
PAOE .OT N82' 17 0 3 3
ON THE SEAT OF THE SOLAR CYCLE

Douglas Gou8h
Institute of Astronomy, and Department of Applied Mathematics

and Theoretical Physics, University of Cambridge

ABSTRACT

This paper is a discussion of some of the issues that have been raised

in connection with the seat of the solar cycle. Is the cycle controlled by
a strictly periodic oscillator that operates in the core, or is it a turb-

ulent dynamo confined to the convection zone and possibly a thin boundary

layer beneath it? Sunspot statistics are discussed, with a view to ascer-

taining the length of the memory of the cycle, without drawing a definitive

conclusion. Also discussed are som,z of the processes that might bring about

variations 6L and 6R in the luminosity and the radius of the photosphere.

It appears that the ratio W = 61nR/61nL increases with the depth of the dis-

turbance that produces the variations, so that in_ninent observations might
determine whether or not the principal dynamical processes are confined to
only the outer layers of the sun.

INTRODUCTION

Early theories of the solar cycle were based on the idea that there is

some periodlc oscillation in which the entire sun participates. However,

most solar physicists today probably believe that the cycle is the product

of a turbulent dynamo in the convection zone. This belief appears to have

been based originally on the premise that the solar interior could not poss-

ibly turn over in a time as short as II or 22 years, which would be necessary
if the magnetic field external to the sun matched smoothly to the field

beneath the convection zone. And the belief has been strengthened by the
co=paratively complicated theoretical edifice that has been erected to explain

some of the observations in terms of a turbulent dynamo. That edifice has

been of great use in helping us to understand the kinds of processes that are

no doubt operative in the sun's couvection zone, but one must be wary of
taking too seriously the results of what are physically quite naive models.

These models all neglect, often without serious discussion, what might be
quite important phenomena, and one of those that may be of considerable

interest is the coupling to the solar interior. It is to this issue that I
intend to devote my discussion.

Aside from wanting to understand the solar cycle per se, a knowledge of
the most important dynamical aspects is essential for any discussion of how,
or whether, the cycle has any relevance to other issues that concern the sun.

Does the mere existence of the cycle tell us anything about the conditions
in the solar core? This question has been raised eeveral times in connection

with the solar neutrino problem, for example, and Dicke (I) has discussed it
in connection with the 12d.2 modulation of the Princeton oblateness data.
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I might say in passing that an obvious poiu_t of interest in the solar
cycle is its relation to the earth, and its influence on the climate and the

14C production. These are discussed in other contributions to these pro-
ceedings, The only point I wish to add is that if any firm relation bctwecn
the solar behaviour and measurable terrestrial records can be established,

then the records might give us a measure of that behaviour that extends
further back iv the past than direct solar observations. This would be of
obvious importance for improving our knowledge of the statistics of the cycle,
to which I now turn my attention.

STATISTICS OF THE SOLAR CYCLE

Though theories of the solar cycle that depend on oscillations of the
entire sun have not reached the level of sophis_ic_ion attained by dynamo
theories, and therefore may seem at first sight les_ plausible because they
immediately raise unanswered questions in the minds of anyone who considers
them, it does not necessarily follow that the ideas behind them are
incorrect. To some extent dynamo theory may have suffered* the GolC effect
(2), and to rescue it from this plight one should stand back and ask just
what the predictions of the competing hypotheses are, and whether one really
can discriminate between them by comparison with observation. There are

many discussions of this issue, including the excellent critique by Cowling (3).
Here I simply cake up a point that Dicks (4) has raised, and ask whether the ob-

served departure of the cycle from a regular oscillation can be used as a test.

If the dynamics of the cycle is controlled by a perfectly regular

oscillation of the solar interior, then the mauifestatxon of that oscillation

by the stmspots ought to be closely linked to the state of the interior. I
am not concerned here with whether the interior oscillation is itself

directly responsible for the generation of the magnetic field, or whether it
merely controls the dynamo in the con_ection zone. All I ask is whether the

epochs of sunspot maxima and minima are closely linked in phase with a perfect
clock.

A modern example of a model with an almost perfect clock is that proposed
by Dicke (I): magnetic field of alternating polarity is released periodically

from the core, and then rises slowly to the surface to produce the sunspots.

The rise time is variable (5, 6): on the whele it is shorter the greater the

total flux, which is what one might expect from magnetic buoyancy arguments,
and provides a natural explanation for the correlation between the early onset

of a new cycle and the sunspot number at the next _unspot maxlmum; in addition

there are random flurtuations in the rise time induced by the turbulence in
the convection zone. Associated with the release of the field is a contem-

porary variation in luminosity, whlch is presumed to be strictly periodic,

and which is proposed to be responsible for climatic variation. Thus it is
the interior oscillation itself that should be observable in climatic records,

and not the sunspots. What must be somewhat disturbing to any proponent of

* or. perhaps, enjoyed
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this theory therefore, is Murray Mitchell's report at this conference that
the man US drought record correlates better with the solar magnetic cycle
than it does with a strictly periodic oscillator.

By comparing the sunspot data with mean [D]/[H] ratios obtained from
two bristlecone pines, averaged over samples representing non-overlapplng
ten-year growth intervals throughout a period of IOOO years, Dicke concluded
that the mean rise time of the magnetic field is about 13 y. His argument
is that the climatic record at the location of the pines, when viewed as ten-
year averages, shows strong signs of a 22 y oscillation which might maintain
phase, and whose maximum amplitude occurs about 2 + iP years prior to sunspot
maximum, where P = I! y is the mean duration of the sunspot cycle and i is an
undetermined integer. Since the phase wandering of the sunspot cycle exceeds
2 years, i cannot be zero, so Vicke takes i - I to be the most plausible
solution.

By contrast, a turbulent dynamo confined to the solar convection zone

cannot be expected to maintain phase over long periods of time. Even though
many theoretical idealizations of the dynamo, such as those based on maan-
field electrodynamics, are described by equations that have periodic solutions,
in reality one would expect turbulent fluctuations to destroy memory. Thus
one might attempt to distinguish observationally between such dynamo hypo-
theses and the possibility of a regular oscillator by m.,-, a'iag the degree of
phase maintenance of the sunspot cycle.

The first difficulty one encounters in such an endeavour is the problem

of deciding how to define the phase of the cycle. Only the two most naive
measures have been considered so far: the instant of field reversal which

is estimated by the time of sunspot minimum, and the instant ot greatest
surface field which is estimated by the time of sunspot maximum.

Two independent analyses (5, 7) of the sunspot record have been carried
out in an attempt to decide between the alternatives. Both used the same two
statistical models to compare with the data, one with random fluctuations
about a perfect clock and the other, which I shall misvame the dynamo model,
assumed random fluctuations in phase. The prlnciple of both analyses was to
choose a measure of the phdse wandering of the cycle, and to compare the
result with the expectations of the two models. The first discussion (7)
was quite elementary, and used an obviously imperfect statistic that was
chosen primarily for computational simplicity. The years of sunspot maxiwa
and minima were used separately as tests, and it was found that the phase
wandering of sunspot maxima lies closer to the expectation of the clock model,
and that of sunspot minima is closet" to the expectation of the turbulent
dynamo model.* It was concluded, therefore, that the data is inadequate to
support either model.

* Formulae (8.7) and (8.8) in ref. 7 were quoted incorrectly. The ratio of
the expectation of the square of the phase deviations to that of the period

fluctuations should be N(N+I)/_6(N-|)] and N(SN-I)/E6(N2-1) ] for Models A
and B respectively. Correcting these results does not alter the conclusion.
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The second analysis (5) was more sophisticated. It employed a statistic
that would have been leas biased than that in (7) had the raw sunspot data

been used. However, the presumed correlation in Dicke's model between the
rise time of the field from the core and the sunspot number at subsequent
sunspot maximum was used to sdjnst the dates of sunspot maxima to move them
as close as possible to the clock model. These dates were used also to test the
_ynarao model; and _he dates of sunspot minima were not considered. It is per-
haps not surprising, therefore, in view of the results of (7), that the suu-
spot data appeared to be in closer agreement with the expectation of ..... :lock
model. It was concluded that the data tends to support the clock r. ,

shows no statistical indication of random fluctuations in phase.

How confident can we be in this conclusion? I shall illustra ._ ......

of the statistics in term of the more elementary ana_',_'s of ref. i. Jer
a sequence of N successive sunspot cycles. For the _'_ ck .odel suppose .f, at i

the time of occurrence of the nth maximum (or minimum.' aft,_r the first (to _
which I assign n = O) is tn = nT + Tn, where T is cons_ "_' _n_ the Tn are

independent random variables with zero mean and standard deviation T. The

period of the nth cycle is Pn " T + Tn - Zn- I, and the mean period of the N

cycles is _N = T + N-I(TN - TO). For the dynamo model, assume that the inter-
val between two successive cycles is Pn " ¥ + _n, where ¥ is constant and
the _n are also rsndom variables with zero mean, but this time with standard
deviation _. This model is really an extreme representation of a dynamo
because it assumes that the sun has no memory of previous cycles at all. In
this case

n N

tn = n¥ + r. _m' P--N_ y + N-l F. _m"
m=l m=l •

The object of the investigation is to compute a measure of the phase

deviation from a perfect clock. In the context of the clock model, this is
an obvious measure of T. Of course we do not know which clock to choose, and

for maximum simplicity I shall choose the clock that ticks at the average

rate of the cycle, at times Tn = nPN + e, where ¢ is a constant. A measure

of the phase deviation is the variance o@ 2 of @n = tn - Tn, defined by

N N

2 _  N �|�D(2.1)o@ • (N+l)-l _ @ 2 I

n"O n n=0

which is independent of e. This can be computed from the sunspot data, and
its expectation can easily be evaluated for each model. The result is

2,_N-I _2 (2.2)

for the clock and dynamo models respectively, lrrupective of the for_ of the
probability distributions of the Tn and _n" As N _ - the prediction of the
clock model remains bounded, whereas the dynamo model predicts an increase
without li_t.
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Of course we have only a limited amount of data at our disposal, but we
could compare the predictions of the two models with the sunspnt data by
dividing the data into segments of N cycles and comparing the dependence of

on N, where the overbar denotes an average over the segments. I shall
not present the results of doing simply that, but instead I introduce a second

statistic that relates more to the dynamo model. This is the variance of Pn,
L

which is an obvious measure of _. It is given by i

N

2 l -gNOp N" E (Pn )2
= , (2.3)

n = !

and its expectations are

E(Op 2) = 2(l-N-2)T 2, (I-N-I)_ 2 (2.4) '

for the two models. One can now consider the ratio R - E(oo2)/E(op2), which

is independent of T or _, and compare it with S =-_-_/a-_ computed from
the sunspot data.

1_e analysis is confined to the interval from the sunspot maximum of
1705.5 until the last sunspot minimum. The values of t n have been taken from ]Allen (8), except that the dates of the first maxima in the nineteenth and

t_'entieth centuries were replaced by 1803.5 and 1906.0", and the date of the I
last sunspot minimum was taken to be 1976.5. In Figure 1 is zhcsdn the result I

of dividing the 24 cycles into q contiguous groups of N = 24 q-I cycle___sfor I

I _ q .< 6. The rhombuses represent the ratio of the mean variance o@z,

(averaged ever the q groups) to _p2 for sunspot maxima; and the squares are
the ratios for sunspot minima. To give some idea of the scatter, the vertical

llnes show the standard deviation of o@2/op 2. Shown also are the values of
R for the two models.

In this analysis the raw dates of sunspot maxima and minima have been

used. If, as is implied by Dicke's theory for example, there is a physical
relation between the phase delay of sunspot maxima and sunspot number, this
should be taken into account. Thus one can consider the modified time sequ-
ence :

%

tn = tn - r(Rn-&) (2.5) ,

derived from the times t n of sunspot maxima, where _n is the sunspot number at
the nth sunspot maximum, and RN is the mean of Rn over the N+I _iu. The

* The dates 1805.2 and 1907.0 are qunced by _llen (8). However, both these

maxima are double (9, 10)" the values for t n used in the ar_lysis here are
better representations of the average dates, and are close to those used
in ref. 7.
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coefficient r was chosen by Dicke (5) such that o#2 was minimized for q - !.
lhus it is likely that this would reduce ov2/op 2, at least when q = I, and
so move the data closer to the prediction of the clock model (lower curve).
The results of analyzing the sequence t n with Dicke's value of r is shown also
in Figure I. Even though the results are typically closer to the clock model,
they can hardl) be said to cut,firm it.

One is tempted to conjecture that the sun lies somewhere between the two
models, having a memory of finite duration. If that is the case, how long
is that memory? A step towazds answering that question na_ been made by
Barnes et al. (II, I2). They studied numerical simulations of a rectifie_
oscillator that is randomly perturbed. They adjusted the bandwidth of the
response to the perourbation such as to bring the variance of the fluctuations
in period into agreement with the sunspot data, and found that with the same
adjustment the variance in the simulated sunspot numbers at sunspot maximum
also agreed with the real data. Moreover, the mode] produced intervals of
about 50 years of continuous low sunspot activity, which occurred roughly
once in 500 years. According to Barnes et al. the model has an inverse

R,S 3 6/m

0.3

I I I I I _ I_ i 1 I

3 I0 3O
N

Fisure I. The ratios S - o@'T/o-_. The rhombuses represent sunspot maxima
and the squares sunspot minima. Except when N = 24 they have been displaced
horison:ally to the right or left of the value of N to which they pertain, to

reven _. clutterins the diagram. The circles represent S for the time sequence
n defined by equation (2.5) with r chosen to minimize o#2 for N = 24. The

vertical lines extend to plus and minus one standard deviation of o@2/cp 2 from
S. The contin,aous curves r,.present the ratios R of the expectations of o@2
and up 2 derived from the two extreme statistical models.
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bandwidth of 500 years, which is a measure of the nemory, and an engineering

rule-of-thumb is that many invers, bandwidths _re required to establish

whether or not phase is maintained. This suggests that with the direct obser-

vations that are available, it may not be possible to measure the sun's

memory accurately.

POTENTIAL LUMINOSITY AND RADIUS VARIATIONS

It is quite reasonable to expect there to be small variations in the
luminosity L and the radius R associated with the solar cycle. If the seat

of the cycle is in the core, then any change in the size of the core would

force the envelope to expand or contract, thereby modifying the hydrostatic

stratification and hence R and L. The earliest photospheric response to any

such change to the core occurs after a delay equal to the sound travel time
from the core to the surface, which is about half an hour. Similarly, any

change to the convection zone brought about by a turbulent dynamo would also

produce modifications to the state of the photosphere. The question to which
I now address myself is whethec from the variations in L and R one might infer

anything about the nature of the perturbation.

I shall first discuss in broad terms the sequence of events after an

imaginary instantaneous perturbation to the solar structure, and then I shall

discuss some specific examples in greater detail. I should point out straight-

away that I do not have a definitive answer to the question, but the results

of the discussion below are perhaps suggestive.

RESPONSE OF THE SUN TO AN INTERNAL DISTURBANCE

I have already pointed out that the fastest response to a perturbation

is dynamical. The response to any large-scale perturbation that varies on a
timescale of more than a few hours can therefore be regarded as being instan-

taneous and hydrostatic. I am not going to discuss dynamical oscillations

here, and from now on I shall disregard t_c manner in which the relaxation

to the new hydrostatic state takes place.

After hydrostatic adjustment follows thermal relaxation. There are three
obvious thermal timescales outside the energy generating core that can be

relevant to the evolution; these are quite disparate and therefore their mani-

festations can be discussed separately. The first is the time Za required

for the convection itself to attain a balance w_th the mean stratification.

This is of the order of the turnover time of the largest convective eddies.

Taking the convection zone as a whole, this time is about a month, and measures

the duration of the transient response to any deep-seated event. The equi-
libration time for the eddies near the surface, such as the granulation, is

very much shorter. I shall be considering only changes that occur after times

much greater than Ta.

The second adjustment is the coming into balance of the radiation from

the photosphere with the changed internal heat flux. This is what is
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sometimes called the Kelvin-Helmholtz _ime for the convection zone. I shall

call it _c. To within a dimensionless factor it is the ratio of the thermal

energy in the convection zone to the solar luminosity. This ratio is about
lO5 years for so-called standard solar models. The dimensionless factor is

probably of order unity, though recently it has been suggested that for the
sun it is of order I0 TM. I shall return to this point later.

The third and longest time is the Kelvin-Helmholtz time for the entire
• sun. It is the ratio of the magnitude of the total energy of the sun, which

by the virial theorem is approximately equal to the thermal energy, to the
luminosity. It is also the thermal diffusion time rd characteristic of the
e.ltire _un, and is approximately 3 x I07 years.

Outside the core, the sequence of events following a perturbation is
likely to be thus: after the convection zone has readjusted itself internally,
on the timescale of a month, and the radiative interior has responded adia-
batically, the entire convection mone either cools or heats up on a time-
scale of I0 5 years until a stratification is achieved with an essentially
divergence-free heat flux. Finally, the radiative interior relaxes to its
new stare of thermal balance, on its thermal diffusion timescale Td. Notice

that th_s is the sequence of events wherever in the sun the instigating per-

turbation may be located, though of course if that perturbation were confined
to the superficial layers of the sun the magnitudes of the longer thermal
responses may be imperceptibly small.

At this point I shall elaborate a little on what I have just said, in
an attempt to dispel some common misconceptions about the meanings of these
timescales. What I have to say is quite obvious to anyone who studies stellar
evolution but does not appear to be common knowledge otherwise. The issue
concerns whether the response of the photosphere to any deeply seated pertur-
bation is evident in a timeseale less than the Kelvin-Helmholtz time. I hope

I have convinced you that in principle the answer must be yes, because the
effect of any local change in the mass distribution of the sun will propagate
with the sound speed. _ut suppose one considers a thermal perturbation some-
where in or at the base of the convection zone associated with which there

is very little mass flow. In such a case there has been disagreement as to
whether it is the thermal adjustment of the convection or the Kelvin-Helmholtz

time for the zone that is important. This problem doesn't obviously arise
when discussing the relaxation of the entire sun, because the analagous two
times are the same. But surely the answer is this: both are important; the
relaxation has two phases, and different processes control the evolution during
the different phases.
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Illan efficient convection zone of any star, the convective adjustment

time* va is much less than the overall cooling time. Thus there is an initial

internal redistribution of energy, on the timescale Va, followed by the
slower evolution on the timescale vc which is controlled by the rate at which
heat is radiated from the photosphere. This is the physics that describes

evolution down the Hayashl track, for example, during which the structure of
the entire fully-convectlve star is controlled by the radiation from the

surface. It is analagous to the cooling of a hot block of copper: thermal

conduction operates much faster than cooling from the surface, and the block

is almost isothermal. It therefore cools at a rate that depends only on

heat transfer processes at the surface and the thermal capacity of the block.
The only essential differences in the case of a stellar convection zone are

that the state of thermal balance is isentroplc rather than isothermal and

, that the change in gravitational energy must be taken into account when

assessing the thermal capacity of khe convection zone.

In a radiative zone the evolution is quite different, for nvw it is the

internal thermal readjustment that is the slowest. The analogy is now with

the cooling of a block of wood. After an initial transient response during

which the surface temperature adjusts to accommodate the heat flow from the

interior, evolution proceeds on the thermal diffusion time, vd.

To summarize: a thermally relaxing convection zone adjusts its internal

stratification in such a way as to supply the heat flow dictated by the sur-

face conditions, whereas a radiative region adjusts its boundaries to trans-
fer the heat that diffuses from within.

* In astronomy, this is often estimated as a thermal diffusion time obtained

from a turbulent heat diffusivity computed from time-lndependent local

mixlng-length theory. If the action of the varying mean stratification on the

dynamics of the turbulence is taken into account, still within the frame-
work of local theory, the perturbation satisfies a wave equation instead,

with a wave speed essentially equal to the rms convective velocity, w.

The characteristic adjustment time of the entire convection zone is thus

simply the advection timescale Tw _ Jw-ldr, where r is a radial distance
co-ordinate and the integral is over the vertical extent of the convection

zone. It is likely that the dominant heat-carrying eddies in the main body

of the convection zone actually extend from top to bottom. Thus aside from

geometrical factors, _w is still a good estimate _f Ta, even though the
local assumption is incorrect. Notice that the estimate of w via the

relation 4_r2ow3 _ L (which follows from the usual considerations of the

eddy dynamics that form part of mixing-length theory, but which does not

depend on the detalled mlxlng-length assumptions about eddy breakup) is
independent of the value of the assumed scale of the dominant eddies (or

the mixing length) and is thus a fairly robust estimate. This estimate of

w breaks down in the boundary layer at the top (and in the boundary layer
at the bottom) of the convection zone, but that does not influence the

value of the integral substantlally.
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COMPUTATIONOF THE 'IMMEDIATE' RESPONSE TO A SPHERICALLY SYI4_TRICAL PER-
TURBATION i

Most of the numerical computations modelling the response of the sun on

a timescale short compared with Tc, but long compared with Ta, have been
integrations in time using a stellar evolution programRe. The computations
are quite expensive, and it is therefore worth contemplating other methods, !
even though they are more limited in scope.

If the disturbance is small everywhere, the obvious procedure is to per-
form a linearized perturbation analysis. I shall not discuss that here,
simply because I do not yet have any results from this method. The reason is
that my involvement in this problem stems from a search I once made for a
non-linear relaxation oscillation involving the bottom boundary layer of the
convection zone and its interaction with both the rest of the convection gone

and the radiative region beneath. I was hoping to find a sel_-sustalnad
oscillation in the solar luminosity with a period of about I0 J years, with a •
view to explaining certain variations in the earth's climate. I therefore
developed the following method, which treats the convection zone nonlinsarly.
My original investigation was never completed because I was unable to produce
luminosity fluctuations wi_h amplitudes greater than about O.1 per cant, and
at that time such change_ were thought to be climatically insignificant.

The method involves only the computation of a few models of the con-
vection zone, plus the linear adiabatic relaxation of the radiative interior.
One is then able to estimate the change in the structure of the entire sun
resulting from a given perturbation. Because one is seeking only the
'i_mediate' response, the total energy E of the star does not have time to
change. Consequently, the idea is simply to compute the response of the
model at constant E.

Let Pm and rm be the pressure and radius of the model envelope at a
fixed value of the mass co-ordinate m, whose value corresponds to the bass of
the convection zone in the unperturbed model. In addition consider a second
envelope model with the same L and R into which a disturbance has been incor-
porated. Then if the pressure and radius at the same value of m in the

second model are Pm + APm, rm + Arm, the actual change in Pm that would be
produced by the same disturbance in a model of the entire sun is given by*

_inpm _Inpm

61nPm _ AlnPm + ( _in_ )R,A61nL + ( _I--_-R-)A,L61nR' (3.1)

where 61nL and 61nR are the aqtual changes in InL and InR. Similar relations
give the variations in lnr m and lnE. Notice that for the linearized estimate
(3.1) to be a good approximation it is no doubt necessary for the variations
in E,L and R to be small, but it may be the cue that in some limitsd regions
there are properties of the envelope that vary by quite large amounts. Any
localized nonlinearity that so arisas is correctly taken into account.

The object now is simply to calculste 61nL and 61nR that result from the
disturbance subject to the constraint 81nE = O. This can be dona once ths

relation between 61nr and 81nPm is known. To find that relation it is
necessary to considermthe response of the interior.

_-T---h-eq_-nt-tT_ A measures the amplitude of the disturbance. In practice the
partial derivatives in equations (3.1) and (3.4) were evaluated at A _ O.
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Because _d is large compared with the initial response time, the reaction
of the radiative interior is essentially adiabatic. Moreover, since 61nPm
and 61nr m are small, linearized theory may be used. The calculation is

: simply to solve the adiabatic radial pulsation problem at zero frequency in
the radiative interior, without the mechanical boundary condition at the

surface. This gives a relation between the pressure and radius perturbations

on the radiative side of the base of the convection zone, which I represent by
+.

81nr m " 161np m. (3.2)

Since rm and PmmUSt be continuous functions of m, condition (3.2) provides
the information necessary for matching the perturbed convection zone onto its

radiative interior, and together with 61hE = 0 can be used to eliminate 81nr m
and 81nPm from the relation (3.1) and its companions. The result is

DR AInE - (Alnrm _81nPm)ER

DLER - Dj L- ,
81nL m (3.3)

with a similar equation for 81nR, where

_Inrm _InPm _inE

DR _ ( _lnR )A,L- t ( _lnR )A,L' ER _ ( _ )A,L ' (3.4)

and DL and EL are obtained by interchanging R and L. Notice that in general
the procedure leads formally to a discontinuity in temperature at the base
of the convection zone. In reality radiative diffusion and convective over-
shooting must smooth that out. If radiative diffusion alone were operating,
after I0 years the jump in temperature would be spread over a layer only
about 1000 km thick. Since this distance is only about one-third the mesh
spacing near the base of the convection zone in my programme, the approxima-
tion is good. The artificial diffusion introduced by numerical differencing
in s typical stellar evolution progranane with a similar mesh spacing is likely
to exceed greatly the radiative diffusion that is implied by the original
differential equations.

It is also possible to estimate the relation between 61nL and 61nR that
results from a disturbance that is confined to the solar core. Once again
the expansion or contraction of the radiative envelope, outside the region
of the disturbance, is adiabatic, and must match onto the perturbed envelope.
If one were to assume that the perturbation could be linearized in the con-
vection _one too, the problem would reduce to the nonadiabatic radial pulsa-

tion problem, with any period much greater than Xa but much less than Tc and
without the boundary condition at r - O. However, to get a rough idea of the
result it is not necessary to solve that problem precisely. It is probably
adequate simply to assume a homologous expansion or contraction of the con-
vection zone, which yields equation (3.2) again, but with I - -0.25. One can
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then repeat the calculation, but with AlnPm - O, etc., to obtain

inR DL
= - -- (3.5)

61nL DR '

where DL and DR are now computed with the ne_ value of A.

It is thus possible to estimate the response of the entire sun from

numerical models of only the solar envelope and a knowledge of k. The partial

derivatives DR, ER etc. are computed by finite differences using undisturbed
model envelopes with different values of L and R. Notice that although E,

which is the energy of the entire star, can never be computed from envelope

models alone, this does not matter because only differences of E appear in
equation (3.3). These are simply the differences between the energies of

the two appropriate envelopes above the matching point, plus the differences

in the energies of the interiors. The latter can be computed as the work

done by the envelope on the interior, which requires a knowledge of only Pmand r .
m

My computations reported below were performed with an early version of

the computer progran_e used by Baker and myself (13) to model RR Lyrae pulsa-

tions. The programme had not been designed for this purpose, and several

interpolations, which could have been avoided by rewriting the progra_ne,

were performed. Therefore l make no claims to high accurecy. The unperturbed

model was chosen with abundances X = 0.745, Z = 0.02 of hydrogen and heavy
elements, which are approximately the values that would have produced the
correct luminosity in an evolved model of the entire sun. Cox-Stewart (14)

opacities were used, and the equation of state was of the type discussed by

Eggleton et al. (15). A mixing length of 2 pressure scale heights was chosen

so as to yield a convection zone about 2 x 105 km deep, in accordance with
the dictates of the high-degree five-minute oscillation data (16,17).

POTENTIAL INTERNAL C_IANGES DURING THE SOLAR CYCLE

Convective inhibition by sunspots

The mechanism that has received most attention is the direct blocking
of the heat flux by magnetic fields. This is particularly apparent in sun-
spots. Whether sunspots do actually reduce the energy flux has b, en questioned,
the possibility being that the deficit in the radiative flux is made up by

extra wave energy. The issue is probably not completely resolved, but I

think the observational evidence is weighted towards a net reduction of energy

flow within sunspots. I shall accept that here, and ignore wave transport
entirely.

Notice that I have not yet said that the local reduction of the heat

flow in sunspots necessarily implies a significant diminution in the solar

luminosity. The local reductio_ is countered by a tendency for more heat to

flow around the edges of the spot, producing a circumsistent bright ring,
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However, the excess heat output by the identifiable part of the ring is
quite inadequate to make up for the deficiency in the spot; inhibition of

the flux in the spot extends deep into the conv_ction zone,* so any excess

flux can be distributed widely by the time it reaches the photosphere. Also

any change in the mean (averaged over a spherical surface concentric with

the photosphere) efficacy with which heat is transported in the convection
zone leads to a change in the stratification of the convection zone that

modifies the luminosity in such a sense as to oppose the original change.

Nevertheless one expects that on average the opposing reaction is less than

" the perturbing influence, because the convection zone is apparently stable

(though we are not absolutely sure of this). Thus it does appear that if

the local inhibition of beat flow were the sole influence sunspots exerted,

some reduction in luminosity would accompany an increase in sunspot numbers.

But how substantial this reduction is cannot be judged without careful cal-
culation.

It is very difficult to perform a realistic calculation to assess the

effect of sunspot creation. What has been tried is to consider the effects

of sunspots to he averaged over spherical surfaces r - constant, and to

modify the standard techniques for studying spherically symmetrical stellar

evolution to model the overall response of the sun. Thus, the magnetic

inhibition of convective heat transport has been modelled by artificially

reducing the mixing length E in the usual time-lndependent heat flux formula.
If such a procedure is a reasonable approximation to reality, it would be

valid for studying variations on any tlmescale greater than Ta, and would
therefore be adequa:e for solar cycle variations.

The results of several independent computations have been published

(18-22), and more are reported in this conference. The published results

are su_narized in Table i, together with my own unpublished values. The

diversity in the results arises partly from differences in the unperturbed

models and partly from numerical error. For example, Dearborn and Newman
(18) and Dearborn and Blake (21) used a small mixing length and consequently

had a thin convection zone. In such a model the heat transport is more

sensitive to the w/xlng length and it is therefore to be expected that 61nL/61na

would be overestimated. To test my procedure I recently repeated the cal-
culation with the ratio _ of mixing length to pressure scale height equal

to unity, yielding a convection zone with mass 9 x IO-3Me. Increased sen-
sitivity was found, but my value of _InL/61nu was only 0.35, nearly a factor

2 less than that found by Dearborn and Newman (18) and Dearborn and Blake (21).

I suspect that most of the scatter in the values of 61nR/61na and hence in

* By the argument in the antepr¢cedent footnote one expects the time taken for

convection to adjust to the creation of a sunspot to be of order /w-lds,

where s is a distance co-ordinate and the integral is over a path that

represents a typical heat-flow line that starts at the base of the _pot

and ends in the photosphere near the spot. The two independent observa-

tions reported at this conference that substantial transient reductions

in the solar constant associated with large sunspot groups can last at

least ten days therefore indicates that the spots responsible are not
superficial phenomena.
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TABLE 1 - Summary of published results from perturbing the mixing length

J

Authors 6 InL/6 Ins 6 InR/6 Ins W Mc/M

,, Dearborn and Newman (18) 0.46a , 0.008

Dearborn and Blake (21) 0.64 3 x 10-3 5 x 10-3 0,0065

Sofia et al. (19) 1.5 O.Ii 7.5 x IO-2 '
' Sofia and Endal (20)

Gilliland (22) 8.5 x IO-4

Gough 0.22 _<1 x 10-4 _<5 x IO-4 0.03

The last colunm is the mass of the convection zone in units of the solar mass.

%The formula for 61nL/61ns quoted by Dearborn and Newman was found to hold for

I .<a .< 1.5; the value of a corresponding to the quoted value of Mc/Mo was
not given. Dearborn and Blake used a - 1.4.

W -- 61nR/61nL is a product of numerical error. In my calculations the numer-
ator in the equation similar to (3.3) for 61nR is a small difference between

two quantities of order unity (each of which is a numerical derivative com-
puted from interpolated quantities). The result I obtain is sensitive to

the interpolation formula I use, and I would therefore not be surprised if
I have underestimated the degree of cancellation considerably. Thus at

present I would summarize the results for a model with an adequately deep
convection zone thus:

6inL 6lnR
---" 0.3 W - = O. (3.6)ina ' 6inL •

In none of the publications is a relation between a and sunspot number
derived. It is very difficult to do this theoretically, but one can be
guided by observation. According to Allen (8) the mean intensity in a sun-
spot (umbra and penumbra combined) is about 70 pez cent of that in the un-

: perturbed photosphere. I shall take this as a measure of the inhibition of
the convection at fixed entropy gradient. A medium-sized sunspot occupies
about 6 x 10 "6 of the surface of the sun, and at sunspot maximum there are

present the equivalent of about 200 such sunspots.* Hence at sunspot maximum

* That is to say, about 100 on the side we can see and about 100 on the
other.
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the luminosity of the sun, ignoring faculae and the bright rings, is

L = (1 - 6) L, (3.7)

where L is the l_ninosity the sun would have had had the sunspots been absent

and the radiative flux been everywhere equal to the flux in the appaz_ntly
, undisturbed photosphere; 8, which measures the mean reduction f the heat

flux by the sunspots, is 200 x (I - 0.7) x 6 x 10-6 = 4 x 10-4 o Throughout

a_most all the convection zone the convective heat flux is proportional to
a", and consequently the observed mean flux inhibition is obtained by setting

We can now combine equation (3.8) with (3.6) to yield an estimate of the

difference 6L between the luminosities at sunspot maximum and sunspot minimum:

]_=== - O.158 -- -6 x 10-5 . (3.9)L

Notice that the actual decrease in the imninosity from sunspot minimum to

sunspot maximum is only 15 percent of the apparent blocking of the luminosity
8L caused by the sunspots.

The exclusion of material from sunspots

It was stated by Jensen (23) that because the matter density in sunspots

is lower than outside, the sun must have a larger volume at sunspot maximum.
This idea has been elaborated on by Thomas (24) and Dearborn and Blake (25),
who estimate the expansion to be not insubstantial. I do not understand their

arguments, and I think it might be instructive if I say why.

Let us first consider the balance of energy in a star in hydrostatic

equilibrium. In common with almost everyone else I shall ignore the turbulent

stresses in the convection zone. I shall also asst,_e that the pressure and
the magnetic stress on the surface (i.e. the photosphere) can be ignored.
Then the virial theorem takes the form

_I = 2T + R + M, (3.10)

where I is the so-called spherical moment of inertia, T, _ and M are the
kinetic, gravitational and magnetic energies, and the dots on I denote time
derivatives. The kinetic energy T is comprised of the energy of thermal
motion plus the energy of macroscopic motion, the latter residing mainly in
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rotation. In equilibrium I = O, whence

2T + £ + M = O. (3.11)

Suppose now that sunspots are created, and that at the same time the magnetic

energy of the sun is increased by 8M > O. According to most theories of the

suspot cycle, the field is produced by the stretching that results from
differential rotation. Thus the reaction of the field is to oppose gradients
in angular velocity without changing the angular momentum, and hence to reduce

. the kinetic energy of the rotation. Just as the reduction of tbe luminosity
by sunspots discussed above is not as great as the degree of direct inhibition
of the heat flux, so the depletion of the rotational kinetic energy in this
case is not as great as the energy imparted to the magnetic field. The con- ,_
tinual driving of the large scale flow in the convection zone tends to re-
store the internal differential rotation to its original state, at the expense
of other forms of energy. Let us assume, therefore, that only a fraction n
(which I presume is positive) of the magnetic energy is extracted from T, and
that the rest comes from _.* The virlal balance is now

_lI " 2(T- q6M) + [£- (1- v"i)6H_ + (M + 6M)

- -n6M < O, (3.12)

so I must decrease, Hence, on average, the star shrinks, which might seem
contrary to Jensen's assertion. It does not necessarily follow that there
is a contradiction, however, for the adjustment might deviate substantially

from being homologous. Nevertheless, it does illustrate a possible pitfall

that might be encountered if one does not take into account that the magnetic
energy in the sunspots must be provided from within the sun. Had I forgotten

the changes in the other fo..rmsof energy in the star, as did Jensen and Thomas,
I would have deduced that _I - +6M > O, and then perhaps I might have been

happy that this was apparently consistent with Jensen's claim.

Let us now look a little more carefully at the recent arguments. Thomas

(24) evaluated the mass defect in toroidal flux ropes about lO00 km beneath

the photosphere, and assumed that the total volume of the sun is simply in-
creased by the volume that the missing mass would occupy at the ambient density.
The estimated expansion was 6R/R _ 5 x 10 -4 . Thomas's neglect of the change
in the balance of forces in the interior consequent to the creation of flux
ropes is tantamount to ignoring the fact that the region beneath the flux rope
contracts as a reaction to the attempt to raise the height of the photosphere.
Thus his estimates of the expansion must be exaggerated, and I shall now argue
that the error may be quite large.

* Strictly speaking, the ar_unent should be complicated further by considering
also the interchange with the energies of ionization and the electrostatic
interactions amongst electrons, ions and neutral atoms. These forms of
energy do not appear in the virial theorem.
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Suppose one simply implants a flux rope in pressure balance in the con-
vection zone, and removes the m_ss defect _I fro_ the star entirely. The

perturbatxon to the gravitational field is negli_ble. Hence the stratifi-
cation far from the flux tube is unaffected, and in particular the position

of the photosphere is unchanged: one cannot detect a stationary submarine by
observing the position of the surface of the ocean. Thus to compute the true
effect of the flux tube on the _hotospheric radius one must merely replace
the mass gH in the star. To within a factor of order unity, the resultlng

, relative radius change will be AM/Mo, and therefore the volume change is
roughly equal to the volu_e occupied by AM at the mean solar density _,
rather than at the density 0 in the vicinity of the flux rope. If this argu-
ment is correct, Thomas has overestimated the expansion by a factor O-/O, which
st 1OO0 k_ beneath the photosphere is about 5 x 105 .

I am certainly not concluding from this exercise that the magnetlc stresses
of sunspots do actually have 8o miniscule an influence on the solar radius.
All I am saying is that the exclu.qion mechanism discussed by Jensen and Thomas,
taken in isolation, appears to be unimportant.

Dearborn and Blake (25) modelled the effect by including 'a global mag-
netic pressure term in a stellar structure code'. At first sight this appears
to be the product of considering the sunspot magnetic field as providing an
additional pressure contribution to influence directly the mean hydrostatic
balance. But at this conference Dearborn has argued that his procedure can
also be regarded as the excluded vol,_ne effect that Jensen and Thomas have
discussed. He showed that if one integrates the stellar structure equations
outs.;de sunspots, where the magnetic fleld is negllgible, then in order to
relate the density p to dm/dr correctly one must add to 0 a term that takes
account of the mass that has been pushed aside by the sunspots. This term
is proportional to the magnetic pressure in the sunspots, and so appears as
an additional contribution to the pressure in the equation of state. Precisely
what this implies is difficult to judge, because we have not been told exactly
how the additlondl term has been incorporated into the other equations.
[_arborn and Blake find 6R/R .< 10 -4 associated with a O.I per cent reduction
in the luminosity. Thus [W[ .< O.1, and possibly W = O.

Other me_netic processes

Spiegel and Weiss (26) have considered recently the importance of the
interaction between the convection zone and the radiative interior. They
discussed the i_plications of the idea that magnetic field is compressed into
a thin layer at the base of the convection zone by the combined action of

topological pumping and field expulsion. After a sufficient amount of field
has accumulated, hydromagnetic instabilities driven by magnetic buoyancy cause
some of the field to rise to the surface to produce active regions and sun-
spots. Spiegel and Weiss suggest that the inttability occurs when the mag-
netic layer is about a pressure scale height thick.

The cycle is complicated, and Spiegel and Weiss emphasize one aspect
of it that may be important in causing luminosity and radius variations. It
is that the magnetic layer will inhibit motion, in part by modifyin s the
potential temperature gradient indirectly ;ia the change in the hydrostatic
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balance, and so cause _he convection zone to recede. The flux expulsion

process involves magnetic diffusion of stretched field that varies on a
relatively short length scale. Since the magnetic Prandtl number is small,
one _ght also expect thermal diffusion to be significant, so that the rel-
atively quiescent magnetic layer would not be adiabatically stratified. But
how it is stratified is hard to assess. A certain degree of mixing _th the
material in the radiative zone may well have taken place, so the resulting
temperature gradient is presumably somewhere between the radiative and the
adiabatic values.

An estimate of the manifestations of part of this process can be obtained
from a somewhat different model I have constructed by suppressing the motion
in a layer of thickness d at the bottom of the convection zone and assu_ng
the reclaimed quiescent region to have achieved the radiative temperature
stratification. Only one temperature discontinuity, at the base of the
thermally mixed layer, was created. Magnetic stresses were not included in
the hydrostatic balance in that region, so the calculation is not internally
consistent. However, since the process being investigated is primarily
thermal, it is not unreasonable to consider it in isolation from the balance
of forces. Horeover, it is no less consistent than imagining a to have been
changed without taking into account the stresses responsible. Indeed, the
perturbation is equivslent to a drastic modification to a in a limited region
of the coavection zone. The result of a calculation with d = 7000 kan is

listed in Table 2. The increase in lu_nosity is about 5 x 10 -4 Le somewhere
near sunspot maximum, and is probably proportional to d 2.

TABLE 2 - Sunznary of the responses of the sun to various disturbances

Disturbance 61nL 61nR W

Inhibition of convection by sunspots
modelled by reduring a according to -6 x 10 -5 = 0 = 0
equation (3.8)

Introduction of equipartition
tangled magnetic field into con- 2.6 x 10 -2 1.2 x 10 -4 4.4 x 10 -3
vection zone

Replacement of temperature gradient

in the bottom eighth of a pressure -4.5 x 10 -4 -9 1 x 10 -5 0.20
scale height of the convection zone
by the radiative gradient

Any disturbance that is confined to

the energy generating core 0.53
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Although the magnitude of the luminosity perturbation is comparable with
that deduced by Spiegel and Weiss, the mechanism by which it was obtained is
rather different. Replacing what was essentially the adiabatic temperature
gradient by the radiative gradient in the lower boundary layer of the con-

vection zone results in a change iu the stratification which is locally much
greater than Spiegel and Weiss envisaged. Consequently, a greater redistri-
butic_i of energy takes place. For exa_le, subsequent to the magnetic in-
stability, the temperature of the material near the base of the convection

increases by about _Q4K and the internal energy in the convectionzone zone

is decreased by about 10 _ erg. If this estimates the energy available to
h'J

supply the increment 6L in the luminosity, it would imply that 6L = lO-4L e
if the increnw-nt were spread uniformly over 105 years. The interchange
between the different forms of energy is brought about by a force provided
from a comparatively small energy reservoir: to suppress the convection at the
base of the zone and change the stratification to the radiative gradient
requires only about 3 _ 1033 erg of work. Thus magnetic energies as great as
the total change in the energy radiated (if subsequen_.ly the star were to
remain unperturbed until the relaxation time Tc had elapsed) are not necessary
to bring about that change. This result provides souse a postericri justifi-
cation for ignoring the magnetic stresses in the hydrostatic equation.

In contrast, Spiegel and Weiss imagine the perturbation to cause a re-

distribution of the energy in the convection zone of just 1039 erE. This
they assume is radiated in only about 10 years. The crux of the disagreement
between their ideas and the assumptions of the calculation describcd above,
therefore, is that Spiegel and Weiss assert that under these conditions rea)
convection, unlike the predi=tions of the mixing-length fo1_nalism, reacts

very sensitively to perturbations from beneath. This difference of opinion
has little to do wltb the efficacy with which convection transports heat down
a gradient of potential temperature. It concerns the degree to which con-
vection modifies the photospheric ten_erature and so changes the rate at which
heat is radiated from the star. The very high sensitivity of the state of
the photosphere must be rela=ed to _he small nonzero divergence of the heat
flux in the convection zone, for if in the steady state the sensitivity of
real convection were 104 times greater than the prediction of mixing-length
theory, it would be unlikely that the latter could have been uses to reproduce
successfully the slope of the lower half of the main sequence in the Liertzsprung-
Russell diagr,m.

Another phenomenon of interest is the influence of the small-scale tangled
magnetic field in the convection zone. One effect is that the magnetic pressure
modifies the hydrostatic balance, and another is that magnetic buoyancy en-
hances the driving _orce on the turbulent eddies and so increases the efficacy
of the convection. I have modelled these processes by adding to the free
energy of the fluid, from which all thermodyusmical state variables are cal-
culated, the energy of a tangled magnetic field in equipartition with the
kinetic energy of convection. This increases the fluid pressure by an _umt
equal to the magnetic pressure. It also reduces the adiabatic temperature
gradient and thus enhances the buoyancy forces acting on the convective eddies.
As in the case of changing the mixing length to scale height ratio by a con-
stant amount, this perturbation has a signi,Cicant influence on the stratifi--
cation only in the upper 5oundary layer of the convection zone. X_e idea is
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that there will be more tangled field in the convection zone at sunspot maxi-
m,-,. Once again, to compare such a model, with one having no magnetic field
at all overestimates the difference between sunspot maximum and sunspot mini-
mum. And indeed, the luminusity enhancemen: by the magnetic field at sunspot
maximum of more than 2 per cent (see Table 2) is greater than the limits s, :
by observation.

/

Perturbations to the core

Table 2 also contains an entry corresponding to the respons_ to a
perturbation that is confined to the core. The perturbation is plesume.d to
provide only a mechanical disturbance to the base of the eu,elope. Thus no
rising magnetic field of the kind envisaged by Dicke (1), for example, is
accounted for. Without specifying the amplitude of the core perturbation
one cannot set absolute values to the perturbations in L and R, but provided
linear theory is valid, their ratio is independent of the nature of the
perturbation.

CONCLUSION

J

We do not yet know whether the solar cycle i_ controlled in the con-
vection zone or the radiative interior. It cannot be claimed that the sun-

spot statistics _upport either view convincingly, though they do hint _hat

the sun does not keep perfect time. If that is indeed the case, one m_ght

regard it as evidence that a turbulent dyn_ is operative, and that the

wandering of the phase of the cycle is produced by the dynamlcal effect of
the turbulent fluctuations on the oscill_:ion. A convincing demonstration

that the phase of the cycle is not maintaxned would not close the case, however,
because it is quite common for nonlinear systems to oscillate almost but not
exactly periodically without any stochastic intezactions. The potential
ai_gno_tic power of the sunspot statistics lies mainly in the possibility of
demonstrating phase maintenance, for in that case stochastic interactions
_st necessarily be unimportant.

Studies of the luminosity and radius variations associated with the cycle
wil: probably be more fruitful. Some work haA already been done, but mainly
with only superficial perturbations meant to represent the magnetic inhibition

of convection in the upper boundary layer of the convection zone. It may be
that plausible variations in luminosity can be engineered, though the associated
radius variations are very small: U _ O. The response of the sun to a few
other types of disturbance have bee_ discussed in this paper, but no systematic
investigation has yet been undertake,_. In all cases it is hard to estimate

the absolute magnitudes of the resulting luminosity and radius perturbations,
but their ratio W is more clearly determined. The examples suggest that W
increases as the depth of the disturbance increases, and if _hat tendency is
ever demonstrated to hold universally, it seems likely that imminent observa-

tions will enable us to decide at least whether part of the dynamo process
operates deep in the sun.

Other diagnostics that might he of use in this respect come to mind.
The low-degree five-ulnute oscillations provide integrel _easures of the solar
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interior that must vary over the solar cycle. It has not yet been demonstrated,

however, whethe they remain coherent for long enough to have sufficiently '°

accurate frequencies to measure the solar change. Another indicator may be

the apparent quasibiennial variation in the solar neutrino _lux. Sakurai
(27,28) has found a 26 month variation in tlt._ measurements of Davis and his

colleagues which appears to be correlated with the residuals in the sunspot "

', numbers that remain after subtraction of a 5-month running mean. If there :
is a causal connection between the variations of sunspots and the neutrino ,'!

- flux, its discovery would clearly be important. One conclusion we can draw
.. straight away, however, is that none of the disturbances seated outside the

, core that have been considered here is of a nmgnitude anywhere near to being

adequate to cause any perceptible variation in the neutrino flux. _

I am very grateful to Dr N.O. Weiss for many interesting discussions.
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