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PRODUCTS OF MULTIPLE FOURIER SERIES WITH APPLICATION

TO THE MULTIBLADE TRANSFORMATION

Donald L. Kunz

Research Scientist, Aeromechanics Laboratory

U.S. Army R&T Laboratories (AVRADCOM)

SUMMARY

A relatively simple and systemn:ic method for forming the products of multiple
Fourier series using tensor-like operations is demonstrated. This symbolic multi-
plication can be performed for any arbitrary number of series, and only the coeffi-
cients of one series need to be known. 'rhe application of this methodology to the

transformation of a set of linear differential equations with periodic coefficients
from a rotating coordinate system W a nonrotating system is also demonstrated. It
is shown that using Fourier operations to perform this transformation make it easily
understood, simple to apply, and generally applicable.

INTRODUCTION

The harmonic balance method is a useful tool for obtaining the forced response
of systems governed by differential equations with periodic coefficients. However,

for a set of linear equations, the m" ual application of this method tends to become
quite unwieldy as the number of harmonics, or the number of degrees of freedom,

increases. In reference 1, Peters and Ormiston develop matrix methods that will
perform the Fourier operations necessary to solve linear equations, eliminating the
need for hand calculations involving Fourier series. Several investigations
(refs. 1-3) have osed this methodology to successfully solve linear response problems.

As opposed to linear problems in which products of two Fourier series are

encountered, nonlinear problems retaining only second -order nonlinearities contain
products of three series. Reference 4, which considers such a problem, handles prod-
ucts of three series by multiplying the first two series in one step and the third
in a separate step. This presupposes that the coefficients of both of the first two
series are known, as they ore in that particular application. dowever, if the coef-
ficients of only one series are known, this method of forming the product of multiple

Fourier series cannot he used.

The alternative to performing successive muitiplications (of two series to form

the product of multiple • series) is to derive an array analogous to the Fourier prod-
uct matrix of reference 1. It is the objective of this Memorandum to demonstrate
the procedure for forming such an array for any arbitrary number of series. In addi-
tion, the application of Fourier series to performing the multiblade transformation
(refs. 5 and 6) is described. This application uses summation relations, Fourier
derivatives. and products of two and three series. Some of these operations can be
found in reference 1, but a complete set has been included in this report.



I	 cos(nq,o), if

b E cos(nh) -
k-i	 0	 if

n is an integer multiple of b

n is not an integer multiple of b
(5)

1 b	 I :in(n*o). if
sin(n*k)

bk-i 	 if

n is an integer multiple of b
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LINEAR OPERATIONS

In reference 1, Peters and Ormiston present the identities and linear operations
that are required to develop Fourier products, and to apply the generalized harmonic
balance method to the solution of differential equations. For reasons of complete-
ness and to establish a consistent notation within this report, these identities and
linear operations are repeated below.

Basic identities- Consider a function f(*) with period 2n. The Fourier coef-
ficients of f(^) are defined as follows:

jz^
an M n
	

f(y+)cos(n^y)d*	 (1)

0

xn
bn - n 1	 f(*)sin(n^)d ^ 	( )

0

a 0 ' 
Zn f2 W

 f (^Y)dV^	 (3)
0

b o ' 0	 (4)

In periodic systems having b equally spaced, identical, time - lagging components
(e.g., helicopter rotors, turbine compressor rotors, and wind turbines), the follow-
ing Summation relations are frequently useful.

1	
b	

k
cos(n;p0).	 if n	 is an odd integer multiple of

2(-1)	 cos(nW -
b (7)

k-i 0	 if n	 is not an odd integer multiple
b

of	
2

1	 b sin(ny,0),	 if n	 is an odd integer multiple of b

(-1) k sin(nh) -
b

1 (g)
k-1 0	 if n	 is not an odd integer multiple

b
of

where ''k - ^,o f "_'n(k - 1)/b. The identities in equations (7) and (8) do not appear
in reference 1. but can be found in reference 6. They arise only for periodic sys-

tems in which b is even. Equations (5) and (6), on the ot«,r hand. are applicable
to systems in which b is either even or odd.
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Phase change- To express the phase -shifted function f(* + d) as a function of
f(0), let g(*) - f(W + d) and express f and g as Fourier series, where N is a
nonnegative integer.

N

f M - E [an cos(n*) + bn sin(n*))	 (9)
n- o

N
gM - E [ An cos(nO + Bn sin (n*)]	 (10)

n-o

Writing g in terms of f and expanding,

N

g (W) - E { an cos[n( « `` S)] + bn sin [n(* + 0 1)	 (11)
n-o

N
g(W) - L ([an cos(116) + b n sin(nd)]cos(n*)

n-o

+ [-an sin(n6) + bn cos(nd)]sin(n*))	 (12)

The An and Bn are then

An - an cos(n6) + b n sin(n6)
(i3)

Bn - -an sin(nd) + b n ccs(nd)

This relationshi;, can be written in matrix form as

JBn	

100))n
	

(14)
bn

9	 f

where

[00)J -

^l 10
I

cos d	 0	 1	 An d	 0

0	 ,	 0

	

cos (M) 1	 sin(nd) ,
- - - -- — — — — — - -- — - — --- — — --- — ----

0	
11

I

-sin d	 0	 I	 -cos d	 0

0	 I	 0

	

-sin(N O	 cos (N6)

(15)
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In the next section, a matrix operation which forms the derivative of a Fourier
series will be discussed. That derivative matrix is just a special case of equa-
tion (15), where the phase angle d equals 90'.

Derivative- In order to apply the harmonic balance method to a system of dif-
ferential equations, it is necessary to be able to take the derivative of a Fourier
series. Given a seri	 f(*) and its derivative,

N
f M _ 2: [an cos (n*) + h. sin (n*) ]	 (16)

n-o

of - N
B^	

Z [-nan sin(n*) + nbn sin(nW)]	 (17)
n-o

set g(y) equal to the derivative of f(*).

N
g W - 1: [An cos(n*) + Bn sin(n*)]	 (18)

n=o

Then,

An - nbn
(19)

Bn = -nan

Equations (19` can be written in matrix form as

jAn
	 an

[D]	 (20)

	

Bn $	 bn f

where

0
I	 1	 0
I

0	 I	 2
0

0	 I
	-1	 0	 I

-2	 0

	

0	 I

	

—	 I
-N

By extension of the concept used to develop equation (21), the derivative matrix
used to calculate the kth derivative of f(*) can be obtained.
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An)	
[Dk] 

(an i

Bng	 bnf

	 (22)

where

[Dk] _ [D]k

Peters and Ormiston, in reference 1, discuss the case where f(*) is modulated
by the harmonic function e iWt . This concept can be generalized for the ease where
the Fourier coefficients of f(y) are also functions of *.

N

L [an(W) cos (n*) + bn(*)sin(nV) ] 	 (23)
n=o

Taking the derivative of f and calling it g,

of	 ^N+
	Ian	'bn

g m 	 L• 	a + nbn cos (n*) + I^ - nan sin (nay)	 (24)
nmo

asn
An-FT + nbn

(25)

abn
Bn = IT - nan

In matrix form, where (I] is the identity matrix,

B	
= r[ I ]	 + [D]

Ian)
 

b	
(26)

Bn 	
L	

of

For the kth derivative of f(W)

J

An j	 a^ + 
(D]JJJJJ

^
kan
	(27)

Bng 	 bn f

One of the uses of equation (27) will be seen during the discussion of the method of

multiblade coordinates.

Products of Fourier Series

In this section, a method for forming products of any numbe r of Fourier series
using matrix algebra is described. The Fourier product is one of the most essential
operations required to apply the generalized harmonic balance method to the solution

of different !al equations. Reference 1 discusses the technique used to multiply two
series together, but does not attempt to extend it to multiple products. In order to
form a basis of understanding of the methodology and to establish consistent notation,
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products of two Fourier series are reviewed. Then, it is shown how to extend the
method to products of several series, using the product of three series as an
example.

Products of two Fourier series- Consider two Fourier series expansions, f(*)
and X (*), where the coefficients of f(*) are known and I and J are nonnegative
integers.

I
f(*) - T, [ai cos(i*) + bi sin(iy)]	 (28)

1-o

J
XW - F, [ xjc cos(j^) + xjs sin(j*)]	 (29)

j-o

The product of f and X is defined to be Z(*), where

N
Z W - 1: [znc cos(n*) + zns sin (n*)]	 (30)

n-o

where N is a nonnegative integer. Expanding Z in terms of f and X,

I	 J
Z W -2 ^ T, {aixjc [cos(i + j)* + cos(i - j)*] + a ixjs [sin(i + j)y,

1-o -o

+ sin(i - j)Vp] + b ixjg [ -cos(i + j)* + cos(i - j)^]

+ b ixj c[sin(i + j),y + sin(i - j)*]}
	

(31)

The object now is to develop a way to express equations (30) and (31) in the form

znc - [PZ(f)] x
jc	 (32)

zns	 xis

where [P 2 (f)] is the Fourier product matrix for the product of two series.

In order to form equation (32) the equivalent harmonics in equations ( 30) and
(31) must be identified and separated such that i + j - n and i - j - n. To this
end, the following matrices are defined (a representing either a or b):

_	 a	 0^ n- j^ I
Q+ (a) -	 n-j	 i + j - n	 (33)

nj	 C	 n- j <0, n-3 > I

Ja-n-J 	
0 ^ -n - j :S I

Qnj (a) -	 -(i + j) - n	 (34)
0	 ;	 -n - j < 0, -n - j > I

6
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Q+ +(a)
+j 	

0< n+ j < I	 i - , - n
n

0	 n+ j<0, n+ j> I

a_ j	 0 n+ j ! I

0	 -n + j <0, -n+ j > I

Note that the nth row of the Q-matrices represents the nth harmonic of Z, and
the jth column will be multiplied by the jth harmonic component of X. The
harmonic component of a that goes in the nth row and jth column of the
Q-matrices is calculated according to equations (33)-(36). If the subscript of a
is called i, it can be seen the Q-matrices provide a means of identifying like
harmonics. It is important to understand how this works for the product of two
series since the same principle holds for multiple products, but is much more diffi-
cult to produce without some sort of pattern to follow.

The Q-matrices can now be combined to form the cosines and sines of like har-
monics. The following substitutions are used:

t	 N	 _
ai cos(i + j)^ _	 Inm'Qmj (a) + Qmj (a)]	 r	 i + j	 (37)

i-0	 m- o

I

ai cos(i - j)*

N	 _

° E	 Inm(Qmj( a) + Qmj 0)1	 n - i - j (38)
1-o m-o

I
ai sin(i + j);P - Qnj(a) - Qn j (a)	 ;	 n - i + j (39)

i-o

I
ai sin(i - D41 Qni(a) - Qnj(a)	 n - i - 1 (40)

i-o

where	 a	 may represent either a or b, and %there [I] is a correction matrix

1

2	 0
1	 —

(I)	 - 1 (41)

0

1

In equations (37)-(40), the significance of ':he pattern of signs must be stressed.
By changing from (i + j) to (i - j), the second sign in the C-matrix superscript
changes from minus to plus. Because of the way in which the Q--matrices were origi-
nally defined, the second superscript reflects how the jth harmonic of X con-
tributes to the definition of the subscript of a. Thus, it is logical that when
j changes sign, the second subscript should also change. In addition, the signs of
the second matriceF in equations (37) and (38), which define - ne cosines, are posi-
tive; while in equations (39) and (40), which define the sines, the same matrices
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are negative. These sign patterns will be valuable when the multiple product
matrices are formed.

All of the elements required to fors the Fourier product matrix for products of
two series have now been developed, and [P 2 (f)] itself can now be formed. First,
partition [P 2 (f)] such th3c

snc	 Ac I B	 J.c-- —	 —

jZn,	 Bc As x j $

Referring to equation (31) and making the substitutions ,n equations (37)-(40), the
partitions can be defined.

(AC ) ' 2 [ I I 1[Q+ (a) I + (Q (a) ) + [Q++(a) I + [Q +(a) I	 (43)

[As ) - Z [[Q+-(a)] - (Q--(a)] - [Q++(a) I + [Q-+(a) ]]	 (44)

[Be]	 2 [ I I C-[Q+ (b) I - [Q (b) ] + [Q++(b) ] + [Q +(b) ],	 (45)

[Bcl	 2 [ [ Q+-(b)]  - [Q (b) I + [ Q++(b) I - [Q +(b) I,	 (46)

Note that since the first rows of [B c ] and [As ], and the first columns of [B s] and
[As ] are all zeros, [P 2 (f)] is singular. This difficulty can be circumvsntad in at
least two different ways: an so may be inserted in the upper-left corner of [As],
or the offending rows and columns may be removed.

Once developed, this approach to multiplying to Fourier series is easy to use
and highly adaptable to computer applications. When dealing with relatively short
series, a method such as this one is probably unnecessary. However, when a product
is formed from two series each of which has many terms, or from more than twn series,
this methodology is extremely useful.

Products of multiple Fourier series- In the preceding discussion, the steps
required to form the Fourier product matrix were described. These steps are:
(1) expand the product in summation notation, equation (31); (2) define the
Q--matrices, equations (33)-(35); (3) combine the Q-matrices to define the cosine
and sine substitutions, equations (37)-(40); and (4) partition the product, matrix
and define the partitions using steps 1 and 3. In forming the products of multiple
Fourier series, the same steps can be followed to form arrays that can be used to
multiply the series together using simple tensor-like operations.

The first step of expanding the product using summation notation is the only one
that requires any extensive hand calculations. This expansion is necessary in order
to determine the signs of the cosines and sines for the substitutions that are made
in step 4. As an example, consider the three Fourier series, f(*), X(*). Y(W). and
their product Z(*), where the coefficients of f are known and I, J. K, and N
are nonnegative integers.

(42)

B



fM-E
i-o

[ai COS%AW) + of DLH%LW! J %-W I

r

J

XW -

	

j-o 

[ xjc cos(j*) + xjs sin(j*)]
	 (4a)

K

	

Y W - E [ykc cos (k*) + irks sin(k*)]
	 (49)

k-a

N

	

z W - E [ znc cos(n^) + zns sin(n*)]
	

(50)

n-o

Expanding Z in terms of f, X. and Y,

I J K
Z(*) - 4
	 {aixjcykc[cos(i + j + k)* + cos(i + j - k)c + cos ( i - j + k)*]
i-o j-o k-o

+ cos(i - j - k)*] t aixjcyks [ sin(i + j + k ) ^ - sin(i + j - k)*

+ sin(i - j + k)^ - sin ( i - j - k)*] + aixjsykc [ sin(i + ; + k)*

+ sin(i + j - k ) ^ - sin(i - j + k)* - 31n(i - j - k)*]

+ aixjsyks [-cos(i + j	 k)^ + cos(i + j - k)* + cos(i - i + k)W

- cos(i - j - k)^] + bixj cykc [ sin(i + j + k)^ + sin (i + - k)W

+ sin(i - j + k)^ + sin ( i - j - k),^] + bixjcyks[-cos(i + j + k)iy

+ cos(i + j - k)* - cos(i - j + k)y + cos(i - j - k)*]

+ bixjsykc [ -cos(' + j + k)* - cos ( i + j - k)^ + cos(i - 9 + k)*

+ cos(i - j - kW + bixjsyks[ -sin(i + j + k)* + sin (i + i - k)*

+ sin(i - j + k)y - sin ( i - j - k)*]}
	

(51)

In step 2, where the Q-arrays are defined. the process of identifying like harmon-
ics is begun. To form the Fourier product of M series, 2 M Q-arrays are required.
The first step in defining these arrays is to write all of the possible combinations

of indices i, J. k. ... and set them equal to n. Then, solve each expression for
i, which is the subscript of each element of the Q -arrays. For the example of the
product of three series, the possible index combinations are: n - i + j + k,
n --(i+ j+k), n - i+ j -k, n - -(i+j -k). n - i - j +k, n - -(i - j+k),
n - i - j - k, and n - - (i - j - k). The eight Q-arrays (all three-dimensional)

are then
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r

+ - -	 Imn-j-k '	 0 ^n-_+ - 'cII
Qnjk (a) ' 	i + j + k • n	 (52)

0	 ;	 n- j -k<0, n- j -k> I

0	 -n - j- k <- I

Qnjk (a) _
IQ-n-j-k

-(i + j + kj - n (55)
0 -n -	 - j	 k < 0

+-+ 0	 n- j+ k 1 1
Qnjk (a) '

Jan-j+k
i + j - k - n (54)

0 n- j +k<0,n- j +k>I

-+ a-n-j +k 0 5 -n - A+ k -< I
Qnjk (a) ' -(i + j - ^c) - n (55)

0 -n- j +k<0.-n-j+k >I

++_ an+j-k 0	 n+ j- k^ I
Qnjk (a) - i - j + k - r (56)

0 n+ j- k< 0, n+ j- k> I

.+ - a-n+ j -k 0 f -n + j - k^ I
Qnjk (a) - -(i - j + k) - n (57)

0 -n +j- k^0,-n+ j -k >I

+++ %+j +k	 : 0 f n+ j+ k	 I
Qnjk (a) - = - j - k • n (58)

0 n+ j 4•k> I

-++ a-n+j+k + 0 f n + j +k f I
Qnjk (n ) -(i - j - k)	 n (59)

Note that these eight arrays were defined by inspection. There was no need to write
out each one to check its contents, because they all follow a specific pattern which
defines their use.

Step three completes the identification of like harmonics by combining the
Q-matrices to obtain the cosines and sines of each harmonic. Again, this can be
done by inspection. Starting with sosf (i + j + k + ...)y+ j, the Q-arrays that rep-
resen t_ n - (i + j + k + ...) are added together and premultiplied by a correction
matrix which multiplies all of the n - 0 terms by one-half. Similarly. the other
cosine functions are obtained by adding the appropriate Q-arrays and premultiplying
by the correction matrix. The sine functions a y e defined by subtracting the
Q-arrays from one another and no correction is ie;uired. Returning to the example
of the product of three series, the cosine and sine expressions are

I	 N
a i cos(i + j + k)W ••	 InmfQmjk 	 (a) + Qmjk (a )j	 n	 i + j + k	 (60)

i=o	 m-o

• '9
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i
E al cut; + j - k)*

N
- E 1raIQmik+(a) + Qmjk+(a)] n - i + j - k (61)

i-o m-o

!
a, ^^os(i - j + k)0

N

=	 InmlQmjk (a ) + Qmjk (a)] : n - i - j + k (62)

i =o moo

A i cos(i - j - k)* - E I nm [Qmjk+ (a ) + Qmjk+ ta ) l ; n - i - j - k (63)
i.2o moo

a i ein(i + j + k)* - Qnjk (00- Qnjk (CO n - i + j + k (64)
1 so

1
L al sin(i + j - k)•y

_
- Qnjk+ (a) - Qnjk (CL"	 ; n - i + j - k (65)

1-0

1
a` sin(i - j + k)y

_
- Qnjk (a) - Qnjk (a) n - i - j + k (66)

ai sin(i - j - k) q, -Qnjk+ (a) - Onjk+ (a't n = i - k (67)
t=o

when, a may represent either a or b, and where I is the correction matrix
de • +.ied in equation (41)

The final step in forming the pru , 'uct of multiple Fourier serie t is to parti-
tion the product array [ PM (f)] and define tine partitions. Within [PM(f)] the cosine
ar.d sine coefficients are grouped together in blocks which are arrangtd in a checker-
board fashion throughout the array. If the partitions are chosen such that each otle
contains only cosine or sine coefficients of f(^), there will be 2 M partitions.
Writing the relationship among Z(y-), f(, ). X(^p), and Y (^) for the example of a
product of three series in pseudo-matrix notation,

Znc	 [P3(f)] x
jc 	 j ykc j

ZnD	 [Xis	 yks
Partitioning [P,(f)l.

(bd)

K	 J	 J

Znc ' E E (Rnjkxjc + Rnjkxjs )ykc + J ac
K	 J	 J
^^ rr cc	 sc

Zns ' k L (Rnjkxjc + Anjkxjs)ykc + Jac
Using equation (51) to define the partitions and

(Rnjkxjc + A-ij kxjs ) yk8	 (69)

(Anjkxj` + Bnj kxjs )y
k.
	 (70)

substituting equations (60)-(67),

11



cc	 1 N 	 +--	 - -	 +-+	 +	 ++-njk ' 4 1; Inml%jk (a) + Qmjk (a) + Qmjk (a) + Qmjk (a) + Qmjk (a)
m=o

+ Qmjk (a) + Qmjk+(a) + Qmjk+(a)]	 (71)

Acs = 1 ^Q+- - (a) _ Q - - (g) _ 
Q
+- +(a) + 

Q
-- +(a) + Q++- (a) 

_ Q + - (a)njk 4 njk	 njk	 njk	 njk	 njk	 njk

- Qnjk+(a) + Qnjk+(a)1	 (72)

sc	 1 + - -	 - - -	 + - +	 -+	 ++-	 + -njk ' 4 [Q njk (a) - Qnjk (a) +Qnjk (a) - Qnjk (a) - Qnjk (a) +Qnjk (a)

- Qnjk+(a ) + Qnjk+ (a))	 (73)

ss	 1 N -	 + - -	 --	 +-+	 -+	 ++-
njk = 4 F, Inm l-Qmjk (a) - Qmjk (a) + Qmjk (a) + Qmjk (a) + Qmjk (a)

MUO

+ Qmjk (a ) - Qmjk+(a) - Qmjk+ (a))	 (74)

Bcc	 1
njk	

IQ 
njk
+- - (b) - Q 

njk
-- - (b) + Q+

njk
- +(b) _ Q

njk
- +(b) + Q++

njk 
- (b) - 

Q njk-+ (b)4 

+ Qnjk+ (b ) - Qnjk+ (b))	 (75)

cs	 1 N -	 + - -	 --	 +-+	 -+	 ++-Bnjk ' 4 E Inm f -Qmjk (b) - Qmjk (b) + Qmjk (b) + Qmjk (b) - Qmjk (b)

- Qmjk (b ) + Qmjk+(b) + Qmjk+ (b )	 (76)

Bsc	 1 N I	 +- -(b) _ p - - (b) _ Q+- + (b) _ p - + (b) + p++ (b)
njk m 4	

nm I_ 
Qmjk	 'mjk	 `mjk	 'mjk	 `mjk

+ Qmjk (b ) + Qmjk+(b) + Qmjk+(b))	 (77)

Bss	 1 I _Q+ 	(b) + Q- - - (b) + Q+-+ (b) _ Q-- +(b) + Q++ (b) _ Q-+ 
- (b)njk 4	 njk	 njk	 njk	 njk	 njk	 njk

- Qnjk+ (b) + Qnjk+ (b) l	 (78)

12



Having obtained the partitions of the product array, they can be substituted into

equations (69) and (70), and [P 3 (f)] can be formed. Again, care must be taken in

using [P S (f)] because each "slice" of that array (j - 1, 2, ... J or
k - 1, 2, ... K) is a singular matrix, as described in the section on the Fourier
product matrix. As in that case, the problem can be eliminated quite easily.

Forming the product array for products of M Fourier series can be quite
simple. However, it is obvious that the more series that are multiplied together,
the more cumbersome this process becomes. Fortunately, once the product array has
been derived for M series, it need never be done again.

Multiblade Coordinate Transformation

The purpose of the multiblade transformation is to transform equations from a
coordinate system which rotates at a constant angular velocity to a nonrotating
coordinate system. In reference 5 the mathematical definition of multiblade coordi-
nates is presented, but not thoroughly explained. Reference 6 contains a more com-
plete development of the mathematics of the transformation and its use. Since the
multiblade transformation is really only a modified Fourier series, the operations
that were defined in the preceding sections should be applicable after making some
minor modifications. It will be seen that using certain Fourier operations makes
the transformation simple to perform for any number of blades, with no ad hoc addi-

tions or corrections.

Consider the linear (or linearized), second-order, differential equations for a
dynamic system having b identical, equally spaced, time-lagging components. The
kth component has a degree of freedom qk which is referenced to the rotating
coordinate system. There is also a degree of freedom p which is referenced to the
nonrotating system and is common to all b components. In the rotating system, the
equations of motion for qk and p are respectively

M
44 

(*k) 4k + Cgq(*k)4k + Kgg (*k) gk + Mgp (V k)P + Cgp4k)P + Kgp (*k ) p - Fq (*k)	 (79)

M pq(YV	 k + Cpq (V Ak + Kpg4kAK + Mpp N)p + Cpp N)P + Kpp (*k )P - Fp 4k)	 (80)

where the coefficients of the equations are periodic in *k - ^O + 2n (k - 1)/b.

If these equations were to be put into the form of a variational statement,

equation (79) would be multiplied by 6q k and equation (80) would be multiplied by
6p. The resulting variational statement is

1 t2 {[M 444k + Cgg4k + K
gggk + Mgpp + Cgpp .} KyPp - Fq]6gk

ti

+ M
P4 qk	 P4

+ C qk
	 P4
+ K n k
	 PP
+ M p •+ C PP p+ K PP p- F P ]6p}dt - 0 	(81)

To transform equation (81) from the rotating system into the nonrotating system, only
6qk , qk , and its derivatives need to be transformed. The degree-of-freedom p is
already referenced to the nonrotating coordinate system. Since derivatives of the
coordinate qk would be difficult to manipulate, the dummy variables a k and Bk
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will be substituted for qk and qk, respectively. Applying the definition of the
multiblade coordinates (ref. 5),

N
ak - 00 + ad (-1)k + E Jane cos(n*k) + ans sin(n*k)j	 (82)

n-1

N
dk - 80 + sd (-1)k + E [Bnc cos(a O + Ons sin(n*k)]	 (83)

n-1

N
qk - q 0 + qd (-1) k + E [gnc cos(n*k) + qns sin (n*k)]	 (84)

n-1

N
dqk - 6q 0 + 6qd (-1)k +	 [6gnc cos(n*k) + 6gns Rin(n*k)]	 (85)

n-1

Since the coefficients of equation (81) are periodic functions (i.e., Fourier
series), substituting equations (82)-(85) into that equation results in terms that
are products of modified Fourier series. The terms Mggak6gk, CggOk6qk, and
Kgggk6qk are products of three series, Mppp6p, Cppp6p, Kppp6p, and Fp6p are
single series, and all of the others are products of two series.

To form the products required in equation (81), the same basic methodology
deucribed in the preceding section can be applied. The difference lies in the
treatment of the (-1) k terms. Since the locations in the arrays allotted to the
sin(O*) terms are always filled with zeros, those locations may be used for the
(-1) k terms. This also preserves the symmetry of the arrays.

The formation of tho modified Fourier products in equation (81) performs the
transformation from the :'otating to the nonrotating coordinate system. To complete
the process, the dummy v_-iables ak and Ok need to be eliminated. Using the defi-
nition of the derivative of a series having periodic coefficients

[[I] -I! + 2[D] as + [D2]J
k	 k

l°'ns
	

',no

0

alcI

a2c

°tine

°'d

als

a25

10

11c

12c

gncl

qd
	 (86)

g1s

q2s
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00	 q0 1

sic	 ql

s2c	 q2

Odc 	 a*k + ^Dllcqa-r	 J
s is	 qis

Sts	 q2s

,sns/	 lgnsJ

Once equations (86) and (87) are substituted into the transformed equations, the
transformation is essentially complete, except for sorting the periodic terms.

Thus far, the number of rotating components, b, has not been needed for the
transformation. However, it is of great importance in determining the number of
multiblade coordinates that are needed, as well as determining the harmonic contri-
butions in the nonrotating system. The number of multiblade coordinates that are
required is equal to the number of components, where N - (b - 2)/2 for b even
and N - (b - 1)/2 for b odd. If b is odd, the differential collective mode
does not exist (ref. 5). To determine the harmonic contributions in the nonrotating
coordinate system, equation (81) is summed over the b components and the identi-
ties in equations (5)-(8) are applied. The transformation is now complete, and the
variational statement may be broken down into differential equations.

In applying this method for using the multiblade transform, there are shortcuts
that can be taken. There is no practical reason to convert the differential equa-
tions to a vai^ational statement and then convert back. This was done to show the
logic behind the ope-ations that were performed. Similarly, there is no need for the
dummy variables ak and Sk which were included only for convenience. The sorting
of harmonics can be done by inspection. If b is odd, only those harmonics that are
integer multiples of b are retained. If b is even, harmonics that are integer
multiples of b are retained for all terms not involving (-1) k . In those terms
where (-1) k appears, only those harmonics which are odd integer multiples of b/2
are retained.

CONCLUDING REMARKS

In this Memorandum, the development of Fourier operations which was begun in
reference 1 is extended. Summation relations for expressions involving (-1)	 are
defined, the definition of the derivatives of Fourier series are generalized to
include series having coefficients that are functions of ^, and a method for per-
forming the symbolic multiplication of any number of Fourier series is developed.
In addition, the operations are applied to the multiblade coordinate transformation.

(87)
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While the harmonic balance method may not be suitable for solving all types
of response problems, its elegance and understandability are desirable features.
Its major disadvantages are the large number of algebraic equations that must be
solved and the necessity for forming products and derivatives of Fourier series.
Because of the work performed in reference 1 and the extensions included in this
report, the second disadvantage becomes unimportant since those tasks c qn be per-

formed by the computer.

Other applications of Fourier operations are possible. In this report, the
example of using these operations to perform a coordinate transformation was devel-
oped. The result of this development was a procedure which has general applicabil-
ity, is understandable, and is suitable for automation. Many o cher applications for
these operations may be found.
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