NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
NASA TECHNICAL MEMORANDUM

NASA TM-82445
(NASA-TM-82445) FISCAL YEAR 1981 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS (NASA) 70 p HC A04/MF A01

CSCL 05B Unclas G3/82 07986

FY 1981 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Sarah S. Thacker
Management Services Office

October 1981

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed are assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>21</td>
</tr>
<tr>
<td>NASA REFERENCE PUBLICATIONS</td>
<td>24</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>25</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>26</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>50</td>
</tr>
</tbody>
</table>
A discussion is presented which relates to the thermal and packaging problems of space disposal of nuclear waste material. An approach is suggested which solves both of these problems with emphasis on high energy density waste material. A passive cooling concept is presented utilizing conduction rods which penetrate the inner core. Data are presented which illustrate the effectiveness of cooling rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

This review provides a convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists. We have tried to provide enough detail so that a professional scientist, observer, or theorist, can plan how the observatory may be used to further his observing program or to test theoretical models. Further detail is available in NASA documents that are referenced throughout this report.

This technical memorandum describes the Solid Rocket Booster Cost Accounting and Tracking System (SCATS) which is an automatic data processing system designed to keep a running account of the number, description, and estimated cost of Level II, III, and IV changes. Although designed specifically for the Space Shuttle Solid Rocket Booster Program, the ADP system can be used for any other program that has a similar structure for recording, reporting, and summing numbers and costs of changes. The program stores the alpha-numeric designators for changes, government estimated costs, proposed costs, and negotiated value in a MIRADS (Marshall Information Retrieval and Display System) format which permits rapid access, manipulation, and reporting of current change status. Output reports listing all changes, totals of each level, and totals of all levels, can be derived for any calendar interval period.

This report supplements NASA TM X-73300, NASA TM X-73393, and NASA TM-78183. These reports are compilations of bibliographies from the principal investigator groups of the Apollo Telescope Mount (Skylab solar observatory facility) that gathered data from May 28, 1973, to February 8, 1974. The analysis of these data is presently under way and is expected to continue for several years.

The publications listed in this report are divided into the following categories: (1) Journal Publications, (2) Journal Publications Submitted, (3) Other Publications, (4) Presentations — National and International Meetings, and (5) Other Presentations. An author index is included together with errata for previous reports.
The Space Shuttle will provide a low cost delivery system for Earth orbital payloads by amortizing launch costs through system reusability. This development paves the way for large platforms and structures in space. But successful design of long life platforms and structures for space use requires due consideration of space environmental effects on the materials used. Large space system materials, especially those in geosynchronous Earth orbit (GEO), will be subjected to vacuum, ultraviolet radiation and charged particle radiation which will influence the performance and functional lifetime of the systems. This report describes research oriented toward the acquisition of long term environmental effects data needed to support the design and development of large low Earth orbit (LEO) and GEO space platforms and systems for the next decade.

Three types of high performance silicon solar cells, sculptured BSR/P⁺ (K7), BSR/P⁺ (K6.5) and BSR (K4.5) manufactured by Spectrolab have been evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P⁺ (K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4% at 1 SC/+25°C and 18.5% at 0.086 SC/-100°C.

Structural dynamicists are faced with basically an unsolvable problem: the prediction and verification of an analytical structural dynamic model to prescribed accuracy for use in control, loads, pogo, and aeroelastic design verification analysis. These verifications are accomplished through static and dynamic structural tests. This report deals with the subject of state-of-the-art dynamic testing, using as examples testing accomplished on the Space Shuttle and its elements. General conclusions on testing approaches are discussed, as well as future technology requirements.
This report provides a record (from pre-flight planning to earth impact) of Skylab's orbital lifetime predictions, its actual decay, and analysis thereof. Skylab provided a unique opportunity to develop, confirm and check out procedures and computer programs used for predicting lifetime and reentry. It provided verification of aerodynamic and environment which had been predicted for several aerodynamic configurations. It also provided data on the density model's reaction to rapidly changing solar flux over relatively short time periods. The effects of solar flux (and the uncertainty in the solar flux predictions) on orbital lifetime are discussed.

The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the required qualification and verification tests and is certified for the intended application. Substantiation data will include analytical and test data.

It has been suggested that for large active retrodirective arrays, as in the solar power system, a two-tone uplink pilot signal with frequencies symmetrically situated around the downlink frequency be used in order to reduce ionospheric biases and to lower the cost since a two-tone receiver is economically much cheaper than a single-tone phase-locked receiver. Unfortunately such a system now faces the following well-known difficulties: (i) the π-ambiguity, (ii) a large phase difference between the downlink and uplink signals.

We show in this report how the π-ambiguity can be easily removed by using a two-tone uplink signal with both frequencies situated at one side of the downlink frequency, and the phase difference can be greatly reduced with a three-tone or a four-tone uplink pilot signal.

This report presents a comprehensive discussion and calculation of electrical torques on an electrostatic gyro as they relate to the Gyroscope Experiment to test General Relativity. Drift rates are computed for some typical state-of-the-art rotors, including higher harmonics in the rotor shape. The effect of orbital averaging of gravity gradient forces, roll averaging of torques, and the effect of spin averaging on the effective shape of the rotor are considered. The basic conclusion is that the electrical torques are reduced sufficiently in a low-g environment to permit a measurement of the relativistic drifts predicted by General Relativity.
The equations used to drive the Skylab man-in-the-loop docking simulation of MSFC's Comp Lab facility are developed. These include models of the docking contact-capture-latch forces and torques, CMG/TACS and RCS control models, target motion simulator equations, and gravity gradient torques. These equations are currently implemented in the docking simulator which has been and continues to be used in support of Skylab missions. Most noteworthy in this development is the use of a method of "soft constraints" which allows real time simulation of docking impacts on the EAI8900 Hybrid Computer System.

This report contains information on data collected, synoptic conditions, and severe and unusual weather reported during the AVE-SESAME IV period. The information is preliminary. The purpose of the report is to provide to researchers a preliminary look at conditions during the AVE-SESAME IV period.

This report describes the rawinsonde sounding program for the AVE-SESAME IV experiment and presents tabulated data at 25 mb for the 23 National Weather Service and 20 special stations participating in the experiment. Soundings were taken at 3-hr intervals beginning at 1200 GMT on May 9, 1979, and ending at 1200 GMT on May 10, 1979 (nine sounding times). The method of processing is discussed briefly, estimates of the rms errors in the data are presented, and an example of contact data is given. Reasons are given for the termination of soundings below 100 mb, and soundings are listed which exhibit abnormal characteristics.

The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in
spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second-order differential equation numerically. Results are compared with those from an earlier study in which gravity was a constant. It is concluded that over the range of parameter space explored here, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter.

TM-78317 December 1980

Data from a sounding rocket flight of the Swept Angle Retarding Ion Mass Spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan Auroral Probe (MAP) over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO⁺ and O⁺. Measured NO⁺ densities ranged from 10⁵ up to 3 × 10⁶ ions/cm³, while the measured O⁺ densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows of approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs.

TM-82389 January 1981

The design and testing of the Space Shuttle Solid Rocket Booster (SRB) Recovery Subsystem (RSS) posed some unique challenges. The Recovery System components (parachutes, suspension lines, risers, reefing lines, etc.) were of gargantuan dimensions when compared with existing parachutes, such as personnel parachutes or cargo-recovery parachutes. The SRB RSS parachutes were designed to deploy in a severe (200-220 pounds/in.² air pressure) environment and safely lower to earth an 85-ton rocket motor casing.

Severe development schedule and funding limitations required dedicated and innovative thinking from a small team of government and contractor personnel. This report describes the studies and the development and testing program that led to a successful design and delivery of all flight hardware to Kennedy Space Center, Florida, on schedule.

TM-82390 January 1981

Mounting of double-gimbaled control moment gyros (CMG's) of unlimited outer gimbal angle freedom with all their outer gimbal axes parallel allows drastic simplification of the CMG steering law development in the redundancy management and failure accommodation and in the mounting hardware. The advantages of the parallel mounting for the CMG steering law development are such that a law could be developed which is applicable to any number of CMG's with arbitrary angular momentum. Parallel mounting of the CMG's in conjunction with the steering law can therefore be considered a “CMG kit” suitable for many missions of differing momentum requirements. It also means that increasing momentum demands
during the design phase of a space vehicle can be easily met by the addition of one or more CMG's of the original momentum capacity rather than a redesign to a larger momentum capacity. Another advantage of the parallel mounting is that the failure of any CMG can be treated like any other, i.e., only one failure mode is possible. The CMG steering law distributes the CMG momentum vectors such that all inner gimbal angles are equal which reduces the rate requirements on the outer gimbal axes. The steering law also spreads the outer gimbals which ensures avoidance of singularities internal to the angular momentum envelope.

This report is an extensive revision of Reference 1 to the extent that a different outer gimbal angle distribution function is used, significantly reducing the software requirements.

Because many future spacecraft or space stations will require mechanisms to operate for longer periods of time in environments which are adverse to most bearing lubricants, a series of tests is continuing to evaluate 38 grease type lubricants in R-4 size bearings in five different environments for a 1-year period. Four repetitions of each test are made to provide statistical samples. These tests have also been used to select four lubricants for 5-year tests in selected environments with five repetitions of each test for statistical samples. At the present time, 100 test sets have been completed and 22 test sets are underway. Three 5-year tests have already been started in (1) continuous and (2) start-stop operation, with both in vacuum at ambient temperatures, and (3) continuous operation at 93.3°C. To date, in the 1-year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylpolyether (PFPE) grease.

TM-82392 January 1981

Problems of applying the classical kinetic theory to the growth of small droplets from the vapor are examined. A solution for the droplet growth equation is derived which is based on the assumption of a diffusive field extending to the drop surface. The method accounts for partial thermal and mass accommodation at the interface and the kinetic limit to the mass and heat fluxes, and it avoids introducing the artifact of a discontinuity in the thermal and vapor field near the droplet. Consideration of the environmental fields in spherical geometry utilizing directional fluxes yields boundary values in terms of known parameters and a new Laplace transform integral. Different initial assumptions coupled with this method yield various solutions derived by earlier workers. The solution is applicable to drop sizes both larger and smaller than the mean free path.

TM-82393 January 1981

An investigation of the stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere is performed, and the results are compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and
stressed up to 100 percent of their yield strengths were exposed to the seacoast at Kennedy Space Center and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater are indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the test results was very good among the three test media using the selected exposure periods. Therefore, either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

Chemical Company, Corpus Christi, Texas, for the additional development work on heat transport fluids for use with active solar heating and cooling systems. It discusses the intended use of the final report, describes the deliverable end items, lists program objectives, relates how they were accomplished and deals with problems encountered during testing.

The report shows that a certain product tested is marketable and is recommended as being suitable for public use.

This report describes the pyroelectric property of triglycine sulfate (TGS) and its application in the detection of infrared radiation. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area.

This report presents the postflight analysis of the single-axis acoustic levitator that was flown on SPAR VI in October 1979. The apparatus malfunctioned. The results of a series of tests, analyses, and investigation of hypotheses that were undertaken to determine the probable cause of failure are presented, together with recommendations for future flights of the apparatus.

The most probable causes of the SPAR VI failure were (1) lower than expected sound intensity due to mechanical degradation of the sound source and (2) an unexpected external force that caused the experiment sample to move radially and eventually be lost from the acoustic energy well.

This document summarizes the final results of contract NAS8-32255 with Houston
experiment and presents tabulated data at 25-mb intervals from the surface to 25 mb for the 23 National Weather Service and 15 special stations participating in the experiment. Soundings were taken at 3-h intervals beginning at 1200 GMT on June 7, 1979, and ending at 1200 GMT on June 8, 1979 (nine sounding times). The method of processing is discussed briefly, estimates of the rms errors in the data presented, an example of contact data given, reasons given for the termination of soundings below 100 mb, and soundings listed which exhibit abnormal characteristics.

A Preliminary Look at AVE-SESAME VI Conducted on 7-8 June 1979, Michael July and Robert E. Turner. Space Sciences Laboratory. N81-18606

This report contains information on data collected, synoptic conditions, and severe and unusual weather reported during the AVE-SESAME VI period. The purpose of the report is to provide to researchers a preliminary look at conditions during the AVE-SESAME VI period, 7-8 June 1979.

A susceptibility apparatus to measure superconducting properties of samples made in the MSFC Drop Tube has been used to measure the transition temperature (T_c) and susceptibilities of Nb and Nb-Ge Alloys prepared in bulk spherical (2-4 diameter) form using a 32 m drop tube in which containerless low-gravity solidification could take place. Results indicate that a drop tube processing environment was beneficial for increasing the T_c of the superconducting phase of the material over that of arc-melted material. The increase in T_c is found to be related to the amount of solidification of the total sample that took place before reaching the bottom of the drop tube. In-phase and quadrature-phase measurements of the specimen's susceptibility indicated that some improvement in homogeneity takes place in drop tube processing. These phase measurements also indicated little or no shielding of a lower T_c phase by a higher T_c filamentary structure.

IECM Calibration and Data Reduction Requirements. Fred D. Wills and Charles W. Davis. Space Sciences Laboratory. N81-18569

The Induced Environment Contamination Monitor (IECM) tape recorder format, as it relates to the output of meaningful data from the IECM instrument, is explained in this report. Eight-bit words (or bytes) generate numbers that represent voltage levels or electronic detection probes for each experiment. This information is amalgamated by the IECM Data Acquisition and Control System (DACS). In some cases bits represent certain status situations concerning an experiment, such as whether a valve is opened or closed. Voltages are transformed into meaningful physical phenomena through equations of calibration. Data formats and plots are generated as requested for each IECM experimenter.

Equilibrium and stability of a satellite influenced by gravitational and aerodynamic torques are investigated. A circular orbit and
constant atmospheric density are assumed. Presented is a computer program which determines equilibrium attitudes and the associated eigenvalues of these attitudes. Demonstration of the use of this program is made using the former Skylab satellite as an example.

An extensive program of solid propellant research has been conducted to support the Space Shuttle Dynamics modeling effort. The research is discussed in three parts. The first describes studies performed to define characteristics of the propellant itself, i.e., the stiffness, damping, compressibility, and the effects of many variables on these properties. The second concerns the relationship between the propellant and SRB dynamics, such as effects of propellant stiffness on free SRB modes. The third deals with coupled modes of the Shuttle system and the effects of propellant stiffness on SRB/ET interfaces.

A study of several protective coating systems for use on aluminum in seawater/seacoast environments has been conducted. This study was conducted to review the developments that have been made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

described; this system allows measurements of all components of the Sun's photospheric magnetic field over a 5 x 5 or 2.5 x 2.5 arc min square field of view with an optimum time resolution of approximately 100 sec and an optimum signal-to-noise of approximately 1000. The basic system components are described, including the optics, detector, digital system, and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration.

TM-82406 March 1981
Performance of Photomultiplier Tubes and Sodium Iodide Scintillation Detector Systems. Charles A. Meegan. Space Sciences Laboratory. N81-21280

The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (Tl) crystals was investigated. The purpose of the investigation was to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment (BATSE) on the Gamma Ray Observatory (GRO). This report provides background information on performance characteristics of PMT's and NaI (Tl) detectors, specifies procedures for measurement of relevant parameters, and presents results of these measurements.

TM-82407 March 1981
The Passive Optical Sample Assembly (POSA) on STS-1. Roger C. Linton. Space Sciences Laboratory. N81-20868

The Passive Optical Sample Assembly (POSA), scheduled for flight on Orbital Flight Test 1 (OFT-1), is an instrument to aid in the assessment of contamination hazards to sensitive payloads in the Shuttle cargo bay. It consists of an array of passively deployed samples mounted on the Development Flight Instrumentation (DFI) pallet in the Shuttle cargo bay. This report describes the POSA hardware, the directory of samples together with their intended measurements, and the plan for POSA data analysis.

TM-82408 March 1981

A series of saturated hydrocarbon-based urethanes was prepared and characterized for hydrolytic and oxidative stability. A series of et. er-based urethanes was used as a basis for comparison. The alkane-base urethanes were found to be hydrolytically and oxidatively stable, and had excellent electrical properties. The alkane-based materials absorbed little or no water and were reversion-resistant. There was little loss in hardness or weight when exposed to high temperature and humidity. Dielectric properties were excellent and suffered little adverse effects from the high temperature/humidity conditions. The alkane-based urethanes were not degraded by ozone exposure.

TM-82409 March 1981
Considerations on Repeated Repairing of Weldments in Inconel 718 Alloy. E. O. Bayless, C. V. Lovoy, M. C. McIlwain, and P. Munafio. Materials and Processes Laboratory. N81-21171

This report presents the results of a study to determine the effects of repeated weld repairs on the metallurgical characteristics, high cycle fatigue (HCF), and tensile properties of Inconel 718 butt weld joints.
The study employed 1/4-in. and 1/2-in. thick plates, tungsten inert gas (TIG) welding, and Inconel 718 filler wire. Weld panels were subjected to 2, 6, and 12 repeated repairs and were made in a highly restrained condition. Post weld heat treatments were also conducted with the welded panel in the highly restrained condition.

The study concluded that no significant metallurgical anomaly was evident as a result of up to twelve repeated weld repairs. No degradation in fatigue life was noted for up to twelve repeated repairs. Tensile results from specimens which contained up to twelve repeated weld repairs revealed no significant degradation in UTS and YS. However, a significant decrease in elongation was evident with specimens (solution treated and age-hardened after welding) which contained twelve repeated repairs. The elongation loss was attributed to the presence of a severe notch on each side (fusion line) of the repair weld bead reinforcement. Basically, the weld joint tends to peak more and more with each successive repeated weld repair but, due to a combination of an increase in back-side metal drop through and distortion restraint during repeated repairing, the peak projection develops as a shallow notch on each side of the weld repair. This study shows that the severity of these notches increases with increasing numbers of repeated repairs.

The intent of this document is to provide a brief insight into the scientific rationale for MPS, and to describe a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS.

The programmatic and management functions are intended to apply to all projects and activities implemented under MPS. It is intended, further, that specific project plans, providing project unique details, will be appended to this document for major endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

The MEC development is expected to be an Office of Space Transportation Systems (OSTS) budgeted project, done in conjunction with the Office of Space and Terrestrial Applications (OSTA) and managed by the MPS Projects Office at Marshall Space Flight Center (MSFC); a separate project plan with joint OSTS/OSTA approval is anticipated for that project.

The intent of this document is to provide a brief insight into the scientific rationale for MPS, and to describe a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS.
time to develop a Teleoperator Retrieval System, bring it up on the Space Shuttle and then decide whether to boost Skylab to a higher longer life orbit or to reenter it in a controlled fashion.

In the following the end-on-velocity (EOV) control method is documented, which was successfully applied for about half a year to keep Skylab in a low-drag attitude with the aid of the control moment gyros and a minimal expenditure of attitude control gas.

TM-82413 March 1981

A large occulting system in space can be used for high-resolution X-ray observations and for large-aperture coronagraphic observations in visible and UV light. The X-ray observations will combine high angular resolution in hard (>10 keV) X-radiation with the high sensitivity of a multiple-pinhole camera, and will permit sensitive observations of bremsstrahlung from nonthermal particles in the corona. The large-aperture coronagraphs have two major advantages: high angular resolution and good photon collection. This will permit observations of small-scale structures in the corona for the first time and will give sufficient counting rates above the coronal background rates for sensitive diagnostic analysis of intensities and line profiles for coronal structures in the solar wind acceleration region.

This document describes the technical basis for performing observations with a large occulting system in these three wavelength ranges. A preliminary description of a Pinhole/Occulter Facility presently being considered for Spacelab is given, together with some indications about future developments.

TM-82414 April 1981

This study was conducted to determine the solar energy absorption characteristics of several high-temperature coatings and to evaluate the effects of heat on these coatings. Included in the investigation were an electroplated alloy of black chrome and vanadium, electroplated black chrome, and chemically colored 316 stainless steel. The results of this study showed that each of the coatings possessed good selective solar energy absorption properties at laboratory ambient temperature. Measured at a temperature of 700°K (800°F), the emittances of black chrome, black chrome-vanadium, and colored stainless steel were 0.11, 0.61, and 0.15, respectively. Black chrome and black chrome-vanadium did not degrade optically in the presence of high heat [811°K (1000°F)]. Chemically colored stainless steel showed slight optical degradation when exposed to moderately high heat [616°K (650°F)], but showed more severe degradation at exposure temperatures beyond this level. Each of the coatings showed good corrosion resistance to a salt-spray environment.

TM-82415 April 1981

This document summarizes the final results of contract NAS8-32254 with Artech Corporation, Falls Church, Virginia, for the additional development work on thermal energy storage modules for use with active solar heating and cooling systems. It discusses the intended use of the final report,
NASA TECHNICAL MEMORANDA

describes the deliverable end items, lists program objectives, relates how they were accomplished and deals with problems encountered and their solutions.

The report shows that the product developed and tested is marketable and is recommended as being suitable for public use.

TM-82416
May 1981
A Preliminary Look at AVE-SESAME V

This report contains information on data collected, synoptic conditions, and severe and unusual weather reported during the AVE-SESAME V period. The information is preliminary. The purpose of the report is to provide to researchers a preliminary look at conditions during the AVE-SESAME V period.

TM-82417
May 1981
AVE-SESAME V: 25-mb Sounding Data.

This report describes the rawinsonde sounding program for the AVE-SESAME V experiment and presents tabulated data at 25-mb intervals for the 23 National Weather Service stations and 20 special stations participating in the experiment. Soundings were taken at 3-hr intervals beginning at 1200 GMT on May 20, 1979, and ending at 1200 GMT on May 21, 1979 (nine sounding times). A tenth sounding was taken at many special stations between 2100 and 0000 GMT on May 20. The method of processing is discussed briefly, estimates of the rms errors in the data are presented, and an example of contact data is given. Reasons are given for the termination of soundings below 100 mb, and soundings with abnormal characteristics are listed.

TM-82418
April 1981

The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-A is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and its multiple sensor heads to sample all directions relative to the spacecraft ram direction. This report describes the RIMS, its operational modes, the instrument calibration, the data reduction plan, and the anticipated results.

TM-82419
May 1981

Project schedules are an important parameter in industrial-engineering-type man-hour and material cost estimates. An existing computer tool (PACE-Pricing and Cost Estimating) generates a cost estimate from resource estimates by Work Breakdown Structure (WBS) and element-of-cost based on a specific project schedule. Project schedules often change, requiring some methodology for adjusting baseline cost estimates. An algorithm has been developed and is described herein which performs a linear expansion or contraction of the baseline project resource distribution in proportion to the project
schedule expansion or contraction. Input to the algorithm consists of the deck of cards (PACE input data) prepared for the baseline project schedule as well as a specification of the nature of the baseline schedule change. Output of the algorithm is a new deck of cards with all WBS block and element-of-cost estimates redistributed for the new project schedule. This new deck can be processed through PACE to produce a detailed cost estimate for the new schedule.

TM-82420 April 1981

An updated analysis is made of the emergency relief venting of the liquid helium dewar of the Spacelab 2 Infrared Telescope experiment in the event of a massive failure of the dewar guard vacuum. Such a failure, resulting from a major accident, could cause rapid heating and pressurization of the liquid helium in the dewar and lead to relief venting through the emergency relief system. This report estimates the heat input from an accident for various fluid conditions in the dewar and considers the relief process as it takes place through one or both of the emergency relief paths. In the original edition of this report it was assumed that the burst diaphragms in the dewar relief paths would rupture at a pressure of 65 psi differential or 4.4 atmospheres. A detailed analysis of this case was performed, and the results constitute the major portion of this revised report. It has, in fact, proved necessary to use burst diaphragms in the dewar which rupture at 115 psid or 7.8 atmospheres. An analysis of this case has been carried out and shows that when the high pressure diaphragm rupture occurs, the dewar pressure falls within 8 s to below the 4.4 atmospheres for which the original analysis was performed, and thereafter it remains below that level. It is, therefore, shown that under all reasonable circumstances the dewar will safety relieve itself.

This report supersedes NASA TM-78271, March 1980, and should be used in place of it.

TM-82421 June 1, 1981

The Passive Optical Sample Assembly (POSA) is a passively deployed array of contamination-sensitive samples. A POSA unit was mounted and flown in the cargo bay of the Space Shuttle Columbia during the first Orbital Flight Test (OFT-1). A similar unit was mounted in a different location in the cargo bay at Dryden Flight Research Center during the postflight operations there prior to the ferry flight return of Columbia to Kennedy Space Center.

The samples in both POSA arrays were subjected to a series of optical and analytical measurements prior to delivery for installation in the cargo bay and after retrieval of the flight hardware. This report presents a quick-look summary of the results of a comparison of the two series of measurements. A more detailed analysis will be provided later in a separate publication.

TM-82422 April 1981
Payload Operations Control Center (POCC) Timeline Analysis Program. Dr. David L. Shipman, Steven R. None-man, and E. Steven Terry. Systems Analysis and Integration Laboratory. N81-24845

This document is a user’s manual for the operation of the Payload Operations Control Center (POCC) Timeline Analysis Program which is used to provide POCC activity and resource information as a function of mission time. This program is fully
autonomous and interactive, and is equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The POCC Timeline Analysis Program is designed to operate on the VAX/VMS version V2.1 computer system.

TM-82422 May 1981
Michael B. Robinson. Space Sciences Laboratory. N81-25092

This report describes a technique for measuring the amount of undercooling for samples processed in a low-gravity containerless environment. The time of undercooling is determined by measuring the time of cooling before nucleation and recalescence by two infrared detectors. Once the cooling curve for each drop is calculated, the amount of undercooling can then be found. The technique is demonstrated by measuring the amount of undercooling for drops of pure niobium and select compositions of the niobium-germanium alloy system while free falling in a 32 m evacuated drop tube.

Before undercooling curves for the niobium-germanium alloy drops could be calculated, it was necessary to measure the total hemispherical emissivities and specific heats for these materials because there is a total absence of such thermophysical properties in the literature. These properties were measured using a high-temperature containerless calorimeter. Also, a brief overview of the effect of undercooling on drops of niobium and niobium-germanium is given.

TM-82424 October 1980
Lox/Gox Related Failures During Space Shuttle Main Engine Development.
C. E. Cataldo. Materials and Processes Laboratory. N81-27192

Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures described were encountered during the development and testing of the Space Shuttle Main Engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.

TM-82425 July 1981

This document is a bibliography by year of the research published in the open literature by the workers in the Materials Processing in Space program. This work was sponsored by NASA, either directly or indirectly, and generally pertains to the influence (or lack of influence) of gravity on processes involved in crystal growth, solidification, fluid transport, containerless phenomena, and various separation techniques of interest to the biomedical community. Also included are studies of the possibilities of using the high vacuum in the wake of orbiting vehicles for performing processes involving large heat loads and evolution of gases.

TM-82426 June 1981

Corrosion fatigue tests were conducted on Inconel 718 and Incoloy 903 in distilled water, 500 ppm NaCl, and 3.5% NaCl. Results were compared to the endurance limit in air. For Inconel 718, the Corrosion Fatigue Strength (CFS) in 3.5% NaCl was 338 MPa (49 ksi) or 75 percent of the endurance limit. For Incoloy 903, the CFS ranged from 234
MPa (34 ksi) in distilled water (68 percent of the endurance limit) to 103 MPa (15 ksi) in 3.5% of NaCl (30 percent of the endurance limit). These results indicate that, for components which have limited fatigue life, an evaluation of the combined effects of fatigue and the corrosive atmosphere must be considered in projecting useful lifetimes.

TM-82427 July 1981

The primary motivation of the program is to use the unique environments of space for scientific and commercial applications. The elimination of the Earth's gravity during the production of common materials affords opportunities for understanding and improving ground-based methods or, where practical and economical, producing select materials in space. Large factories or mills producing huge quantities of materials, as is often the case on Earth, are not expected in space in the near future. Materials that might be produced in space, typically, would be of low-volume but of high-value commercial interest.

TM-82428 May 1981
Fracture Analysis of HPOTP Bearing Balls. Biliyar N. Bhat, Materials and Processes Laboratory. N81-28442

This report presents the fracture analysis conducted on four HPOTP (High Pressure Oxygen Turbopump) bearing balls from the SSME (Space Shuttle Main Engine). Non-destructive evaluation, optical microscopy, and transmission microscopy techniques were used in the analysis. The results showed that the cracks are initiated at or close to the ball surface under conditions of high cyclic stresses and high coefficient of friction. The cracks lead to spalls, and subsequent crack propagation seems to occur by fatigue mode under concentrated loading of cyclic nature.

TM-82429 June 1981

Installation of Resistoflex dynatube fittings on ¼ in. tubing is sensitive to workmanship and to the state of repair of the installation tooling. Tooling with very slight out-of-specification imperfections will produce less than optimum swaged fittings. This investigation included fabrication of a significant quantity of samples, X-rays to determine the depth of swage and static and dynamic testing to determine joint performance.

TM-82430 July 8, 1981

A data acquisition software program has been developed to operate in conjunction with the automated control system of the 25 kW PM EPS Breadboard Test Facility. The program provides limited interactive control of the Breadboard Test while acquiring data and monitoring parameters, allowing unattended continuous operation.

The Breadboard Test facility has two positions for operating separate configurations. A block diagram of a typical test configuration is shown in Fig. 1. The main variable in each test setup is the high voltage battery. The initial test battery contains 112, 33 AH, NI-CD cells each. The second test battery contains 88, 55 AH, NI-CD cells arranged in four modules of 22 cells each. Current testing will be limited to using a 28 vdc load bus, but the capability for testing
with a high voltage bus (110 v DC or higher) has been included in the facility and equipment design.

TM-82431

Viscosity modifiers and gelling agents have been evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose were found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions was found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.

TM-82432

A summary of synoptic weather conditions existing over the western United States is given for the time of Shuttle descent into Edwards Air Force Base, California. The techniques and methods used to furnish synoptic atmospheric data at the surface and aloft for flight verification of the STS-1 Orbiter during its descent into Edwards Air Force Base are specified. Examples of the upper-level data set are given.

TM-82433* May 1981

Space Processing Applications Rocket Project, SPAR VI Final Report. Compiled by R. Chassay.

The Space Processing Applications Rocket Project (SPAR) VI Final Report contains the compilation of the postflight reports of each of the principal investigators of the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute in a measurable way to an improved comprehension of containerless processing in space.

The SPAR project is coordinated and managed by MSFC as part of the Materials Processing in Space (MPS) program of the Office of Space and Terrestrial Applications (OSTA) of NASA Headquarters.

This technical memorandum is directed entirely to the payload manifest flown in the sixth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled “Containerless Processing of Glass,” “Epitaxial Growth of Single Crystal Films,” “Containerless Processing Technology,” and “Directional Solidification of Magnetic Composites.”

TM-82434

Doppler-Cancelled Response to VLF Gravitational Waves. Alessandro Caporali. Space Sciences Laboratory. N81-29311

This report discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler Cancelling System. This system, which was developed for a gravitational redshift experiment, uses on-way and two-way
Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave spacetime. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

TM-82435 August 1981

Accommodations Analysis: Spaceborne Doppler Lidar Wind Measuring System.

This technical memorandum summarizes an accommodations analysis performed by the MSFC Preliminary Design Office for a spaceborne doppler lidar wind measuring system. A dedicated, free-flying spacecraft design concept is described. Mass and beginning-of-life power requirements are estimated at 2260 kg and 6.0 - 8.5 kW, respectively, to support a pulsed, CO₂, doppler lidar having a pulse energy of 10 J, pulse rate of 8 Hz, and efficiency of approximately 5%. Under the assumptions of the analysis, such a system would provide wind measurements on a global scale, with accuracies of a few meters per second.

TM-82436 July 1981

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-1 launch time on April 12, 1981, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of preshutdown sphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area. Final meteorological data tapes for STS-1 vehicle ascent and SRB descent have been constructed which consist of wind and thermodynamic parameters versus altitude. The STS-1 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 989-13-22-368 with Johnson Space Center.

TM-82437 August 1981

Holographic Microscopy Studies of Emulsions. William K. Witherow. Space Sciences Laboratory. N81-30212

A holographic microscopy system that will record and observe the dynamic properties of separation in dispersed immiscible fluids is described in detail. This report briefly reviews the requirements of holography. The holographic construction system and reconstruction system that were used to obtain particle sizes and distribution information from the holograms are also described.

The holographic microscopy system is then used to observe the phase separating processes in immiscible fluids that have been isothermally cooled into the two-phase region. Nucleation, growth rates, coalescence, and particle motion are successfully demonstrated with this system. Thus, a holographic particle sizing system with a resolution of 2 μm and a field of view of 100 cm² has been developed that will provide the capability of testing the theories of separating immiscible fluids for particle number densities in the range of 10 to 10⁷ particles/cm³.
TM-82438 June 1981

A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

TM-82439 August 1981

This report presents the results of the V-2 off-nominal test sequence performed on the Space Shuttle solid rocket booster thrust vector control (SRB TVC) subsystem by the Marshall Space Flight Center, Huntsville, Alabama. These tests were performed between September 1979 and July 1980, per paragraph 10, SE-019-098-2H, SRB TVC Overall Systems Test Requirements.

A discussion of the overall TVC subsystem performance is presented. In addition, test objectives, detail results, and data are included for general information.

TM-82440 September 1981

The Grumman/MSFC beam builder, designed and manufactured as a ground demonstration model, is a precursor to a machine for use in the space environment, transportable by the Space Shuttle. The ultimate purpose is to provide the capability to automatically fabricate triangular truss beams in low Earth orbit with a highly reliable machine that requires a minimum of in-space maintenance and repair. This report provides a performance assessment of the beam builder, which was fabricated under contract NAS8-32472 from commercial hardware.

TM-82441 August 1981
Vector Wind Profile Gust Model. S. I. Adelking and O. E. Smith. Space Sciences Laboratory.

This report summarizes results from a study which had the objective of developing a vector wind gust model that is suitable for orbital flight test operations and trade studies. Emphasis is given to verification of the hypothesis that gust component variables are gamma distributed, gust modulus is approximately Weibull distributed, and zonal and meridional gust components are bivariate gamma distributed. A method of testing for bivariate gamma distributed variables is described, two distributions for gust modulus are described, the results of extensive hypothesis testing of one of the distributions are presented, and the validity of the gamma distribution for representation of gust component variables is established.

TM-82442** September 25, 1981

This report is a part of the Solar Heating and Cooling Development Program funded by the Department of Energy and is one of a series of reports describing the operational and thermal performance of a variety of solar systems installed in Operational Test Sites.
The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, U. S. Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and heat exchanger to supplement the solar heat.

TM-82443 1981
Materials Processing in Space Program Tasks. Compiled by E. Pentecost. Space Sciences Laboratory.

This report is a compilation of the active research tasks as of the end of fiscal year 1981 of the Materials Processing in Space Program, NASA Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations. The purpose of this document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, its history, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task together with a list of recent publications.

The tasks are grouped into four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies. In many cases a task is placed in more than one category. For example, studies involving fluid dynamics of crystal growth were entered in both Crystal Growth and Fluids, Transports, and Chemical Processes. This insures complete coverage of each category.

*Blue cover reports printed at Langley.
**DOE/NASA reports.
This report discusses the results of a Ni-Cd battery test over a period of 8 years, 2 months and 44,213 simulated low earth orbits. The battery cells were protected against overdischarge and reversal at discharge rates up to 25 amperes (1.25C) by a battery protection and reconditioning circuit (BPRC). The circuit performed flawlessly during the test, and proved its value, both as a battery reconditioner and a cell protection device. Battery cell failures are also discussed. The test demonstrated the viability of using Ni-Cd batteries at depths-of-discharge up to 25 percent for over 5 years in a low Earth orbit.

Detailed characterization and formulation studies have been performed on a methyltriakoxysilane hydrolysate as a binder for thermal control coatings. The binder was optimized by varying hydrolysis temperature, time, catalyst type, and water concentration. The candidate coating formulations, based on this binder with TiO₂ pigment, were optimized via a detailed series of sprayed test panels that included the parameters of binder/pigment ratio, ethanol content, pigment particle size, coating thickness and cure conditions. A typical optimized coating was prepared by acetic acid-catalyzed hydrolysis of methyltriethoxysilane with 3.25 mol-equivalents of water over a 24 hour period at room temperature. The resulting hydrolysate was directly mixed with pre-milled TiO₂ (12 grams pigment/26 grams binder) to yield a sprayable consistency. Panels were sprayed to result in a nominal cured coating thickness of 2 mils. Cure was affected by air drying for 24 hr at room temperature plus 72 hr at 150°F. These coatings are typically extremely tough and abrasion-resistant, with an absorptance (α) of 0.20 and emittance (ε) of 0.39. No significant coating damage was observed in the mandrel bend test, even after exposure to thermal cycling from -160° to 160°F. Vacuum exposure of the coatings for 930 hours at 1 equivalent UV sun resulted in no visible degradation and no significant increase in absorptance.

This report presents an analysis of a Liquid Injection Thrust Vector Control (LITVC) system for the Shuttle SRB. A performance analysis which compares LITVC with the SRB baseline flexible seal is followed by a table of LITVC advantages and disadvantages.

The analysis concludes that LITVC does not look attractive for use on the SRBs at the present time because of the high duty cycle requirements and the cost and effort associated with implementing a major complex system.

One of the unique and new technologies which have emerged from the space program is the processing of materials in a low-gravity...
(low-g) or microgravity (10^{-6} g to 10^{-2} g) environment. The reduction of elimination of the pervasive influences of gravity on process mechanisms affords opportunities for understanding and improving ground-based processes and for creating unique materials. The primary goal of NASA's present work in the field is to realize scientific and commercial utilization of the low-g environment for materials research and for process and product development. For the next several years, any products of commercial interest which necessitate processing in space will probably be low volume, high value items. To encourage the commercialization of materials processing in low-g, NASA, in parallel with establishing and demonstrating the scientific/technological precepts for analyzing and using a low-g environment, is establishing the legal and management mechanisms to share in the cost and risk of early commercial ventures, and is now working with commercial firms on a case-by-case basis to explore applications of this new technology to specific needs of the company.

TP-1932

July 1981

Space Shuttle Main Engine Controller.

Russell M. Mattox and Dr. J. B. White.

Data Systems Laboratory.

A technical description of the Space Shuttle Main Engine Controller which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safing and monitoring in orbit, is presented. Each of the major controller sub-assemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements.

The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and ruggedized digital system ever designed, fabricated, and flown.

TP-1933

June 1981

The Aerodynamics of Bodies in a Rarefied Ionized Gas with Applications to Spacecraft Environmental Dynamics.

Nobie H. Stone. Space Sciences Laboratory.

This study consists of two parts: an experimental parametric investigation and an in-depth critical review of knowledge in the field derived from previous experimental investigations, theoretical treatments, and ionospheric satellite data. The objectives are to provide a parametric description of the electrostatic interaction of a mesosonic, collisionless plasma with conducting bodies on the order of 1 to 10 Debye lengths in size, and to extend this description to the satellite-ionospheric interaction, where possible.

New experimental findings include: (1) converging ion streams in the near wake whose inclination to the wake axis and crossing point location depend on Φ_B and $[SR_d^{0.24}/|\Phi|^{|1/2|}]$, respectively, where Φ_B is the normalized body potential, S, the ion acoustic Mach number, and R_d, the Debye ratio; (2) that two mechanisms with different Φ_B dependences create the mid-wake axial ion peak whose maximum amplitude and width depend on $[S/|\Phi_B|^{1/2}]$ and $[|\Phi_B|^{-1/2}]$, respectively; (3) the morphology and amplitude of the axial ion peak depend on the geometry of the plasma sheath, which varies with thickness (and therefore R_d and Φ_B) for bodies with square cross sections, but is independent of thickness for spherical and long cylindrical bodies; (4) the wake of the geometrically complex body appears to be a
linear superposition of the wakes of its simple geometric components; (5) previously observed electron heating may be explained by a wave-particle interaction resulting from a two-stream instability produced by fast, plasma stream ions passing through slow, charge exchange ions; and (6) vector ion flux measurements show converging ion streams at the wake axis and direct evidence of ion streams deflected from the wake axis by the positive space charge potential associated with the axial ion peak.

The extension to the satellite-ionospheric interaction utilizes qualitative scaling and indicates that similar, but smaller amplitude, wake structures may be expected for small or highly charged bodies. However, for large bodies at small potentials, the structure may be diffused by the thermal ion motion and the dispersion resulting for space charge potentials.

TP-1939 August 1981

A need for autonomous control of large electrical power systems has emerged. A Marshall Space Flight Center Director's Discretionary Fund task is undertaken to develop technology for a fail-operational Power System Controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space Electrical Power System. The task involved determining the specific functions which must be performed by the PSC, determining the best microprocessor available to do the job, and determining the feasibility, cost savings, and applications of a PSC. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.
NASA REFERENCE PUBLICATIONS

RP-1070 January 1981

RP-1071 January 1981

RP-1072 January 1981

RP-1073 January 1981

RP-1074 February 1981
CP-2179 December 1980
Float Zone Workshop, Edited by R. J.
Naumann, Space Sciences Laboratory.
N81-19144

CP-2181 May 1981
15th Aerospace Mechanisms Symposi-
um, Marshall Space Flight Center.
N81-22388

CP-2186 June 1981
Capacitor Technologies, Applications
and Reliability. Marshall Space Flight
Center. N81-26166

CP-2199 August 1981
Proceedings of the Workshop on Space-
craft Dynamics as Related to Labora-
tory Experiments in Space. Marshall
Space Flight Center.

CP-2200 September 1981
Proceedings of the Scientific Review
Meeting of the Numerical Studies Pro-
gram for the Atmospheric General Cir-
culation Experiment (AGCE) for Space-

CP-2204 September 1981
NASA/MSFC FY-81 Atmospheric Pro-
cesses Research Review. Space Sciences
Laboratory.
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-3336 November 1980
N81-11612

CR-3337 November 1980
N81-10635

CR-3338 November 1980
N81-11458

CR-3339 November 1980
N81-13469

CR-3342 November 1980
N81-10636

CR-3344 November 1980
N81-11459

CR-3345 November 1980
Electrostatic Protection of the Solar Power Satellite and Rectenna -- Part II:

CR-3346 November 1980
N81-10527

CR-3347 November 1980
N81-12560

CR-3348 November 1980
N81-12558

CR-3349 November 1980
N81-11456

CR-3350 November 1980
N81-14392

CR-3365 April 1981
N81-22439

CR-3366 January 1981
Statistical Analysis of Atmospheric Turbulence About a Simulated Block
CR-3370
January 1981
N81-16686

CR-3372
January 1981
N81-15872

CR-3374
January 1981
N81-16686

CR-3383
February 1981
N81-18490

CR-3386
February 1981
The Development of Convective Instability, Wind Shear, and Vertical Motion in Relation to Convective Activity and Synoptic Systems in AVE IV, James G. Davis and James R. Scoggins. NASA-31773, Texas A&M University.
N81-18604

CR-3392
March 1981
N81-19562

CR-3393
March 1981
N81-21491

CR-3394
March 1981
Satellite Power Systems (SPS) Concept Definition Study (Exhibit D), Volume III — Transportation Analysis. G. M.
Hanley, NAS8-32475, Rockwell International. N81-19566

CR-3395 March 1981

CR-3396 March 1981

CR-3397 March 1981

CR-3398 March 1981
Satellite Power Systems (SPS) Concept Definition Study (Exhibit D), Volume VI, Part 2 -- Cost and Programmatic Appendix. NAS8-32475, Rockwell International. N81-21492

CR-3399 March 1981

CR-3400 April 1981

CR-3401 April 1981
Analysis of the Inversion Monitoring Capabilities of a Monostatic Acoustic Radar in Complex Terrain. David Koepf and Walter Frost, NAS8-32031. The University of Tennessee Space Institute. N81-20664

CR-3407 April 1981

CR-3419 May 1981
Ionospheric Observation of Enhanced Convection-Initiated Gravity Waves During Tornadic Storms. R. J. Hung, NAS8-31171. The University of Alabama in Huntsville. N81-23760

CR-3430 June 1981

CR-3431 June 1981
Airplane Wind Vibrations Due to Atmospheric Turbulence. Robert L. Pastel, John E. Caruthers, and Walter Frost. NAS8-32692. The University of Tennessee Space Institute. N81-24679

CR-3440 June 1981

CR-3456 August 1981
A Subsynoptic-Scale Kinetic Energy
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-3480 June 2, 1981

CR-3481 August 7, 1981

CR-161558** September 1980

CR-161559** September 1980

CR-161560** September 1980

CR-161561** September 1980

CR-161562** October 1980

CR-161563 July 31, 1980

CR-161564 July 31, 1980

CR-161565 March 5, 1980

CR-161566 July 1980

CR-161567 September 12, 1980

CR-161568 December 9, 1980
Duplicate of NASA CR-161555.

CR-161569** September 1980
Solar Hot Water System Installed at Day's Inn Motel, Dallas, TX (Forrest Lane). DOE Contract EG-77-G-01-1632. Day's Inn of America. N81-10524

CR-161570** September 1980
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-161571 September 30, 1980
N80-90636

CR-161572 June 1980
N80-33123

CR-161573 September 10, 1980
N80-32433

CR-161574 July 31, 1980
N80-32433

CR-161575 1980
N80-32653

CR-161576 September 1980
N80-32752

CR-161577 August 1980
N80-33313

CR-161578 August 31, 1980
N81-70258

CR-161579 July 3, 1980
N80-34327

CR-161580 March 6, 1980
Numerical Study of Baroclinic Instability, Final Report. NAS8-33558, University of Miami.
N80-33992

CR-161581 September 10, 1980
N80-34111

CR-161582 September 1980
N81-90247

CR-161583 July 1979
Camera/Photometer, Final Report. NAS8-32235. Epsilon Laboratories, Inc.
X80-10257

CR-161584 August 1980
N80-33748

CR-161585 October 8, 1980
N80-33479

CR-161586** October 1980
Solar Heating System Installed at Jackson, Tennessee — Final Report. DOE

CR-161600 January 1975 Concept Definition and System Analysis
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-161601 January 1975

CR-161602 January 1975

CR-161603 November 1980

CR-161604* September 1980
Shuttle Simulation Turbulence Tapes (SSTT) Users Guide. NAS8-33818. Engineering Analysis, Inc. N81-12134

CR-161605** December 1980

CR-161568 November 1980

CR-161606 May 28, 1980

CR-161607 September 1980

CR-161608 August 20, 1980

CR-161609 September 1980
On the Solution of the Unsteady Navier-Stokes Equations for Hypersonic Flow About Axially-Symmetric Blunt Bodies. NAS8-32912. Mississippi State University. N81-12017

CR-161610 September 1979

CR-161611 September 1979

CR-161612 September 30, 1980

CR-161620 July 30, 1980 Rotordynamics Analysis for the HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine) — Final Report. NAS8-31233, University of Louisville. N81-15017

CR-161624 March 1980 Develop and Demonstrate the Performance of Cryogenic Components Representative of Space Vehicles, Phase II Report — Integrated System Design and Analysis. NAS8-31778, General Dynamics Convair Division. N81-72441

CR-161626 October 29, 1980 Optical Mass Memory System (AMM-13) AMM/DBMS Interface Control
CR-161627 October 1980
Manufacturing Process Applications
Team (MATeam), 3rd Quarterly Report
for 1980. NAS8-32229. IIT Research
Institute.

CR-161628 September 30, 1980
Materials Processing in Space: Past
Accomplishments and Future Directions
(USRA), Final Report. NAS8-32992.
Universities Space Research Association.

CR-161629 November 24, 1980
STS-1 Nominal Cycle 3 March/April
Launch, Ascent Base Convective Hea-
ting, Final Report. NAS8-33725. Rem-
tech, Inc. N81-15015

CR-161630 December 1980
Study of Digital Charge Coupled
Devices, Final Report. NAS8-33194,
Martin Marietta Corp. N81-15193

CR-161631 December 31, 1980
Etch II — Design, Development, Fabrica-
tion, Test, Integration, and Checkout of
Automatic Chemical Etch Process
Consolidated Industries, Inc.

CR-161632 December 19, 1980
Geophysical Fluid Dynamics Experi-
ment Definition, Interim Report. NAS8-
32360. USRA/Boulder. N81-90315

CR-161633 January 20, 1981
Warm/Cold Cloud Processes, Final
Report. NAS8-33131. USRA/Boulder.
N81-17668

CR-161634 January 9, 1981
Solar Array Technology Development
for SEPS (Solar Electric Propulsion),
Final Report. NAS8-31352. Lockheed
Missiles & Space Co. X81-10139

CR-161635 October 1980
Ultimate Intrinsic—Coercivity Samari-
um—Cobalt Magnet, an Earth-Based
Feasibility Study for Space Shuttle
Missions. NAS8-33607. The Charles
Stark Draper Laboratory. N81-90372

CR-161636 December 8, 1980
Glass Shell Manufacturing in Space,
Semi-Annual Report. NAS8-33103. KMS
Fusion, Inc. N81-90373

CR-161637 1980
Stabilized Zeeman Split Laser, Final
Report. NAS8-34036. TAI Corp.
N81-17414

CR-161638 December 10, 1980
Orbit Transfer Vehicle (OTV) Advanced
Expander Cycle Engine Point Design
Study, Final Report, Volume II: Study
Results. NAS8-33574. Aerojet Liquid
Rocket Co. N81-17141

CR-161639 January 19, 1981
Orbit Transfer Vehicle Engine Study,
NAS8-32999. Aerojet Liquid Rocket Co.
N81-17140

CR-161640 December 30, 1980
Space Fabrication Demonstration Sys-
tem, Qtrly Prog. Report No. 14. NAS8-
32472. Grumman Aerospace Corp.
N81-90374

CR-161641 January 21, 1981
Temperature-Controlled Quartz Crystal
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-161642** January 1981

CR-161643 December 1980

CR-161644 January 2, 1981
Simulation of the Magnetic Structure of the Inner Heliosphere by Means of a Non-Spherical Source Surface. NAS8-33376. Harvard-Smithsonian Center for Astrophysics and the Aerospace Corp. N81-18977

CR-161645 January 20, 1981
Preparation of Si$_x$N$_y$C$_z$ Fibers by the Controlled Pyrolysis of Novel Organosilicon Polymeric Precursors, Final Report. NAS8-33223. Battelle Columbus Laboratories. X81-10141

CR-161646 January 1981
Liquid Booster Module (LBM) Plume Flowfield Model. NAS8-33976. Lockheed Missiles & Space Co. N81-18087

CR-161647 June 1980

CR-161649 June 1980

CR-161650 June 1980

CR-161651 June 1980

CR-161652 June 1980

CR-161653 December 31, 1980
Coal Gasification Systems Engineering and Analysis, Final Report, Volume I, Executive Summary. NAS8-33824. The BDM Corp. N81-18212

CR-161654 December 31, 1980
Coal Gasification Systems Engineering and Analysis, Final Report, Volume II. NAS8-33824. The BDM Corp. N81-18213
<p>| CR-161670 | January 1981 | The Growth of Metastable Peritectic | |
| CR-161672 | March 12, 1981 | Transfer Film Evaluation for Shuttle Engine Turbopump Bearing. NAS8-33576, Battelle Columbus Labs. | N81-20425 |
| CR-161674 | March 1, 1980 | SPAR VI Experiment Report, Containerless Processing of Glass, Experiment 74-42. NAS8-32023, Rockwell International. | N81-20102 |
| CR-161680 | February 1981 | X-Ray Diffraction Analysis of Nb2Ge. NAS8-33548, University of Alabama in Huntsville. | N81-90452 |
| CR-161686 | April 15, 1980 | Assessment of Current and Projected |</p>
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Issued By</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CR-161704 January 3, 1980

CR-161705 December 1978

CR-161706 August 30, 1977

CR-161707 October 15, 1978

CR-161708 July 31, 1979

CR-161709 April 30, 1980

CR-161710 November 30, 1979

CR-161711 December 1979

CR-161712* May 1980
Characterization of Silicon-Gate CMOS/SOS Integrated Circuits Processed with Ion Implantation, Final Report. NAS8-31986. RCA Corp. N81-76503

CR-161713 December 1978

CR-161714 September 1978

CR-161715 December 1979
The Growth of Metastable Peritectic Compounds, Quarterly Progress Report No. 3. NAS8-32998. Grumman Aerospace Corp.

CR-161716 April 1980
Space Fabrication Demonstration, Quarterly Progress Report No. 11. NAS8-32472. Grumman Aerospace Corp.

CR-161717 December 1979

CR-161718 September 1979
Scientific Management and Implementation of the Geophysical Fluid Flow Cell
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

for Spacelab Mission One, Quarterly Progress Report. NAS8-31958, University of Colorado.

March 1979
NAS8-31958

CR-161720 March 1981

CR-161721 April 30, 1981
Dispersion Model Studies for Space Shuttle Environmental Effects Activities. NAS8-31841, University of Utah. N81-22588

CR-161722** September 1980

CR-161723** September 1980

CR-161724** September 1980

CR-161725** September 1980

CR-161726** September 30, 1980

CR-161727** September 1980

CR-161728** September 1980

CR-161729** September 1980

CR-161730** September 1980

CR-161731** May 1981

CR-161732 June 1976
CR-161733 January 1979

CR-161734 March 1979
Payload Missions Integration, Data Requirement MA-03 Progress Report. NAS8-32712. Teledyne Brown Engineering. X81-10234

CR-161735 May 1979
Payload Missions Integration Progress Report, Data Requirement MA-03. NAS8-32712. Teledyne Brown Engineering. X81-10235

CR-161736 July 1979
Payload Mission Integration, Data Requirement MA-03-Progress Report. NAS8-32712. Teledyne Brown Engineering. X81-10236

CR-161737 November 1979

CR-161738 March 1980

CR-161739 September 1980

CR-161740 January 1981
Payload Missions Integration Progress Report, Data Requirements MA-03. NAS8-32712. Teledyne Brown Engineering. X81-10239

CR-161741 March 1981
Payload Missions Integration Progress Report. NAS8-32712. Teledyne Brown Engineering. X81-10420

CR-161742 July 1974
Physical Forces Influencing Skylab Experiment M-566 -- Summary Report. NAS8-27015. Lockheed Missiles and Space Co. N81-74551

CR-161743 July 1974

CR-161744 July 1974
Convection Effects on Skylab Experiment M-511. NAS8-27015. Lockheed Missiles and Space Co. N81-74549

CR-161745 July 1974

CR-161746 November 1980
Defect Chemistry and Characterization of Hg1-xCd_xTe. NAS8-33245. Honeywell Electro-Optics Center. N81-23924

CR-161747 April 15, 1981

CR-161748 April 1981

CR-161749 March 31, 1981
Scientific Management and Implementation of the Geophysical Fluid Flow Cell
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

for Spacelab Missions. NAS8-31958, University of Colorado. N81-75938

CR-161750 April 28, 1981
Satellite Power Systems (SPS) Concept Definition Study (Exhibit F), Final Performance Review. NAS8-32475. Rockwell International. N81-23599

CR-161751 February 16, 1981

CR-161752 February 1980

CR-161753 April 1981
Science and Applications Space Platform (SASP) End-to-End Data System Study. NAS8-33592, McDonnell Douglas Astronautics Co. N81-22069

CR-161754 April 22, 1981

CR-161755 May 1981
Defect Chemistry and Characterization of (Hg1-xCdx)Te. NAS8-33245. Honeywell, Inc. N81-23925

CR-161756** May 1981

CR-161757 November 1976

CR-161758 August 1980

CR-161759 June 1980

CR-161760 April 1980

CR-161761 November 1980

CR-161762* April 1981

CR-161763** May 1981
<table>
<thead>
<tr>
<th>CR-161764</th>
<th>May 1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-161765*</td>
<td>December 1980</td>
</tr>
<tr>
<td>CR-161766</td>
<td>July 1978</td>
</tr>
<tr>
<td>CR-161767</td>
<td>June 1978</td>
</tr>
<tr>
<td>CR-161768</td>
<td>May 6, 1981</td>
</tr>
<tr>
<td>CR-161769</td>
<td>February 1981</td>
</tr>
<tr>
<td>CR-161770</td>
<td>October 15, 1981</td>
</tr>
<tr>
<td>CR-161771</td>
<td>July 10, 1980</td>
</tr>
<tr>
<td>CR-161772</td>
<td>July 10, 1980</td>
</tr>
<tr>
<td>CR-161773</td>
<td>July 1980</td>
</tr>
<tr>
<td>CR-161774</td>
<td>December 1975</td>
</tr>
<tr>
<td>CR-161775*</td>
<td>March 1, 1981</td>
</tr>
<tr>
<td>CR-161776*</td>
<td>March 1, 1981</td>
</tr>
<tr>
<td>CR-161777</td>
<td>July 1977</td>
</tr>
<tr>
<td>CR-161778</td>
<td>August 1979</td>
</tr>
<tr>
<td>CR-161779</td>
<td>June 1, 1981</td>
</tr>
</tbody>
</table>

Abstracts for these reports may be obtained from STAR

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-161765*</td>
<td>Accelerated Life Testing Effects on CMOS Microcircuit Characteristics, Final Report. NAS8-31905. RCA.</td>
</tr>
<tr>
<td>CR-161773</td>
<td>Coal Conversion Products Industrial Applications. NAS8-33843. Technology Development Corp. N81-25237</td>
</tr>
<tr>
<td>CR-161776*</td>
<td>Summary of Jimsone Temperature Profiles – Programs, Data, Comments. NAS8-32432. Computer Sciences Corp. N81-25626</td>
</tr>
<tr>
<td>CR-161777</td>
<td>The Thermal Conductivity and Specific Heat of an Ablative Material Designated as MXSA. NAS8-32477. Dynatech Research and Development Co. N81-74905</td>
</tr>
<tr>
<td>CR-161778</td>
<td>Combination Control Study in Hybrid Microcircuit Modules. NAS8-32437. Vanderbilt University. N81-25304</td>
</tr>
</tbody>
</table>
CR-161780 June 1, 1981

CR-161781 June 1972

CR-161782 November 1978

CR-161783 1980

CR-161784 1980

CR-161785 1980
Orbital Transfer Vehicle -- Concept Definition Study, Volume 3: Conceptual Analysis and Developmental Approaches. NAS8-33532. The Boeing Co. X81-75666

CR-161786 1980
Orbital Transfer Vehicle -- Concept Definition Study, Volume 4: Selected Concept Definition, Final Report. NAS8-33532. The Boeing Co. X81-75667

CR-161787 1980
Orbital Transfer Vehicle -- Concept Definition Study, Volume 5, Program Definition, Final Report. NAS8-33532. The Boeing Co. X81-75668

CR-161788 1980

CR-161789 February 23, 1981
Orbital Transfer Vehicle -- Concept Definition Study, Volume 1: Executive Summary, Final Report. NAS8-33533. General Dynamics Convair Division. X81-75659

CR-161790 March 1981

CR-161791 March 1981

CR-161792 February 23, 1981

CR-161793 March 1981
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-161794* April 1981
Lightning Detection from Space — Science and Applications Team Review. NAS8-33715. Rice University.
N81-25625

CR-161795 December 18, 1980
Spectrophotovoltaic Orbital Power Generation. NAS8-33511. Honeywell Systems and Research Center. N81-25508

CR-161796 February 1980

CR-161797** May 1981

CR-161798 July 1978
Hydrodynamic Support (HDS) for Space Shuttle MVGVT. NAS8-32424. Martin-Marietta Aerospace. N81-75193

CR-161799 June 3, 1981

CR-161800 March 3, 1981

CR-161801 September 20, 1977

CR-161802** May 1981

CR-161803** June 1981

CR-161804 July 1977
The SRB Thermal Environment Data Book. NAS8-32522. Remtech, Inc. N81-75866

CR-161805 June 1978

CR-161806 January 29, 1981

CR-161807 October 30, 1979

CR-161808 October 30, 1980

CR-161809 December 1980
Addition to the Lewis Chemical Equilibrium Program to Allow Computation from Coal Composition Data. NAS8-31640. Computer Sciences Corp. N81-26276
CR-161814	April 1981	High-Pressure Lox/Hydrocarbon Preburners and Gas Generators. NAS8-33243, Rockwell International.	N81-27619
CR-161822	July 7, 1981	Co-Investigator Tasks on SEPAC Experiments for the First Spacelab Mission. NAS8-32580. TRW.	
CR-161823	May 1981	Ultimate Intrinsic-Coercivity Samarium-Cobalt Magnet, an Earth-Based Feasibility Study for Space Shuttle Missions. NAS8-33607. The Charles Stark Draper Laboratory, Inc.	N81-75855
CR-161826	February 1981	Investigation of Electrodynamic Stabilization and Control of Long Orbiting	
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

Tethers, NAS8-33691. Smithsonian Institution Astrophysical Observatory.
N81-28128

CR-161827 April 30, 1981
Charge Injection Device Evaluation Hardware. NAS8-33740. Bendix Corp.
N81-28355

CR-161828 May 1981
N81-75864

CR-161829 October 19, 1978
Summary of Skylab Mission Patches. NAS8-32974. IBM Corp.

CR-161830** July 1981
Solar Heating and Hot Water System Installed at James Hurst Elementary School, Portsmouth, Virginia. DOE Contract ME-78-F01-5205.

CR-161831 March 15, 1981
N81-30178

CR-161832 March 15, 1981
N81-30179

CR-161833 March 15, 1981
N81-30180

CR-161834 October 31, 1980
Space Processing of Chalcogenide Glass, IITRI. NAS8-32388. IITRI. N81-30145

CR-161835 June 1981
Design, Fabrication and Test of Last Cut Follower. NAS8-33700. Science Applications, Inc.
N81-30964

CR-161836 May 1978
N81-29479

CR-161837 May 15, 1981
SEPAC Software Configuration Control Plan and Procedures, Rev. 1. NAS8-33806. Intermetrics, Inc.
N81-76470

CR-161838 May 8, 1978
N81-76283

CR-161839 May 8, 1978
N81-76282

CR-161840 1980
Manufacturing Process Applications Team (MATeam), Annual Report. NAS8-32229. IITRI.

CR-161841 February 1981
CR-161842 July 1981

CR-161843 June 1981
High Resolution Angular Sensor. NAS8-31840. Raytheon Co.

CR-161844 July 1981
Study of the Dissociation of Molecular Hydrogen. NAS8-33521. The Smithsonian Institution Astrophysical Observatory.

CR-161845** September 1981
Indoor Test for the Thermal Performance Evaluation of the DEC 8A Large Manifold Sunmaster Evacuated Tube (Liquid) Solar Collector. DEN8-000006. Wyle Laboratories.

CR-161846 January 1981

CR-161847 April 7, 1981

CR-161848 1981

CR-161849 June 15, 1981
Coal Face Measurement System for Underground Use. NAS8-33792. The Benton Corp.

CR-161850 March 1981
Thrust Augmented Shuttle Wind Tunnel Test IA603 Data Analysis and Results. NAS8-33134. Northrop Services, Inc.

CR-161851 August 1981
Molecular Model for Ice Nucleation and Growth. NAS8-31150. University of Missouri-Rolla.

CR-161852** September 1981
An Analytical Comparison of the Efficiency of Solar Thermal Collector Arrays With and Without External Manifolds. DEN8-000006. Wyle.

CR-161853 August 1981

CR-161854 July 1981
Shuttle Derived Vehicles (SDV) — Technology Requirements Study. NAS8-34183. Martin Marietta Aerospace.

CR-161855 1981

CR-161856** September 1981

CR-161857 September 18, 1981
IGDS/Trap Interface Program (ITIP) — Software User Manual (SUM). NAS8-34279. Intergraph Corp.

CR-161858 September 18, 1981
IGDS/Trap Interface Program (ITIP) — Software Design Document. NAS8-34279. Intergraph Corp.
CR-161859 September 8, 1981

CR-161860 October 1965

CR-161861 1981
Design Requirements for the SRB Production Control System, Volume I: Study Background and Overview. NAS8-34207. A. T. Kearney, Inc.

CR-161862 1981

CR-161863 1981

CR-161864 1981
Design Requirements for SRB Production Control System, Volume IV; Implementation. NAS8-34207. A. T. Kearney, Inc.

CR-161865 1981
Design Requirements for SRB Production Control System, Volume V; Appendices. NAS8-34207. A. T. Kearney, Inc.

CR-161866** September 1981
Evaluation of “All-Day Efficiency” for Selected Flat-Plate and Evacuated Tube Collectors. DEN8-000006, Wyle Labs.

*White cover reports published at MSFC.
**DOE/NASA reports.
ANDERSON, B. J. ES81
HALLET, J.
BEESLEY, E. M.

ANTAR, BASIL N. ES82
FOWLIS, WILLIAM W. ES82
Baroclinic Instability of a Real Rotating Hadley Cell. For publication in the Journal of the Atmospheric Sciences.

BAUGHER, C. R. ES53
CHAPPELL, C. R. ES53
HORWITZ, J. L.
University of Alabama in Huntsville
SHELLEY, E. G.
Lockheed Palo Alto Research Lab.
YOUNG, D. T.
University of Bern

BAUGHER, C. R. ES53
CHAPPELL, C. R. ES53
HORWITZ, J. L.
University of Alabama in Huntsville
SHELLEY, E. G.
Lockheed Palo Alto Research Lab.
YOUNG, D. T.
University of Bern
ANDERSON, R. R.
University of Iowa

BECHETEL, ROBERT T. EC31
The 30 cm J Series Ion Thruster. For presentation at the 15th International Electric Propulsion Conference to be held in Las Vegas, NV on April 21-23, 1981.

BLACKWELL, DOUGLAS EL24

BLACKWELL, DOUGLAS L. EL24
Space Shuttle Propulsion Performance Improvement Options. For presentation at the 1981 JANNAF Propulsion Meeting to be held in New Orleans, LA on May 26-28, 1981.

BORELLI, M. T. ED11
CHICHESTER, F. D.
Bendix
Multi-Level Control Approach for a Modular Structured Space Platform. For publication in AGARD, Agardograph on Spacecraft Guidance and Control.

BROPHY, JOHN EC35
WILBUR, PAUL Colorado State University
Design Model for the Baffle Aperture Region of a Hollow Cathode Thruster. For presentation at the 15th International Electric Propulsion Conference (AIAA) to be held in Las Vegas, NV on April 21-23, 1981.

BROUSSARD, PETER H. FA71
NASA's Automation Work in Underground Coal Mines. For presentation at the 18th Space Congress Sponsored by the Canaveral Council of Technical Societies to be held in Cocoa Beach, FL on April 29-May 1, 1981.

BROWN, RICHARD L. LA41
Commercial Use of Materials Processing in Space. For presentation at the 26th National SAMPE Symposium Exhibition to be held in Los Angeles, CA on April 28-30, 1981.
BROWN, RICHARD L.

CAPORALI, ALESSANDRO

CAPORALI, ALESSANDRO
Gravitational Perturbations of the Phase of an Electromagnetic Signal. For publication in Physical Review.

CAREY, WILLIAM T.
Abstract — An Experimental Geostationary Platform — A Step Toward the 1990’s. For presentation at the AIAA 9th Communications Satellite Systems Conference to be held in San Diego, CA on March 7-11, 1982.

CARTER, T. E.
(NASA/ASEE Summer Faculty Fellow) Fuel Optimal Maneuvers for Spacecraft with Fixed Thrusters. For publication in the AIAA Journal of Guidance and Control.

CHAPPELL, CHARLES R.
The Magnetosphere — Our Geospace Environment. For presentation at the AIAA 19th Aerospace Sciences Conference to be held in St. Louis, MO on January 11-16, 1981.

CHENG, C.

CHENG, C.
TANDBERG-HANSSEN, E.
BRUNER, E.
LOCKHEED
ORWIG, L.
GSFC
FROST, K.
GSFC
KENNY, P.
GSFC
WOODGATE, B.
GSFC
SHINE, R.
GSFC

CLINE, T. L.

COSTES, NICHOLAS
STURE, STEIN University of Colorado The Potential for In-Space Research on Soil Behavior Under Earthquake Excitation. For presentation at the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics to be held in St. Louis, MO on April 15-May 3, 1981.

CRABTREE, W. L.
EC12 High Efficiency, High Concentration Ratio Solar Cell Array. For presentation at the Intersociety Energy Conversion Engineering Conference to be held in Atlanta, GA, on August 9-14, 1981.

CRAFT, HARRY G., JR.
SMITH, M. J. NASA Headquarters The First Spacelab Mission Status and Lessons Learned. For presentation at the SPIE Technical Symposium East '81 to be held in Washington, D.C. on April 22-24, 1981.
CRAVEN, P. D.
REASONER, D. L.
CHAPPELL, C. R.
OLSEN, R. C.

Observation of a Storm Time Radial Component of the Magnetospheric E Field. For publication in the American Geophysical Union Fall Annual Mtg.

CROFT, F. MAX
WHITE, DONALD T.

Configuration Management and Accounting Utilizing Interactive Forms Mode Technology. For presentation at the UNIVAC USE Conference to be held in New York, NY on March 16-20, 1981.

DARBRO, WESLEY A.
VON TIESENHAUSEN, GOERG

Sequences Generated by Self-Replicating Systems. For publication in Industrial and Applied Mathematics.

DECHER, R.
ALLAN, D.
ALLEY, C.
WINKLER, G.

Shuttle Experiment to Demonstrate High Accuracy Global Time and Frequency Transfer. For presentation at the 1981 International Geoscience and Remote Sensing Symposium to be held in Washington, D.C. on June 8-10, 1981.

DOZIER, JAN D.

Photoelastic Stress Analysis of the Femoral Component Region of the Total Hip Replacement. For publication to ASME Journal of Biomechanical Engineering, New York, NY.

ELSNER, R. F.
LAMB, F. K.

ETHRIDGE, E. C.
DUNN, S. A.

Bjorksten Research Lab Air Jet Levitation Furnace System for Observing Class Microspheres During Heating and Melting. For presentation in the Materials Processing Research in the Reduced Gravity Environment of Space to be held in Boston, MA on November 16-18, 1981.

ETHRIDGE, E. C.
RUSH, J. E.

University of Alabama in Huntsville STEPHENS, W. K.

University of Alabama in Huntsville Properties of a Constricted-Tube Air-Flow Levitator. For presentation at the Materials Processing Research in the Reduced Gravity Environment of Space to be held in Boston, MA on November 16-18, 1981.

FELIX, A. RICHARD

Apparatus for Ignition Overpressure Testing of SRB Thermal Curtain. For presentation at the 56th Meeting of Supersonic Tunnel Association, Cambridge, MA, October 7-8, 1981.

FENNELLY, A. J.

Adaptation of the THetu Formalism to the Analysis of Equivalence-Principle Experiments Involving the Weak Interaction: A Beta-Decay Clock. For publication in the Physical Review, Brookhaven, NY.

FENNELLY, A. J.

The Weight, Shape, and Speed of the Universe. For publication in the Journal of General Relativity and Gravitation.
FENNELLY, A. J. ES63

FEREBEE, ROBIN C. ED23

FICHTL, G. H. ES82
HOlldAND, R. L.
Exceedance Statistics of Accelerations Resulting from Thruster Firings on the Apollo-Soyuz Mission. For publication in the Journal of Spacecraft and Rockets, New York, NY.

FINNELL, WOOLSEY, III. PD14
SPS Microwave Power Transmission and Reception Systems. For presentation at the 16th Intersociety Energy Conversion Engineering Conference to be held in Atlanta, GA on August 9-14, 1981.

FISHMAN, GERALD J. ES62
The Burst and Transient Source Experiment for the Gamma-Ray Observatory. For presentation at the Workshop on Gamma-Ray Transients and Related Astrophysical Phenomena to be held at the University of California, San Diego, CA on August 5-8, 1981.

FISHMAN, GERALD J., et al. ES62
The Burst and Transient Source Experiment for the Gamma-Ray Observatory. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France on July 12-25, 1981.

FISHMAN, GERALD J. ES62
Images of Single X-Ray Photons from X-Ray Phosphor Screens. For presentation at the Review of Scientific Instruments to be held in New York, NY.

FLEISCHMAN, G. L. General Electric
SCOLLON, T. R. General Electric
LOOSE, J. D. EL52
Vapor Chambers for Atmospheric Cloud Physics Laboratory. For presentation at the AIAA 15th Thermophysics Conference to be held in Snowmass, CO on July 14-16, 1980.

FRAZIER, DONALD O. ES74

FROST, WALTER
University of Tennessee Space Institute
CAMP, DENNIS W. ES82
Analysis of Turbulence Measured Around a Simulated Block Building. For presentation at the Fourth U. S. National Conference on Wind Engineering Research to be held in Seattle, WA, on July 26-29, 1981.

GERGELY, T. E. ES52
KUNDU, M. R. CLRO
HILDNER, E.
A Coronal Transient Associated with a High-Speed Type II Burst. For publication in the Astrophysical Journal, Part I.

GRAVES, J. R. EC12
Power Management of Multi-Hundred kW Spacecraft Power System. For presentation at the IECEC, to be held in Atlanta, GA, in August 1981.

GRAVES, J. R. EC12
A Programmable Power Processor for Space Power Systems. For presentation
at the IEEE 12th Annual 1981 Electronics Specialist Conference to be held in Boulder, CO, on June 29-July 2, 1981.

GREEN, JAMES L.
Observations Pertaining to the Generation of Auroral Kilometric Radiation. For publication in AGU Monograph.

GOLDIN, R. W.
JACQUEMIN, G. G.
JOHNSON, W. H.

GREEN, JAMES L.
CALVERT, W.
Lockheed Palo Alto Research Hawkeye Observation of the Auroral Plasma Cavity. For presentation at the American Geophysical Union Fall Meeting to be held in San Francisco, CA, on December 8-12, 1980.

HAGYARD, M. J.
WEST, E. A.
TANDBERG-HANSSEN, E.
SMITH, J. E.
HENZE, W.
The Photospheric Vector Magnetic Field of a Sunspot and Its Vertical Gradient. For publication in the Proceedings of the Sunspot Workshop, Sunspot, NM.

HAGYARD, M. J.
CUMINGS, N. P.
WEST, E. A.
The MSFC Vecton Magnetograph. For publication in Review of Scientific Instruments.

TANDBERG-HANSSEN, E.

HAGYARD, M. J.
TEUBER, D.
CHENG, C. C.
Analysis of Sunspot Observations. For presentation at the 1981 Scientific Meeting of the Solar Physics Division of the American Astronomical Society to be held in Taos, NM, on January 7-10, 1981 and for publication in the Bulletin of the AAS.

HARRIS, C. E.
DUNKIN, J. A.
Clear Weather Laser Radar. For presentation at the Electro/81 IEEE Conference to be held in New York, NY, on April 7-9, 1981.

HENRY, J. P.
SPILLER, E.
WEISSKOPF, M. C.

HENZE, W.
GURMAN, J. B.
Applied Research and Systems

HYDER, C. L.
University of Alabama in Huntsville

TANDBERG-HANSSEN, E.

HILDEB, E.
FISHER, R. R.
High Altitude Observatory
HOUSE, L. L., High Altitude Observatory
SAWYER, G. B., High Altitude Observatory
WATKINER, W. J., High Altitude Observatory
ILLING, R. M. E., High Altitude Observatory

McCABE, M. K., University of Hawaii
Evolution of a Coronal Mass Ejection from ~ 1.5 to ~ 10 R⊙. For presentation at the 1981 Scientific Meeting of the Solar Physics Division of the American Astronomical Society to be held in Taos, NM, on January 7-10, 1981 and for publication in the Bulletin of the AAS.

HORWITZ, J. L., ES53 (UAH)
CHAPPELL, C. R.
REASONER, D. L.
CRAVEN, P. D.
GREEN, J. L.
BAUGHER, C. R.

Low-Energy Plasma Composition Results from ISEE-1 and Scatha Satellites. For presentation at the International Association of Geomagnetism and Aeronomy, 4th Scientific Assembly, Edinburgh, Scotland, August 3-15, 1981.

HUNG, R. H., ES81 (UAH)
SMITH, R. E.

Gravity Waves, Satellite Imagery and Balloon Study of Severe Convective Storms. For presentation at Geophysical Research Letters, Washington, D.C.

HUNG, R. J., ES81 (UAH)
SMITH, ROBERT E.

HUNG, R. J., ES81 (UAH)
SMITH, R. E.

Ionospheric Remote Sensing of Medium Scale Gravity Waves and Tornadic Storms. For publication in Il Nuovo Cimento, Italy.

HYUN, JAE MIN, ES82 (NRC Fellow)

The Applicability of the Piecewise Linear Current Profile in Baroclinic Instability Problem. For publication in the Journal of the Meteorological Society of Japan.

HYUN, JAE MIN, ES82 (NRC Fellow)

FOWLIS, WILLIAM W., ES82
WARN-VARNAS, ALEX

Naval Ocean Research & Development Activity

JEAN, O. C.
ALLEN, L. B.

Payload Carrier Systems for Conducting Sortie Mode Science. For presentation at the AIAA 19th Aerospace Sciences Meeting to be held in St. Louis, MO, on January 14, 1981.

JONES, JESS
JEWELL, RON
FENWICK, J.

Space Shuttle Main Engine (SSME) Pogo Testing and Results. For presentation at the 52nd Shock and Vibration Symposium, New Orleans, LA, October 27-29, 1981.

JOHNSON, J.
GREEN, J. L.
SOJKA, J. J., Utah State
WRENN, G. L., Mullard Space Sci. Lab

Observations of Low-Energy (100 eV) Anisotropic Ion Pitch Angle Distributions Observed at Low Altitudes with
ISEE-1 and GEOS, For presentation at the International Association of Geomagnetism and Aeronomy, 4th Scientific Assembly, Edinburgh, Scotland, August 3-15, 1981.

JOHNSTON, M. H.
PARR, R. A.
Low Gravity Solidification Structures in the Sn-15wt percent Pb and Sn-3wt percent Bi Alloys. For presentation at the Materials Research Society Symposium, Boston, MA, November 16-18, 1981.

JOHNSTON, M. H.
CYBULSKY, M.
PARR, R. A.

JOHNSTON, M. H.
PARR, R. A.
The Influence of Acceleration Forces on Dendritic Growth and Grain Structure. For publication in Metallurgical Transactions.

JONES, LEE W.
Laser Propulsion. For presentation at the AIAA 16th Thermophysics Conference to be held in Palo Alto, CA on June 23-25, 1981.

KAUFMAN, JOHN W.
FROST, WALTER
FWG Associates, Inc.
Wind-Wheel Turbine. For presentation at the DOE Conference "Energy in Man Built Environment -- The Next Decade" to be held in Vail, CO, on August 3-5, 1981.

KELLER, V. W.
HALLETT, J.
Influence of Air Velocity on the Habit of Ice Crystal Growth from the Vapor. For publication in the Journal of Crystal Growth.

KNOTT, K.
FEUERBACHER
CHAPPEL, RICHARD
Spacelab -- An Early Space Station for Science and Technology. For presentation at the IAF Congress, Rome, Italy, September 6-12, 1981.

KOEPF, DAVID
FROST, WALTER
FWG Associates, Inc.
University of Tennessee Space Institute
TURNER, ROBERT E.
Wind Directional Fluctuations. For presentation at the Fourth U. S. National Conference on Wind Engineering Research to be held in Seattle, WA, on July 26-29, 1981.

KRALL, K. R.
University of Alabama in Huntsville
HAGYARD, M. J.

KROES, R. L.
LAL, R. B.
Alabama A&M University
WILCOX, W. R.
Clarkson College
Growth of Triglycine (TGS) Sulfate Crystals by Solution Technique. For presentation at the Materials Processing Research in the Reduced Gravity Environment of Space (Materials Research Society Annual Meeting) to be held in Boston, MA, on November 16-18, 1981.
KROSS, D. A.
Space Shuttle Solid Rocket Booster Re-Entry and Deceleration System Loads and Dynamics. For presentation at the 52nd Shock and Vibration Symposium, New Orleans, LA, on October 27-29, 1981.

KROSS, D. A.

KRUPNICK, ALBERT C.
Performance and Life Cycle Cost Analysis of a Light Commercial 25 Ton Solar Rankine Driven Heating, Cooling, and Hot Water System. For presentation at "Energy Economics of the 80's" to be held in Huntsville, AL, on December 8-10, 1980.

LACY, L. L.
RATHZ, T. J.
ROBINSON, M. B.
Containerless Undercooling and Solidification of Bulk Metastable Nb₃Ge Alloys. For publication in Journal of Applied Physics, Argonne, IL.

LEAHY, D.
University of Texas

LEAHY, D. A.
Tufts University

LEAHY, DENIS A.

LEDBETTER, F. E. III
CLEMONS, J. M.

PENN, B. G.
Preparation of Silicon Carbide-Silicon Nitride Fibers by the Controlled Pyrolysis of Polycarbolilazane Precursors. For publication in the Journal of Applied Polymer Science.

LEE, R.
DiMARZIO, C.
JONES, W.
BILBRO, J.
JOHNSON, S.
KENNEDY, L.
JEFFREYS, H.

LEDBETTER, F. E. III
CLEMONS, J. M.

LEDBETTER, F. E. III
CLEMONS, J. M.
LUCAS, W. R. DA01
Saturn Launch Vehicles. For presentation at the AIAA Annual Meeting and Technical Display to be held in Long Beach, CA, on May 12-14, 1981.

McGUIRE, JANICE K. ES73
MILLER, TERESA Y. ES73
TIPPS, RUBY W. ES73
SNYDER, ROBERT S. ES73
RIGHETTI, PIER GIORGIO
University of Milano (Italy)
New Experimental Approaches to Iso-electric Fractionation of Cells. For publication in Cell Biophysics.

McGUIRE, JANICE K. ES73
SNYDER, ROBERT S. ES73
Characterization of Continuous Flow Electrophoresis for Improvement of Resolution and Throughput. For publication in Electrophoresis.

McGUIRE, J. K. ES73
SNYDER, R. S. ES73
Operational Parameters for Continuous Flow Electrophoresis of Cells. For presentation at Electrophoresis '81 Electrophoresis Society to be held in Charleston, SC, on April 7-10, 1981.

MAGNER, Joe
Perkin-Elmer, Optical Technology Division
Non-Contact Alignment and Sparing of Optics. For presentation at the Los Alamos Conference on Optics on approximately April 8, 1981.

MITCHELL, ROYCE E. EE01

MITCHELL, KENNY PM01

MOORE, R. L. ES52

MOORE, R. L. ES52
Dynamic Phenomena in Sunspots. For publication in the Proceedings of Sacramento Peak Observatory Summer Workshop on the Physics of Sunspots, at Sunspot, NM.

NAGAI, F. ES52

NAGAI, F. ES52 (NRC Fellow)

NAKAGAWA, Y. ES51 (NRC Associate)

NAKAGAWA, Y. ES51 (NRC Associate)
Evolution of Magnetic Field and Atmospheric Responses. II. Formulation of Proper Boundary Equations. For publication in the Astrophysical Journal.
Method of Projected Characteristics for Magneto-Fluid Dynamic Problems. For publication in Physics of Fluids.

NAKAGAWA, Y. ES51 (NRC Associate)
HU, Y. Q.
University of Alabama in Huntsville
Derivation of Time-Dependent Boundary Equations for Magneto-Fluid Dynamic Initial-Boundary Value Problems by the Method of Projected Characteristics. For publication in Physics of Fluids.

NEIN, MAX E.
BALANCE, JAMES O.
Science and Applications Space Platform. For presentation at the 1981 Los Angeles Technical Symposium to be held in North Hollywood, CA, on February 9-13, 1981.

NEIN, MAX
RUNGE, FRITZ
McDonnell Douglas Astronautics Co.
Science and Applications Space Platform. For presentation at the Second AIAA Conference on Large Space Platforms to be held in San Diego, CA, on February 2-4, 1981.

O'DELL, C. R.
SWAMY, K. S. KRISHNA
Tata Institute of Fundamental Research, Bombay

OMENYI, S. N.
Snyder, R. S.
RHOODES, P.

OMENYI, S. N.
van OSS, C. J.
SNYDER, R. S.
Dependence of Sample Suspension Broadening on Fixed Erythrocyte Concentrations in Stationary and Flowing Systems. For presentation at the Electrophoresis '81 Electrophoresis Society to be held in Charleston, SC, on April 7-10, 1981.

OWENS, J. W.
STEIN, D. S.

OWEN, ROBERT B.

OWEN, R. B.
JOHNSTON, M. H.

OWEN, ROBERT B.

PARNELL, T. A., et al.
A Measurement of the Response of Xenon-Filled Ion Chambers to Cosmic Ray Nuclei Above 20 GeV/Nucleon. For presentation at the 17th International Cosmic Ray Conference to be
PARNELL, T. A., et al. ES62
Chemical Composition of Cosmic Rays at Energies Greater than 10^{13} eV. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France, on July 13-25, 1981.

PARNELL, T. A., et al. ES62
Heavy Ion Collisions at Energies >10 GeV/Nucleon to 10 TeV/Nucleon. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France, on July 13-25, 1981.

PARNELL, T. A., et al. ES62
Proton-Nucleus Interactions at Energies Above 8 TeV. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France, on July 13-25, 1981.

PARNELL, T. A., et al. ES62
Proton Spectrum in the Energy Range 10^{13} - 10^{14} eV. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France, on July 13-25, 1981.

PARNELL, T. A. ES62

PARNELL, T. A. ES62
A Measurement of the Energy Dependence of Cosmic Ray Abundances in the Energy Range 0.5 to 2 GeV/Nucleon. For presentation at the 17th International Cosmic Ray Conference to be held in Paris, France, on July 13-25, 1981.

PATTY, S. R.
University of Alabama in Huntsville

HAGYARD, M. J. ES52
Analysis of the Transverse Component of the Magnetic Field in Region of Magnetic Classification. For presentation at the AAS Solar Physics Division Meeting to be held in Taos, NM, on January 7-10, 1981 and for publication in the Bulletin of the American Astronomical Society.

POWELL, LUTHER E. PM01
Power System Platform (PSP) Program. For presentation at "Remote Manipulator System Users Conference" to be held in Toronto, Canada, May 5-7, 1981.

POWERS, L. B. EP25
BAILEY, R. L.

PRIEST, C. C. PS04
Space Platforms/ Stations. For publication in AIAA Student Journal, Fall 1981 Issue.

RAMSEY, VERNON W. ES82 (NRC Assoc.)
FICHTL, GEORGE H. ES82
Bernard Instability Due to White Noise Jitter. For publication in the Physica of Fluids.

RATHZ, T. J. ES74
ROBINSON, M. B. ES74
LACY, L. L.
Exxon Production Research Company Containerless Undercooling and Solidification of Bulk Metastable Nb3Ge Alloys. For presentation in the 1981 Fall Meeting of AIME, in Louisville, KY,

RAY, J. R. ES63
Perfect Fluids in General Relativity. For publication in II Nuovo Cimento, Bologna, Italy.

RAY, Dr. John R. ES63

REASONER, DAVID L. ES53
CRAVEN, P. D.
CHAPPELL, C. R.
Characteristics of Ion Populations in the Plasmasphere and Plasma Trough. For publication in EOS, Trans. AGU.

REASONER, DAVID L. ES53
CHAPPELL, C. R.
FIELDS, STANLEY A.
LEWTER, W. J.

RHODES, PERCY H. ES73
SNYDER, ROBERT S. ES73
The Effect of Axial Gradients on the Fluid Flow in an Electrophoresis-Type Separation Chamber. For presentation at the Materials Processing Research in the Reduced Gravity Environment of Space to be held in Boston, MA, on November 16-18, 1981.

RHODES, PERCY H. ES73
High-Resolution Continuous-Flow Electrophoresis in the Reduced Gravity Environment. For presentation at the Electrophoresis '81 Electrophoresis Society to be held in Charleston, SC, on April 7-10, 1981.

RHODES, P. H. ES73
SAVILLE, D. A. ES73
SNYDER, R. S. ES73
Development of a Mathematical Model of Continuous Flow Electrophoresis. For presentation at the Electrophoresis '81 Electrophoresis Society to be held in Charleston, SC, on April 7-10, 1981.

ROBINSON, M. B. ES74
RATHZ, R. J. ES74
LACY, L. L. Exxon
Solidification Studies of Nb-Ge Alloys at Large Degrees of Supercooling. For presentation at the Materials Processing Research in the Reduced Gravity Environment of Space to be held in Boston, MA, on November 16-18, 1981.

ROSE, R. E. TRW
NAKANO, H. TRW
STAFÄ, J. A. TRW
BRADY, W. L. FA81
The Recovery of the HEAO-2 Observatory. For presentation at the AAS Annual Rocky Mountain Guidance and Control Conference to be held at Keystone, CO, on January 31-February 4, 1981.

RUSH, J. E.
University of Alabama in Huntsville

STEPHENS, W. K.
University of Alabama in Huntsville

SCHAFFER, C. F. ES82
HOLLAND, R. L. ES82
Acoustic Levitation Studies with Application to the Analysis of Sample Motion in Spar Acoustic Levitation Experiment. For presentation at the Materials Research Society Meeting to be held in Boston, MA, on November 16-20, 1981 and for publication.

SEKIHARA, K. ES83
Polyatomic Molecule Decomposition in
the Stratosphere During Geomagnetic Storms. For publication in the Journal of Geophysical Research.

SEKIHARA, K.
Polyatomic Molecule Decomposition in the Stratosphere During Magnetic Storm. For presentation at the AGU Spring Meeting to be held in Baltimore, MD, on May 25-29, 1981.

SLOYER, JOHN L.
McGUIRE, JANICE K.
Fractionation of Bacterial Capsuler Polysaccharides by Electrokinetic Methods. For presentation at the Electrophoresis '81 Electrophoresis Society Meeting to be held in Charleston, SC, on April 7-10, 1981.

SMITH, J. B., Jr.
SMITH, J. B., Jr.
SMI TH, O. E.
SMITH, O. E.
SMITH, ORVEL E.
SMITH, RALPH R.
SNODDY, WILLIAM C. PS01
Science and Applications Space Platforms. For publication in Astronautics and Aeronautics.

SNYDER, R. S. ES73
DUNING, J. Indiana University

SNYDER, Robert S. ES73
Review of the NASA Electrophoresis Program. For presentation at the Electrophoresis '81 Electrophoresis Society to be held in Charleston, SC, on April 7-10, 1981.

SPEER, F. A. TA01
The Space Telescope. For presentation at the AIAA 50th Anniversary Meeting to be held in Long Beach, CA, on May 12-14, 1981.

STOKES, JACK W. EL15
Comparative Evaluation of Operability of Large Space Structure Connectors. For presentation at the 15th Aerospace Mechanisms Symposium to be held at MSFC, Huntsville, AL, on May 14-15, 1981.

STONE, NOBIE H. ES53
The Plasma Wake of Mesosonic Conducting Bodies II: An Experimental Parametric Study of the Mid-Wake Ion Density Peak. For publication in the Journal of Plasma Physics (Great Britain).

TANDBERG-HANSSEN, et al. ES01

TANDBERG-HANSSEN, E. ES01
Preliminary Observations and Results Obtained with the Ultraviolet Spectrometer and Polarimeter. For publication in the Astrophysical Journal.

TANDBERG-HANSSEN, E. ES01

TANNER, RAY E. EE41
Spacelab: Subsystems Performance Capabilities. For presentation at the Society of Photo-Optical Instrumentation Engineers to be held in Bellingham, WA, in April 1981.

TANG, CHUNG-MUH ES82
FICHTL, G. H.

TATOM, FRANK B. Engineering Analysis, Inc.
FICHTL, GEORGE H. ES82
SMITH, STEPHEN R. Engineering Analysis, Inc.
Simulation of Atmospheric Turbulent Gusts and Gust Gradients. For presentation at the 19th AIAA Aerospace Sciences Meeting to be held in St. Louis, MO, on January 12-15, 1981.

THOMPSON, J. R. SA51
Space Shuttle Main Engine. For presentation at AIAA/SETP/SFTE/SAE Flight Testing Conference, to be held at Las Vegas, NV, on November 11-13, 1981.
TURNER, L. D.
HUMPHRIES, W. R.
LITTLES, J. W.

Effects of the Specular Orbiter Forward Radiators on Typical Spacelab Payload Thermal Environment. For presentation at the 16th AIAA Thermophysics Conference to be held in Palo Alto, CA on June 23-25, 1981.

URBAN, EUGENE W.

Optics of Experiments in Spacelab 2. For presentation and publication at the Annual Meeting of Optical Society of America; Journal of the Optical Society of America in Orlando, FL, on October 27-30, 1981.

URBAN, E. W.
KATZ, L.
WATTS, RAYMOND

VON TIESENHAUSEN, GEORG

Self-Replicating Systems -- A Systems Engineering Approach. For presentation at the AIAA/SSI Fifth Conference on Space Manufacturing to be held in Princeton, NJ, on May 18-21, 1981.

WAITE, J. H.
HORWITZ

He in the Terrestrial Plasmasphere. For publication in the American Geophysical Union Fall Annual Meeting.

WAITE
NAGY, A. F.
ATREYA, S. K.

DONAHUE, T. M.
CRAVENS, T. E.

University of Michigan
The Upper Atmosphere and Ionosphere of Saturn. For presentation at the International Association of Geomagnetism and Aeronomy, Fourth Scientific Assembly, Edinburgh, Scotland, August 3-15, 1981.

WEISSKOPF, MARTIN C.

ES62
The Advanced X-Ray Astrophysics Facility. For presentation at the UHURU Memorial Symposium to be held in Greenbelt, MD, on December 13, 1980.

WHITAKER, ANN F.

EH12
Performance of Candidate SEPS Solar Cells as a Function of Low Temperature and Low Intensity Exposure and 1 MeV Electron Irradiation. For presentation at the 15th International Electric Propulsion Conference to be held in Las Vegas, NV, on April 21-23, 1981.

YOUNG, L. E.

EC12

WHITE, J. B.

EF12
A Semiconductor Memory System Architecture which Tolerate Radiation Induced Soft Errors. For presentation at IEEE Transactions on Aerospace and Electronic Systems.

WILSON, GREGORY S.

ES84
Structure and Dynamic of Mesoscale Systems Influencing Severe Thunderstorm Development, AVE/SESAME I. For presentation at the 12th Severe Local Storms Conference 62nd Annual Meeting of AMS to be held in San Antonio, TX, on January 11-15, 1982.

64
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

WILSON, GREGORY S. ES84
Medium-Range, Objective Predictions of Thunderstorm Location and Severity for Aviation. For presentation at the AIAA 19th Aerospace Sciences Meeting to be held in St. Louis, MO, on January 12-15, 1981.

WITHEROW, W. K. ES74
FACEMIRE, B. R. ES74
LACY, L. L.
Exxon Production Research Company

WOJTALIK, FRED S. EE01
Project HEAO – Revisited. For presentation at the Eighth IFAC World Congress to be held in Kyoto, Japan on August 21-28, 1981.

WU, S. T. ES01 (UAH)
HU, Y. Q. UAH
NAKAGAWA, Y. UAH
TANDBERG-HANSSEN ES01
Induced Mass and Wave Motions in the Solar Atmosphere Due to Movements of Flux Tube Foot-Points in the Photosphere. For presentation at the AGU Spring Meeting, to be held in Baltimore, MD, May 25-29, 1981 and for publication in EOS, Trans. AGU.

WYCKOFF, JAMES AB43
Built-Up Roofing Techniques at Marshall Space Flight Center, 1976-1980. For presentation at the National Technical Association Convention, to be held in Detroit, MI, on August 4, 1981.

WARMROSS, JOHN D. ED33
VANIMAN, JEROLD L. ED33

WEISSKOPF, M. C. ES62
ELSNER, R. F. ES62
SUTHERLAND, P. C. McMaster University
GRINDLAY, J. R.
Harvard-Smithsonian Center for Astrophysics
Search for High Frequency Pulsations in the Onset of the March 5 Gamma-Ray Burst. For publication in the Astrophysical Letters in Baltimore, MD.
APPROVAL

FY 1981 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Sarah Thacker

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

JAMES T. MURPHY
Director, Administration and Program Support