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PREFACE !

The progress of research on "Three Dimensional Flow Field Inside a 4
Compressor Rotor Blade Passage, Including Blade Boundary Layers" (NASA
Grant NSG 32606) for the six-month period ending December 31, 1981, is
briefly reported here., Dr. J. M. Galmes, Kesearch Associate in Aerospace
Engineering, has the responsibility for turbulence modelling. Mr. Pouagare,
a doctoral candidate, haz: assumed responsibility for the development of the
computer program to predi:zt the blade boundary layer. The measurements

reported were carried out by M, Pouagare and K. N, Sachidananda Murthy,

B. Lakshminarayana
Principal Investigator
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NOMENCLATURE

conatants

modeling constants

dumping function for low Reynolds number flows
metric tensor

indices in the §,n,R coordinctes, respectively
Jacobian of the transformation

turbulent kinetic energy

length scale

pressure

wean pressure

fluctuating pressure

pressure surface

static pressure

total pressure of the relative flow

P/ U

P /5 ui

cylindrical coordinate system

radial distance normalized by the tip radius

Reynolds number

local Reynolds numbers

generalized gradient Richardson number

oR/dr

T T R O




e

blade spacing

suction surface

strain tensor

fluctuating velocity

time

mean contravariant velocity
Reynolds tensor

blade tip speed

velocities in radial, tangential, and axial direction,
respectively

Kolmogorov velocity scale

relative velocity

radial velocity, w‘l./Ut

relative tangential velocity, Wefut

axial velocity, Wz/Ut

contravariant and covariant coordinates variables
tangential distance measured from camber line (y = 0 on
suction side, Y = S on pressure side for the data in the

passage for the wake, Y = 0 is the center of the wake)

axial distance normalized by the blade chord (Z = 0 at
the leading edge)

constants

Kronecker tensor

turbulent dissipation rate
permutation tensor
Kolmogorov length scale
an/dz

an/ o6




Subscripts
i’j ,k,k,u.n
(p)

r

vi

molecular viscosity
turbulent viscosity

transformed coordinates in tiie streamwise, normal, and
radial directions, respectively

3E/ 3z

9/xd0

density

modeling constants
angular velocity

contravariant component of angular velocity

indices

value at the wall
radial component
static

total

axial component

tangential component
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1, NUMERICAL ANALYSIS CF BLADE AND HUB WALL BOUNDARY LAYERS

Introduction

The flow in a turbomachinery blade passage has a predominant flow
direction., The viscous diffusion in the streamwise direction is usually
small and the elliptic influence is transmitted upstream through the
pressure field. So the streamwise diffusion terms in the Navier~Stokes equa-
tions can be neglected in comparison to the diffusion in the radial and

tangential directions. Starting with a guessed pressure field, it is

possible to converge on the full elliptic solution by iterating between L/“

a parabolic solution and an iteration of the pressure field. ‘ The main steps
of the calculation are given below. It is assumed that the properties at
the streamwise station i are known and solution at the streamwise station
i+ 1 is sought.

= 1, The three momentum equations are solved simultaneously to get

/
E 1 7 . . s
i i1 + F ) a

Uy, Vy Wit ® v Fleaee a0 s

e t

» 2. The energy equation and the perfect gas relation are solved to get
the temperature T and the density p.

3. The streamwise pressure gradient is corrected by the use of mass
conservation across the cross-section.

4, The cross-flow velocity components, determined’from the momentum
equations, are corrected by including in them the irrotational velocity
corrections that satisfy the continuity equation. This step requires the
solution of a poisson equation for ¢ defined later.

5. A poisson equation is solved to determine the transverse variation
of pressure. The equation for the pressure is derived by appropriately

differentiating and summing the two transverse momentum equations.
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6. Steps 1 to 5 are repeated until convergence is achieved.
7. Turbulence closure equations are solved to get a new value for
the effective viscosity.
8., Solution is marched to the next streamwise station. The flow chart

of the computer program is shown on the next page.

The Momentum Equations

The Navier-Stokes equations in cylindrical coordinates are trannformcd
into the computational domain neglecting viscous diffusion temms in the
direction §.

The transformed equations can be written in the form,

aE oF jﬁ[
FrR e Rergk *an* ] S
The derivation of this equation is given in Appendix 1.
1))
The column vector of unknowns is g = |V
W

The column vectors E, F, G, C, P, Q, S are given by

: 2
Esz + 5PV +E p
1 2
E":!' Ezpw"'gepv +Eep
Ez PUW + Eg pvwW
Tn U+, oUV + |
. g P n, p 1
-l 2 |
F=3|n, pUV+ng ov° +ngp |
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oUW
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G = | oW :
-PW2+p |




Read Initial and
Boundary Conditions

|
I=2,.. IMAX

No

Solve 3 Momentum Equations Simultaneously

|

Solve Energy and State Equation

-

Correct the Streamwise Prclnuic\crldionc
Using the Gross Mass Conservation Across
the Cross~Section

i

Solve the Poisson Equation for ¢ to
Correct the Transverse Velocity Components

I

Correct the Pressure in the Transverse Plane

1

Convergence Achieved?

Yes
= I < IMAX

I S IMAX? >

I = IMAX

‘STOP,

Flow Chart for the Computer Program
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Numerical Solution of the Three Momentum E uations
———see e S0R O e lree Momentum Equations

The numerical scheme is based on the Linearized Block Implicit Method
of Briley and McDonald (1979). Equation 1 is written in the form

M = D(g) + §(8’)




where H(g) = E(g)

Jaf 2, 9w x
b(s) no['r or aq] "R

S(g) = 5(g) ~ Clg)

The finite difference form of equation (2) 1s

@it - ulysae - e{-n(g) + 3(3)]“1 + (1 - Bidg + ‘-i(u).J‘1

where £ is the weighting factor.
The linearization is dons as follows:

i

Wt . 'gg]‘ o€ = i + [33!_‘ %2 At = ut 4 [_a_tg]‘(‘m el

3¢ o 9

i 2y1
ad+l _ et (238 L el (gs_ 4 1
S §* + 3:] AE = S 4+ %) (s s)

. fortl anid
- pitl o pl _g_gj AE = DY + [ij.:l (s1*! - g}
\

/

The linearized scheme is then given by,

8

1 Ml
oH 95
Defining A = [-9_8-} - eAE[—a'g-]

aD
L=-f %8
and
A i+#1 141 i
ag =8 -8
Equation 3 can be written as
(A + aenyagt*t = st + §)°
or

(A + 88, + L)og™*h = agio + 81

1
{'&] (% - g')/ag = pt + 81 4 B[;-%li)' + -2{] (s'*! - &)

(3)




Factorizing the scheme based on the Douglas-Gunn split one gets

[A + AEL 10g% = AE(D + it

(A + AELr]Ag“'J‘ - Mg*

The Jacobian matrices appearing in equation 3 are given in Appendix 1.

Pressure Correction Equations

The pressure is considered to be composeid of three parts.
P(E,n,R) = Pi(i.n.R) + PV & + Pc(n.R) 3)

Pi is the initial guessed pressure field. PV(E) and Pc(n.R) are one-

and two-dimensional pressure corrections, respectively.

The velocity components are decomposed as follcws

i
Us Ut 4+ U 1
:

Vevyr 4y (4)
We Wt w |
[
U%, Vk, W* are the velocity components which are calculated from the a

momentum equations., U', V', W' are the corrections needed for the continuity
equation to be satisfied.

The U-momentum equation is written as follows.
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The above equation can be rearranged to give,

3 3 n R
—"’-[-35 pUAY* +—J°- pV*U'] + -a-aﬁr pUY! +—‘2 pvY" ] 1[7" pw*u'] L

13 oR R
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Writing the above equation in finite difference form and dropping the

mixed derivatives and the off diagonal terms we get,

9o, g 8 50
L2 oun 4 28 oy u? + [oH* u! Y e
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2 o2 2
- .l.ﬂ_a_u] . [_r__u] . 2(_5_14]
Rell 3 Jyaa,3,001 I )i41,4,k-1 I )4a,9,k

+B{n§ + 1.333 n:)] + B—(ng + 1,333 n:]]
: i+1,5+1,k - 1+1,5-1,k

2
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or

U' = A %é’— where A is a known quantity (5)




M B

Using V momentum equation one gets

9P

V'« B vhere B is & known quantity (6)

From continuity equation, we get

-—9-—-U+nv dR '!n-i-conntant
o tend) e

or

L fur 4 AZ pnyntn B L) dran = b
g{ ';;2 ot x x 85)
R *
m - (U*+nV)dR¢1
¥ . '{'{ Yling M
98 ——9——-(A+n B) dRdn)
T

To correct the cross-flow velocity component the following velocity

potential is introduced

R
__r '
n n
—g%-—}pv'«wfpu' 9)

The continuity equation in the transformed plane becomes

E
ga_a(_r_\_a_[ia. _'a,]__ ’.L i}
R+3RkawJ+3£‘Jpv+qu+ oV + pu (10)




or
e A £,
Sw + W) +5pl o W+ w') +-~-—-—p(v + V') +—Fp(ur +u)
R M
n
-0-%(-‘39-‘9(\!*-0-‘1') + -5 p(u**tr')} -0 (11)
or

3 ) n .
%w' +-5%[§' pw'] +-5~€[—9~ pv' + »{-pU'] +—5%(-‘39- pv' *-;}pl}'] - -mt (12)

where m* can be evalusted from U*, V* W* p., nf* ghould be zero, if continuity
is satisfied.
Using equations 5, 6, 8, and 9 in 12 ona geta
I r +__.g+ -t - Ee naP'+ioA3ﬂ- 3
R} ) s= PP OATE
In order to derive the Poiason equation for the pressure, the n-momentum
equation is diferentiated with respect ton and the R-momentum equation with
respect to R. Then they are added together. The result is
n
—%E—:’Q p] + -—Q—i-[%i P] -C (14)
N 3R

where C contains known quantities.

Status of the Computer Program

The part of the computer program that solves the three momentum equation

has been completed., Coding of the poisson equations is under development.

it k P B . R
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2. TURBULENCE MODELING OF BOTH HIGH REYNOLDS NUMBER
AND LOW REYNOLDS NUMBER FLOWS SUBJECTED TO ROTATION

Introduction

The three dimensional viscid and turbulent effects in turbomachinery
are mainly caused by the three dimensional boundary layer on blades and wakcn.
annulus wall and hub wall boundary layers, shock-boundary layer interaction,
and secondary flow., These viscous and turbulnncg effects play a dominant role
in the study of improved design, better efficiency, off design performance,
etc,

While appreciable amount of work has been done in understanding the

invizcid effects in turbomachinery, there h@s been no investigation related i
to the blade boundary layers in compressor rotors. Because of the complicated
riature of the problem, compreasor, turbine and rotor fan blade boundary

layers still continue to be one of the least understood plienomena in turbo-
machinery. The boundary layers are three dimensional with laminar, transi-
tional, turbulent and separation zones. The flow field is a function of

several parameters such as incidence, solidity, blade geometry, hub/tip ratio,

L amal

camber, radial and chordwise pressure¢ gradients, inlet turbulence, Reynolds
number, Rossby number, Mach number, etec.

A knowledge of the boundary layer characteristics, both mean and
turbulence properties, is essential in the prediction of flow behavior in
these blade passages. The Penn State group, presently involved in the study
of the endwall flows, has initiated recently a detailed study, on both the
experimental and analytical point of view, of the blade boundary layers. The
experimental survey of the flow 1s‘in preparation and will be started very
soon. The existing and well proven techniques of single hot wire and x-wire

are to be used in measuring the development of boundary layers on turbomachinery




ikl

rotor blades. Both measurements of mean and turbulent flow field are to be
performed.

Analysis of three dimensional boundary layer is equally complex due to
the fact that additional effects such as Coriolis and Centrifugal forces
change the structure of turbulence, thus invalidating most of the turbulence
models that are presently used in computing turbulent boundary layers. In
the case of turbomachinery rotor flows, the turbulence is affected mainly by
the curvatures of both the blade surface and the streamlines, by the body
rotation, and in the case of the boundary layer, by the low Reynolds number
effects. All thesc effects make the flow to be highly non-isotropic. More-
over, as it can be seen in the experimental results of Castro and Bradshaw
(1976) and, Johnston, Halleen and Lezius (1972), the curvature and/or the
rotation may affect the stability of the boundary layer and an augmentation
or suppression of the turbulence may result., With such phenomena occurring,
it appears that assumptions based on the well known isotropic eddy viscosity
concept should fail badly, as the Reynolds stress tensor is not aligned with
the mean strain tensor when additional production or destruction of turbulence
are coupled with the production due to the shear.

Most of the present models are valid for non-rotating systems. These
include Jones and Launder (1972) for k-£, Launder, Reece, and Rodi (1975)
and Lumley and Khajeh-Nouri (1974) for the full Reynolds stress model. The
effects of curvature in high Reynolds number flows have not yet been accounted
for properly in the turbulence modeling. We may mention the attempt by
Gibson and Rodi (1981). As far as the rotation effects are concerned, very
few attempts have been made to 1néroduce such effects in the calculation
schemes. However, in the available turbulence models, the effect of rotation
is not properly modeled in the transport equations of Reynolds stress or the

dissipation rate. Moreover, the boundary layers flows are of the low

e e
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Reynolds’ number type. If we are interested in modeling the turbulence
behavior very near the wall, then it is necessary to introduce this effect
in the modeling assumptions.

The formulation of the closure problem will vary depending upon the
information and accuracy desired. In fact, the calculation procedures for
three-dimensional viscous flows require large memory storage and large
computer time to solve the three momentum and continuity equations.
Moreover, such codes are still in a phase of development and are generally
tested only for simple cases (e.g., laminar flows). Hence, the introduction 4
of turbulence models in these codes necessitate careful attention and simple

models may permit control of the stability of the numerical scheme. However,

in rotating turbulent flows, zero equation models fail to represent even the

gross properties, due to the fact that the length and time scales are assumed

empirically. The two-equation model is a compromise between a full Reynolds
stress model which needs the resolution of seven more transport equations
as complicated as the Navier-Stokes equations themselves, and the empirical

models. Therefore, as a first step, attempts are being made to include the

i
|

effect of rotation in the k-¢ modgl. Modeling of the rotation effect apg‘
the low Reynﬁlda number effect in the turbulence closure equatiéns are
w&escribed in this report;

A literature survey on both the analytical and the experimental work p//ﬂ

is given in Appendix 2. Some of the important conclusions of this survey

are:
1. Only few calculations are available for the calculation of the
three-dimensional bouhdary‘layer in rotating frames.
2. No complete Reynolds stress model is available for rotating turbulent

flows. Very few attempts have been made to account for the rotation effects

[




in the k-¢ model, but none are really based on a logical analysis. In fact,

the most up to date results in modeling are those of Raj (1975) and Hah and

Lakshminarayana (1980). The major effort, then, should be given to the

analysis of the dissipation rate equation and to the Reynolds stress equations,
3. Detailed measurements providing informations on the effects of

both the Rossby and the Richardson number on turbulence are not very numerous.

So, every new result would be of great interest, particularly if the rotation

effect can be isolated from the other effects.

Turbulance Equations

The turbomachinery boundary layers and wake must be represented in a
relative rotating frame of reference, which includes both the curvature and
rotation terms, to eliminate the effect of periodic unsteadiness. The trans-
formation of the :urbule;ce equations as well as the momentum equations from
a stationary coordinate system to a rotating coordinate system is quite
complicated., Moreover, the necessity for the turbulent model to be as
general as poassible, indicates that the generalized tensor formulation is
the most adequate representation of the set of equations. The equations of

the mean and turbulent quantities representing an incompressible flow are

derived in a rotating frawme and are presented in conservative form,

Continuity equation

i
- ' -
1 0 uyy 0 (15)

Momentum equations

(P8 )48, 8, | +24,, 0000 40012 )0, - (2, @)x ) = -G ¢ +oujud - 2D,

(16)
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with M

- 3 --]-'- U
1 2usy for Newtonian fluid and sij Z(ﬁi,j + "3,1)’

Reynolds stress equations

GTTDHETE, T,y = -G8 + TS + pujuet - uir uE,,

+r Hesar - pu'u'3 i . - pu'u'3 i
k 3 k

P, P, %1 PR T, 1,9
plyt - plgr - q q
- pluy g - Pl g -2 uputt e upu'D an
Kinetic energy equation
Fo -k
k)+(ok ﬁj),J = -(pTuy 64 4 pkurd - uiPiJ),J - pu'tydd Uy 4" Pijui'J
(18)
vwhere -pu'iu'j ﬁi j = production and PIJui y =0 = 2usijs'IJ
Dissipation equation
(pe)+(peﬁj),J - -lou(siku'j sf§>-<p2373>,3 + g™y €ing = 4y ﬁ4k s' ui'J
A S'iEu:i - 4y s"Eui.ju;i - 4pvg™ s:;E Stk
-4v o' tpy L - 8u eiquP s"Eu;§ (19)

+

The curvature terms are implicitely included in equations1l5 through 19. The
rotation effect appears both explicitely and implicitely. We are now focusing
our analysis on the rotation effect principally.

In the momentum equation, the rotation appears through the Coriolis and
Centrifugal forces, but it also affects implicitely the results through the

Reynolds stresses. In fact, looking at equation 17, these Reynolds stresses

g e R AT AR T 1
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are explicitly affected by the Coriolis forces, but are also implicitly
affected by the rotation through the triple velocity correlations, the
pressure velocity correlations, the pressure strain correlation, the produc-
tion by the stresses themselves, and the dissipation.

Following these remarks it is evident that a full Reynolds stress model

should give better results than the models based on an isotropic eddy viscosity

hypothesis, particularly in thr@e-dimenbional flows.

However, the difficul;y to handle solution procedures for three dimen-
sional turbulent flows and the particular problem of modeling the dissipation
equation lead us, in a first step, to direct our efforts in developing a k-¢
model for both high and low Reynolds number flows. This model necessitates
the resolution of two transport equations for k and €, and the Reynolds
stresses are related to the mean strain through an eddy viscosity. The
present k-t model cannot account for the anisotropy of the turbulence which
exists in the boundary layer around a blade. A modification to the relation
giving the eddy viscosity is presently under development, in order to include
the effects of the rotation.

The rotation also appears explicitly in the equation for the dissipation
rate €. It seems [Hanjalic and Launder (1978)] that some of the major problems
in caiculations come from the modeled ‘equation for the dissipation rate €.
Hence, there is a need for better analysis of this equation. Following
Tennekes and Lumley (1972), we may develop a qualitative analysis of the
equations k and € in order to provide the magnitude of each term and then

to derive a model for high Reynolds number and low Reynolds number flows.

i



Qualitative Analysis of k and € Equations

Equation 18 represents the evolution of the kinetic energy k. It is

interesting to note that the rotation term vanishes identically, and this i

equation is independent of the coordinate system. It is clear, however, that

Laalil

even though the Coriolis forces have no direct efferts in this equation, the

R

rotation affects the kinetic energy principally through the production by the
J mean strains and also through the dissipation term. The production term
depends on liow the Reynolds stresses are represented and the dissipation term
is described by equation 19, which is the exact form of the equation of evolu-
tion for th; dissipation rn;e. Different authors have pointed out the

difficulty in solving this equation, and one of the most suitable methods

to simplify the equation is to use the high Reynolds number approximation.
" With this assumption, terms which are dominant at low Reynolds number are

eliminated. At this point, we may note that equation 19 is not independent '

of the transformation from a non-inertial frame of reference to a rotating

frame,
In Tennekes and Lumley (1972), it is shown how orders of magnitude may ;
be assigned to various correlations appearing in these equations. Instantaneous 1

quantities appearing in the correlations are of two types, belonging either

to the energy containing range of eddies, or to the dissipation range. The
former has characteristic frequency u'/%{ (where u' is a fluctuating velocity
scale, while £ is a length scale of the gross structures). The dissipation

rate is of order u'3/£. The latter has characteristic frequency v/n (where

i v and n stand for the Kolmogorov velocity and length scales), with v/n

R%/z u'/% (with Re = u'/V). The correlation coefficient between two quantities
from the same range may usually be taken as unity, but the coefficient

P between two quantities from different range is of order of the time scale

i b e e e e e i wa a L amb o gy S o ¢ FRCESP RSt
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ratio n/v/&/u' ~ rel/2, 1n addition, we may make use of the more familiar

fact that derivatives which are external to correlations correspond to scales
in the energy containing range, while derivatives within the correlation
correspond to dissipation scales. We wish to apply this sort of reasoning

to the equations for the kinetic energy k and its dissipation rate €. Applied E
to the dissipation equation it is particularly useful, because the dynamics |
of these quantities is dominated by the small scales, and interacts only weakly
with the energy containing eddies. Proceeding in this way, we may provide an |

order of magnitude for each term of equations 18 and 19.

Kinetic Energy Eguation (equation 18) 3
(uJ—

The convective terms (pk)+(pk Uj),J are of the same order as p )

-1-73 3
L
The production term (=pu'"u J) is of order p ("2)
’
(u')3

The dissipation term (-pe) is of order p )

In the "diffusion" tetn -(p' st + pku' 3 1 Ia),j , the two first

terms are of order p (uz) while the last one, reprcncncing the diffusion

(u')

by the molecular processes, is of order p Re and is negligible for

high Reynolds number flows.

Dissipation Equation (equation 19)

- ]
The convective terms (pe)+(pe Uj),J are of the same order -p !251_
The terms involving derivatives of mean strain -4u S ikp'a §%J is of

4
the order p Su) Re*

22

The terms involving mean derivatives and rotation
- ) qeik ko3 o5 P
4uu,ks u! - 4us "\Jk(ui +2eij )

i,1




Following Lumley (1970), we may model the quantities S'I"ui’j and S'qu'i
and then we write

s u4,9 "'32( 3 “’": ?]

ik d o £(sd , o/ Y gld
S “'k"svc +e/es
and since the mean flow is considered incompressible the only terms which
contribute are the second terms in the last two relations., Therefore, the

"wé o
first term involving mean derivetives is of the order p S%fl- Rcllz and the

'y

second term is of order p ,_(_u__,__ Re /2 (1 +2 %&).

The temms involving the triple correlation between the fluctuating

derivatives =~4yu S' Following once again Lumley (1970) it is of

ug, 9%k
the order

ng)?/? (n +Os,, 5% )
(u)? 1/2
92

4

Therefore it is of order p (B + Rzl).

The terms involving the correlation with pressure fluctuations

IE'
-4y S LH

We may write a poisson equation for this term and then the solution of the

equation is as follows: [Chou (1945)]

' 1E i ' ' Tk d_v_(.l_l
v el = an [I) Hl)n(“(?)s )](1),“ X

dvglz

A || 1k
2 1 D™ s

3E'.. s'ik
+ 2 [f l‘ Pw s oIk 31/X 4o
am 70X anm P m %o
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This solution introduces higher level of correlation and then, at this
level of closure assumption we may neglect this term,
The terms involving the correlation between the derivatives of the

fluctuating strain

nj .JIE n (t)3/2 (A "‘G(s ik v) .

Therefore it is of order

e
pi';?.L,}/z (A + Ral)

~4uvg

The "diffusion" terms -(peu'a),j + 3“jua,nj. The first term is of

4

] [} -

orderx p Liiz— while the last one is of oxder o 1251— Rcl .
i X

This order of magnitude analysis is summarized in Table 1.

k=€ Model for High Reynolds Number Flows

High Reynolds number flows occur generally far from walls, in that
case the viscous diffusion may be neglected in equation 18, then only the
diffusion term (pku’3 '3 needn to be modeled. For this term we follow

the proposition of Jonc:-Launder and we write (in generalized tensor notation)

kutd

U
ratd __ug-]
(p +pu )DJ 8 [Gk ktz .j
The production term is defined through the law c¢# eddy viscosity.
In regard to the dissipation equation, we may neglect all the terms
; (u')l’ V
of order of magnitude less than p 5 ; therefore, the only terms left are
)
the convective terms, the "turbulent diffusion" and the production and
dissipation by the correlations of fluctuating derivatives (Table 1). These

two terms have been derived by Lumley :and Khajeh-Nouri (1974). At this point
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of modeling, assumptions to get these two terms are widely based on physical
and dimensional analysis. In fact, for high Reynolds number flcws, the
dissipation processes occur almost only at high wave numbers (e.g., the
smallest structures); therefore, an isotropy hypothesis may represent the
small structures quite well., Moreover, looking at the kinetic energy
spectrum we may assume that three zones are defined, the production zone
(low wave numbers), the inertial zone, and the dissipative zone (high wave
numbers). By this way, a time scale based upon the time that the gross
structures transfer their energy to the dissipative structures may be defined.
This time scale is of the order of k/e. So, the processes are simplifiéd,
and the € equation may be written in the transport form where the sources

and dissipation terms axe relatcd to those existing in the k equation, by

the time scale. Then following Lumley and Khajeh-Nouri (1974), the equation 19

reduces to
( ;)+( Eﬁj). + ( Eu'J) -c EP_g Ei
p (Y Dj P ’J ‘ —el k 52 P k

The "diffusion teru" may be approsximated by a gradient formulation (Jones-
Launder) . Then with the formulation for the eddy viscosity, the model is
complete; the constants O r Ter Cel, C82 appearing in equation 20 are those

found by Jones and Launder (1972)

'

. - He _
(PR +(okDh | = g [5{' "'z].j il
(&) +(peld) , . = “5812 € ] +¢c Sp-¢ Ei (20)

The formulation for the eddy viscosity proposed by Joneé-Léunﬁer is given by,

2
k
W =GP
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This formula assumes a local equilibrium between the production and the
dil-ipatién of turbulence, But in the case of a rotation, the production
anid the dissipation evolve differently because of the differences in the
range of wave number the two processes are occurring. As the production is
principally located in the low wave number zone, the effect of the rotation
should be more important on the production than on the dissipation which
can be seen as nearly isotropic. Therefore, the relation giving the eddy
viscosity should be corrected in the case of a rotation. This is being
presently carried out,

We may reﬁhrk at this point that no direct effect of rotation appears
in the dissipation equation derived for high Reynolds number flows. That
can be related to the weak anisntropy of the dissipation in that case. The
analysis given above has been carried out earlier, except for its representa-

tion in a generalized tensor form.

k-€ Model for Low Reynolds Number Flows

First of all, we may want to define what we call a "low Reynolds number
flow". If we are interested on the statistical properties of the turbulence,
it is useful to define local parameters, such as local Reynolds number based
on the turbulent quantities, Richardson numbers, etc. The Reynolds number
which 1s interesting to characterize the turbulence behavior is based on

the kinecic energy and its dissipation rate and is written as follows:

2
k
Rp =3V Re
The fact that a flow will be of the high or low Reynolds number type will

depend on the value of RT'
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For low Reynolds number flows the viscous diffusion may not be neglacted,
moreover very near a wall tha dissipation is not imotropic. Many of the
terms we were neglacting may be important very near a wall. Tharefore we
must go back to equations 18 and 19 and analyze the terms which were

neglected bafore.

Equation for the Turbulent Kinetic Energy k

The production and turbulent diffusion terms are modeled aimilar to the
high Reynolds numbar and the effect of low Reynolds number will appear
through the eddy viscosity. The only term which needs to be modeled is the

viscous term (uiPIa),J. This term is equal to ggjluﬁ.g + u(u'Iu}L),i].J

Generally the value of the dissipation at the wall is different from
zeroc. Following the argumant of Jones and Launder (1972), it is useful to
make the disaipation € equal to zero at the wall for improvement in calcula-
tion. It is necessary, then, to know the value of the dissipation at the
wall., We may write the kinetic snergy equation at the wall, then equation 18

becomes

= Vg -1
(pe) - n”’JLu + ==k, , + u(u' u').]
) gl R RTC

Amd introducing tha following hypothesis:

1. My ™ 0 at the wall

2, If y is the normal direction to the wall, we may write
u' = a(t)y; v' = b(t)yz; w' = c(t)y., Therefore very near the wall (y+ < 8)
the kinetic energy is k.-<:§-:7:§¥z&*y2; then the first derivative of k

is zero at the wall, while the second derivative is a constant.

2
3. uT - cu?u o !%* with & ~ k3,2/£ and R is a mixing length then
uT \ y2 and the first derivative of by should be zero, while the second

Ly

derivative should be a constant. Then (pe)(p) - g ‘G§ M E’@d '“vT,ijsi)(p)‘
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Moraover, if we use the correction function F, for the sublayer in the
relation for ”r' it appears that we may neglect the second term. Therefore
23 5
(pe)(p> g FH E'kd(p) which is a constant.
This can be written, following Jones-Launder (1972), as

(0e) .y = 22w g™ 047 W2

Which can be seen as a genearalization to the formulation proposed by Jones

and Launder for a two dimensional boundary layer.

1/2 2
(02 (p) = 2“(%‘57}

The kinetic energy equation reduces then to

H

Equation for Dissipation Rate

The effect of rotation may be important in low Reynolds number flows
(near a wall) unlike the high Reynolds number case (particularly in the case
of turbomachines). This effect must be modeled in the equation. But this
term is not the only one to be retained in the equation, some other terms
which are related to the anisotropy of the dissipation at low Reynolds
numbers are of the sawme importance.

Two kinds of terms may be discerned, which are important at low Reynolds
numbers (see Table 1 and equation 19).

1. Terms of Order 3;1/2

These terms come from the interaction of the dissipation with the
mean gradients and with the rotation velocity. They also arise from the
terms representing the production of velocity gradients by stretching by
fluctuating strain rate and representing the destruction of these gradients

by wviscosity on the other hand.
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The terms rnlltcd to mean quantities are

-mw’ L SIREUYE zeipin")s'“u:ka]

Then following Lumley (1970) this term can be reduced to:

P
4y JE o) sk &1 “]- 1.1]
-3uvE ““mﬁ*a[l*z"‘-;u"“i.g{

L

In the case of a turbomachinery with Q = (0, 0, QB). the coefficient

{1 + 2 u_ni_“i may be simplified. In fact this term appears to be important
Ui}
only very near a wall. Therefore, in this region the boundary layer approxi-

miations are valid and the coefficient may be approximated using the only
velocity gradients which are important. We may, then define a gradient

Richardson number as follows:
P
e, N

- ..2 _!-P..'L._

Ric i
1,)

Hence,
1+2-—-91-—-1-R
Yy v

ic

If we assume that a relation of the gradient type exists between the
Reynolds stress tensor and the strain tensor and that the energy spectrum
is not different from an equilibrium one, then we may assume that this term
is proportional to the production, then the terms related to mean quantities

can be proportional to

4 €
3 kPF (R R
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The terms rolated to fluctuating strain rate are

=4} S'Igui.Juli 4duvg nj ,fE sik,n

Following Lumley (1970) we approximate these two terms as follows:

s' ui,j“:ak N (%)3/2 (B + a S Si‘k v/E)

s1k v/e)

Six

"IE""‘ ey 3/2
% &ﬂ (A +a,

3 'j ik,n

Then the part which is of order R;1/2 may be approximated by:
e A
4'EPF2 (&r)
So the total contribution of terms of order R;llz may be reduced to:

€

where the function F must be established.

2., Terms of Order n;l

There are two terms of this kind, the first one represents "exactly"
the diffusicn‘procelies by molecular viscosity and does not need to be

modeled; the second term is -4u S 1kuF3 %: We may note that the correlation
'3

between S!, and u'’ should be weak because each term belongs to a different

ik
range of wave number, A first approximation then, is to consider the term

W

[} 'J ]
S KU’ as a flux of S1k

this flux is related to the gradient of the mean strain and then:

by u'Y and to introduce the gross hypothesis that

ik)

- v ogtd '
4uU S KU S,:l du\)T (}B 8 5y

4
g (s
3 1k

However this term should be of little importance in the major part of the

boundary layer.
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It is remarkable that this term can be considered as a generalization
of a term proposed by Jones and Launder (1972) for the calculation of a two

dimensional boundary layer. Therefore, the dissivation equation reduces to:

oty - o] v pn

'3
+¢ e, c. wv, gd¢s,, , sk (22)
e, K gyl T B Ok, %y

The constants d., Cgy, G, are the same as the ones for the high Reynolds
number case. The constant Cg, reduces to the value 2, in the case of a two
dimensional boundary layer [see Jones-Launder (1972)]. Then, the damping
function Pe must be established. According to the analysis given above Fe
should be a linear function of the Richardson number and an exponential

function of the Reynolds number. Then the form of Fe should be:

Pe(RT’ Ric) -] - f(RT)(l -a Ric)

Eddy Viscosity Law

We need a formulation to relate the Reynolds stress tensor to the
strain tensor, through an eddy viscosity coefficient., This hypothesis means
that [Tennekes-Lumley (1972)] the gross structures get the tendency to be
oriented with the principal axis of the strain tensor to extract.more energy
to the mean field, and that the turbulent structures are approximately
convected within the mean velocity direction. Therefore, the main hypothesis
to derive the viscosity law assumes that the turbulent viscosity is isotropic.
But for three dimensional flows and particularly for boundary layer flows,

the velocity vector ﬁ and Vﬁ are not aligned in general. Therefore, the

I I R T

L Laaiecoaioa .

T - S i b catite S G e R
BT v U o Pt W T T WP OO, T T B SN w12 ‘ A B - B ant: »




28

isotropic eddy viscosity is not adapted to predict the behavior of the Reynolds
stresses. The best way to avoid this problem would be to solve the complete
set of Reynolds stresses equations., However, as first step attempts will
be made to derive an expression for eddy viscosity. In fact, in its most
general form the eddy viscosity is a fourth order temsor, and for the
particular case where only two directions in the flows are of equal inpgrcance
(that is the case for blade boundary layers) we may introduce two diffeient
eddy viscosity coefficients which can take account for the non-isotropy of
the flow. This has been done for a mixing length hypothesis by Koosilin and
Lockwood (1974). Using this concept, the anisotropy introduced by the rota-
tion could be included in the definition of the viscosity law.

An attempt is presently under development to take account for the effect

of the rotation in the eddy viscosity law.

Conclusion

The analysis of the kinetic energy and the dissipation equation has
been performed, and some remarks can be made at this time.

Firstly, an order of magnitude analysis of equations 18 and 19 showed
that the rotation does not affect .the dissipation rate explicitly in high
Reynolds number flows. In fact, in such flows the dissipation is nearly

isotropic and it is logical that the rotation does not affect € because of

the analogy of each direction. At low Reynolds number, the dissipation
becomes non-isotropic, both the effects of Reynolds number and Richardson

number may be important in this case.
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Secondly, it appears that the e¢ffects of rotation are more important
on the production terms than on the others. In fact, if we examine equa-
tion 17 it is easy to show that the Reynolds stresses may be greatly
affected by the rotation while the kinetic energy and its dissipation rate
are not so much affected. Then it is evident that the most important relation
which controls the calculation is the eddy viscosity coefficient.

Thirdly, we may make another remark which is also related to the
preceeding comment. The analysis of the dissipation equation shows that
the effect of rotation should affect the "production" term instead of the
"dissipation" term in the equation for €. Most of the models at the present
time account for the rotation through the "dissipation" term [see Launder,
Priddin, Sharma (1977); Howard, Patankar, Bordynuik (1980)]. Nevertheless,
our analysis seems to be in accord with the remark which was made by
Launder et al. (1977) that the corrections might have been better made on
the "production" tem of the £ equation instead of on the decay part.

A computer code has been written to check the model presented here, in
simple cases such as flat plate boundary layers, boundary layers on rotating
cylinder. The program is based on the Patankar-Spalding procedure (1970)
and is used to solve the parabolic transport equations for the velocities,
the kinetic energy and its dissipation. It is operational for two dimensional
boundary layers on flat plates, and is being modified to calculate boundary
layers on rotating cylinder. These calculations are performed in order to
check the assumptions made for low Reynolds number modeling. Then the model
could be included in the three-dimensional computer codes developed at Penn

State.

-
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3., MEASUREMENTS OF THE THREE DIMENSIONAL FLOW
INSIDE AN AXIAL FLOW COMPRESSOR ROTOR PASSAGE

Experimental Program

The measurements reported in this report ware performed using the Axial
Flow Compressor facility in the Department of Aerospace Engineering.

The flow.is surveyed across the entire passage at six axial locations
(one upstream, four inside the rotor passage, and one downstream) and at
five radial locations. Measurements were taken at five radial locations
(R = 0.58, 0.67, 0.75, 0.83, 0.918) at each of the following axial stations
inside the passage: 2 = -0.5 (upstream), 0.26, 0.5, 0.73, 0,97, and 1.06.

The data inside and downstream of the rotor were acquired with a five-
hole probe, rotating with the rotor. The data upstream were acquired with
a stationary five-hole probe. All the measurements were taken at the design
flow coefficient ¢ = 0,56, |

The results of the measurements are compared with the predictions from

the Katsanis and McNally (1977) computer program.

Typical Results

A small sample of the experimental data and some comparisons with the
predictions from the Katsanis and McNally (1977) program are presented here.

The measured and predicted blade to blade distributions of the axial
(Wz), tangential (WT) and radial (WR) relative velocity at R = 0,918 (near
the tip) and at Z = 0,26, 0.5, 0.73, 0,97 are shown in Figures 1 through 4.
All the components of velocity are normalized with respect to the tip speed

velocity. The predictions for the axial velocity are quite good at the
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last two axial stations (i.e., Z = 0,73, 0,93), At the first two axial
stations, the agreement is only reasonable and the slope of the predicted
and measured profiles are of opposite sign.

The predictions for the tangential velocity arequite good except at the
last axial station Z = 0,97, Nevertheless, at ihis location the shape
of the predicted and measured profiles are strikingly identical. The differ-
ence in magnitude comes from the fact that the code cannot predict the flow
near the trailing edge accurately. This is because it cannot incorporate
the Kutta condition correctly, since it is based on an inviscid analysis.

The program does not have the ability to predict blade to blade distribu-
tions of radial velocity. The predicted radial velocity ptofilei that are
shown in Figures 1 through 4 are computed by assuming that the meridional
angle calculated in the Sz surface solution is constant along the entire
blade passage,

The measured blade to blade distributions of the relative total pressure
and the static pressure are shown in Figures 5 through 8. Both the total
and the static pressure are normalized by 1/2 p Ui.

The static pressure profiles are fairly linear with the loading
decreasing as we go from Z = 0.26 to Z = 0.97.

The relative total pressure profiles are almost flat. The mean value
of relative total pressure is almoat constant. The difference of the mean
relative total pressure at 2 = 0.26 and Z = 0,97 is less than 1 percent.

This indicates that the losses in the inviscid part of the flow through the
blade passage are very small.

The measured profiles of the axial, tangential, and radial relative
velocity downstream of the rotor are shown in Figures 9 through 13. The
axial location is not the same for different radial locations due to éhe

geometrical constraint on the probe.
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The velocity defect is maximum at the location Z = 1,049, R = 0,587
and minimum at the location Z =» 1,085, R = 0,918,

The radial velocity is less than 10 percent of the tip speed velocity
at all locations and mostly outwards. This agrees well with measurements
taken by Dring et al. (1981) and Davino and Lakshminarayana (1981). Small
invard radial velocity at the pressure side region can be seen at the
radial locations nearest to the hub and casing while in the mid-span region
the radial velocity is cvctywhcfe outwards.

Inward radial velocity at the pressure side region is induced by the

shed vorticity. Shed vorticity results from the gradient in blade loading

across the span. Since the loading in the mid=span is relatively uniform,

.
SO

there is no strong shed vorticity in that region sc inward radial velocity
cannot exist. This justifies the present experimental results.

The measured profiles of the relative total pressure anj the static ‘%
preasure downstream of the rotor are shown in Figures 14 through 18, As it
was expected the relative total pressure profiles follow the behavior of
the axial and tangential velocity profiles.

The static pressure profiles show an increase of the static pressure in

the wake region. This comes in contrast to the classical assumption of

constant static pressure across the wake. Similar observation has been

reported by Lakshminarayana and Davino (1980).
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AFPENDIX 1

Transformed Momentum Equations and Jacobian Matrices

Momentum Equation in z-Direction
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APPENDIX 2
Litsrature Survey on the Effects of Curvature

and Rotation on Turbulence Structure

In this section a literature survey on experimental and analytical
investigation of the curvature and rotation effects on turbulence is carried
out.

Experimental results provide information on the physical behavicr of
the turbulent flows to enable modelling the effects of the different strains
such as meanstrains, curvature effects, rotation effects, etc. The triple
velocity correlations, pressure-velocity correlations, dissipation which
appear in the Reynolds stress equation, are difficult to measure and,
hence, the modeling is more or less empirical and is based generally on very
restrictive assumptions. For example, the turbulence models are often based
on the homogeneous fluid properties, local isotropy of dissipative scales,
high Reynolds numbers which lead to relatively simple models. On the other
hand, experimental work provide results tiat can be used to check different
turbulence models. Nevertheless, some of the experiments do not provide
sufficient information to check all the models in detail. In the past few
years, it seems that a great effort has been made to provide experimental data
including all the Reynolds stress tensor terms. dost of the data available
1s for simple two dimensional shear flcws (free shear flows, boundary layers,
jets, wakes, ducts). For the complex flows (following the definition of
Bradshaw (1977) for complex flows) which are the most common in engineering
practice, very little data and few models are available.

In this section, more emphasis is given to the effect of rotation which

is the principal effect we are interested in.
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Curvature Effects

Experimental Data

Castro and Bradshaw (1976) have carried out extensive one-point measure-
ments in a highly curved mixing layer to determine the effects of streamline
curvature oﬁ a shear layer, The principal effect is to diminigh the Reynolds
stress tensor components when the angular momentum of the mean flow inoreases
with radius of curvature and to increase these quantities in the opposite
situation. The most spectacular feature of the measurements is that the
components of the Reynolds stress tensor after decreasing in the highly
stabilizing curvature region, rise rapidly and overshoot the plane-layer
value farther downstream before finally decreasing. This indicates the
inadequacy in current modeling for‘shéar layers such as the use of the
shear layer thickness to provide a length scale, the rotational invariance
of turbulence models based on seccnd order transport equations, and the
gradient diffusion hypothesis for turbulent transport,

Changes in turbulence properties can occur even with small curvatures
as can be seen in the experiments of Hoffmann and Bradshaw (1978) on a
turbulent boundary layer with a mild longitudinal curvature, and of Hunt
and Joubert (1979) in duct flow. Data are also reported by So and Mellor
(1975) who show that Reynolds stress increases and three-dimensional
vortices exist over a concave surface. The experiments of Margolis (1963)
deal with the unstable effects in a curved mixing layer. The latest paper
by Nakano et al. (198l) covers the effects of stable and unstable freestream
on a turbulent flow over a concave surface, where different shear flows are

provided at the inlet to the curved section. Three-dimensional longitudinal
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vortices are found. In an unstable free stream, turbulent intensities in
the boundary layer as well as in the free stream are increased. Alcaraz
(1977) studied the wall jet developing on a constant-radius convex curved
surface. The flow was nearly two-dimensional, but the curvature was large

enough to produce measurable effects on turbulence.

Analysis
The effect of stabilizing or destabilizing forces on the turbulent

motion of homogeneous fluids in flows along curved surfaces was first dis-
cussed by Prandtl (1930). Early experiments gave evidence that the intensity
of turbulence increases on concave surfaces and decreases on convex surfaces.
Similar effects occur, when the gravity field acts on a flow of variable
density. Gdrtler (1959) has pointed out the analogy between the two effects.
Bradshaw (1968) proposed a formai algebraic analogy between meteorological
parameters, such as Richardson number and the parameters describing the
effect of curvature or rotation on turbulent flows. Semi-quantitative use

of the analogy shows that the effects of curvature are appreciable if the
shear layer thickness exceeds roughly 1/300 of the radius of curvatﬁre. The
main result of the paper is the introduction of the Richardson numbers for
streamline curvature and rotation which represent the ratio of the "buoyant"
production to inertia production. Bradshaw also proposed a form of the Monin-
Oboukhov formula for the change of mixing length with Richardson number for

curved flows. The development of multi-equation models for curved flow bhegan

nearly 1975 with Mellor who in fact used the same stress closure approximations

for buuyant flow and curved flow to produce a modifying function for the

ek

B



51

eddy viscosity. Irwin and Smith (1975) simplified the stress-closure of
Launder et al, (1975) to cslculate the development of boundary layers and
wall jets on curved surfaces, The most important result was that the
observed curvature effects could be accounted for by the relatively small
production terms appearing in the individual Reynolds stress equations.
Launder et al. (1977) proposed a two-equation model (k-€). The energy
production rate due to curvature appears in exact form in the energy equatiom,
but the curvature effect is modeled enpiriéally in the dissipation equation.
Gibson (1978) diveloped an algebraic Reynolds stress model, following the
idea that effects of curvature on heat transfer could only be accounted for
by modelling the Reynolds-stress and heat-flux equations. The model is
derived from that developed for the buoyancy affected turbulence. The
influence of the wall is introduced in the modeling of the fluctuating
pressure. It is shown that the effects of streamline curvature on heat
transfer are probably significantly less than on the shear streas. That is
an important result which suggests that the use of a constant turbulent
Prandtl number in prediction methods may provide misleading estimates of

the heat transfer from curved surfaces. The algebraic Reynolds stress model
may be coupled with a one equation scheme (k) or two-equation (k-£) models
to provide a length scale. Recently Townsend (1980) introduced the rapid-
distorsion approximation to predict the streamwise variation of 53/;2,
considering that the complex distortion fnvolves taking account for the
history of the distortion. Two remarks are to be made. Firstly, this
approach may not be suitable for mild curvature surfaces, where the time
scales of turbulence motion and distortion can be of the same oxder.
Secondly, this method predicts only stress ratios, and if it were to form
part of a calculation scheme, other equations would be needed to determine

the intensities. More recently, Gibson and Rodi (1981) have proposed a full




52

Reynolds stress model for two-dimensional curved flows and for high Reynolds
numbers. The modelling is principally based on Launder et al. (1975) model,
using the simple gradient diffusion hypothesis for the triple velocity
correlation due to Daly and Harlow (1970). 1In adapting the pressure-strain
correlation to curved flow, the mean shear production as well as the éxtra
strain due to curvature are included, though the effects of curvature are
implicitly introduced in th§ modeling. The modeled € equation, in the form
originally proposed by Hanjalic and Launder (1972) appears to be quite
adequate, only a logical change has been done in that equation. The energy
pr&duction due to mean shear in a simple flow 1s replaced by the total
(shear and curvature) production. However, recently the performance of the
modeled equation for € has been questioned [Launder and Morse (1979), Hanjalic
and Launder (1978)] for complex flows. So, one of the most updated works to
be done should be the modeling of the exact equation. Particularly when
curvature and rotatiﬁn effgcts are present. We may mention the latest
works of Gibson, Jones, Younis (1981) on curved wall boundary layer and,
Gibson and Younis (1981) on curved wall jet more particularly on a convex
surface [Alcaraz (1977)]. The only difference in modeling with the previous
work of Gibson and Rodi (1981) is in the way of how the pressure strain
correlation is modeled. The proposed modification for near-wall effect by
Launder et al., (1975) is used. All these calculations are part of a program
motivated by the requirement for a general prediction procedure for complex

shear flows with density stratification, rotation and streamline curvature.
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Rotation Effeccs

Experimental Data

It was pointed out by Johnston (1970), that there arxe two basic effects
of rotation. If components of the coriolis acceleration is parallel to the
surface on which the layers are growing, secondary flows will tend to
develop in the mean flow field of the layers. If a component of the coriolis
acceleration is perpendicular to a solid surface, some stabilizing and
destabilizing effects are observed in the turbulence structure itself. Both
effects are believed to be important in the flow fields of :entrifugal
impellers.

The experimental data available may be classified in two categories.

1. Free shear flows in rotating frames (e.g., wakes), and 2. Wall shear

. flows.

In the case of free shear flows, only the experiment of Raj and
Lakshminarayana (1975) is known to us. These authors give a detailed measure-
ment of the wake characteristics behind a rotor. The results of Ravindranath
and Lakshminarayana (1980) are also available.

In the case of wall shear flows, one may class the different experiments
available in three categories:

1. Rotating Cylinders or Pipes

2. Centrifugal Turbomachines

3. Axial Turbomachines

1. Rotating Cylinders in Axial Flow

Almost all the experiments designed in this case are nearly the same.

We may mention here the works of Bissonnette and Mellor (1970), and
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Lohmann (1973). In each of these experiments the mean properties

and the six components of the Reynolds tensors are measured, but the major
effects due t- rhe rotation occur very near the wall and the turbulen:z
quantities are not measured in this part of the bouridary layer.
Arzoumanian et al. (1981) has provided data on an axially rotated cylinder

with rpecial emphasis in the region very close to the moving wall, neverthe~

less, only the following turbulent quantities are measured: u'z, ;TI. uw .
The tuxbulent stresses u'v' and w'v' are derived by integrating the corre-
sponding momentum equations from mean velocity measurements. Nakamura et al.
(1981), in their study of a three-dimensional turbulent boundary layer on a

spinning thin cylinder in an axial flow, have given some results on the

mean properties. A universal law for velocity distribution is also derived.
The experiment on the three dimensiongl boundary layer developing in an

axially rotating pipe of Murakami et al, (198l) show that the flow is affected i
by two counter effects. One is a destabilizing effect due to an increase %
of the relative velocity at the wall caused by the pipe rotation, and the
other is a stabilizing effect due to the suppression of turbulence by the
centzifugal force. The dominant effect depends on the Reynolds number and

the rotational speed. i

2. Models of Centrifugal Turbomachines

The effects of the coriolis forces in such machines are of great
importance. The experiments of I-Man Moon (1964) provide some results on
the mean quantities as well as on the following components of the Reynolds

o

stress tensor: ;T!, ;TE, u'v’ .for a rotating speed of 165 rpm and

0.48 < R, < 1.92. Moore (1973) carried out similar measurements but provided
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only mean velocity profiles. Johnaton et al. (1972) in their experiment on
fully developed turbulent flow in a channel, which is rotating about a
spanwise axis, observed three stability related phenomena explained in thia
paper. They pointed out the Richardson number is an appropriate local
stability parameter. For example, local effects of rotational stabilization,
such as reduction of the turbulent stress in wall layers, can be related to

the local Richardson number in a simple way. In this experiment, the authors

also give some quantitative data on mean properties. The paper of Koyama et al.

(1979) on "The Turbulence Structure and Three Dimensionality of a Rotating
Two Dimensional Turbulent Boundary Layer' is one of the latest results
avallable. This paper has not been surveyed at this time. We may also
introduce the partial results of Bertoglio et al. (1980) in a centrifugal

testing machine which give some information.on the flow in actual impeller.

3. Model of Axial Turbomachines

For such cases, only few results are known, in fact the only available
data are the ones provided at The Pennsylvania State University-~the experi-
ment of Lakshminarayana et al. (1972) on the turbulent boundary layer on
a rotating helical blade. However, no turbulent measurements are included
in these results. The more complete experiment was Anand and Lakshminarayana's
(1975, 1978) on the four bladed rotating helical channel. Some results on
turbulence quantities show that the fadial component of turbulence intensities
is higher than the streamwise component due to the effect of rotation. More-
over, the fl&w near the annulus wall is found to be highly complex. The
turbulent shear stress measurements show that in three dimensional rotating
turbulent boundary layers, all three correlations are of the same order of

magnitude inside the boundary layer. A deviation is found between thé stress
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tensor and the strain tensor, that is one of the most important features in
three-dimensional flows and represents the anisotropy of the turbulence in

such cases.

Analysis
Bradshaw (1969) carried out a simple analysis for both curvature effects

and rotation effects and pointed out that the same arguments could be applied
to shear layers in rotating fluids and curved flows. The author introduced
the gradient Richardson number, the flux and stress Richardson number by
analogy with buoyancy analysis. A more detailed qualitative analysis has
been carried out by Johnston et al, (1972) for the case of a rotating boundary
appear in the Reynolds stress equations and which are due to the interaction
by the mean flow and due to coriolis effects, explicitly. I# summary, this
examination of the production terms lead to conclude that in wall layers the
sign and the magnitude of rotation effects might be controlled by a local
dimensicnless parameter. This parameter may be related to the gradient
Richardson number proposed by Bradshaw and is very useful to characterize

the stability or instability of the flow submitted to a rotation. It appears
that the first '"theoretical" investigations and prediction procedures
accounting for all the effects of the flow situation, namely three-
dimensionality and turbulence, are quite new, In fact the first attempts to
calculate three dimensional boundary layer are based on integral methods
such as Moore (1973), Lakshminarayana et al. (1981). The first differential

calculations seem to be those of Majumdar et al. (1977) and Sharma (1977).
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In the former case, the authors are solving the three-dimensional boundary
layer with the method c¢f Patankar-Spalding (1972), which is a marching
integration technique for three-dimensional boundary layer problems. The
turbulence model which is used in this paper is the well knowrn k-€ model
without any modifications for the rotation effects. In the latter case,
e.g. Sharma's paper, the calculation over an axially spinning cylinder is
performed The problem is two~dimensional and solved with the two-
dimensional marching procedure of Patankar-Spalding (1970), The k-¢ model
is used to calculate the boundary layer up to the wall. An additional temm
is included in the transport equation for € to account for the curvature
effect on the dissipation rate. This term is seen as a correction to the
"dissipation" of dissipation rate £ by the Richardson number based on the
turbulent time scale k/c. Nevertheless, this kind of model cannot account
for the non-isotropy of the stress tensor. Morecver, no correction for the
rotation effects are introduced. In fact, these effects are not very '
important for the calculation of flow on spinning cylinder. On the problem
of the rotating cylinder, an approach similar to Sharma's is due to

Spitz (1980) who solved the same momentum equations as Sharma with the same
numerical procedure. In this work an attempt is made to include the non-
isotropy of the Reynolds stress tensor by taking account for two eddy
viscosity factors which represent the difference between the two principal
directions. The turbuletice model is based on the mixing length hypothesis.
We may also mention the work of Cousteix and Aupoi (1979) who made the

same assumptions but used a k-€ model. But in each of these works no

rotation effects were included.
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One of the first analysis of the rotation effects on the turbulence
quantities has been carried out by Raj and Lukshminarayana (1975) and
Raj (1975), who gave the exact equation in generalized tensor notations and
analyzed the turbulent processes in the wake of the rotor blade, but no
calculations were carried out. Lakshminarayana and Reynolds (1979) carried
out r qualitative annl}ail of the effects of rotation on turbulence in the
near wake of a rotor. This analysis indicates that the rotation has sub-
stantial effects on the structure of turbulence. Such as radial component
of intensities is higher than the axial and tangential in the near wake and
decay more rapidly than the others. The radial components of the stresses
are generally higher than those of 2 corresponding non~rotating case.

Another analysis based on spectral calculus has been carried out by

Bertoglio et al. and Bertoglio (1980) to study the effects of the rotation

on an homogeneous turbulent field. The effects of stabilizing and destabilizing i

due to coriolis forces are observed, but this kind of approach does not
account for the non-linear and inhomogeneous termy in the computation.
Nevertheless, some important results show that the pressure-strain correla-
tion in rotating frames may have to be modeled carefully, Another fact is
that the use of isotropic functions when modeling may be inadequate, and
some parameters, iike the direction of the force, have to be taken into
account.

The only complcte calculation available, which takes into account the
rotation effects, is the one per£0tméd by Howard et al. (1980). These
authors, following the work of Majumdar et al. (1977), used a modified
procedure based on the partially-parabolic method of Majumdar'and Spalding
(1977) . They solve the three-dimensional boundary layer equations within

a rotating frame. The turbulence model is based on the k~t model. Three
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modifications to the basic k-¢ model are tested which include effects of
Coriolis furce on the turbilent energy and dissipation rate. The first model
is based on the work of Wilcox and Chambers (1977) and take account of the
Coriolis effects in both the k and € equations assuming that the kinetic
energy is proportional to :Tz. The second and third models are based on

a lt;dy of curved boundary layers by Launder et al, (1977), where the k
equation is maintained in its usual form and where thie Coriolis effect is
introduced through the € ‘equation., Two forms of the Richardson number are
considered. Their conclusion is that the Wilcox-Chambers model give the

most satisfactory prediction, and they point out the need for inclusion of

a Coriolis model for turbulence modification. Finally, the approach of

Hah and Lakshminarayana (1980) and Hah (1981) who introduce an algebraic
Reynolds stress model coupled with a k-¢ model which, though the convection
and diffusion are not included, take account forrotation and curvature
effects. '

Comments

The review of the different paper point out three main features:

1. Only few calculations are available for the calculation of the
‘three-dimensional boundary layer in rotating frames.

2. No complete Reynolds stress model is available for rotating turbulent
flows. Very few attempts have been made to account for the rotation effects
in the k- model, but none are really based on a logical analysis. In fact,
the most up to date results in modeling are those of Raj (1975) and Hah and
Lakshminarayana (1980). The major effort, then, should be given to the

analysis of the dissipation rate equation and to the Reynolds stress equations.
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3, Detailed measurements providing information on the effects of

Rl ol

both the Rossby and the Richardson number on turbulence are not very
numerous. So, every new result would be of great intevest, particularly

1f the rotation effect can be isolated from the other effects.

o ——
. ¥

——— T et

T e S Y W

e e At e ST o e A i s D ki o a5 S+ Btk ai i Gepa el



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2,

3.

4o

- pressure at Z = 0,97, R = 0,918

10,

11.

12.

13,

14.

15,

61

LIST OF FIGURES

Blade to blade distribution of axial (W2), tangential (WT), and
radial (WR) velocities at Z = 0,26, R = 0,918

Blade to blade distribution of axial (WZ), tangential (WT), and
radial (WR) velocities at 2 = 0.5, R= 0, 918

Blade to blade distribution of axial (WZ), tangential (WT), and
radial (WR) velocities at Z = 0,73, R = 0.918

Blade to blade distribution of axial (WZ), tangential (WT), and
radial (WR) velocities at Z = 0,97, R = 0,918

Blade to blade distribution of stagnation (Ppgpa;) and static (P )
pressure at Z = 0,26, R = 0,918 Al STATIC
Blade to blade distribution of |tnsnltion (ProrAL) and static (P
pressure at Z = 0.5, R = 0.918 STATIC)
Blade to blade distribution of stagnation (Proyar) and static (P )
pressure at Z = 0,73, R = 0,918 STATIC

Blade to blade distribution of stagnation (PTOTAL) and static <PSTATIC)

Axial (WZ), tangential (WT), and radial (WR) velocity profiles
at Z = 1,049, R = 0,587

Axial (WZ), tangential (WT), and radial (WR) velocity profiles
at Z = 1,061, R = 0,67

Axial (WZ), tangential (WT), and radial (WR) velocity profiles
at Z = 1,069, R= 0,75

Axial (Wz), tangential (WT), and radial (WR) velocity profiles
at Z = 1,077, R = 0.832

Axial (WZ), tangential (WT), and radial (WR) velocity profiles
at Z = 1,085, R = 0.918

Stagnation (Proral) and static (Pgparrc) pressure profiles at
Z = 1,049, R = 0,587

Stagnation (Prorar) and static (Psrarrc) pressure profiles at
Z=1.061, R= 0,67

"



62

Figure 16. Stagnation (P Ay) and static (Pgrarrc) pressure profiles at |

Z=1.069, R 303; ] ,

Figure 17, Stagnation (PyporaL) and static (PgraTrc) pressure profiles at
Z=1,077, R = 0,832

Figure 18. Stagnation (P ) and static (Pgrarrc) Pressure profiles at
z = 1,049, R 200 B18




63

{ = -1
‘;
CE S a
i ,
QL =3
. =
} =
» « o
; =)
A |
( ~ |s§ — Braoe Sursaces — —Ps.
B < T T T T 1T T 1 T 1
i 00D10.20L504050.607 0350910 Y/S
. TANGENTIAL DISTANCE (Z=0,26, R=0. 913 ‘ '
{ Figurg 1. Blade to blade distribution of axial (WZ), tangential

(WT), and radial (WR) velocities at Z = 0.26, R = 0,918

a1
i




. RSy s EYRY
- .“"""‘"'ri vy
EERRE R 7Y

5 ap—

—r o v

- ———

R T mya—

YZ. ¥T. WM

0.2
1

e

ORIGINAL PAGE 18
OF POOR QUALITY

)

- WD, .
| 4 e,
\.\ (NT)I“J,

e,

' (E);m.t
%/ ~_(We)reed.

BLADG SURSACES 0S.

0.2

Figure

I ! | BB ! 1 i L 1 1

0D0.10.20.50.40.506070.30.9 1.0 Y/'S
TANGENTIAL DISTANCE (Z=0, 50, R=0. 913)

2. Blade to blade distribution of axial (W2),
tangential
(WT), and radisl (WR) velocities at Z = 0.5, R = 0.918




7 LE ;fr&.?é%x:éﬁ!;*
-, Y

e 4 i S AT S S T

WZ ., WT., WR

.3

8
o
.
o
«-
o
WR) wens,
rh S S s ¥ S SOOI
BLAIE SURSACES P\Q_‘&‘M
g %';"4___’-—— \;s.
{ i I I ] I il I |

'0.0D0.10.20.50.40.50.60.70.30.91.0 Y/S"
TANGENTIAL DISTANCE  (Z=0.73 R=D. 913)

Figure 3. Blade to blade distribution of axial (WZ), tangential
(WT), and radial (WR) velocities at Z = 0.73, R = 0.918




B T

v
Y
’.

~

A

“eiiiin
-~ 0

PTOTAL . PSTATIC
-1.0-0.3-0.6-0.4-0.20.0 0.2 0.4 0.6 .3 1.O

1 1 1 i | | I

1

67

ORIGINAL PAGE |3
OF POOR QuALITY

(r“m‘)wuk.

Ve

/wa_m)....;.

GLADE SURFACES

0.0 D.10.20.50.40.¥0.607 0.30.% 1.0

I i I i ) I ] l L 1

s

TANGENTIAL DISTANCE (I=0. 26, R=0. 913

Figure 5. Blade to blade distribution of stagna®ion (PTOT 1) and
static (P %

STATIC) pressure at Z = 0,26, R = 0,91

e ey o - " . - o ’ o B o
plaiprr RS PO  V. PO P O U S AP P RURIRRES 1 SIS SR ST



OF Pogy- PAG
3
. R Qu ,,’f
C
( -
‘*f,?‘.;‘,‘f"‘ o N {Bwn;-\wos.
; - /
= (?umt)uu.

-——*/M—'#—/;_/

1

PTOTAL . PSTATIC
-L.0-0.3-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0
|

| 1

BLpOE SAR¥ACES

T T T T T T T T Y/
0.oo0.10,20.50.40.50.60.7 0.3 0.9 1.0 |S‘
TANGENTIAL DISTANCE (Z=0. 50, R=0. 9138)

Figure 6. Blade to blade distribution of stagnation (Pporar,) and
static (pSTATIC) pressure at Z = 0,5, R = 0.9?.’5A

VU T

T T o sy



R 1

PTOTAL . PSTATIC
-1.0-0. 3-0. 6-0.4~-0.20.0 D.2 0.4 0. 6 0.8 1.0

Figure 7.

-
7 (S:".;)\uqot
7 B R - -~
- k"‘"‘)*“ .
- Ssnlpett
e et
#
a .
L SURSACES
T I | 1 1 I | } ] L

0.0010.20.504050607030%1.0 7’/3
TANGENTIAL DISTANCE  (Z=D.73 R=D. 513)

Blade to blade distribution of stagnation (Pr. ) and
gstatic (PSTATIC) pressure at Z = 0,73, R = 0.8I§L




e K

(cry ;

Figure 8. Blade to blade distribution of stagnation (PTOT 1) and
static (PSTATIC) pressure at Z = 0,97, R = 0,91

Py PR S, 1

PTOTAL ., PSTATIC

- '. u-no 8"“. 6"“-

4-0.20.0 0.2 0.4 0.6 0.3 1.0

1

1

1

$S.

LA SURFACES

i ¥ i ] 1 1 i } i L \
0.00.10.20.50,40.50.60.70.3091,0 y/,S'
TANGENTIAL DISTANCE  (Zw=D. 97, R=0, 513)




3
¥
%

RY ‘%

¥Z ., W, MR

7n 9

ORIGINAL PAGE IS
OF POOR QUALITY

S&j&)vucr%.

SS. Ps. Y/S
L

~
L~

I I ) 1 Ll

'o.6 -0.4 -0.2 0.0 D02 D4 D06

Figure 9.

TANGENTIAL DISTANCE (Z=1, 04% R=0. ¥37)

profiles at Z = 1.049, R = 0.587

Axial (WZ), tangential (WT), and radial (WR) velocity

JURNCES




o A n e e o

72

WZ, WT. MR

b I 25 res i 1 y ;s

-0.é -0.4 -0.2 0.0 0.2 o4 0. 6
TANGENTIAL DISTANCE (Z=1. 61, R=0. 6702

~-0. 2

10

(Wedueos.

Figure 10. Axial (W2), tangential (WT), and radial (WR) velocity

profiles at Z = 1,061, R = 0,67

B e e s

: . U ; .
O T T T T S S T T R T LY P ST TUPI 10 - gyt G SR T S . S R

I SRR SRR Pe.

]
4
1
:
,
;
.
&
¥
P
i
i



Lyt

e R TR SRR ARG e

o

7% \ 2
ORIGIN
OF pocik Py

w2, WT . WR

)
g N S'.C.TPS- - — jY/‘S

'“.§ -0.4 -0.2 0.0 0.2 D4 0.6
TANGENTIAL DISTANCE (Zw1. 077, R=[. 352)

Figure 12. Axial (WZ), tangential (WT), and radial (WR) velocity
profiles at Z = 1.077, R = 0,832




¥l ., WT ., WR

75

»
a7
;_ (W'&.)uﬂ.
g /ﬁ’)-w
D o o 2
« oy
o
(V'ihuncghn
- A
g T T 59.1 Re | Ll ! Y/S\

'§ -0.4 -0.2 0.0 02 D4 0.6
TANGENTIAL DISTANCE (Z=1. 035, R=0 913)

Figure 13. Axial (WZ), tangential (WT), and radial (WR) velocity
profiles at Z = 1.085, R = 0,918

RO Ot LT P




76

-]
»
| d -
.‘ -
d —
] g <7
< N
E =
o
- = —J
N
2 3
=3 8
3 -
o |
d -
1
= SS Ps. V/S
T R | 13 1 LI I N |
-L.é6 -0.4 -0.2 .0 L2 0.4 0 6
TANGENTIAL DISTANCE (Z=1. 049, R=0. 5372
Figure 14, Stagnation (P ) and static (P
profiles at ZTQTQ¥049, R‘.ao,gay sTarc) Pressure

P T

PRPBROSE I




77

i

I LO
1

| g

| 1 1 1

PTOTAL ,» PSTATIC

1

L

L

}{'ﬁ»)..‘.. :

: gm: ").“<
MH:;:>:::T+

1. 0-0.3-0.6-0.4-0.20.0 0.2 0.4 0. 6 0.

-0, 6§ -0. 4

I
-0. 2

)
0. o 0. 2 0. 4 0. 6

TANGENTIAL DISTANCE <Z=1. 061, R=0. 670)

Figure 15. Stagnation (Ppgyar) and static (Pgparrc) Pressure
profiles at Z = 1,061, R = 0.67

i il ok, o e B i SR, % i B B B sl i A A Z




i

revbasrones e

FhTEv et

ORIGINAL PAGE
OF POOR QUALITY

PTOTAL . PSTATIC
| L1

ss. PS.

L] ] T B i
TANGENTIAL DISTANCE <(Z=1, 06% R=0. 750)

-1.0-0L.3-0.6-0.4-0.20.0 0.2 0.4 0.6 0.3 1.0

Figure 16. Stagnation (P ) and static (P ) pressure
profiles at ZTQTQ.%Q, R= 0,75 STATIC® ™

L
a.

-
< -
lo - (Ruora oo

) %} {?nmu\-u.

/s
4




Figure 17.

Lo caidton a7

79

17

ORIG/\4

i | I |

i),
/

|  Gum
'u" /._o....

IR T e e

P 1

PTOTAL . PSTATIC
-1, 0-0.3-2. 6-0.4-0.20.0 0.2 0.4 0.6 0.3 1.O

| B

1

$s. RS,
T 1 ] 1 ~ Y/¢
R

-0.6 -0.4 ~-0.2 0.0 0.2 0.4 0.
TANGENTIAL DISTANCE (Z=1. 077, R=0. 352

Stagnation (Prgrar) and static (P

profiles at Z = 1,077, R = 0,832 STATIC) pressure




Figure 18, Stagnation (Pp ) and
. OTAL’/ and static (P
Profiles at Z = 1,085, R = 0,978 STATIC

PTOTAL . PSTATIC

. 0-0.3-0.6-0.4-0.20.0 0.2 0. 4

0.6 0.3 1.0

80

]

l
o
3
£
 §
£

1

I I SS.IP.S. 1 T . Y/.S'
é

-0.6 -0.4 -0.2 0. o 0.2 0. 4 o.

TANGENTIAL DISTANCE (Z=1. 035, R=0. 313)

) pressure
-

e




	1982009301.pdf
	0025A02.tif
	0025A03.tif
	0025A04.tif
	0025A05.tif
	0025A06.tif
	0025A07.tif
	0025A08.tif
	0025A09.tif
	0025A10.tif
	0025A11.tif
	0025A12.tif
	0025A13.tif
	0025A14.tif
	0025B01.tif
	0025B02.tif
	0025B03.tif
	0025B04.tif
	0025B05.tif
	0025B06.tif
	0025B07.tif
	0025B08.tif
	0025B09.tif
	0025B10.tif
	0025B11.tif
	0025B12.tif
	0025B13.tif
	0025B14.tif
	0025C01.tif
	0025C02.tif
	0025C03.tif
	0025C04.tif
	0025C05.tif
	0025C06.tif
	0025C07.tif
	0025C08.tif
	0025C09.tif
	0025C10.tif
	0025C11.tif
	0025C12.tif
	0025C13.tif
	0025C14.tif
	0025D01.tif
	0025D02.tif
	0025D03.tif
	0025D04.tif
	0025D05.tif
	0025D06.tif
	0025D07.tif
	0025D08.tif
	0025D09.tif
	0025D10.tif
	0025D11.tif
	0025D12.tif
	0025D13.tif
	0025D14.tif
	0025E01.tif
	0025E02.tif
	0025E03.tif
	0025E04.tif
	0025E05.tif
	0025E06.tif
	0025E07.tif
	0025E08.tif
	0025E09.tif
	0025E10.tif
	0025E11.tif
	0025E12.tif
	0025E13.tif
	0025E14.tif
	0025F01.tif
	0025F02.tif
	0025F03.tif
	0025F04.tif
	0025F05.tif
	0025F06.tif
	0025F07.tif
	0025F08.tif
	0025F09.tif
	0025F10.tif
	0025F11.tif
	0025F12.tif
	0025F13.tif
	0025F14.tif
	0025G01.tif
	0025G02.tif


