The problem is scaled for computation by selecting the number of particles and

the size of the domain, and then selecting art appropriate value for the

coupling constant. We can also, without loss of generality, set w = 1, and

for the sake of convenience make the variable replacements

X 0 v ♦ v, Icy + Ay .	 It will also be useful to split the electric field

acceleration into the solenoidal, Es = aAyAt, and the convective term cc

which represents the dawn-to-dusk convection electric field.

The particle and field equations in the new dimensionless, simulation

units, now read

dv

3tx = oz vy	 (13a

dvz
^- -Qxvy	(13b

dP
a 

Ec	
(1.3c

where the field variables at the position of the kth particle are computed

according to the prescription given in (5). P  is the canonical momentum and

is used to calculate vy.

vyk = P
yk - j Ay (r) s (r-r k)  d 2 
	

(14

S
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Use of the canonical momentum makes it possible to avoid the explicit

appearance of the destabilizing aA At term in the equation for vy (Nielson

and Lewis, 1976). The equation for the vector potential, Ay, can be written

in the form

o2Ay(r) _ -a(P(r) + n(r)Ay (r))	 (15

where

P(r) x	 Pyk S (r-rk )	 (16a
k

and

n() _	 S (r-rk )	 (16b
k

The particle gyrofrequency is calculated from

(A,0,a)-(--Y,0,--l)	 (17
x	 z	 az	 ax

In addition to the field generated by the local particle currents, we

will wish to include a constant, uniform magnetic field in the z-direction.

The earth's dipole field, and possibly the interplanetary magnetic field,

could contribute a z-component, but not necessarily uniform field. However

making provision for a nonuniform, asymptotic z-component, would greatly

complicate the calculation. Hence, Ay in (15) will include an additive term,

Ay + Ay + 9
0x , which gives rise to a uniform magnetic field in the z-

direction of intensity a0.
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Before describing the numerical procedure, it will be useful to make note

of important relations expressed in the simulation units of (13)-(17).

Multiplying the equations (13a, b) by vx and vZ respectively, and the equation

dv

itz 9 t-VXQz + vzoX

by vy and summing over all the particles, the energy conservation law is

obtained

Wt	 z
vk2 +

1 f0
2
dxdz]=afctyx • ds	 (18

where 'the integral over Is is ar, integral over a boundary surface. From this

expression we identify 0 /2a as the magnetic energy density and

Ety x *o/a 41s the Poynti nq flux. The E x B drift is 
uE-ecty 

x u/Q2 . Another

important parameter is the Alfv4n velocity,Va , which given by the expression,

Va2 * 02/(an)	 (19

where n is computed from (16b).

2.2 Two-dimensional Numerical Procedures.

The integration of the particle equations of motion (13a, b) and the non-

dimensional version (4) is accomplished by the standard leap-frog scheme, with

the x- and z-components of the velocities and positions being advanced a half

time-step apart.	 The value of Py in (130 is advanced following the

calculation of Ay; thus vy , which is calculated from (14), is at the same

time-step of the position coordinates, but a half time-step removed from the
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(vx , vy ) variables. Therefore, the particle pushing algorithm is second order

accurate. The integration of (13c) is only first order accurate, but si-nce 
P 

changes nearly linearly with time this introduces little error.

An iteration scheme is used to solve (14) is similar to that used by Lin

(1978), namely

o2Ay^t+1 - an 
Ay

e.+l , -aP + a ( n-n) AY
	

(20

where the superscript A refers to the iteration number. The 1-0 iteration is

the last iteration of the previous time-step. n is a constant parameter. If

n is too small, the iteration is unstable, and if n is too large, the
convergence will be slow. This slow convergence is due to the fact that the

Green's function for the oper:a.tor on the right hand side is

G - exp(-R n)/R, where R-Ir- r'' I. Thus, if there is -a change in the current

at r , the effect of this change wi i 1. propagate only a distance ( gin) ` 1/2 each

iteration.	 Large values of n require either a large number of iterations

between time-steps, or very short time-steps in comparison to the time scale

of the simulation, in order that changes in one part of the domain might

propagate across the entire domain. Nielson and Lewis (1976) suggest

n - 1/2 (nmax + nmin)•

The equation for Aye+1 is a constant-coefficient, Helmholtz equation of

the type

(o2-k2) A(r) _ -p ( r)
	

(21

In solving this equation, we can neglect the Sox term of the constant

background field, because in the numerical procedure the term ana ox is

incorporated into the aP term on the right-hand side of (20). This makes it
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possible to solve (21) subject to periodic boundary conditions in x for a

domain of length L.

Equation (21) is solved using Fourier transform methods. The details of

the method which allow the imposition of boundary conditions at z - 0 and z

L is given in the appendix. Essentially, the boundary conditions are that the

x-component of the magnetic field, averaged over x at z - 0 and L be equal and

opposite and that the similarly averaged boundary values of the vector 	 r
potential be constant.

The source terms in the equation of Ay , shown in (16) are computed by a

standard four-point area-weighting scheme in which the contribution of the

current is distributed at the four surrounding grid points. 	 Momentum

conservation therefore requires that the interpolation of the fields as

indicated in (5) be the usual bilinear four-point Lagrangian scheme.

Therefore, each particle contribution to the current is represented as values

at the four grid points defining the cell which contains the particle. No

other smoothing of the particle density such as the Gaussian weighting, is

used, because this would introduce inconsistencies in the boundary conditions.

The particle boundary conditions are assumed periodic in x. That is if

x > L, the replacement x + x-L is used, and vx and vz are unchanged. A

similar replacement is used if x < 0. However, because of the background

magnetic field, go, the value of Py must be changed by an amount tOOL when a

particle crosses the x = 0, L boundaries. It 'is this change in P  on crossing

the x = 0, L boundaries that would give rise to problems if a Gaussian charge

#

	

	 weighting scheme were used. If a particle were located at x = L - d, part of

the charge would appear at the x = 0 grid points, with a totally inappropriate

value of Py attached, which would give rise to spurious boundary currents.

R
When the particle crosses the z	 G. L boundaries, which is an unusual event
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because of the inward convection, it is reinserted in the domain at the same

boundary, on the same guiding center, but with the velocity reinitialized to

the E x B drift.

2.3 One -Dimensional Numerical Procedures.

In the one-dimensional problem all field variables depend only on the z-

coordinate, except for the vector potential which is written

Ay (x; z) = a(z) + RZx	 (22

where Az is constant. The field equation for a is therefore

2

17 
_ -	 ( Pyk a(z)	 Qzx k) S tr _ *k)

Upon integrating (23) over x from 0 to L and dividing by L, we obtain
i

d a
n(z)a	 _ °^	 (Pyk - 2zxk)S(z	 zk	 (24

dz	 L	 L k
where

n (z)	 s( z-zk)	 (25
k

since the only x-dependence in (24) occurs with Py k , we can define a new

variable

and (13c) is replaced by

Pyk	 Pyk - az xk	 (26

E
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dP k
-' M ' c

c - ozvxk	
(27

dt

where vxk is advanced by (13a), and it is no longer necessary to keep track of

xk for each particle. The field equation is now given by

d--a - al n(z)a - -al^(z)	 (28

dz
where

P -	 Pyk S(z - zk)
k

and al is the one-dimensional charge coupling constant. 	 P and n are

calculated using a linear weighting scheme and the field values at the

particles are calculated from grid points by linear interpolation.

No iteration is necessary in solving (28) because it can be solved

efficiently for variable n(z) by using the finite difference approximation to

the derivative, and using the tri-diagonal algorithm (Roache, 1976) for

calculating a(z) at the grid points.

In the problem at hand, we can assume reflection symmetry about the z 0

plane. It is therefore sufficient to consider oniy the domain from the center

of the neutral sheet outward into the lobe of the magnetotail. Since the x

component of the magnetic field vanishes, one boundary condition is that

as/az = 0 at z	 0, the assumed position of the neutral sheet. At the other

end of the domain, we wish the value of a to be constant, so that in the

absence of a convection electric field, the Poynting flux vanishes_. 'However,

if we have a region between the neutral sheet and the end of the domain in

which there are no particles, that is, where the source term for (28)

(29
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vanishes,, the value of ox . da/dz will be constant, so it is necessary to

calculate the solution only where n(z) is assured of being nonzero.

Let the domain be divided into two regions, 0 < z < L and L < z < L + 0,

and let n be zero in the latter region. We therefore need to integrate (28)

only in the region 0 < z < L. with the boundary condition at z n L,

a + Doa/az 0. This mixed boundary condition is easily incorporated into the

finite difference, tri -diagonal algorithm (Roache, 1976). In this case, the

total magnetic energy is given by

Em ' 2	 f;L02 dz + Da2 (L) + (L + D)A2]	 (30
1

Reflecting boundary conditions must be used in the particles at z - 0.

This means that a particle which finds itself at z < 0, the replacement z + -z

and vz + -vz is made. The other phase space variables are unchanged. These

boundary conditions follow from the assumption of reflection symmetry. When a

particle from the north passes through the symmetry plane, it is replaced by a

particle from the south side in which the z component of velocity is

reversed. This coupled with the fact that a x . 0, makes the z - A boundary

absolutely ener,,Zy conserving.	 Particles which exceed z - L are simply

reinserted inside the domain, and the velocities are reinitialized to the E x

B drift velocity. Although this particle boundary condition is not energy

conserving, very few particles cross the z - L boundary.

3. Results of Calculations.

3.1 Two-Dimensional Model Results.

The two-dimensional calculations seek to examine the question of how the

earth's magnetotail and neutral sheet might be inflated and respond to

hL
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changing external conditions, such as the imposed convection electric field.

The calculations also seek to explore whether turbulence would develop, and

whether it would lead to the formation of X- and 0-type neutral lines.

As a working hypothesis it is assumed that a convection electric field is

present in a region accessed by cold particles of ionospheric or magnetosheath

origin. Panel a of Figure 1 shows the initial magnetic field configuration.

This was generated as a contour plot of the vector potential. The

magnetospheric z-axis is upward, and the x-axis, earthward direction,

increases to the right. In the region where the magnetic field is uniform the

x- and z-components of ^, as it appears in (13a, b) is set of O.S. The source

of the x-component of the field is a current sheet, which is held constant in

time, but has small random spatial perturbation.

Contours of constant current density are exhibited in panel a of Figure

2.	 It was necessary to introduce this current because the interation

procedure outlined in (2) requires a starting vector potential consistent with

the initial particle distribution. This current sheet was assumed in order to

int,^oduce a kink in the magnetic field and the perturbation in the current

sheet to excite any plasma instabilities that might develop. It will become

apparent that this ad-hoc current will be a small fraction of the total

particle current. Some field-line curvature is necessary, in order that the

E x B drift not be everywhere inertial. It is only in the region where the

E x B drift is non-inertial that ions will move relative to electrons.

The planes shown in Figure 1 are defined by 129 x 129 grid points, which
are loaded with 4 x 104 particles in a band 129 x 89 grid points centered on

the neutral sheet. The average density is 4 x 104/(128 x 88) t- 3.55 particles

per	 cel 1. This	 is the initial	 value of n	 in	 (16b).	 The initial	 particle

velocities are	 all set to	 the	 local E x B drift velocity, such that they
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initially contribute nothing to the current. The charge coupling parameter,

a, in (15) is set to ac a 0.0655, which results in the asymptotic Alfvin speed

of Va - 3.040. The convection electric field is 7.07, so that the asymptotic

x and v-components of the E x B drift velocity are u E . (7.07, 0 9 t7.07), with

the z-components converging on the neutral plane. The initial E x B drift

energy of the plasma is 2.179 x 10 6, and the initial  energy in the magnetic

field is 6.U2 x 104 . Hence, in this model the E x B drift energy far exceeds

the magnetic energy, for the boundary condition that the vector potential is

clamped on the z - 0 and z a L boundaries. The time-step for this model was

at = 0.025, and eight iterations were used each time-step to calculate Ay.

Figure lb shows the magnetic field lines a short while later. 	 The

significant change is that the kink in the field lines is sharper. Figure 2b

shows the current density contours are also much narrower. The fixed current

shown in Figure 2a is unchanged, but the largest contribution to the current

comes from the particles drifting into the neutral plane. The current sheet

appears thinner because the number of contours between maximum and minimum is
t.

constant, independent of the difference between these values.

Figures 1c and 2c show the field lines and current contours somewhat

later. The current has bifurcated, and this is reflected in the development

of shock structures on either end of the neutral plane, which develop because

the flow toward the neutral plane exceeds the phase velocity of a magnetosonic

wave. This super-magnetosonic flow is by virtue of the assumed cold particle

distribution and very small magnetic field intensity. It viould not be seen in

an established plasma sheet and magnetotail in which particle thermal energies

and magnetic field intensitites are much higher. The thickness of the shock

is the order of resolution of the grid mesh. At the time corresponding

Figures_ld and 2d, all of the particles have been swept into the shock region,

t_
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and the external field begins to increase. The asymptotic field lines appear

somewhat curved in Figure ld because not quite enough iterations have been

taken to communicate the information from the edge of the current sheet to the

boundary of the domain. The feature of main interest in Figure 2d is the

development of multiple current sheets and the expansion of the current

carrying region.

Figure le shows the continued increase of the external field and the

continued thickening of the current carrying region. A satellite traversing

the plasma sheet would observe multiple reversals in the x-component of the

field. Figure 2e shows the development of current filaments and x-dependent

structure. Plots of the z-component of the magnetic field at the original

neutral plane show considerable short wavelength fluctuation.

Finally, Figures If and 2f, at the end of the run show the development of

turbulence in the plasma sheet region with some closed magnetic islands. The

run could not be carried on much longer because the current sheets would have

expanded to the edge of the domain. The external x-component of the field has

increased to 3.25, a factor of 6.5 over the x-component at the beginning of

the run.	 This clearly indicates that the action of a convection electric

field on a cold particle population is capable of significantly increasing the

lobe field.

Figure 3 shows plots of the magnetic, kinetic and total energies during

r

	 the run. The total energy began to increase at a more rapid rate only after

all of the cold particles were swept into the current sheet and the external

f

	 field began to increase. 	 Since the convection electric field was held

constant, the value of Poyntng flux at the boundaries would increase in

proportion to the boundary field. Also, it appears that the width of the

current channel has a nearly steady increase. 	 H
r;
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An important question is the fate of the turbulence seen in Figures if

and 2f. The fact that the current sheet has successively broken into many

smaller current sheets $ and the fact that the irregularities have the same

size scale on the x- and z-directions suggests that the turbulent cells will

not coalesce to form large scale structures of the type that would be

identified with the development of a single or a few X-type neutral lines  i n

the magnetosphere, or the development of the topology that emerged from the

fluid calculations of Ei rn (1980) . This conclusion is based on another run

similar to that shown in figures 1 and 2, except that the convection electric

field was only half the value. This made it possible to carry the run on for

a longer period of time. Turbulence also developed at about t = 15 into the

run, and it was tracked until t n 20 at the end of the run. During the period

the turbulence on the original center of the current sheet was observed to go

through a cycle of growth, decay and regrowth, suggesting that the level of

turbulence is stable. In this latter run, the diameter of the turbulent cells

was the same as the width of the current sheets; however, the scale size and

amplitudes were somewhat smaller than the scale size and amplitudes of the

runs shown in Figures 1-3, with the stronger convection field. These results

seem to be consistent with the results of fluid model simulations of Matthaeus

and Montgomery (1981) of a sheet pinch which exhibited the development of

small scale MHD turbulence. 	 The turbulence did not lead to any enhanced

energy dissipation.

The most serious limitation of these runs is that the time span was not

much longer than the characteristic ion gyroperiod. The possible consequences

of this limitation will be discussed after the one-dimensional results are

presented. Another point that should be kept in mind is that the magnetic

field is very weak, so that the flows are super-magnetosonic



The model does seem to indicate a process for the inflation of the

earth's magnetotail by a convection electric field. The model also suggests

that, aside from low-level turbulence,'a one-dimensional, z-dependent model of

the neutral/plasma sheet may provide an adequate description.

3.2. One-Dimensional Model

An advantage of the one-dimensional model is that it is economically

feasible to follow a system for a very large number of time-steps. Moreover,

since the fields are calculated implicitly, no iteration is necessary, and

action-at-a-distance is possible. 	 This makes it easy to follow rapidly

propagating Alfven waves.

^., The total model domain will extend from z - 0 to	 256; but the

particles wi l l be confined to 0 < z < L = 128. As explained in Section ` 2.3,

the z = 0 boundary is assumed to be the center axis of the current sheet with

the boundary condition a x = 0. The vector potential is held fixed at x =

256. The model uses 8192 particles, divided initially into two populations.

There is a hot population consistency of 2048 particles loaded into the region

0 < 32.	 The particles are randomly distributed in z; their speeds are

uniformly, randomly, distributed in the range 0 < v < 10 32; and the velocity

directions are uniformly, randomly, distributed on the surface of a sphere.

This population represents the plasma sheet. The charge coupling constant, a1

of (28), was set to 3.9 x 10-3 in order that this population would support an

asymptotic magnetic field of o x = 5. The other population consists of 6144,

zero velocity particles which are spatially distributed according to
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= zno/32	 z < 32

no	324z4112
nc(z)	

= no (127 - z)/15	 112 < z < 127

= 0	 z > 127

where no = 59.4. The z-component of the magnetic field is nz = 1, so with

n 
= 5.1, and a particle density of no , the AlfvAn velocity is V

.
 = 10.6. Two

separate runs were made with the one-dimensional model. 	 One assuming a

convection electric field, cc , that increases linearly from zero to 10 at

t = 2w and thereafter remains constant. 	 The other is a nearly energy-

conserving run with cc = 0.

The results of the run with the convection electric field are displayed

in Figures 4, 5, and 6, which show the particle number density, particle

energy density and x-component of the magnetic field respectively at various

stages of the run. The magnetic field lines are displayed in the contour

plots of a(z) + n,x in Figure 7, while figure 8 shows a time history of the

magnetic, kinetic and total energy. 	 Figure 9 shows a plot of the final

particle energy spectrum.

The initial x-component of the magnetic field was computed self-

consistently with the plasma sheet particles, so if there were no z-component

of the magnetic field and no electric field, the field and particle population

would be in equilibrium. The stresses due to the addition of a z-component of

the magnetic field will cause an acceleration of the plasma in the x

direction, while the y-directed electric field will cause a particle drift

toward the neutral plane. It can be seen that the cold portion contributes

very little to the current. At t = 6 and 12, the effect of the convection

electric field compressing the particle near the neutral plane can be seen.

(31
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This would be viewed as a thinning of the plasma sheet, a signature of

substorm onset. The waves in the magnetic field profile are due to AlfvCn

waves propagating outward from the plasma sheet, which are generated by

initial transients due to the fact that the initial particle and field

distributions were not chosen completely self-consistently. 	 During this

growth phase Figure 8 indicates a slow increase in magnetic energy and a much

more significant increase in kinetic energy.

The middle portion of the run, from t - 30 to t - 70, saw an expansion of

the plawne; sheet, and a leveling off of the magnetic energy increase, but a

continuing and accelerating increase in plasma energy. figures 4 and 5 show a

merging of the cold and plasma sheet populations at about t - 50. In contrast

to the plasma sheet expansion; Figures 6 and 7 show a continuing decrease in

the thickness of the magnetic neutral sheet during this middle period. also,

the magnetic field profiles indicate the existence of standing, shock-like

features near the neutral sheet.

The final phase of the run from t - 70 to 110, shows a continuing

expansion of the plasma sheet, but now also shows a substantial thickening of

the neutral sheet. At this time, all of the ionospheric plasma has been swept

into the neutral sheet and heated. The most significant feature of this later

phase is the continuing increase in plasma energy and the comparatively rapid

decay of magnetic energy. 	 The magnetic field energy decays despite the

continuing presence of the convection electric field. This indicates that

maintenance of the tail field requires a continuing supply of cold particles

to be swept into the neutral sheet region.

Finally, Figure 9 shows the particle energy spectrum at the final stage

of the run. Also shown for purpose of comparison is the energy spectrum

4
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f(E)dE - 4.40 E/2 
a-E/8 

dE

where e - 164, corresponding to a three-dimensional Maxwellian distribution of

velocities that has the same average energy as the simulation energy

spectrum. The most significant features is that the simulation spectrum is

much more peaked than a thermal distribution. 	 The spectrum is also

characterized by a long tail, containing relatively few particles that decay

quite slowly, with the highest energy particles at 1819.

Figure 10 shows magnetic, kinetic and total energy for a run which had

the same initial phase space distribution of particles, but in which there was

no convection electric field present.	 The result is that magnetic energy

immediately begins to decay with the energy going into kinetic energy of the

particles.	 This is an energy-conserving run, so the total energy should

remain constant. The degree to which the total energy remains constant is a

measure of the accuracy of the code. 	 During the run, there was a 3.7%

increase in total energy. , The plots of density, energy density, and magnetic

field during the early phase of the run showed little noteworthy differences

between the run and the run with the convection electric field present, except

that toward t - 40, the run with the convection electric field present began

to show a thicker plasma sheet. Comparison of the two runs suggests that the

presence of a convection electric field is necessary to keep the tail field

from collapsing. During the field collapse the solenoidal electric field was

the same order as the applied convection electric field in the previous

example, es = 10.

There are significant differences between the one and -two-dimensional

runs.	 The two-dimensional run exhibited strong shock formation. 	 This is

attributed to the fact that in the two-dimensional run the flow was super-

as
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magnetosonic.	 The other major difference was the absorption of particle

energy in the one-dimensional simulation. This is due to the fact that the

one-dimensional simulation contained an energetic thermal population and that

the one-dimensional run had a duration of several gyroperiods such that the

cold population became heated and thermalized. Another difference is that in

the one-dimensional simulation, the E x B drift energy increases by a factor

of 26 between the asymptotic regions and the neutral sheet, while in the two-
F

dimensional simulation, there is only a factor of two increase in E x B drift

energy. Moreover, in the two-dimensional run when the particles encounter

shocks in which there is a significant increase in the magnetic field, the E x

B drift energy shows a decrease.

4. Discussion and Conclusion

The purpose of this paper has been to use one- and two-dimensional

particle codes to model the formation and dynamics of the earth's

magnetotail. The two-dimensional model was used to explore a process for the

inflation of the earth's magnetic field into a configuration like the

magnetotail.	 The process assumed the presence of cold particles and a

convection electric field and an initial kink in the magnetic field caused by

the assumed presence of a sheet current. The simulation showed that the cold

particles drifting into the region of the current sheet would expand the

current sheet and eventually increase the magnitude of the external field.

A question of interest is whether an arbitrarily small perturbation in an

otherwise uniform field would give rise to the inflation exhibited in

Figure 1.	 The firehose instability (Hasegawa, 1975) provides useful

insight. The convection electric-field may be transformed away by going to an

inertial frame moving at u = cEy/BZ .	 The result is particle streaming
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parallel to the magnetic field at v 1 - cEy Bx/ (BBZ). Particles originating

from opposite sides of the current sheet will stream in opposite directions,

resulting in interpenetrating ion beams. If one assigns a parallel kinetic

+ temperature to this distribution of 9 1 - 
1 mv 1 2 , then the criterion for the

firehose instability says the kinks will grow when

8wn 9 1/8 2 > 2 r;

or	
2 E 2c 

-^	 tan2ir > 2	 (32
a

where i ► is the angle of the asymptotic field lines make with the z-axis. For

i► ^ 450 , E = 1 mV/m and n - 1 cm -3 , (32) is equivalent to B < 5.7y.

Equation (32) can also be written in terms of the change in Bx across the

current sheet, and it puts a lower limit on the size of a perturbation, given

n, Bz and Ey . Equation (32), when * is expressed in terms of B x shows that

there is a minimum perturbation, below which perturbations will not likely

grow. These runs however indicate that a magnetotail configuration like those

presently observed could evolve from a very weak field through a series of

repeated injections of cold particles to build up a plasma sheet population

which supports its extended magnetotail lobes.

The other question addressed by the two-dimensional model is whether

instabilities in the current sheet would likely develop which would lead to
J

t	 the formation of X- and 0- type neutral lines. The indications from the model

runs is that fine-scale turbulence does develop and in one model it does lead

to the formation of closed flux lines, but it does not seem to lead to the

large scale x-dependence that would be identified with the formation of X- and
a

0-type neutral lines in the magnetosphere. 	 These conclusions must remain
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tentative until more extensive runs can be made. The code was run under

conditions of super-magnetosonic convective flow, which might exist in only

limited regions of the plasma sheet. It should also be ruti for longer time

periods. Such runs must await extensive revision*to the program to increase

its efficiency.

The program also assumed a constant magnetic flux through the upper and
3

lower boundaries of the simulation domain. This does not take account of the

fact that as the magnetosphere is inflated, more and more field lines are

pulled out into the tail. This could change the magnetic flux through the top

and bottom boundaries in a localized region represented by the simulation

domain.	 A sufficient decrease in the flux might permit the formation of

large-scale magnetic islands.

The one-dimensional model also assumed a constant z-component of the

magnetic field, and also x-independence of all quantities. In other respects

it was more realistic, in that the initial magnetic field was supported by an

initial distribution of hot particles, and teat the convective flow velocities	
2

were less than the Alfv6n speed. Moreover, the system was followed for a
t

large number of ion gyroperiods. A substorm was modelled by applying an

external convection elect r1 c field and assuming the existence of a population

of cold particles external to the plasma sheet population, representing

particles of ionospheric origin in the lobes of the magnetotail.

The plots of the energy density of the run shown in figure 5, reproduce

the well-documented thinning and re-expansion of the plasma sheet. 	 This

thinning is attributed to the inward E x 8 drift of plasma sheet particles.

This occurs whether or not a_convection electric field is applied, because in

the absence of a convection electric field, an induction electric field

develops due to the collapse of the magnetic field. This induction electric
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field also causes an inward E x 8 drift. The subsequent expansion is a result

of more energetic particles streaming outward from the neutral plane. If the

field-aligned component of the particle velocity is large enough, the z-

component of its motion can exceed the inward component of the E x 8 drift,

resulting in plasma sheet expansion.
w

There also appears to be a thinning of the magnetic neutral sheet

followed by a subsequent thickening, which lags considerably behind the

thinning and thickening of the plasma sheet. However, an observer stationed

at one position with respect to the neutral plane would observe no clear trend

in the variation of the magnetic field. The thinning would only show up as a

more rapid reversal of the x-component of the magnetic field on traversing the

neutral sheet. The thickening of the magnetic neutral sheet occurred after

all of the cold particles had been swept into the plasma sheet and

thermalized. The thickening process also accompanied a decrease in magnetic

energy.

The decrease in magnetic energy at this time, in spite of the continuing

presence of the convection electric field, suggests that a necessary condition

for the maintenance of the tail field is the continued influx of cold

particles from the lobes of the magnetotail. This in turn implies the

necessity of replenishing the lobe field lines with particles of,magnetosheath

origin. Figure 10, which shows the variation of magnetic and particle energy

for a run in which there was no convection electric field, shows the immediate

onset of magnetic energy decrease. This suggests that the presence of a

convection electric field is also a necessary condition for the maintenance of

the tail field. The fact that when both cold particles and the convection

f	 electric field are present, the magnetic field energy remains constant or

increases, suggests that a necessary and sufficient condition for the
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existence of the magnetotail is the combined presence of the convection

electric field and cold particle populations in the magnetotail lobes.

The results of the simulation allow us to tentatively identify the

manifestations of a substorm in the magnetotail as simply a consequence of an

increase in the convection electric field. 	 It appears that a quasi-steady-

state field and particle configuration can be maintained with a modest

convection electric field and a continuous supply of ionospheric or

magnetosheath particles to the lobes. A temporary increase in the convection

electric field would bring about the thinning and re-expansion of the plasma

sheet- There would be enhanced dissipation which would heat the plasma sheet

population, but since there would also be other low energy particles in the

process of being heated a satellite observer would not necessarily observe an

increase in plasma temperature. 	 The lobe magnetic field could increase or

decrease depending on the availability of low energy particles. The substorm

decrease in magnetic energy observed by Fairfield et al. (1981) could follow a

consequence of the depletion of the cold lobe particles. These processes take

.lace without the occurrence of any large -scale plasma instability.

The simulations suggested that the plasma sheet would continue to thicken

whether or not a convection electric field is present, so there would be no

way for the plasma sheet to return to its original configuration. Therefore,

the complete cycle requires some process for the removal of plasma sheet

particles.	 In the magnetosphere this can be accomplished through the

convection of plasma sheet particles into the inner portions of the

magnetosphere to become part of the ring current belt.

Another important result is the fact that convection electric field or

magnetic field energy can be readily converted into particle energy; and as

predicted by Roederer (1977), this can occur in the absence of any magnetic
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region associated with a neutral line. 	 Fluid codes, on the other hand,

require the special introduction of viscosity or resistivity in order to

effect such a conversion (Birn, 1980; Matthaeus and Montgomery, 1980). The

ready conversion of energy in ordered plasma flow to thermal energy is

possible because as Swift (1977) and Wagner (1979) have shown, ions interact

non-adiabatically with 'the magnetic neutral sheet region where the ordered

flow energy is converted into gyrational motion. This has the same effect as

dissipation.

The simulation time scale can be scaled to the magnetospheric time scale

by the particle gyrofrequency. In the one-dimensional model, we have assumed

a five-to-one ratio between the lobe and neutral sheet field strengths, which

is not unreasonable. If we assume a lobe field of 15Y, then a simulation time

duration of 110 corresponds to a time of 383 sec if H+ ions are assumed and

6130 sec for 0+ . The time assuming H+ populations is shorter than actual

substorm times. The time duration of the simulation could easily be increased

by populating a greater portion of the magnetotail lobes with cold particles.

One effect of a longer run would likely be a broader spectrum of particle

energies than indicated in Figure 9. 	 ,

Distances can be scaled on particle gyroradius. A 1 keV ion is a lay

field has a gyroradius of 300 km. A numerical simulation velocity is 10,

giving a simulation gyroradius of 2 grid units. The intial half-thickness of

the simulation plasma sheet is 32 grid units, which would correspond to

4800 km, somewhat less than observed plasma sheet thicknesses. An electric

field of 10 units gives an E x B drift velocity of 10 units in the neutral

plane, which corresponds to a velocity of 436 km/sec (1 keV) in magnetospheric

units. In a 3Y field, this corresponds to a convection electric field of 1.3

mV/m.	 The equivalent number density of cold plasma can be obtained by
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comparison of Alfv6n velocities. to a magnetic field of 5 gyrofrequency units

and a density of $9.4, the Alfv6n velocity is V a - 10.38, which corresponds to

a magnetospheric Alfv6n velocity of 458 km/sec. A number density of 0.53 cm-3

gives this Alfv6n velocity in a 15Y field. This number density is well within

the range reported by Anderson and Eastman (private communication).

Finally, we wish to .assess possible effects of electrostatic fields

arising from charge separation. 	 Electrons and ions will follow different

trajectories in regions where the magnetic field is non-uniform. As mentioned

previously, we anticipatethat highly mobile electrons will be effective in

maintaining charge neutrality along magnetic field lines. However, in regions

where the magnetic field curvature is large, ions will stream perpendicular to

field lines through strongly magnetized electrons. 	 This could excite the

modified two-stream instability (McBride et al., 1972). This instability can

give rise to substantial electrostatic potential which would substantially

change ion trajectories. This is a subject currently under investigation with

a purely electrostatic code involving both electron and ion dynamics. This

process offers the intriguing prospect . of generating large potential

differences across field lines. Such potentials may play a role in

accelerating auroral electrons.

Another possible interaction involving electrostatic fields is the lower

f	 hybrid drift wave. This mode is excited by currents in the y-direction, but

plasma sheet density gradients act to destabilize the mode so that excitation

occurs at lower current thresholds. Huba et al. (1977, 1978) point out that

such instabilities can give rise to anomalous resistivity and enhanced

dissipation, perhaps sufficient to allow ion tearing mode instability.

However, the calculations presented here and individual particle calculations

done elsewhere (Swift, 1977, Wagner et al., 1979) have shown that the cross,-

x
w
c
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tail electric field can result in the transfer of energy to gyrational motion

of ions.	 This can have the same effect as dissipative term in the fluid

equations, namely transfer of energy from ordered motio(i to internal degrees

of freedom. Therefore, even if the model calculations reported here permitted

excitation of the lower hybrid drift instability, it is• not certain that this

would significantly effect the calculations. 	 Moreover, Schindler and Birn

(1978) have pointed out that when BZ > 0 everywhere, and the tail field is in

equilibrium with pressure gradients that it is stable against all modes.

Although the conditions on the model do not involve equilibrium, the

Schindler-Birn theorem suggests that the models used here might be stable

against the tearing mode.
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Appendix

Details of Numerical Procedures to Solve Equation (21).

The method of solution is similar to that described by bycek and Dawson

a
(1918). Equation (21) is Fourier transformed in x so that

A(x, z) s 7. A(m, z) e2,cimx/'L
m

where A(m, z) satisfies

2	 3
(^ -	 sing ^ - k 2) A(m, z) _ -p(m. z)	 (Al

where N+1 is the number of grid points on CO	 x 4 Q and dx is the distance

between grid points.

We wish to solve (Al) subject, to the boundary condition that the magnetic

field must be asymptotically uniform. In order to impose this condition, we

write (Decyk and Dawson, 1979)

A(m, z) - a (m, z) + X(m, z)
	

(A2

where X(m, z) is the periodic solution, calculated from

A(m, z) _	 X(m, n) 
e2ninz/L

n

where X(m, n) is given by

X(m, n) - p(m, n) 4 sing mn N + 4 sing vn/N + k2 -1	 (A3

ex2	ez2



where p(m, n) is the double Fourier transform of p(r) in (21), and az is the

distance between grid points along the z-axis.

The other term in (A2) satisfies the homogeneous part of (Al). Using the

finite difference approximations to the second partial derivative, it can be

shown that

a(j, m) = Amri + 8mr
-j
	(A4

where j is the index denoting the grid point number along the z-axis, and

r = n + n2+1, where n is given by

2
n= 1+ 2 

o
 sin 2 (,an/N) + 3 k 2ez2	 (A5

For m ), 1, the coefficients Am and Bm are determined by the condition that

A(m, j) where j = z/Az, join smoothly onto solutions which vary as r ej at j =

0 and re-j at j = N, where re = ,le +	 ne +1, where ne is calculated as in

(A5), but with k 2 set equal to zero. for the m = 0 solution to (Al), we

impose the boundary conditions that

1	 i 

A (0, 0) _ -A (0, N)	 (A6a

and

(A(0, 0) + A(0, N) a AO	 (A6b

f

z

where the primes denote the finite difference approximation to the derivative

with respect to z.	 Equation (A6a) requires that the x-componentd of the

magnetic field at z = 0 and L be equal and of opposite sign, while (A6b)

requires that the value of aA/az averaged over the boundary vanish. In the



absence of the convection electric field, (A6b) specifies that there be no net

Poyntinq flux across the boundary.
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Figure 1.	 Contour , plots of the magnetic vector potential showing the
magnetic field lines during various stages of a run exhibiting
the development of a plasma sheet. Earthward is toward the
right and the vertical is the magnetospheric z—axis.
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Figure 2. Contours of constant current density for the same model shown in
Figure 1. The current is perpendicular to the page. There are
11 contour intervals between the minimum and maximum.
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Figure 3. A plot showing the magnetic, kinetic and total energy during th
run shown in Figures 1. and 2. The energy is in units of 0.5v
where v is the particle velocity in simulation units.



t=6
	

t=50

t=30

t = 0	 t=40

t=12
	

t=70

t=20
	

t=90

t=110

0 37 64 96 128 0 37 64 96 128

Figure 4•	 Number density profiles as a function of the distance from the
symmetry plane, expressed in grid units. 	 The density is
expressed in particles per grid unit.	 The tic marks show
densities in units of 100.
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Figure S. Particle energy density profiles for the run shown in Figure
4. Comparisons between the two figures make it possible to
distinguish between regions occupied by cold and energetic
particles.
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Figure 6.	 Profiles of the x-component of the magnetic field fore the run
depicted in Figures 4 and S. 	 The tic marks show a field	 M
strength of 5 in simulation units.
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Figure 9• A plot showing the kinetic energy spectrum at the end of the
run. The energy is in simulation units, 1/2V2. The smooth curve
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Figure 10 A plot showing the time variation of kinetic, magnetic and total
energy during a run similar to that in Figure 8, except that the
convection electric field was assumed to be zero.
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