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ABSTRACT

This paper is a discussion of some of the issues that have been raised
in connection with the seat of the solar cycle. 1Is the cycle controlled by
a strictly periodic oscillator that operates in the core, or is it a turb-
ulent dynamo confined to the convection zone and possibly a thin boundary
layer beneath it? Sunspot statistics are discussed, with a view to ascer-
taining the length of the memory of the cycle, without drawing a definitive
conclusion. Also discussed are som: of the processes that might bring about
variations 8L and 6R in the luminosity and the radius of the photosphere.

It appears that the ratio W = §1nR/61nL increases with the depth of the dis-
turbance that produces the variations, so that imminent observations might
determine whether or not the principal dynamical processes are confined to
only the outer layers of the sun.

INTRODUCTION

Early theories of the solar cycle were based on the idea that there is
some periodic oscillation in which the entire sun participates. However,
most solar physicists today probably believe that the cycle is the product
of a turbulent dynamo in the convection zone. This belief appears to have
been based originally on the premise that the solar interior could not poss=-
ibly turn over in a time as short as 11 or 22 years, which would be necessary
if the magnetic field external to the sun matched smoothly to the field
beneath the convection zone. And the belief has been strengthened by the

comparatively complicated theoretical edifice that has been erected to explain

some of the observations in terms of a turbulent dynamo. That edifice has
been of great use in helping us to understand the kinds of processes that are
no doubt operative in the sun's couvection zone, but one must be wary of
taking too seriously the results of what are physically quite naive models.
These models all neglect, often without serious discussion, what might be
quite important phenomena, and one of those that may be of considerable
interest is the coupling to the solar interior. It is to this issue that I
intend to devote my discussion.

Aside from wanting to understand the solar cycle per se, a knowledge of
the most important dynamical aspects is essential for any discussion of how,
or whether, the cycle has any relevance to other issues that concern the sun.
Does the mere existence of the cycle tell us anything about the conditions
in the solar core? This question has been raised reveral times in connection
with the solar neutrino problem, for example, and Dicke (1) has discussed it
in connection with the 12d.2 modulation of the Princeton oblateness data.
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I might say in passing that an obvious poi:t of interest in the solar
czcle is its relation to the earth, and its influence on the climate and the
14¢ production. These are discussed in other contributions to these pro-
ceedings. The only point I wish to add is that if any firm relation between
the solar behaviour and measurable terrestrial records can be established,
then the records might give us a measure of that behaviour that extends
further back ir the past than direct solar observations. This would be of
obvious importance for improving our knowledge of the statistics of the cycle,
to which I now turn my attention.

STATISTICS OF THE SOLAR CYCLE

Though theories of the solar cycle that depend on oscillatinns of the
entire sun have not reached the level of sophistic::ion attained by dynamo
theories, and therefore may seem at first sight less plausible because they
immediately raise unanswered questions in the minds of anyone who considers
them, it does not necessarily follow that the ideas behind them are
incorrect. To some extent dynamo theory may have suffered* the Goll effect
(2), and to rescue it from this plight one should stand back and ask just
what the predictions of the competing hypotheses are, and whether one really
can discriminate between them by comparison with observation. There are
many discussions of this issue, including the excellent critique by Cowling (3).
Heve I simply take up a point that Dicke (4) has raised, and ask whether the ob-
served departure of the cycle from a regular ogcillation can be used as a test.

If the dynamics of the cycle is controlled by a perfectly regular
oscillation o~f the solar interior, then the manifestation of that oscillation
by the sunspots ought to be closely linked to the state of the interior. I
am not concerned here with whether the interior oscillation is itself
directly responsible for the generation of the magnetic field, or whether it
merely controls the dynamo in the couvection zone. All I ask is whether the
epochs of sunspot maxima and minima are closely linked in phase with a perfect
clock.

A modern example of a model with an almost perfect clock is that proposed
by Dicke (1): magnetic field of alternating polarity is released periodically
from the core, and then rises slowly to the surface to produce the sunspots.
The rise time is variable (5, 6): on the whnle it is shorter the greater the
total flux, which is what one might expect from magnetic buoyancy arguments,
and provides a natural explanation for the correlatior between the early onset
of a new cycle and the sunspot number at the next sunspot maximum; in addition
there are random flurtuations in the rise time induced by the turbulence in
the convection zone. Associated with the release of the field is a contem-
porary variation in luminosity, which is presumed to be strictly periodic,
and which is proposed to be responsible for climatic variation. Thus it is
the interior oscillation itself that should be observable in climatic records,
and not the sunspots. What must be somewhat disturbing to any proponent of

* or, perhaps, enjoyed
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this theory therefore, is Murray Mitchell's report at this conference that
the mean US drought record correlates better with the solar magnetic cycle
than it does with a strictly periodic oscillator.

By comparing the sunspot data with mean [D]/DH] ratios obtained from
two bristlecone pines, averaged over samples representing non-overlapping
ten—year growth intervals throughout a period of 1000 years, Dicke concluded
that the mean rise time of the magnetic field is about 13 y. His argument
is that the climatic record at the location of the pines, when viewed as ten-
year averages, shows strong signs of a 22 y oscillation which might maintain
phase, and whose maximum amplitude occurs about 2 + iP years prior to sunspot
maximum, where P = 11 y is the mean duration of the sunspot cycle and i is an
undetermined integer. Since the phase wandering of the sunspot cycle exceeds
2 years, i cannot be zero, so Dicke takes i = | to be the most plausible
solution,

By contrast, a turbulent dynamo confined to the solar convection zone
cannot be expected to maintain phase over long periods of time. Even though
many theoretical idealizations of the dynamo, such as those based on mean-
field electrodynamics, are described by equations that have periodic solutions,
in reality one would expect turbulent fluctuations to destroy memory. Thus
one might attempt to distinguish observationally between suck dynamo hypo-
theses and the possibility of a regular oscillator by m.-- .viug the degree of
phase maintenance of the sunspot cycle.

The first difficulty one encounters in such an endeavour is the problem
of deciding how to define the phase of the cycle. Only the two most naive
measures have been considered so far: the instant of field reversal which
is estimated by the time of sunspot minimum, and the instant ot greatest
surface field which is estimated by the time of sunspot maximum.

Two independent analyses (5, 7) of the sunspot record have been carried
out in an attempt to decide between the alternatives. Both used the same two
statistical models to compare with the data, one with random fluctuations
about a perfect clock and the other, which I shall misrame the dynamo model,
assumed random fluctuations in phase. The principle of both analyses was to
choose a measure of the phase wandering of the cycle, and to compare the
result with the expectations of the two models. The first discussion (7)
was quite elementary, and used an obviously imperfect statistic that was
chosen primarily for computational simpiicity. The years of sunspot maxira
and minima were used separately as tests, and it was found that the phase
wandering of sunspot maxima lies closer to the expectation of the clock model,
and that of sunspot minima is closer to the expectation of the turbulent
dynamo model.* It was concluded, therefore, that the data is inadequate to
support either model.

* Formulae (8.7) and (8.8) in ref. 7 were quoted incorrectly. The ratio of
the expectation of the square of the phase deviations to that of the period
fluctuations should be N(N+1)/[6(N-1)] and N(5N-1)/[6(NZ-1)] for Models A
and B respectively. Correcting these results does not alter the conclusion.
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The second analysis (5) was more sophisticated. It employed a statistic
that would have been less biased than that in (7) had the raw sunspot data
been used. However, the presumed correlation in Dicke's model between the
rise time of the field from the core and the sunspot number at subsequent
sunspot maximum was used to adjust the dates of sunspot maxima to move them
as close as possible to the clock model. These dates were used also to test the
Aynamo model; and the dates of sunspot minima were not considered. It is per-
haps not surprising, therefore, in view of the results of (7), that the sun-
spot data appeared to be in closer agreement with the expectation of ‘~~ ~lock
model. It was concluded that the data tends to support the clocic r. .- ’
shows no statistical indication of random fluctuations in phase.

How confident can we be in this conclusion? I shall illustra VN Y
of the statistics in terms of the more elementary anal.sis of ref. 7. ~ . .der
a sequence of N successive sunspot cycles. For the r! ¢k .odel suppose .aat
the time of occurrence of the nth maximum (or minimum® aft.r the first (to
which I assign n = 0) is tn = nT + T, where T i8 coas.'~. ané¢ the T, are
independent random variables with zero mean and standard deviation t. The
period of the nth cycle is Pn = T + 1 = Ty, and the mean period of the N
cycles is PN = T + N'l(rn - 19). For the dynamo model, assume that the inter-
val between two successive cycles is P, = ¥ + Y, where Y is constant and
the yn are also random variables with zero mean, but this time with standard
deviation y. This model is really an extreme representation of a dynamo
because it assumes that the sun has no memory of previous cycles at all. In
this case

n _ _, N
cn =¥ + I wm, P.u Y + N I v.
m=] m=1

The object of the investigation is to compute a measure of the phase
deviation from a perfect clock. In the context of the clock model, this is
an obvious measure of t. Of course we do not know which clock to choose, and
for maximum simplicity I shall choose the clock that ticks at the average
rate of the cycle, at times Tp = uPN + €, where ¢ is 2 constant. A moasure
of the phase deviation is the variance 002 of ¢q = tn - Tn, defined by

092 . (1)

1 N2 a ¥ .
e -7 1 0], (2.1)
n
n=0 n=0
which is independent of €. This can be computed from the sunspot data, and
its expectation can easily be evaluated for each model. The result is

2) o (=D ¥=1) 2 N-1 2 2.2)

E(o INNGD) ' 6

¢

for the clock and dynamo models respectively, {rrespective of the forms of the
probability distributions of the t, and y,. As N + = the prediction of the
clock model remains bounded, whereas the dynamo model predicts an increase
without limit.
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Of course we have only a limited amount of data at our disposal, but we
could compare the predictions of the two models with the sunspnt data by
dividing the data into segments of N cycles and comparing the dependence of
3;7 on N, where the overbar denotes an average over the segments. I shall
not present the results of doing simply that, but instead I introduce a second
statistic that relates more to the dynamo model. This is the variance of Py,
which is an obvious measure of y. It is given by

N
2 - k— #,
T a— nfl (Pn-PN)Z, (2.3)

and its expectations are
Eop0) = 201N D)7%,  (1-x7"y? (2.4)

for the two models. One can now consider the ratio R = E(OQZ)/E(OPZ), which
is independent of T or y, and compare it with S = ogf /ogt computed from
the sunspot data.

The analysis is confined to the interval from the sunspot maximum of
1705.5 until the last sunspot minimum. The values of t, have been taken from
Allen (8), except that the dates of the first maxima in the nineteenth and
twentieth centuries were replaced by 1803.5 and 1906.0*, and the date of the
last sunspot minimum was taken to be 1976.5. In Figure | is chown the resulc
of dividing the 24 cycles into q contiguous groups of N = 24 q~! cycles for
1 € ¢ £ 6. The rhombuses represent the ratio of the mean variance oy,
(averaged cver the q groups) to up? for sunspot maxime; and the squares are
the ratios for sunspot minima. To give some idea of the scatter, the vertical
lines show the standard deviation of o¢2/opz. Shown also are the values of
R for the two models.

In this analysis the raw dates of sunspot maxima and minima have been
used. If, as is implied by Dicke's theory for example, there is a physical
relation between the phase delay of sunspot maxima and sunspot number, this
should be taken into account. Thus one can consider the modified time sequ-
ence:

L")
6, "t T r(Rn-Eﬁ) (2.5)

derived from the times t, of sunspot maxima, where R, is the sunspot number st
the nth sunspot maximum, and Ry is the mean of Ry over the N+! maxima. The

* The dates 1805.2 and 1907.0 are quoted by Allen (8). However, both these
maxima are double (9, 10): the values for t, used in the analysis here are
better representations of the average dates, snd are close to those used
in ref. 7.
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coefficient r was chosen by Dicke (5) such that 002 was minimized for q = 1.
Thus it is likely that this would reduce 002/0p2, at least when q = 1, and

so move the data closer to the predictjon of the clock model (lower curve).
The results of analyzing the sequence t, with Dicke's value of r is shown also
in Figure 1. Even though the results are typically closer to the clock model,
they can hardly be said to coufirm it.

One is tempted to conjecture that the sun lies somewhere between the two
models, having a memory of finite duration. If that is the case, how long
is that memory? A step towards answering that question has been made by
Barnes et al. (11, 12). They studied numerical gimulations of a rectified
oscillator that is randomly perturbed. They adjusted the bandwidth of the
response to the perturbation such as to bring the variance of the fluctuat.ions
in period into agreement witk the sunspot data, and found that with the same
adjustment the variance in the simulated sunspot numbers at sunspot maximum
also agreed with the real data. Moreover, the model produced intervals of
about 50 years of continuous low sunspot activity, which occurred roughly
once in 500 years. According to Barmes et al. the model has an inverse

3 b
R,S i
l —
C
n N(5N-1)
- * 6 (N+1)2
0.3 b *
Lt 1P L1t ll [ 1 1
3 10 30
N

Figure |. The ratios S = 0gZ/0p2. The rhombuses represent sunspot maxima

and the squares sunspot minima. Except when N = 24 they have been displaced

horizontally to tue right or left of the value of N to which they pertain,to
revent cluttering the diagram. The circles represent S for the time sequence
n defined by equation (2.5) with r chosen to minimize 092 for N = 24. The
vertical lines exterd to plus and minus one standard deviation of ogzlch from
S. The continuous curves represent the ratios R of the expectations of o.z

and op? derived from the two extreme statistical models.
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bandwidth of 500 yeers, which is a measure of the memnry, and an engineering
rule-of-thumb is that many invers.. bandwidths are required to establish
whether or not phase is maintained. This suggests that with the direct obser-
vations that are available, it may not be possible to measure the sun's

memory accurately.

POTENTIAL LUMINOSITY AND RADIUS VARIATICNS

It is quite reasonable to expect there to be small variations in the
lumine_ity L and the radius R associated with the solar cycle. If the seat
of the cycle is in the core, then any change in the size of the core would
force the envelope to expand or contract, thereby modifying the hydrostatic
stratification and hence R and L. The earliest photospheric response to any
such change to the core occurs after a delay equal to the sound travel time
from the core to the surfare, which is about half an hour. Similarly, any
change to the convection zone brought about by a turbulent dynamo would also
produce modifications to the state of the photosphere. The question to which
I now address myse¢lf is whether from the variations in L and R one might infer
anything about the nature of the perturbation.

I shall first discuss in broad terms the sequence of events after an
imaginary instantaneous perturbation to the solar structure, and then I shall
discuss some specific examples in greater detail. I should point out straight-
away that I do not have a definitive answer to the question, but the results
of the discussion below are perhaps suggestive.

RESPONSE OF THE SUN TO AN INTERNAL DISTURBANCE

1 have already pointed out that the fastest response to a perturbation
is dynamical. The response to any large-scale perturbation that varies on a
timescale of more than a few hours can therefore be regarded as being instan—~
taneous and hydrostatic. I am not going to discuss dynamical oscillations
here, and from now on I shall disregard t:.. manner in which the relaxation
to the new hydrostatic state takes place.

After hydrostatic adjustment follows thermal relaxation. There are three
obvious thermal timescales outside the energy generating core that can be
relevant to the evolution; these are quite disparate and therefore their mani-
festations can be discussed separately. The first is the time 1y required
for the convection itself to attain a balance with the mean stratification.
This is of the order of the turnover time of the largest convective eddies.
Taking the convection zone as a whole, this time is about a month, and measures
the duration of the transient response to any deep-seated event. The equi-
libration time for che eddies near the surface, such as the granulation, is
very much shorter. I shall be considering only changes that occur after times
much greater than 1g3.

The second adjustment is the coming into balance of the radiation from
the photosphere with the changed internal heat flux. This is what is
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sometimes called the Kelvin-Helmholtz time for the convection zone. I shall
call it to. To within a dimensionless factcr it is the ratio of the thermal
energy in the convection zone to the solar luminosity. This ratioc is about

165 years for so-called standard solar models. The dimensionless factor is

probably of order unity, though recently it has been suggested that for the

sun it is of order 1074, I shall return to this point later.

The third snd longest time is the Kelvin-Helmholtz time for the entire
sun, It is the ratio of the magnitude of the total energy of the sun, which
by the virial theorem is approximately equal to the thermal energy, to the
luminosity. It is also the thermal diffusion time T4 characteristic of the
eatire sun, and is approximately 3 x 107 years.

Outside the core, the sequence of events following a perturbation is
likely to be thus: after the convection zone has readjusted itself internally,
on the timescale of a month, and the radiative interior has responded adia-
batically, the entire convection »one either cools or heats up on & time-
scale of 10° years until a stratification is achieved with an essentially
divergence~free heat flux. Finally, the radiative interior relaxes to its
new state of thermal balance, on its thermal diffusion timescale td. Notice
that this is the sequence of events wherever in the sun the instigating per-
turbation may be located, though of course if that perturbation were confined
to the superficial layers of the sun the magnitudes of the longer thermal
responses may be imperceptibly small.

At this point I shall elaborate a little on what I have just said, in
an attempt to dispel some common misconceptions about the meanings of these
timescales., What I have to say is quite obvious to anyone who studies stellar
evolution but does not appesr to be common knowledge otherwise. The issue
concerns whether the response of the photosphere to any deeply seated pertur-
bation is evident in a timescale less than the Kelvin-Helmholtz time. I hLope
I have convinced you that in principle the answer must be yes, because the
effect of any local change in the mass distribution of the sun will propagate
with the sound speed. But suppose one considers a thermal perturbation some-
where in or at the base of the convection zone associated with which there
is very little mass flow. TIn such a case there has been disagreement as to
whether it is the thermal adjustment of the convection or the Kelvin-Helmholtz
time for the zone that is important. This problem doesn't obviously arise
when discussing the relaxation of the entire sun, becsuse the analagous two
times are the same. But surely the answer is this: both are important; the
relaxation has two phases, and different processes control the evolution during
the different phases.
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In an efficient convection zone of any star, the convective adjustment
time* T, {8 much less than the overall cooling time. Thus there is an initial
internal redistribution of energy, on the timescale t,, followed by the
slower evolution on the timescale v, which is conttolfed by the rate at which
heat is radiated from the photosphere. This is the physics that describes
evolution down the Hayashi track, for example, during which the structure of
the entire fully~convective star is controlled by the radiation from the
surface. It is analagous to the cooling of a hot block of copper: thermal
conduction operates much faster than cocling from the surface, and the block
is almost isothermal. It therefore cools at a rate that depends only on
heat transfer processes at the surface and the thermal capacity of the block.
The only essential differences in the case of a stellar convection zone are
that the state of thermal balance is isentropic rather than isothermal and
that the change in gravitational energy must be taken into account when
assessing the thermal capacity of iLhe convectlon zone.

In a radiative zone the evolution is quite different, for ncw it is the
internal thermal readjustment that is the slowest. The analogy is now with
the cooling of a block of wood. After an initial transient response during
which the surface temperature adjusts to accommodate the heat flow from the
interior, evolution proceeds on the thermal diffusion time, T4.

To summarize: a thermally relaxing convection zone adjusts its internal
stratification in such a way as to supply the heat flow dictated by the sur-
face conditions, whereas a radiative region adjusts its boundaries to trans-
fer the heat that diffuses from within.

* In astronomy, this is often estimated as a thermal diffusion time obtained
from a turbulent heat diffusivity computed from time-independent local
mixing-length theory. 1If the action of the varying mean stratification on the
dynamics of the turbulence is taken into account, still within the frame-
work of local theory, the perturbation satisfies a wave equation instead,
with a wave speed essentially equal to the rms convective velocity, w.

The characteristic adjustment time of the entire convection zone is thus
simply the advection timescale T, = fw=ldr, where r is a radial distance
co-ordinate and the integral is over the vertical extent of the convection
gone., It is likely that the dominant heat-carrying eddies in the main body
of the convection zone actually extend from top to bottom. Thus aside from
geometrical factors, 1, is still a good estimate ~f 14, even though the
local assumption is incorrect. Notice that the estimate of w via the
relation 4nr2pw3d = L (which follows from the usual considerations of the
eddy dynamics that form part of mixing-length theory, but which does not
depend on the detailed mixing-length assumptions about eddy breakup) is
independent of the value of the assumed scale of the dominant eddies (or
the mixing length) and is thus a fairly robust estimate. This estimate of
w breaks down in the boundary layer at the top (and in the boundary layer
at the bottom) of the convection zone, but that does not influence the
value of the integral substantially.
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COMPUTATION OF THE 'IMMEDIATE' RESPONSE TO A SPHERICALLY SYMMETRICAL PER-
TURBATION

Most of the numerical computations modelling the response of the sun on
a timescale short compared with v., but long compared with v,, have been
integratious in time using a stellar evolution programme. The computations
are quite expensive, and it is therefore worth contemplating other methods,
even though they are more limited in scope.

If the disturbance is small everywhere, the obvious procedure is to per-
form a linearized perturbation analysis. I shall not discuss that here,
simply because I do not yet have any results from this method. The reason is
that my involvement in this problem stems from a search I once made for a
non-linear relaxation oscillation involving the bottom boundary layer of the
convection zone and its interaction with both the rest of the convection zone
and the radiative region beneath. I was hoping to find a self-sustained
oscillation in the solar luminosity with a period of about 10” years, with a
view to explaining certain variations in the earth's climate. I therefore
developed the following method, which treats the convection zone nonlinearly.
My original investigation was never completed because I was unable to produce
luminosity fluctuations with amplitudes greater than about 0.1 per cent, and
at that time such changes were thought to be climatically insignificant,

The method involves only the computation of a few models of the con-
vection zone, plus the linear adiabatic relaxation of the radiative interior.
One is then able to estimate the change in the structure of the entire sun
resulting from a given perturbation. Because one is seeking only the
'immediate' response, the total energy E of the star does not have time to
change. Consequently, the idea is simply to compute the response of the
model at constant E.

Let pp and rp be the pressure and radius of the model envelope at a
fixed value of the mass co-ordinate m, whose value corresponds to the base of
the convection zone in the unperturbed model., In addition consider a second
envelope model with the same L and R into which a disturbance has been incor-
porated. Then if the pressure and radius at the same value of m in the
second model are py *+ App, ry + Ory, the actual change in py that would be
produced by the same disturbance in a model of the entire sun is given by*

Slnp_ = Alnp_ + ( 3i23g )., ,8lnL + ( EiSEE ), .81lnR (3.1)
m m olnl. “R,A dalnR “A,L ' *

where §1nL and §1nR are the acqtual changes in lnL and InR. Similar relations
give the variations in Ilnry and lnE. Notice that for the linearized estimate
(3.1) to be a good approximation it is no doubt necessary for the variations
in E,L and R to be small, but it may be the case that in some limited regions
there are properties of the envelope that vary by quite large amounts. Any
localized nonlinearity that so arises is correctly taken into account.

The object now is simply to calculate 6lnL and S1nR that result from the
disturbance subject to the constraint S§InE = O, This can be done once the
relation between Slnr_ and §lnp_ is known. To find that relation it is
necessary to consider the response of the interior.

* “The quantity A measures the amplitude of the disturbance. In practice the
partial derivatives in equations (3.1) and (3.4) were evaluated at A ~ 0.
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Because vy is large compared with the initial response time, the reacticn
of the radiative interior is essentially adiabatic. Moreover, since Slnpy
and dlnry are small, linearized theory may be used. The calculation is
simply to solve the adiabatic radial pulsation problem at zero frequency in
the radiative interior, without the mechanical boundary condition at the
surface., This gives a relation between the pressure and radius perturbations
on the radiative side of the base of the convection zone, which I represent by

Glntm - Aslnpm. (3.2)

Since ry and py, must be continuous functions of m, condition (3.2) provides
the information necesgsary for matching the perturbed convection zone onto its
radiative interior, and together with §1nE = O can be used to eliminate &lnrp
and §1np, from the relation (3.1) and its companions. The result is

D, AlnE - (Alnrm - )\Alnpm)ER

SlnL = - , (3.3)
D Eg ~ DgEyp
with a similar equation for §1nR, where
dlnr 9lnp
= m _ m - ¢ 4lnE
Dp 2 Cstar JaL” * C3TaR AL’ Bg = (3ImR L’ (3.4

and Dy, and Ej, are obtained by interchanging R and L. Notice that in general
the procedure leads formally to a discontinuity in temperature at the base
of the convection zone. In reality radiative diffusion and convective over-
shooting must smooth that out., If radiative diffusion alone were operating,
after 10 years the jump in temperature would be spread over a layer only
about 1000 km thick. Since this distance is only about one-third the mesh
spacing near the base of the convection zone in my programme, the approxima-
tion is good. The artificial diffusion introduced by numerical differencing
in a typical stellar evolution programme with a similar mesh spacing is likely
to exceed greatly the radiative diffusion that is implied by the original
differential equations.

It is also possible to estimate the relation between SlnL and 6§1nR that
results from a disturbance that ie confined to the solar core. Once again
the expansion or contraction of the radiative envelope, outside the region
of the disturbance, is adiabatic, and must match onto the perturbed envelope.
If one were to assume that the perturbation could be linearized in the con-
vection zone too, the problem would reduce to the nonadiabatic radial pulsa-
tion problem, with any period much greater than 14 but much less than 7. and
without the boundary condition at r = 0. However, to get a rough idea of the
result it is not necessary to solve that problem precisely. It is probably
adequate simply to assume a homologous expansion or contraction of the con-
vection zone, which yields equation (3.2) again, but with A = -0,25. One can
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then repeat the calculation, but with Almnp, = 0, etc., to obtain

D
% - - BL’ (3.5)
R

where Dy and Dp are now computed with the new value of A.

It is thus possible to estimate the response of the entire sun from
numerical models of only the solar envelope and a knowledge of A. The partial
derivatives Dg, Ep etc. are computed by finite differences using undisturbed
model envelopes with different values of L and R. Notice that although E,
which is the energy of the entire star, can never be computed from eavelope
models alone, this does not matter because only differences of E appear in
equation (3.3). These are simply the differences between the energies of
the two appropriate envelopes above the matching point, plus the differences
in the energies of the interiors. The latter can be computed as the work
done by the envelope on the interior, which requires a knowledge of only p

and r .
m

m

My computations reported below were performed with an early version of
the computer programme used by Baker and myself (13) to model RR Lyrae pulsa-
tions. The programme had not been designed for this purpose, and several
interpolations, which could have been avoided by rewriting the programme,
were performed. Therefore I make no claims to high accuracy. The unperturbed
model was chosen with abundances X = 0.745, Z = 0.02 of hydrogen and heavy
elements, which are approximately the values that would have produced the
correct luminosity in an evolved model of the entire sun. Cox-Stewart (14)
opacities were used, and the equation of state was of the type discussed by
Eggleton et al. (15). A mixing length of 2 pressure scale heights was chosen
80 as to yield a convection zone about 2 x 10° km deep, in accordance with
the dictates of the high-degree five-minute oscillation data (16,17).

POTENTIAL INTERNAL CHANGES DURING THE SOLAR CYCLE

Convective inhibition by sunspots

The mechanism that has received most attention is the direct blocking
of the heat flux by magnetic fields. This is particularly apparent in sun-
spots. Whether sunspots do actually reduce the energy flux has b en questioned,
the possibility being that the deficit in the radiative flux is made up by
extra wave energy. The issue is probably not completely resolved, but I
think the observational evidence is weighted towards 'a net reduction of energy °
flow within sunspots. I shall accept that here, and ignore wave transport
entirely,

Notice that I have not yet said that the local reduction of the heat
flow in sunspots necessarily implies a significant diminution in the solar
luminosity. The local reduction is countered by a tendency for more heat to
flow around the edges of the spot, producing a circumsistent bright ring.
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However, the excess heat output by the identifiable part of the ring is
quite inadequate to make up for the deficiency in the spot; inhibition of
the flux in the spot extends deep into the convection zone,* so any excess
flux can be distributed widely by the time it reaches the photosphere. Also
any change in the mean (averaged over a spherical surface concentric with
the photosphere) efficacy with which heat is transported in the coavection
zone leads to a change in the stratification of the convection zone that
modifies the luminosity in such a sense as to oppose the original change.
Nevertheless one expects that on average the opposing reaction is less than
the perturbing influence, because the convection zone is apparently stable
(though we are not absolutely sure of this)., Thus it does appear that if
the local inhibition of heat flow were the sole influence sunspots exerted,
some reduction in luminosity would accompany an increase in sunspot numbers.
But how substantial this reduction is cannot be judged w'thout careful cal~-
culation.

It is very difficult to perform a realistic calculation to assess the
effect of sunspot creation., What has been tried is to consider the effects
of sunspots to be averaged over spherical surfaces r = constant, and to
modify the standard techniques for studying spherically symmetrical stellar
evolution to model the overall response of the sun. Thus, the magnetic
inhibition of convective heat transport has been modelled by artificially
reducing the mixing length £ in the usual time-independent heat flux formula.
If such a procedure is a reasonable approximation to reality, it would be
valid for studying variations on any timescale greater than 7,, and would
therefore be adequate for solar cycle variations.

The results of several independent computations have been published
(18-22), and more are reported in this conference. The published results
are summarized in Table 1, together with my own unpublished values. The
diversity in the results arises partly from differences in the unperturbed
models and partly from numerical error. For example, Dearborn and Newman
(18) and Dearborn and Blake (21) used a small mixing length and consequently
had a thin convection zone. In such a model the heat transport is more
sensitive to the mixing length and it is therefore to be expected that §lnL/8lna
would be overestimated. To test my procedure I recently repeated the cal-
culation with the ratio ¢ of mixing length to pressure _scale height equal
to unity, yielding a convection zone with mass 9 x 10'3M,. Increased sen-
sitivity was found, but my value of §lnL/Slna was only 0.35, nearly a factor
2 less than that found by Dearborn and Newman (18) and Dearborn and Blake (21).
I suspect that most of the scatter in the values of §1nR/Slna and hence in

* By the argument in the anteprecedent footnote one expects the time taken for
convection to adjust to the creation of a sunspot to be of order fw-lds,
where s is a distance co-ordinate and the integral is over a path that
represents a typical heat-flow line that starts at the base of the rpot
and ends in the photosphere near the spot. The two independent observa-
tions reported at this conference that substantial transient reductions
in the solar constant associated with large sunspot groups can last at
least ten days therefore indicates that the spots responsible are not
superficial phenomena.
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TABLE 1 - Summary of published results from perturbing the mixing length

Authors §1nL/81na §1nR/S1na W MC/M.
Dearborn and Newman (18) 0.460 + 0.008
Dearborn and Blake (21) 0.64 3x10°  5x10°  0.0065
Sofia et al. (19) -2
Sofia and Endal (20) 1.5 0.11 7.5 x 10
Gilliland (22) 8.5 x 10~
Gough 0.22 s1x10% <5x107° 0.03

The last column is the mass of the convection zone in units of the solar mass.,
t+ The formula for §lnL/8lna quoted by Dearborn and Newman was found to hold for
1 £ a5 1.5; the value of a corresponding to the quoted value of M./M, was
not given. Dearborn and Blake used o = 1.4.

W = 81nR/81nL is a product of numerical error. In my calculations the numer-
ator in the equation similar to (3.3) for 6lnR is a small difference between
two quantities of order unity (each of which is a numerical derivative com-
puted from interpolated quantities). The result I obtain is sensitive to

the interpolation formula I use, and I would therefore not be surprised if

I have underestimated the degree of cancellation considerably. Thus at
present T would summarize the results for a model with an adequately deep
convection zone thus:

§lnl _ - 8lnR _
na - 0.3, W= SinL - 0. (3.6)

In none of the publications is a relation between a and sunspot number
derived. It is very difficult to do this theoretically, but one can be
guided by observation. According to Allen (8) the mean intensity in a sun-
spot (umbra and penumbra combined) is about 70 per cent of that in the un-
perturbed photosphere. I shall take this as a measure of the inhibition of
the convection at fixed entropy gradient. A medium-sized sunspot occupies
about 6 x 10°¢ of the surface of the sun, and at sunspot maximum there are
present the equivalent of about 200 such sunspots.* Hence at sunspot maximum

* That is to say, about 100 on the side we can see and about 100 on the
other.
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the luminosity of the sun, ignoring faculae and the bright rings, is
L=(l-8L, (3.7

where L is the luminosity the sun would have had had the sunspots been absent
and the radiative flux been everywhere equal to the flux in the apparently
undisturbed photosphere; 8, which measures the mean reduction of the hest
flux by the sunspots, is 200 x (1 - 0.7) x 6 x 1076 = 4 x 1074 . Throughout
almost all the convection zone the convective heat flux is proportional to
a“, and consequently the observed mean flux inhibition is obtained by setting

2.6_(1 = - B. (3.8)

[+

We can now combine equation (3.8) with (3.6) to yield an estimate of the
difference 6L between the luminosities at sunspot maximum and sunspot minimum:

SL

L

= - 0.158 = -6 x 10 . (3.9)

Notice that the actual decrease in the luminosity from sunspot minimum to
sunspot maximum is only 15 percent of the apparent blocking of the luminosity
BL caused by the sunspots.

The exclusion of material from sunspots

It was stated by Jensen (23) that because the matter density in sunspots
is lower than outside, the sun must have a larger volume at sunspot maximum.
This idea has been elaborated on by Thomas (24) and Dearborn and Blake (25),
who estimate the expansion to be not insubstantial. I do not understand their
arguments, and I think it might be instructive if I say why.

Let us first consider the balance of energy in a star in hydrostatic
equilibrium. In common with almost everyone else I shall ignore the turbulent
stresses in the convection zone. I shall also assume that the pressure and
the magnetic stress on the surface (i.e. the photosphere) can be ignored.

Then the virial theorem takes the form

T = 2T + 9 + M, (3.10)

where I is the so-called spherical moment of inertia, T, Q and M are the
kinetic, gravitational and magnetic energies, and the dots on I denote time
derivatives. The kinetic energy T is comprised of the energy of thermal
motion plus the energy of macroscopic motion, the latter residing mainly in
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rotation. In equilibrium I= 0, whence
2T + Q@ + M = 0. (3.11)

Suppose now that sunspots are created, and that at the same time the magnetic
energy of the sun is increased by M > 0. According to most theories of the
suaspot cycle, the field is produced by the stretching that results from
differential rotation. Thus the reaction of the field is to oppose gradients
in angular velocity without changing the angular momentum, and hence to reduce
the kinetic energy of the rotation. Just as the reduction of the luminosity
by sunspots discussed above is not as great as the degree of direct inhibition
of the heat flux, so the depletion of the rotational kinetic energy in this
case is not as great as the energy imparted to the magnetic field. The con-
tinual driving of the large scale flow in the convection zone tends to re-
store the internal differential rotation to its original state, at the expense
of other forms of energy. Let us assume, therefore, that only a fraction n
(which I presume is positive) of the magnetic energy is extracted from T, and
that the rest comes from Q.* The virial balance is now .

B ket s o i

I = 2(T-nsM) + [@-(1- M + (M+ M)

= -ndM < O, (3.12)

so I must decrease. Hence, on average, the star shrinks, which might seem
contrary to Jensen's assertion. It does not necessarily follow that there

is a contradiction, however, for the adjustment might deviate substantially
from being homologous. Nevertheless, it does illustrate a possible pitfall
that might be encountered if one does not take into account that the magnetic
energy in the sunspots must be provided from within the sun. Had I forgotten
the changes in the other forms of energy in the star, as did Jensen and Thomas,
I would have deduced that {I = +SM > 0, and then perhaps I might have been
happy that this was apparently consistent with Jensen's claim.

Let us now look a little more carefully at the recent arguments. Thomas
(24) evaluated the mass defect in tornidal flux ropes about 1000 km beneath
the photosphere, and assumed that the total volume of the sun is simply in-
creased by the volume that the missing mass would occupy at the ambient density.
The estimsted expansion was 6R/R = 5 x 1074, Thomas's neglect of the change
in the balance of forces in the interior consequent to the creation of flux
ropes is tantamount to ignoring the fact that the region beneath the flux rope
contracts as a reaction to the attempt to raise the height of the photosphere.
Thus his estimates of the expansion must be exaggerated, and I shall now argue
that the error may be quite large.

* Strictly speaking, the argument should be complicated further by considering
also the interchange with the energies of ionization and the electrostatic
interactions amongst electrons, ions and neutral atoms. These forms of
energy do not appear in the virial theorem.
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Suppose one simply implants a flux rope in pressure balance in the con-
vection zone, and removes the mass defect AM from the star entirely. The
perturbation to the gravitational field is negligible. Hence the stratifi-
cation far from the flux tube is unaffected, and in particular the position
of the photosphere is unchanged: one cannot detect a stationary submarine by
observing the position of the surface of the ocean. Thus to compute the true
effect of the flux tube on the rhotospheric radius one must merely replace
the mass AM in the star. To within a factor of order unity, the resulting
relative radius change will be 4M/My, and therefore the volume change is
roughly equal to the volume occupied by AM at the mean solar density 7,
rather than at the density p in the vicinity of the flux rope. If this argu- ‘
ment is correct, Thomas has overestimated the expansion by a factor §/p, which '
at 1000 ke beneath the photosphere is about 5 x 10°.

I am certainly not concluding from this exercise that the magnetic stresses
of sunspots do actually have so miniscule an influence on the solar radius.
All I am saying is that thz exclusion mechanism discussed by Jensen and Thomas,
taken in isolation, appears to be unimportant.

Dearborn and Blake (25) modelled the effect by including 'a global mag-
netic pressure term in a stellar structure code'. At first sight this appears !
to be the product of considering the sunspot magnetic field as providing an :
additional pressure contribution to influence directly the mean hydrostetic
balance. But at this conference Dearborn has argued that his procedure can
also be regarded as the excluded volume effect that Jensen and Thomas have
discusgsed. He showed tha” if one integrates the stellar structure equations
outside sunspots, where the magnetic field is negligible, then in order to
relate the density p to dm/dr correctly one must add to p a term that takes
account of the mass that has been pushed aside by the sunspots. This term
is proportional to the magnetic pressure in the sunspots, and so appears as
an additional contribution to the pressure in the equation of state. Precisely
what this implies is difficult to judge, because we have not been told exactly
how the additional term has been incorporated into the other equations.
Dearborn and Blake find 6R/R s 10~% associated with a 0.1 per cent reduction
in the luminosity. Thus |W| s 0.1, and possibly W = O.

Other magnetic processes

Spiegel and Weiss (26) have considered recently the importance of the
interaction between the convection zone and the radiative interior. They
discussed the implications of the idea that magnetic field is compressed into
a thin layer at the base of the convection zone by the combined action of
topological pumping and field expulsion. After a sufficient amount of field
has accumulated, hydromagnetic instabilities driven by magnetic buoyancy cause
some of the field to rise to the surface to produce active regions and sun-
spots. Spiegel and Weiss suggest that the inctability occurs when the mag-
netic layer is about a pressure scale height thick.

The cycle is complicated, and Spiegel and Weiss emphasize one aspect
of it that may be important in causing luminosity and radius variations. It
is that the magnetic layer will inhibit motion, in part by modifying the
potential temperature gradient indirectly via the change in the hydrostatic
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balance, and so cause the convection zone to recede., The flux expulsion
process involves magnetic diffusion of stretched field that varies on a
relatively short length scale. Since the magnetic Prandtl number is small,
one might also expect thermal diffusion to be significant, so that the rel-
atively quiescent magnetic layer would not be adiabatically stratified. But
how it is stratified is hard to assess. A certain degree of mixing with the
material in the radiative zone may well have taken place, so the resulting
temperature gradient is presumably somewhere between the radiative and the
adiabatic values.

An estimate of the manifestations of part of this process can be obtained
from a somewhat different model I have constructed by suppressing the motiom
in a layer of thickness d at the bottom of the convection zone and assuming
the reclaimed quiescent region to have achieved the radiative temperature
stratification, Only one temperature discontinuity, at the base of the
thermally mixed layer, was created. Magnetic stresses were not included in
the hydrostatic balance in that region, so the calculation is not internally
consistent. However, since the process being investigated is primarily
thermal, it is not unreasomable to comsider it in isolation from the balance
of forces. Moreover, it is no less consistent than imagining a to have been
changed without taking into account the stresses responsible. Indeed, the
perturbation is equivelent to a drastic modification to a in a limited region
of the convection zone. The result of a calculation with d = 7000 km is
listed in Table 2. The increase in luminosity is about 5 x 10~% L, somewhere
near sunspot maximum, and is probably proportional to d2.

TABLE 2 - Summary of the responses of the sun to various disturbances

Disturbance §1lnL §1nR W

Inhibition of convection by sunspots -5
modelled by reduring a according to -6 x 10 =0
equation (3.8)

n
o

Introduction of equipartition _
tangled magnetic field into con- 2,6 x 10
vection zone

2 4 3

1.2 x 10 © 4.4 x 10

Replacement of temperature gradient
in the bottom eighth of a pressure
scale height of the convection zone
by the radiative gradient

4 5

-4,5 x 10 © -9.1 x 10 0.20

Any disturbance that is confined to
the energy generating core 0.53
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Although the magnitude of the luminosity perturbation is comparable with
that deduced by Spiegel and Weiss, the mechanism by which it was obtained is
rather different. Replacing what was essentially the adiabatic temperature
gradient by the radiative gradient in the lower boundary layer of the con-
vection zone results in a change in the stratification which is locally much
greater than Spiegel and Weiss envisaged. Consequently, a greater redistri-
bution of energy takes place. For example, subsequent to the magnetic in-
stability, the temperature of the material near the base of the convect’on
zone increases by about 284K and che internal energy in the convection zone
is decreased by about 10"“ erg. If this estimates the energy available to
supply the increment 4L in the luminosity, it would imply that &L = 10‘“L.
if the increment were spread uniformly over 10° years. The interchange
between the different forms of encrgy is brought about by a force provided
from a comparatively small energy reservoir: to suppress the convection at the
base of the zone and change the stratification to the radiative gradient
requires only about 3 »x 1033 erg of wecrk. Thus magnetic energies as great as
the total change in the energy radiated (if subsequently the star were to
remain unperturbed until the relaxation time t. had elapsed) are not necessary
to bring about that change. This result provides some a postericri justifi-
cation for ignoring the magnetic stresses in the hydrostatic equation.

In contrast, Spiegel and Weiss imagine the perturbation to cause a re-
distribution of the energy in the convection zone of just 1039 e:g. This
they assume is radiated in only about 10 years. The crux of the disagreement
between their ideas and the assumptions of the calculation described above,
therefore, is that Spiegel and Weiss assert that under these conditions real
convection, unlike the predictions of the mixing-length formalism, reacts
very sensitively to perturbations from beneath. This difference of opinion
has little to do with the efficacy with which convection transports heat down
a gradient of potential temperature. It concerns the degree to which con-
vection modifies the photospheric temperature and so changes the rate at which
heat is raciated from the star. The very high sensitivity of the state of
the photosphere must be related to the small nonzero divergence of the heat
flux in the convection zone, for if in the steady state the sensitivity of
real convection were 10% times greater than the prediction of mixing-length
theory, it would be unlikely that the latter could have been usea to reproduce
successfully the slope of the lower half of the main sequence in the Hertzsprung-
Russell diagram.

Another phenomenon of interest is the influence of the small-scale tangled
magnetic field in the convection zone. One effect is that the magnetic pressure
modifies the hydrostatic balance, and another is that magnetic buoyancy en-~
hances the driving force on the turbuient eddies and so increases the efficacy
of the convection, I have modelled these processes by adding to the free
energy of the fluid, from which all thermodynamical state variables are cal-
culated, the energy of a tangled magnetic field in equipartition with the
kinetic energy of convection. This increases the fluid pressure by an amount
equal to the magnetic pressure. It also reduces the adiabatic temperature
gradiant and thus enhances the buoyancy forces acting on the convective eddies.
As in the case of changing the mixing lenzth to scale height ratio by a con-
stant amount, this perturbation has a significant influence on the stratifi-
cation only in the upper boundary layer of the convection zone. The idea is
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that there will be more tangled field in the convection zone at sunspot maxi-
mum, Once again, to compare such a model.-with one having no magnetic field
at all overestimates the difference between sunspot maximum and sunspot mini-
mum. And indeed, the luminosity enhancemen: hy the magnetic field at sunspot
maximm of more than 2 per cent (see Table 2) is greater than the limits s/ :
by observation.

Perturbations to the core

Table 2 also contains an entry corresponding to the respong  to a
perturbation that is confined to the core. The perturbation is presumed to
provide only a mechanical disturbance to the base of the en'elope. Thus no
rising magnetic field of the kind envisaged by Dicke (1), for example, is
accounted for. Without specifying the amplitude of the core perturbation
cne cannot set absolute values to the perturbations in L and R, but provided
linear theory is valid, their ratio is independent of the nature of the
perturbation.

CONCLUSION

We do not yet know whether the solar cycle is controlled in the con-
vection zone or the radiative interior. It cannot be claimed that the sun-
spot statistics support either view conviacingly, though they do hint that
the sun does not keep perfect time. If that is indeed the case, one m.ght
regard it as evidence that a turbulent dynamr is operative, and that the
wandering of the phase of the cycle is prnduced by the dynamical effect of
the turbulent fluctuations on the oscilla-ion. A convincing demonstration
that the phase of the cycle is not maintained would not close the case, however,
because it is quite common for nonlinear systems to oscillate almost but not
exactly periodically without any stochastic interactions. The potential
disgnostic power of the sunspot statistics lies mainly in the possibility of
demonistrating phase maintenance, for in that case stochastic interactions
m:5t necessarily be unimportant.

Studies of the luminosity and radius variations associated with the cycle
will probably be more fruitful. Some work has already been done, but mainly
with only superficial perturbations meant to represent the magnetic inhibition
of convection in the upper boundary layer of the convection zone. It may be
that plausible variations in luminosity can be engineered, though the associated
radius variations are very small: Y = 0. The response of the sun to a few
other types of disturbance have bee: discussed in this paper, but no systematic
investigation has yet been undertaken. In all cases it is hard to estimste
the absolute magnitudes of the resulting luminosity and radius perturbations,
but their ratio W is more clesrly determined. The examples suggest that W
increases as the depth of the disturbance increases, and if that tendency is
ever demonstrated to hold universally,it seems likely that imminent observa-
tions will enable us to decide at least whether part of the dynamo process
operates deep in the sun.

Other diagnostics that might te of uee in this respect come to mind.
The low-degree Yive-minute oscillat’ons provide integral weasures of the solar
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interior that mugst vary over the solar cycle. It has not yet been demonstrated,
however, whethe they remain coherent for long enough to have sufficiently
accurate frequencies to measure the solar change. Another indicator may be
the apparent quasibiennial variation in the solar neutrino rlux., Sakurai
(27,28) has found a 26 month variation in tl» measurements of Davis and his
colleagues which appears to be correlated with the residuals in the sunspot
numbers that remain after subtraction of a 5-month running mean. If there
is a causal connection between the variations of sunspots and the neutrino
flux, its discovery would clearly be important. One conclusion we can draw
. straight away, however, is that none of the disturbances seated outside the
. core that have been considered here is of a magnitude anywhere near to being
adequate to cause any perceptible variation in the neutrino flux.

I am very grateful to Dr N.0O., Weiss for many interesting discussions.
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