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PREFACE

The progress of research on "Three Dimensional Flow Field Inside a

Compressor Rotor Blade Passage, Including Slade Boundary Layers" (RASA

Grant NSG 3266) for the six-month period ending December 31, 1981, is

briefly reported here. Dr. J. M. Games, research Associate in Aerospace

Engineering, has the responsibility for turbulence-modelling. Mr. Poua$dre,

a doctoral candidate, hate assumed responsibility for the development of the

computer program to predit the blade boundary layer. The measurements

reported were carried out by M. Pouagare and K. N. Sachidananda Murthy,

B. Lakshminarayana
Principal Investigator

is

i

i

	

.

r.

r.



lit

TABLE OF CONTENTS

Pat*-

I

	
NCMENCLATURE . . . . . . . . 	 . . . . . . . . . . . . . . 0 . . .

	 IV

1. NUMERICAL ANALYSIS OF BLADE AND HUB WALL BOUNDARY LAYERS . .
	 1

Introduction . . . . . . .	 .	 .	 .
Momentum Equations . 	 . . . .	 .	 . .	 2
Numerical Solution of Gies Three. Momentum Equations 	 . .	 .

	 4
Pressure Correction, Equations 	 . . . . .	 . . .

	 6
Status of the Computer Program . . . . . . .	 . .

	 9

2. TURBULENCE MODELLING FOR BOTH HIGH AND LOW REYNOLDS NUMBER
FLOW SUBJECTED TO ROTATION . . . . .	 . . . .	 .	 . . .

Introduction .	 . .	 . , . 0 . .

Turbulence Equations,	 .	 . . .	 r . . . . . . . . . . .
Qualitative Analysis of k and t Equations
k-e Model for High Reynolds Number Flows	 .
k-E Model for Low Reynolds Number Flows
Eddy Viscosity Law .	 . . . . . . .	 .	 .
Conclusions	 . . . . . . . . . .	 . a.	 . .	 .

3. MEASUREMENTS OF THREE DIMENSIONAL FLOW FIELD INSIDE A
COMPRESSOR ROTOR PASSAGE . 	 . . . . . .	 30

Experimental Program . . 	 . . .
	 30

Typical Results . . . . . . . . 	 30

4. PAPERS, THESES, AND REPORTS PUBLISHED DURING JULY 1981 -
DECEMBER 1981	 . . . . . . . . . . . . . . . . . . . . 	 .	 33

REFERENCES. . . . . . . . . . . . . . .	 . . . .	 . .	 34

APPENDIX 1 Transformed Momentum Equations and Jacobian Matrices
	

39

APPENDIX 2 Literature Survey on the Effects of Curvature and
Rotation on Turbulence Structure . . . . .	 .	 . . . .	 . .	 48

FIGURES. .	 . .	 . . . . .	 . . . 9 . . . . . . .
	 61

i

i



IV

NOMENCLATURE

l

t

f

i

t

al,a2 ,A , A constants

Cu,CE1 ,
CC2,CC3

modeling constants

PC (R
T0 

Ric) dumping function for low Reynolds number flows

gik metric tensor

i,j,k indices in the g,n,R coordinctes, respectively

J Jacobian of the transformation

k	 2 g 
1 
 u-T turbulent kinetic energy

R length scale

p pressure

F mean pressure

P' fluctuating pressure

PS pressure surface

PS static pressure

PT total pressure of the relative flow

PTOTAL
2

pT^2 Ut

PSTATIC PS^2 U 
2
t

r,A,z cylindrical coordinate system

R radial distance normalized by the tip radius

Re Reynolds number

u' z
Re = '"7-

k2 local Reynolds numbers
RT 

= )W

E	 SZP

Ric	 - - generalized gradient Richardson number
Uij

R DR/3r
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v

S blade spacing

SS suction surface

S id strain tensor

u r n	u ► i fluctuating velocity

t time

Oi dean contravariant velocity

ui j Reynolds tensor

U 
blade tip speed

jU,V,W velocities in radial, tangential, and axial direction,
respectively

v Kolmogorov velocity scale

W relative velocity

WR radial velocity, Wr/Ut

r
WT relative tangential velocity, We/Ut

WZ axial velocity, Wz/Ut

xi ,xi contravariant and covariant coordinates variables

Y tangential distance measured from camber line (y * 0 on
suction side, Y . S on pressure side for the data in the
passage for the wake, Y - 0 is the center of the wake)

Z axial distance normalized by the blade chord (Z	 0 at
the leading edge)

a, constants

-	 did Kronecker tensor

i
C	 2V SijS' ij turbulent dissipation rate

C ipq permutation tensor

11 Kolmogorov length scale

n z an/az

n, an/06
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µ	 molecular viscoatty

PT	 turbulent viscosityrb	 coal y

&',n,R	 transformed coordinates in the streamwise, normal,, and
radial directions, respectively

9z 	^/ 3z

t	 Ce	 setae

P	 density

(7kPae	 modeling constants
F

n	 angular velocity

J	 contravariant component of angular velocity

Subscripts

i j,k,R ^n	 indices

(p)	 value at the wall

r	 radial component

S	 static

T	 total

tz	 axial component

6	 tangential component
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1. NUNERICAL ANALYSIS OF BLADE AND HUB WALL BOUNDARY LAYERS

Introduction

The flow in a turbomachinery blade passege has a predominant flow

direction. The viscous diffusion In the streamwise direction is usually

small and the elliptic influence ,is transmitted upstream through the

pressure field. So the streamwise diffusion terms in the Navier-Stokes equa-

tions cut be neglected in comparison to the diffusion in the radial and

tangential directions. Starting with a guessed pressure field, it is 	

/I 
possible to converge on the full elliptic solution by iterating between 	 Vy

a parabolic solution and an iteration of the pressure field. 'The main steps

of the calculation are given below. It is assumed that the properties at

the streamwise station i are known and solution at the streamwise station

i + 1 is sought.

1. The three momentum equations are solved simultaneously to get

t 1

2. The energy equation and the perfect gas relation are solved to get

the temperature T and the density p.

3. The streamwise pressure gradient is corrected by the use of mass

conservation across the cross-section.

4. The cross-flow velocity components, determined from the momentum

equations, are corrected by including in them the irrotational velocity

corrections that satisfy the continuity equation. This step requires the

solution of a poisson equation for 0 defined later.

5. A poisson equation is solved to determine the transverse variation

of pressure. The equation for the pressure is derived by appropriately

differentiating and summing the two transverse momentum equations.
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F
6. Steps 1 to S are repeated until convergence is achieved.

7. Turbulence closure equations are solved to get a new value for

the effective viscosity.

8. Solution is marched to the next streamwise station. The flow chart

s	 of the computer program is shown on the next page.

The Momentum Equations

i

	

	 The Navier-Stokes equations in cylindrical coordinates are transformed

into the computational domain neglecting viscous diffusion teams in the

direction ^.

w
The transformed equations can be written in the form,

aE + aF + aG +C . -1- p + 1. +S 	 (1)
-an URe IE - an

The derivation of this equationis given in Appendix 1.
U

The column vector of unknowns is g g V

Y W

The column vectors E, F, G, C, P, Q, S are given by

9z PU2 + g
o PUV + gZ p

	

E . 1	 PUV + PV2 +	 P

	

J	 z	 A	 A

L. CZ 
PUW + go PVW

n  PU2 + 11 6 PUV + nz p

F J nz PUV + no PV  + no P

nz PUW + no PVW

PUW
R

G J PVW

2PW + p
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Read Initial and
Boundary Conditions

I I * 2	 . IMAXX

Solve 3 Momentims Equations Simultaneously

Solve Energy and State Equation

Correct the Streamwiss Pressure Gradient
Using the Gross Mass Conservation Across
the Cross-Section

Solve the Poisson Equation for to
Correct the Transverse Velocity Components

Solve the Poisson Equation for Pressure to
Correct the Pressure in the Transverse Plane

No	 Convergence Achieved?

I Yes

I
I SIMAX?

T IMAX

STOP

Flow Chart for the Computer Program
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pllw/ R

C	 2AV'W/R + 2PN

R (W2 _ v2) psi2R _ 2p3IV

R`

au	 aW

	

}}	 eu (Rr u + nz ant
Rr	 aw	 av vJ u (no 'n + hr aR)

4	 aw ?^	 av	 au W
Rr 9R^ 3 (ne NT + nz an + R)

Y.	 aunz	 av	 av 2 nzu 1 ,an +3 J4na an +n
z an 3 

u J^ R,FR
2	 2 l

(n0 + nz av ^ ''e	 av	 av 2	 na	 aw w	 ne wQ	
u `--- J —J an + a ^na â1 + n z w) - 3 W J ^Rr ati + R, + Zu J R

9 + nz aw	 nQ (- aV v	 nz	 au
r	 u^'- j ) an + u J}^^,, aR R + u i RrR

J

u [ au	
Zn]R Rr A + n z 

S - 2u

 [ 
aw	 av a _vl

R na an + Rr ARJ

	

 [ aw _	 av _ w1
2R11 Rr aR n 9 an	 RJ

Numerical Solution of the Three Momentum Equations

The numerical scheme in based on the Linearized Block Implicit Method

of Briley and McDonald (1979). Equation 1 in written in the form

83 g)	 D(g) + S(g) (2)
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where H (g) - HO

D(g) M 1
Re

[Itr aP +  ZF	 J
V	 ac

' rat - aR

S(g) - 3(g) - C(S)

The finite difference. fore of equation (2) is

(H i#1 _ H1)/4& _	 D(g) # S(8)1i+l + (l _ 0) [D(5) + S(g)]

Where 0 is the weighting factor.

The linearization to donee as follows:

i dg - Hi + (
agl iH1#1 - Hi + fa

49 ' H
+ (aH

J a5

si#1 - i + ^1 i 
A&	

Si # fag)'1 i ^gi#1 _ gi1

m Di#1 - Di #
	 3D'i Q	 - Di #	 BD' ' i rg +l - gi1

The linearized scheme is then given by,

raB, i
81#1 - gi) /oC - Di # Si + 

RLag 
+ a	

tgi#1 _ gi)

Defining	 A -
(

laHl

1i

i - ,,ram

L	
a6

and

egi+1 s gi+l - 9 

Equation 3 can be written as

(A + A^L)Agi+l M AUD 4- S]i

or

(A + AUL^ + LR))Agi+1 - A^(D # SJi

(3)
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k	 Factorisin= the scheme based on the Douglas -Gunn split one Sets
kI

	

	

i
(A + A4Ln ) QR* - Ag(D + S)

(A + A)egi+1 ^ Vii*
r

The Jacobian matrices appearing in equation 3 are given in Appendix 1.

Pressure Correction Equations

i
The pressure is considered to be composed of three parts.

P(^ nrR) - Pi ( g ,n, R) + PV (9) + PC (n,R)	 (3)

Pi is the initial guessed pressure field. P V(g) and Pc(n,R) are one-

and two-dimensional pressure corrections, respectively.

The velocity components are decomposed as follcvs

U U*+U`

V • V* + V ,	 (4)

WSW*+W'

U*, V*, W* are the velocity components which are calculated from the

momentum equations. U', V 1 , W' are the corrections needed for the continuity

equation to be satisfied.

The U-momentum equation is written as follows.
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r

R'

aCJ AU*(U* + U') +J p(U* + U')V* +n
F
—J pU*(,U* + U') + J p(U* + U')V*

+ a Rr P (U* + U' )w*	 4 . A (U* + U' )W* ^ - a ^z (
p + P )aR(J	 ,	 R	 a^(J	 i	 v,

[IJan J (Pi + 
PA

+ Ra aR 	 1 u(Rr aR(U* + U') + nz	 an Jj
2	 2

+ a u 
e J nz 

a	
n

(v* + U') +'^ z ne	 * + n a(U*-+ U')aP1 [	 , an	 3 J an	 z an	 1

2 nz*	 w*^	
u FRr a(U* + U'	 aw*

J (Rr aR + 
*- ] + R 	 L + n z

an]1.

The above equation can be rearranged to give,

aCz	 * ,e	 * , 1 	

aRiz
	 n e	 a 	 PW*U'a (J pU U + J pV U 1 + an 	 pU*U #	 Pv*° 	 + (Li pw*U 1 +J aR R

_	 a	 z	 _	 a nz	 1	 a	 aU	
d FR

j(2	 2) 31V	 2 aU
a^(J PV, + 	 ine + nz l	 +	 nz( J pc 	 +	 aR J aijan	 Re an

l	 1 an	 3J art

aU'

+	 RrR	 aR
p

Writing the above equation in finite difference form and dropping the

r	 ;

mixed derivatives and the off diagonal terms we get,

t1^	
9U* +

J PV*	 cJ p1	 Ui+1 	 U	 s -	 ( J PJ	 'j'k + (RWR*) 	 +l 'i ' k	 a g`	 li+l	 k i+l	 k
R2 R2	 R2

( +( ^^ - 2 (J
Re JJ i+l	 k+l	 J	 i+l	 k-1	 i+l	 k

r
+^^

In 
9 + 1. 333 n 2J] + 

I J 
n6 + 1.333 ►1z1](i+1	 +l k	 i+1	 -1 k

- 2
L
J(n 2 + 1.333 nz,] U +l,i,ki +1,j,k

.,
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Using V momentum equation one gets

V' - B t	 where B is a known quantity (6)

From continuity	 quation, we gety

``
r	 µ •jJ	 (U + nX) dR	 - m	 constant^dn

AR o%4n-

or

I! -"p ._. (u* + A a	 + nsv* + nx B	 ^ dRdn - m

n R V%

m - !1--P----(u* + n xv*) dRan
A+n^ap' -	 nR

(A + n	 B)dRdnm
(7)

nR di 
I,	 x

To correct the cross-flow velocity component the following velocity

potential is introduced

R
f	

a	
J p W^

w

9

(S)

n^pV' + nZpU'
a	 J	 J

(9)

The continuity equation in the transformed plane becomes

a	 r	 a	 &e 	 F	 Tlz	 a (►1 a	 z
PW

R

R + BR'` ,^ Q W^ 
+	 J pV + i pU^ + a I J PV # J pU^ -

t

0	 (10)

g



I
	

9

or

R (W* + W+) + 8R^ 1 p (W* + W 0 )^ + ^ Ĵ , (v+^ + v 1 ) + - P CU* + Ulf

a^ ^J p (v* + v^) + n p (U* + U 1 )^ . o	 (l7 >

or

r	 ^	 n	 1
R W' * aR C pw + 

â l " pv I + ;Z pU' } + art - pv + out } - ^^*	 cl2>

where en* can be evaluated from U*, V*, W*, p • 0 should be zero, if continuity

is satisfied.

'sing equations 5, 6, 8, and 9 in 12 one gets

D4
R r A aR_	 n	 r. i	 8+ a

	 a	 { 1)

In order to derive the Poisson equation for the pressure, the a-momentum

equation is diferentiated with respect to n and the R-momentum equation with

respect to R. 'Then they are added together. The result is

a

J'n
J P + NR Rr P I C	 (1:4)

whore C contains known quantities.

Status of the Computer Program

The part of the computer program that solves the three momentum equation

has been completed. Coding of the poison equations is under development.

i
i
f

I
I

r
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Introduction

ii
	 The three dimensional viscid and turbulent effects in turbomachinery

i	
are mainly caused by the three dimensional boundary layer on blades and wakes,

annulus wall and hub wall boundary layers, shack-boundary, layer interaction,

and secondary flow. There viscous and turbulence effects playa dominant r ole_

In the study of improved design, better efficiency, off design performance,

etc.

While appreciable amount of work has been done in understanding the

invi.cid effects in turbomachinery, there hais been no investigation related

to the blade boundary layers in compressor rotors. Because of the complicated

nature of the problem, compressor, turbine and rotor fan blade boundary

layers still continue to be one of the least understood phenomena in turbo-

machinery. The boundary layers are three dimensional with laminar, transi-

tional, turbulent and separation zones. The flow field is a function of

► 	 several parameters such as incidence, solidity, blade geometry, hub/tip ratio,

camber, radial and chordwise pressure gradients, inlet turbulence, Reynolds
r

number, Rossby number, Mach number, etc.

A knowledge of the boundary layer characteristics, both mean and

turbulence properties, is essential in the prediction: of flow behavior in

these blade passages. The Penn State group, presently Involved in the study

11
	 of the endwall flows, has initiated recently a detailed study, on both the

°t	 experimental and analytical point of view, of the blade boundary layers. The

experimental survey of the flow is in preparation and will be started very

soon. The existing and well proven techniques of single hot wire and x-wire

are to be used in measuring the development of boundary layers on turbomachinery



c	
l

rotor blades. Both measurswsnts of scan and turbulent flow field are to be

performed.

Analysis of three dimensional boundary layer is equally complex due to

the fact that additional effects such as Coriolis and Centrifugal forces

change the structure of turbulence, thus invalidating most of the turbulence

models that are presently used in computing turbulent bounds^

	

	P 	 y	 mP	 g	 boundary layers. Iny

the case of turbomaebinery rotor flows, the turbulence is affected mainly by

the curvatures of both the blade surface and the streamlines, by the body

rotation, and in the case of the boundary layer, by the low Reynolds number

effects. All these effects make the flow to be highly 'non-isotropic. More-

j

	

	 over, as it can be seen in the experimental results of Castzo and Bradshaw

(1976) and, Johnston, Halleen and Lezius ( 1972), the curvature and/or the

rotation may affect the stability of the boundary layer and an augmentation
R,

	

	
or suppression of the turbulence may result. With such phenomena occurring,

it appears that assumptions based on the well known isotropic eddy viscosity

concept should fail badly, as the Reynolds stress tensor is not aligned with

the mean strain tensor when additional production or destruction of turbulence

are coupled with the production due to the shear.
T

Most of the present models are valid for non-rotating systems. These

include .Tones and Launder (1972) for k-t, Launder, Reece, and Rodi (1975)

and Lumley and Khajeh-Nouri (1974) for the full Reynolds stress model. The

effects of curvature in high Reynolds number flows have not yet been accounted

for properly in the turbulence modeling. We may mention the attempt by

Gibson and Rodi (1981). As far as the rotation effects are concerned, very

few attempts have been made to introduce such effects in the calculation

schemes. However, in the available turbulence models, the effect of rotation

is not properly modeled in the transport equations of Reynolds stress or the
a

dissipation rate. Moreover, the boundary layers flows are of the low"
p

r
9

e
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^n

I;

t.

e

I

Reynolds number type. If we are interested in modeling the turbulence

behavior very near the wall, then it is necessary to introduce this effect

In the modeling assumptions.

The formulation of the closure problem will vary depending upon the

Information and accuracy ;desired. In fact, the calculation procedures for

three-dimensional viscous flows require large memory storage and large

computer time to solve the three momentum and continuity equations.

Moreover, such codes are still in a phase of development and are generally

tested only for simple cases (e.g., laminar flows). Hence, the introduction

of turbulence models in these codes necessitate careful attention and simple

models may permit control of the stability of the numerical scheme. However,

in rotating turbulent flows, zero equation models fail to represent even the

gross properties, due to the fact that the length and time scales are assumed

empirically. The two-equation model is a compromise between a full Reynolds

stress model which needs the resolution of seven more transport equations

as complicated as the Navier-Stokes equations themselves, and the empirical

models. Therefore, as a first step,attempts are being made to include the

effect of rotation in the k-e model. Modeling of the rotation effect and

the low Reynolds number effect in the turbulence closure equations are

described in this report.

A literature survey on both the analytical and the experimental work ^.

is given in Appendix 2. Some of the important conclusions of this survey

are:

1. Only few calculations are available for the calculation of the

three-dimensional boundary'layer in rotating frames.

2. No complete Reynolds stress model is available for rotating turbulent

flows. Very few attempts have been made to account for the rotation effects
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In the k-t model, but none are really based on a logical analysis. In fact,

the most up to data results in modeling are those of Raj (1975) and Hah and

Lakshminarayana (1980). The major effort, then, should be given to the

analysis of the dissipation rate equation and to the Reynolds stress equations.

xw3. Detailed measurements providing informations on the effects of

both the Rossby and the Richardson number on turbulence are not very numerous.

So, every new result would be of great interest, particularly if the rotation

effect can be isolated from the other effects.

Turbulence Equations
i

The turbomachtnery boundary layers and wake must be represented in a
a

relative rotating frame of reference, which includes both the curvature and

rotation terms, to eliminate the effect of periodic unsteadiness. The trans-

formation of the turbulence equations as well as the momentum equations from

a stationary coordinate system to a rotating coordinate system is quite

complicated.Mo e rvr o_e, the :necessity for the turbulent model. to be as

general as possible, indicates that the generalized tensor formulation is

the most adequate representation of the set of equations. The equations of

the mean and turbulent quantities representing an incompressible flow are

derived in a rotating frame and are presented in conservative form.

Continuity equation

Dii W 0	 u,i . 0	 (15)

Momentum equations

(PUi)+(PUiUj)'j 
+2e ipgPnpUq +PC 

62 xJY1	
rd-(n )xiI	 -(p di +Puiu' j - Pi) V j

t
(16)
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with P! . 2NSi for Newtonian fluid and S ij Z( j + Ui^i).

Reynolds stream equations

(P)+(Pu Uj ), j .. (p'^fik + d # pui^u'ku - u^ - u), j

.	 _	
.. 7 _

t
+ 

Fru j dk 
+ ^.j 

61 Puiu, 
Uk,j Pukur Ui^

Pi
kui .j P k. ^ - 2p^ (tiP9 qu,9 + ^kPq uiu,q)

	 (17)

G

Kinetic energy equation

1 ik --"U
2 g uiuk k

-J
	 . _ "^ ij	 ij	 ij

(Pi)+(Pk U ), j	 (p ui d + Pku	 uiP ) tj Pu u Ui'i - P ui J
(18)

where -pu'^u' Ui ^j production and PPJ	 Pe * 2uSi

Dissipation equation

(Pt)+(peUj ) , ^ -4u(S' u'^	
jgtk)-(P- 	 , + gnj u E,	 4U ►̂^ S^'

ik	 ' j	 nj	 k	 i, j

t	 -4N Ui ^ j S'^ù k - 4u S' i u—k ju'k 4}^u6nj S%^ ik n

-4V s ,ikp ^ ik _ 8u 
eiPgn S- 

U^q	 (19)

The curvature terms are implicitely included in equations 15 through 19. The

rotation effect appears both explicite'ly and implicitely. We are now focusing

our analysis on the rotation effect principally.

In the momentum equation, the rotation appears through the Coriolis and

Centrifugal forces, but it also affects implicitely the results through the

Reynolds stresses. In fact, looking at equation 17, these Reynolds stresses

x
t



are explicitly affected by the Coriolis forces, but are also iml

affected by the rotation through the triple velocity correlations, the

15

P

pressure velocity correlations, the pressure strain correlation, the produc-

tion by the stresses themselves, and the dissipation.

Following these remarks it is evident that a full Reynolds stress model

should give better results than the models based on an isotropic eddy viscosity

hypothesis, particularly in three-dimensional flows.

However, the difficulty to handle solution procedures for three dimen

sional turbulent flows and the particular prpblem'of modeling the dissipation

equation, lead us, in a first step, to direct our efforts in developing a k-e

model for both high and low Reynolds number flows. This model necessitates

the resolution of two transport equations for k and e, and the Reynolds

stresses are related to the mean strain through an eddy viscosity. The

present k-e model cannot account for the anisotropy of the turbulence which

exists in the boundary layer around a blade. A modification to the relation

giving the eddy viscosity is presently under development, in order to include

the effects of the rotation.

The rotation also appears explicitly in the equation fer the dissipation

rate E. It seems[Hanjalic and Launder (1978)) that some of the major problems

in calculations come from the modeled'equation for the dissipation rate E.

Hence, there is a need for better analysis of this equation. Following

Tennekes and Lumley (1972), we may develop a qualitative analysis of the

equations k and a in order to provide the magnitude of each term and then

to derive a model for high Reynolds number and low Reynolds number flows.
i
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Qualitative Analysis of k and a Equations

Equation 18 represents the evolution of the kinetic energy k. 	 It is

Interesting to note that the rotation term vanishes identically, and this

equation is independent of the coordinate system. 	 It is clear, however, that

even though the Coriolis forces have no direct effects in this equation, the

rotation affects the kinetic energy principally through the production by the

mean strains and also through the dissipation term.	 The production term

depends on how the Reynolds stresses are represented and the dissipation term

Is described by equation 19, which is the exact form of the equation of evolu-

tion for the dissipation rate.. 	 Different authors have pointed out the

difficulty in solving this equation, and one of the most suitable methods

to simplify the equation is to use the high Reynolds number approximation;

.. With this assumption, terms which are dominant at low Reynolds number are

eliminated.	 At this point, we may note that equation 19 is not independent

of the transformation from a non-inertial frame of reference to a rotating

frame.

In Tennakes and Lumley (1972), it is shown how orders of magnitude may

be assigned to various correlations appearing in these. equations. 	 Instantaneous

quantities appearing in the correlations are of two types, belonging either

to the energy containing range of eddies, or to the dissipation range. 	 The

former has characteristic frequency u'/R (where u' is a fluctuating velocity

scale, while R is a length scale of the gross structures). 	 The dissipation
e

rate is of order u' 3A. 	 The latter has characteristic frequency v/n (where

v and n stand for the Kolmogorov velocity and length scales), with v/n ti

ff

t..
Re/2 u'/£ (with Re - u l t/v).	 The correlation coefficient between two quantities

from the same range may usually be taken as unity, but the coefficient

between two quantities from different range is of order of the time scale



ratio ri/vA/u" ti Re1/2 . In addition, we may make use of the more

17

I

fact that derivatives which are external to correlations correspond to scales

in the energy containing range, while derivatives within the correlation

correspond to dissipation scales. We wish to apply this sort of reasoning

to the equations for the kinetic energy k and its dissipation rate C. Applied

to the dissipation equation it is particularly useful, because the dynamics

of these quantities is dominated by the small scales, and interacts only weakly

with the energy containing eddies. Proceeding in this way, we may provide an

order of magnitude for each term of equations 18 and 19.

Kinetic Energy Equation (equation 18) 3

The convective terms (pk)+(pk Uj ), j are of the same order as p R

The production term (^Puuut Ui ^^ ) is of order p W)

The dissipation term (-PO is of order p ^IIR)

In the "diffusion" term -(p U" 	 + pk^ - uiP1j)  , the two first
3

terms are of order p SuR) 	 while the last one, representing the diffusion

by the molecular processes, is of order p ( uR) Rel and is negligible for

high Reynolds number flows.

Dissipation Equation (equation 19)
,4

The convective terms (pe)+(pc Uj ), i are of the same order -p (-
R

The terms involving derivatives of mean strain -4u S k '3 Sid is of
" 4

the order p
(u#) 4

 Re
i

The terms involving mean derivatives and rotation

-4p U^ S liku l	 - 4u S"ikUik (U i1 + 2eiPjap)

--	 _	 _



1R

Following Lumley (1970), we may model the quantities $^^ and SI u'
Ok

and then we write

.. s^ eva + a;"4—C s^

S 	 9v Cdij + ^ ^ S ij ^

fand since the wean flow is considered incompressible the only terms which
I

contribute are the second terms in the last two relations. Therefore, the

.first tens involving mean derivatives is of the order p u 	 Re1/2 and the

(u'?4	
^,2

second term is of order p R2 Re
-1/

2 (1 + 2 u,).

The terms involving the triple correlation between the fluctuating

derivatives -4u S'^ ju;k. Following once again Lumley (1970) it is of

the order

umv) ^B + aSiks ik e)
l 1

Therefore it is of order p (u
o 

4 Re/2 (B + Re1).
p2

The terms involving the correlation with pressure fluctuations

-4v S p'ik

We may write a poisson equation for this term and then the solution of the

equation is jts follows: [Chou (1945)]

V S ,ir, ,^ rrr F-9m	 ru,a^Tc	 d (1)
P. ik 	 2 1!1	 (1),n ` (1)	 )J (^) ki	 X

-P' l,j ru'm u on S' ik	 d-^^271	 I_ { 1 ) (1)	 (1),mnki	 X

+	 l a(P^1). kS^ 	- P , S,
ik 81/X dS4Tr jf 1	 an 	 ( 1),k	 an(l)j {1)

k

^^	 4

w

e	 _
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This solution introduces higher level of correlation and then, at this

level of closure assumption we may neglect this term.

The terms involving the correlation between the derivatives of the

f11petuating strain

-4Hvgni S' Tc
sik 

^' 13/2 (A+ Q(SikSk^t

Therefore it is of order	 1

P u2 4 Rij2 (A + Rel)
R

The "diffusion" teas -(ReU'3), j + gnj .F, nj . The first term to of

u' 4	 4
order p R2 while the last one is of order p 

u'
9 Re

1

This order of magnitude analysis is summarized in Table 1.

k-e Model for High Reynolds Number Flows

High Reynolds number flows occur generally far from walls, in that

case the viscous diffusion my be neglected in equation 18, then only the

diffusion term (pk-u'3 + p'u'),^ needs to be modeled. For this term we follow

the proposition of Jones -Launder and we write (in generalized tensor notation)

PT
ku 17 + p u	

j	 [;or k	 Z )IJ

The production term is defined through the law of eddy viscosity.

In regard to the dissipation equation, we may neglect all the terms

of order of magnitude less than p Cu' 42	 ; therefore, the only terms left are

the convective terms, the "turbulent diffusion" and the production and

dissipation by the correlations of fluctuating derivatives (Table l). These

two terms have been derived by Lumley-and Khajeh-Nouri (1974). At this point
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of modeling, assumptions to get these two terms are widely based on physical

and dimensional analysis. 'Tn fact, for high Reynolds number flows, the

dissipation processes occur almost only at high wave numbers (e.g., the

smallest structures); therefore, an isotropy hypothesis may represent the

small structures quite well. Moreover, ;looking at the kinetic energy

spectrum, we may assume that three zones are defined, the production zone

(low wave numbers), the inertial zone, and the dissipative zone (high wave

numbers). By this way, a time scale based upon the time that the gross

structures transfer their energy to the dissipative structures may be defined.

This time scale is of the order of k/C. So, the processes are simplified,

and the a equation may be written in the transport form where the sources

and dissipation terms Are relatad to those existing in the k equation, by

f the time scale. Then following Lumley and Khajeh -Nouri (1974), the equation 19

reduces to

2

v	 (Pe)+(peuj) • + (Pe ) , j = CE ek - Ce P k
1	 2

The "diffusion term" may be appro^:imated by a gradient formulation (Jones-

Launder). Then with the formulation for the eddy viscosity, the model is

complete; the constants a k , are , Cel, CC2 appearing in equation 20 are those

found by Jones and Launder (1972)

u
(Pk)+(pkUJ),	

(aT
 g e^

	
k i^ + P - PC

	

(pL)+(PeUJ) ,^ ' 9 Y ^IT C,Z) + Ce k P - CE 
a 2	 (20)

e	 1	 2 k

The formulation for the eddy viscosity proposed by Jones -Lounger is given by,

2
µr Cep e

t
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This formula assumes a local equilibrium between the production and the

dissipation of turbulence, But in the case of a rotation, the production

acid the dissipation evolve differently because of the differences in the

range of wave number the two processes are occurring. As the production is
a

principally located in the low wave number zone, the effect of the rotation

should be more important on the production than on the dissipation which

can be seen as nearly isotropic. Therefore, the relation giving the eddy

viscosity should be corrected in the case of a rotation. This is being

presently carried out.

We may remark at this point that no direct effect of rotation appears

i
In the dissipation equation derived for high Reynolds number flows. That

can be related to the weak anisotropy of the dissipation in that case. The

analysis given above has been carried out earlier, except for its representa-

tion in a generalized tensor form.

k-e Model for Low Reynolds Number Flows

First of all, we may want to define what we call a "low Reynolds number

flow". If we are interested on the statistical properties of the turbulence,

it is useful to define local parameters, such as local Reynolds number based

on the turbulent quantities, Richardson numbers, etc. The Reynolds number

which is interesting to characterize the turbulence behavior is based on

the kinetic energy and its dissipation rate and is written as follows:

2
RT - k NRe

The fact that a flow will be of the high or low Reynolds number type will

depend on the value of RT.
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1

for low Reynolds number flows the viscous diffusion may not be neglected,

moreover vary near a wall the dissipation it not isotropic. Many of the 	 1

terms we were neglecting may be important vary near a gall. Therefore we
4	 9

must go back to equations 18 and 19 and analyze the terms which were

neglected before.

4

6 uation for the Turbulent Kinetic Rner k

The production and turbulent diffusion terms are modeled similar to the

high Reynolds number and the effect of low Reynolds number will appear

through the eddy viscosity. The only term which needs to be modeled is the

viscous term NF) ► ^ • This term is equal to g1j (PK' i + u(uU u

Ganerally the valuo of the dissipation at the wall is different from

zero, Following the argumaint of Jones and Launder (1972), it is useful to

make the dissipation E equal. to zero at tit* wall for improvement in calcula-

tion. It is necessary, then, to know the value of the dissipation at the

wall. We may write the kinetic energy equation at the wall, then equation 18

becomes

k	 (p)

And introducing the following hypothesis;

1.t+T Q at the wall

2. If y is the: normal direction to the wall, we may write

uw at a(t)y v' - b( t) y2 ► w' c(t)y• Therefore very near the wall (y+ c 8)

the kinetic energy is k ( 	 `Y2iey2; then the first derivative of k

is zero at the wall, while the second derivative is a constant.

3. 0 F p e2 with t n) k3/2 /k and Z is a mixing length then

0T OU y and the first derivative of PT should be zero, while the second

derivative should be a constant. Then (pt) (p) 
W 

gf j C^ t, ri	 ' "'T ' ii 8) (p) '
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Moreover, if we use the correction function F11 	 the sublayer in tl

relation for V , it appears that wriemay neglect the second term. Therefore

(pe) (p) 	gfj 9 0 R. (p) which is a constant.

This can be written, following Jones-Launder (1972), as
f

(PC) (P)	 3 u gf1 k1/2 	 2k1/

Which can ne seen as a generalization to the formulation proposed by Jones

and Launder for a two dimensional boundary layer.

3k1/2 2(pt ) (p) . 2p	
BY

The kinetic energy equation reduces then to

(Ak) +(PRj ) , j ' QRj u + QT^k, R, ^ + P PE - ^3 
gib P k1R2 k1 j2	 (21)

k

Equation for Dissipation Rate

They effect of rotation may be important in low Reynolds number flows

(near a wall) unlike the high Reynolds number case (particularly in the case

4	 of turbomachines). This effect must be modeled in the equation. But this

term is not the only one to be retained in the equation, some other terms

which are related to the anisotropy of the dissipation at low Reynolds

numbers are of the same importance.

Two kinds of terms may be discerned, which are important at low Reynolds

numbers (see Table 1 and equation 19)

1. Terms of Order RT1/2

These terms come from the interaction of the dissipation with the

mean gradients and with the rotation velocity. They also arise from the

terms representing the production of velocity gradients by stretching by

fluctuating strain rate and representing the destruction of these gradients

k

by viscosity on the other hand.
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The terms related to wean quantities are

-4utu": S i . + (vi ► + Zeip ^P>s.I

Then following Lumley (1970) this tars can be reduced to

_	 P

u 3 
v [0	

l + 2^	 t--_ice-- -^ 111 ►	 ]

Ui ► ^

In the case of a turbouschinery with n n (0, 0, il3), the coefficient

t	 Stp
^l + 2 j ) may be simplified. In fact this term appears to be important

Ui ► j
only very near^a Wall. Therefore, in this region the boundary layer approxi-

mations are valid and the coefficient may be approximated using the only

velocity $radiants which are important. We tray, then define a gradient

Richardson number as follows:
P

Ric . -2.1P.L..
Ui ► ^

Hence,
^F

1 + 2 =--- 1 - Ric

Ui ► ^

If we assume that a relation of the gradient type exists between the

Reynolds stress tensor and the strain tansor and that the energy spectrum

is not different from an equilibrium one, then we may assume that this term

is proportional to the production, then the terms related to mean quantities

can be proportional. to

3 k P Fl (RT , Ric)
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The tome related to fluctuating strain rate are

-4u S vik
u'_

j
u - 4Wvgnj S11i

k

Following Lumley (1970) we approximate these two terms as follows:

	

S_' u '-u	 z}3/2 (a + al SikS
ik
 v/0

gnu S;n w 1W 3/2 (A + a
2 

sikSik
/E)

Then the part which is of order RT1/2 may be approximated by:

4 
e 

P F ( )
k 2 ^r

L.	 So the total contribution of tarps of order R,r
l/2 may be reduced to:

k P F(R,T , Ric)

where the function F must be established.

2. Terms of Order R7T1

There are two terms of this kind, the first one represents "exactly"

the diffusion processes by molecular viscosity and does not need to be

ikmodeled ,• the second term is -^44 S' u-' S	 We may note that the correlation

between Sik and u ' j should be weak because each to= belongs to a different
s

range of wave number. A first approximation then, is to consider the term

$_' u'^ as a flux of S' by u' and to introduce the gross hypothesis that
ik	 ik

this flux is related to the gradient of the mean strain and then:

j ik	 C o 	 1t^	 k,4u S  u Spa z 4uvT t $ (Sik' Slk
3

However this term should be of little importance in the major part of the

C`	 boundary layer.
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It to remarkable that this term can be considered as a generalization

of a term proposed by Jones and Launder (1972) for the calculation of a two

dimensional boundary layer. Therefore, the dissipation equation reduces to;

(Ae)+(PEU) ►i ' sj rip + o   	 + CC Fe (Rf ► Ric) lcP 1

+ cc P k2 + Ck P VT eii (sik
► R 

Sid)	 (22)
2	 3

The constants °e ► Cel , CE2 are the same as the ones for the high Reynolds

number case. The constant 
Ce3 

reduces to the value 2, in the case of a two

dimensional boundary layer [see Jones-Launder (1972)]. Theca, the damping

function Fe must be,established. According to the analysis given above FE

should be a linear function of the Richardson number and an .exponential

function of the Reynolds number. Then the form of FE should be;

Fe (RT , Ric) 0 1 - f (RT) (1 C& Ric)

Eddy Viscosity Law

We need a formulation to relate the Reynolds stress tensor to the

strain tensor, through an eddy viscosity coefficient. This hypothesis means

that [Tennekes-Lumley (1972)) the gross structures get the tendency to be

oriented with the principal axis of the strain tensor to extract more energy

to the mean ,field, and that the turbulent structures are approximately

convected within the mean velocity direction. Therefore, the main hypothesis

to derive the viscosity law assumes that the turbulent viscosity is isotropic.

But for three dimensional flows and particularly for boundary layer flows,

the velocity vector U and 9U are not aligned in general. Therefore, the
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Isotropic eddy viscosity is not adapted to predict the behavior of the Reynolds

stresses. The best way to avoid this problem would be to solve the complete

set of Reynolds s-tresses equations. However, as first step attempts will

be made to derive an expression for eddy viscosity. In fact, in its most

general form the eddy viscosity is a fourth order tensor, and for the

particular case where only two directions in the flows are of equal importance

(that is the case for blade boundary layers) we may introduce two different

eddy viscosity coefficients which can take account for the non-isotropy of

the flow. This has been done for a mincing length hypothesis by Koosilin and

Lockwood (1974). Using this .concept, the anisotropy introduced by the rota-

tion could be included in the definition of the viscosity law.

An attempt is presently underdevelopment to take account for the effect

of the rotation in the eddy viscosity law.

Conclusion

The analysis of the kinetic energy and the dissipation equation has

been performed, and some remarks can be made at this time.

Firstly, an order of magnitude analysis of equations 18 and 19 showed

that the rotation does not affect the dissipation rate explicitly in high

Reynolds number flows. In fact, in such flows the dissipation.is  nearly

isotropic and it is logical that the rotation does not affect a because of

the analogy of each direction. At low Reynolds number, the dissipation

becomes non-isotropic, both the effects of Reynolds number and Richardson

number may be important in this case.

a
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Secondly, it appears that the effects of rotation are more important

on the production terms than on the others. In fact, if we examine equa-

tion 17 it is easy to show that the Reynolds stresses may be greatly

affected by the rotation while the kinetic energy and its dissipation rate

are not so much affected. Then it is evident that the most important relation

which controls the calculation is the eddy viscosity coefficient.

Thirdly, we say make another remark which is also related to the

preceeding comment. The analysis of the dissipation equation shows that

the effect of rotation should affect the "production" term instead of the

"dissipation" term in the equation for e. Most of the models at the present

time account for the rotation through the "dissipation" term [see Launder,

Priddin, Sharma (1977); Howard, Patankar, Bordynuik (1980)). Nevertheless,

our analysis seems to be in accord with the remark which was made by

Launder at al. (1977) that the corrections might have been better made on

the "production" term of the a equation instead of on the decay part.

A computer code has been written to check the model presented here, in

simple cases such as flat plate boundary layers, boundary layers on rotating

cylinder. The program is based on the Patankar-Spalding procedure (1970)

and is used to solve the parabolic transport equations for the velocities,

the kinetic energy and its dissipation. It is operational for two dimensional

boundary layers on flat plates, and is being modified to calculate boundary

layers on rotating cylinder. These calculations are performed in order to

check the assumptions made for low Reynolds number modeling. Then the model

could be included in the three-dimensional computer codes developed at Penn

State
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3. MEASUREMENTS, OF THE THREE DIMENSIONAL FLOW
INSIDE AN AXIAL FLOWCOMPRESSOR ROTOR PASSAGE

Experimental Program

The measurements reported in this report were performed using the Axial.

Y 
Flow Compressor facility in the Department of Aerospace Engineering.

The flow-is surveyed across the entire passage at six axial locations

(one upstream, four inside the rotor passage, and one downstream) and at

five radial locations. Measurements were taken at five radial locations

(R - 0.58, 0.67, 0.75, 0.83 0 0.918) at each of the following axial stations

Inside the pasaaget Z m -0.5 (upstream), 0.26 0 0.3, 0.73 0 0.97, and 1.06.

The data inside and downstream of the rotor were acquired with a five-

hole probe, rotating with the rotor. The data upstream were acquired with

a stationary five-hole probe. All the measurements were taken at the design

flow coefficient 0 - 0.36.

The results of the measurements are compared with the predictions from

the Katsants and McNally (1977) computer program.

Typical Results

A small sample of the experimental data and some comparisons with the

predictions from the Katsanis and McNally (1977) program are presented here.

The measured and predicted blade to blade distributions of the axial

(WZktangential (WT) and radial (WR) relative velocity at R - 0.918 (near

the tip) and at Z u 0.26, 0.5, 0.73,'0.97 are shown in Figures 1 through 4.

All the components of velocity are normalized with respect to the tip speed

velocity. The predictions for the axial velocity are quite good at the
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last two axial stations (i.e.. Z - 0.73, 0.93) . At the first two axial

stations, the agreement is only reasonable and the slope of the predicted

and measured profiles are of opposite sign.

The prediction* for the tangential velocity are quite good except at the

last axial station Z n 0.97. Nevertheless, at this location the shape

of the predicted and measured profiles are strikingly identical. The differ-

ence in magnitude comes from the fact that the code cannot predict the flow

near the trailing edge accurately. This is because it cannot incorporate

the Kutta condition correctly, since it is based on an inviscid analysis.

IL

	

	
The program does not have the ability to predict blade to blade distribu-

tions of radial velocity. The predicted radial velocity profiles that are
t

shown in Figures 1 through 4 are computed by assuming that the maridional

angle calculated in the 
B2 

surface solution is constant along the entire

blade passage,

The measured blade to blade distributions of the relative total pressure

and the static pressure are shown in Figures 5 through S. Both the total

and the static pressure are normalized by 1/2 p U2

The static pressure profiles are fairly linear with the loading

decreasing as we go from Z - 0.26 to Z - 0.97.

The relative total pressure profiles are almost flat. The mean value

of relative total pressure is almost constant. The difference of the mean

relative total pressure at Z - 0.26 and Z - 0.97 is less than 1 percent.

This indicates that the losses in the inviscid part of the flow through the

blade passage are very small.

The measured profiles of the axial, tangential, and radial relative

velocity downstream of the rotor are shown in Figures 9 through 13. The
I
`	 axial location is not the same for different radial locations due to the

geometrical constraint on the probe.
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The velocity defect is maximum at the location Z 1.449, R 0.587

and minimum at the location Z = 1.085, R a 0.918.

The radial velocity is less than 10 percent of the tip speed velocity

at all locations and mostly outwards. This agrees well with sessurementa

taken by Dring at al. (1981) and Davino and Lakshminarayana (1981). Small

inward radial velocity at the pressure side region can be seen at the

radial locations nearest to the hub and casing while in the mid-span region

the radial velocity is everywhere outwards.

Inward radial velocity at the pressure side region is induced by the

*had vorticity. Shed vorticity results from the gradient in blade loading

across the span. Since the loading in the mid-span is relatively uniform,

there is no strong shed vorticity in that region so inward radial velocity

	

f	 cannot exist. This justifies the present experimental results.

The measured profiles of the relative total pressure an4 the static

pressure downstream of the rotor are shown in Figures 14 through 18. As it

was expected the relative total pressure profiles follow the behavior of

	

r	 the axial and tangential velocity profiles.

The static pressure profiles show an increase of the static pressure in

the wake region. This comes in contrast to the classical assumption of

constant static pressure across the wake. Similar observation has been

reported by Lakshminarayana and Davino (1980).

I^
`i

1
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APPENDIX 1

Transformed Momentum Equations and Jacobian Matrices

Momentum Equation in z- Direction
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Momentum Equation in 6 Direction
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Momentum Equation in r-Direction
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APPENDIX 2

Literature Survey on the Effects of Curvature
and Rotation on Turbulence Structure

In this section a literature survey on experimental and analytical

investigation of the curvature and rotation effects on turbulence is carried

out.

Experimental results provide information on the physical behavior of

the turbulent flows to enable modelling the effects of the different strains

such as them strains, curvature effects, rotation effects, etc. The triple

velocity correlations, pressure-velocity correlations, dissipation which

appear in the Reynolds stress equation, are difficult to measure and,

µ hence, the modeling is more or lass empirical and is based generally on very

restrictive assumptions. For example, the turbulence models are often based

on the homogeneous fluid properties, local Isotropy of dissipative scalesB	 P P	 r	 Py	 P	 ,

high Reynolds numbers which lead to relatively simple models. On the other
i

hand, experimental work provide results Oust can be used to check different

	

A'	 turbulence models. Nevertheless, some of the experiments do not provide

sufficient information to check all the models in detail. In the past few

	

'	 years, it seems that a great effort has been made to provide experimental data

including all the Reynolds stress tensor terms. ►Most of the data available

Is for simple two dimensional shear flows (free shear flows,, boundary layers,

jets, wakes, ducts). For the complex flows (following the definition of

Bradshaw (1177) for complex flows) which are the most coa wn in engineering

practice, very little data and few models are available.

In this section, more emphasis is given to the effect of rotation which

Is the principal effect we are interested in.

r
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Curvature Effects

E41arimental Data

Castro and Bradshaw (1976) have carried out extensive one-point measure-

ments in a highly curved mixing layer to determine the effects of streamline

curvature on a shear layer, The principal effect is to diminish the Reynolds

stress tensor components when the angular momentum of the mean flow inoreases

with radius of curvature and to increase these quantities in the opposite

situation. The most spectacular feature of the measurements is that the

components of the Reynolds stress tensor after decreasing in the highly

stabilising curvature region, rise rapidly and overshoot the plane-layer

value farther downstream before finally decreasing. This indicates the

inadequacy in current modeling for shear layers such as the use of the

shear layer thickness to provide a length scale, the rotational invariance

of turbulence models based on second order transport equations, and the

gradient diffusion hypothesis for turbulent transport.

Changes in turbulence properties can occur even with small curvatures

as can be seen in the experiments of Hoffmann and Bradshaw (1978) on a

turbulent boundary layer with a mild longitudinal curvature, and of Hunt

and Joubert (1979) in duct flow. Data are also reported by So and Mellor

(1975) who show that Reynolds stress increases and three-dimensional

vortices exist over a concave surface. The experiments of Margolis (1963)

deal with the unstable effects in a curved mixing layer. The latest paper

by Nakano et al. (1981) covers the effects of stable and unstable freestream

on a turbulent flow over a concave surface, where different shear flows are

provided at the inlet to the curved section. Three-dimensional longitudinal
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vortices are found. In an unstable free stream, turbulent intensities in

the boundary layer as wall as in the free stream are increased. Alcaraz

(1977) studied the wall jet developing on a constant-radius convex curved

surface. The flow was nearly two-dimensional, but the curvature was large

enough to produce measurable effects on turbulence.

Analysis

The effect of stabilizing or destabilizing forces on the turbulent

motion of homogeneous fluids in flows along curved surfaces was first dis-

cussed by Prandtl (1930). Early experiments gave evidence that the intensity

of turbulence increases on concave surfaces and decreases on convex surfaces.

Similar effects occur, when the gravity field acts on a flow of variable

density. Cartler (1959) has pointed out the alna ogy between the two effects.

Bradshaw (1968) proposed a formai algebraic analogy between meteorological

parameters, such as Richardson number and the parameters describing the

effect of curvature or rotation on turbulent flows. Semi-quantitative use

of the analogy shows that the effects of curvature are appreciable if the

shear layev thickness exceeds roughly 1/300 of the radius of curvature. The

main result of the paper is the introduction of the Richardson numbers for

streamline curvature and rotation which represent the ratio of the "buoyant"

production to inertia production. Bradshaw also proposed a form of the Monin-

Oboukhov formula for the change of mixing length with Richardson number for

curved flows. The development of multi-equation models for curved flow began

nearly 1975 with Mellor who in fact used the same stress closure approximations

i
	 for buoyant flow and curved flow to produce a modifying function for the
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eddy viscosity.	 Irwin and Smith (1975) simplified the stress-closure of

Launder at al. (1975) to calculate the development of boundary layers and
i

wall bets on curved surfaces.	 The most important result was that the

b obse:'ved curvature effects could be accounted for by the relatively small

production terms appearing in the individual Reynolds stress equations.

Launder at al. (1917) proposed a two-equation model M-C). 	 The energy

i production rate due to curvature appears inn exact form in the energy equation,

but the curvature effect is modeled empirically in the dissipation equation.

Gibson (1978) developed an algebraic Reynolds stress model, following the

4
idea that effects of curvature on heat transfer could only be accounted for

by modelling the Reynolds-stress and heat-flux equations.	 The model is

derived from that developed for the buoyancy affected turbulence.	 The

influence of the wall is introduced in the modeling of the fluctuating

pressure.	 it is shown that the effects of streamline curvature on heat

transfer are probably significantly ,less than on the shear stress.	 That is

an important result which suggests that the use of a constant turbulent

Prandtl number in prediction methods may provide misleading estimates of

the heat transfer from curved surfaces.	 The algebraic Reynolds stress model
4

may be coupled with a one equation scheme (k) or two-equation (k-E) models
i

to provide a length scale. 	 Recently 'Townsend (1980) introduced the rapid-

distorsion approximation to predict the streamwise variation of uv/q

considering that the complex distortion ;involves taking account for the

history of the distortion. Two remarks are to be made. Firstly, this

approach may not be suitable for mild curvature surfaces, where the time

scales of turbulence motion and distortion can be of the same order.

Secondly, this method predicts only stress ratios, and if it were to form

part of a calculation scheme, other equations would be needed to determine

the intensities. More recently, Gibson and Rodi (1981) have proposed a full
i
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e
Reynolds stress model for two-dimensional curved flows and for high Reynolds

numbers. The modelling is principally based on Launder et al. (1975) model,
a

using the simple gradient diffusion hypothesis for the triple velocity

correlation due to Daly and Harlow '(1970). In adapting the pressure-strain

correlation to curved flow, the mean shear production as well as the extra

strain due to curvature are included, though the effects of curvature are

Implicitly introduced in the modeling. The modeled a equation, in the form

originally proposed by Hanjalic and Launder (1972) appears to be quite

adequate, only a logical, change has been done in that equation. The energy

production due to mean shear in a simple flow is replaced by the total

(shear and curvature) production. However, recently the performance of the

modeled'. equation for c has been questioned (Launder and Morse (1979), Oanjalic

and Launder (1978)] for complex flows. So, one of the most 'updated works to

be done should be the modeling of the exact equation. Particularly when

curvature and rotation effects are present. We may mention the latest

works of Gibson, Jones, You nis (1981) on curved wall boundary layer and,

Gibson and Younis (1981) on curved wall,jet more particularly on a convex

surface (Alcaraz (1977)). The only difference in modeling with the previous

work of Gibson and Rodi (1981) is in the way of how the pressure strain

correlation is modeled. The proposed modification for near-wall effect by

Launder et a1; (1975) is used. All these calculations are part of a program

motivated by the requirement for a general prediction procedure for complex

shear flows with density stratification, rotation and streamline curvature.

r
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Rotation Effects

Experimental Data

It was pointed out by Johnston (1970), that there are two basic effects

of rotation. If components of the coriolis acceleration is parallel to the

surface on which the layers are growing, secondary flows will tend to

k
	

develop in the mean flow field of the layers. If a component of the coriolis

acceleration is perpendicular to a solid surf ace, some stabilizing and

destabilizing effects are observed in the turbulence strut`ture itself. Both

effects are believed to be important in the flow fields of centrifugal

impellers.

The experimental data available may be classified in two categories.

1. Free shear flows in rotating frames (e.g., wakes), and 2. Mall shear

flows.

In the case of free shear flows, only the experiment of Raj and

Lakshminarayana (1975) is known to us. These authors give a detailed measure-

ment of the wake characteristics behind a rotor. The results of Ravindranath

and Lakshminarayana (1980) are also available.

In the case of wall shear flows, one may class the different experiments

available in three categories:

1. Rotating Cylinders or Pipes

2. Centrifugal Turbomachines

3. Axial Turbomachines

r
	

1. Rotating Cylinders in Axial plow

Almost all the experiments designed in this case are nearly the same..

We may mention here the works of Bissonnette and Mellor (1970), and

4

tt	 s
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Lohmann (1973). In each of these experiments the mean properties

and the six components of the Reynolds tensors are measured, but the major

effects due tc the rotation occur very near the wall and the turbulent

quantities are not measured in this part of the boundary layer..

Arzoumanian et al. (1981) has provided data on an axially rotated cylinder

with special emphasis in the region very close to the moving wall, noverthe-

less, only the following turbulent quantities are measured: 1, w'^, wr.

The turbulent stresses 77 and 7771 are derived by integrating the corre-
sponding momentum equations from mean velocity measurements. Nakamura et al.

(1981), in their study of a three-dimensional turbulent boundary layer on a

m	 spinning thin cylinder in an axial flow, have given some results on the

mean properties. A universal law for velocity distribution is also derived.

The experiment on the three dimensional boundary layer developing in an

axially rotating pipe of Murakami et al. (1981) show that the flow is affected

by two counter effects. One is a destabilizing effect due to an increase

of the relative velocity at the wall caused by the pipe rotation, and the
i

other is a stabilizing effect due to the suppression of turbulence by the

centVifugal force. The dominant effect depends on the Reynolds number and

the rotational speed.

2. Models of Centrifugal Turbomachines

The effects of the Coriolis forces in such machines are of great

importance. The experiments of I-Man Moon (1964) provide some results on

the mean quantities as well as on the following components of the Reynolds

stress tensor: ul v'^, u v for a rotating speed of 165 rpm and

0.46 5 Ro < 1.92. Moore (1973) carried out similar measurements but pravided

k
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only mean velocity profiles.. Johnston at al. (1972) in their experiment on

fully developed turbulent flow in a channel, which is rotating about a

spanwise axis, observed three stability related phenomena explained in this

paper. They pointed out the Richardson number is an appropriate local

stability parameter. For example, local effects of rotational stabilization,

such as reduction of the turbulent stress in wall layers, can be related to

the local Richardson number in a simple way. In this experiment, the authors

also give some quantitative data on mean properties The paper of Koyama at al.

(1979) on "The Turbulence Structure and Three Dimensionality of a Rotating

i	 Two Dimensional Turbulent Boundary Layer" is one of the latest results

available. This paper has not been surveyed at this time. We may also

introduce the partial results of Bertoglio et al. (1980) in a centrifugal

testing machine which give some information-on the flow in actual impeller.

3. Model of Axial Turbomachines

For such cases, only few results are known, in fact the only available

data are the ones provided at The Pennsylvania State University--the experi-

ment of Lakshminarayana et al. (1972) on the turbulent boundary layer on

a rotating helical blade. However, no turbulent measurements are included

in these results. The more complete experiment was Anand and Lakshminarayana's

(1975, 1978) on the four bladed rotating helical channel. Some results on

turbulence quantities show that the radial component of turbulence intensities

is higher than the streamwise component due to the effect of rotation. More-

over, the flow near the annulus wall is found to be highly complex. The

turbulent shear stress measurements show that in three dimensional rotating

turbulent boundary layers, all three correlations are of the same order of

magnitude inside the boundary layer. A deviation is found between the stress

1
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tensor and the strain tensor, that is one of the most important features in

three-dimensional flows and represents the anisotropy of the turbulence in

such cases.

Analysis

Bradshaw (1969) carried out a simple analysis for both curvature effects

and rotation effects and pointed out that the same arguments could be applied

to shear layers in rotating fluids and curved flows. The author introduced

the gradient Richardson number, the flux and stress Richardson number by

analogy with buoyancy analysis. A more detailed qualitative analysis has

been carried out by Johnston et al. (1972) for the case of a rotating boundary

layer, in their study, they focused attention nn the production terms which

..	 appear in the Reynolds stress equations and which are due to the interaction

by the mean flow and due to coriolis effects, explicitly. In summary, this

examination of the production terms lead to conclude that in wall layers the

sign and the magnitude of rotation effects might be controlled by a local

dimensionless parameter. This parameter may be related to the gradient

Richardson number proposed by Bradshaw and is very useful, to .characterize

the stability or instability of the flow submitted to a rotation. It appears

that the first "theoretical" investigations and prediction procedures

accounting for all the effects of the flow situation, namely three-

dimensionality and turbulence, are quite new. In fact the first attempts to

calculate three dimensional boundary layer are based on integral methods

such as Moore (1973), Lakshminarayana et al. (1981). The first differential

calculations seem to be those of Majumdar et al. (1977) and Sharma (1977).



57

i

In the former case, the authors are solving the three-dimensional boundary

layer with the method of Patankar-Spalding (1972), Which is a marching

Integration technique for three-dimensional boundary layer problems. 	 The

turbulence model which is used in this paper is the well known k-e model

without any modifications for the rotation effects. 	 In the latter case,

e.g. Sharma's paper, the calculation over an axially spinning cylinder is

performed	 The problem is two-dimensional and solved with the two-

dimensional marching procedure of Patankar-Spalding (1970).	 The k-e model

is used to calculate the boundary layer up to the wall.	 An additional term

is included in the transport equation for a to account for the curvature

" effect on the dissipation rate.	 This term is seen as a correction to the

"dissipation" of dissipation rate a by the Richardson number based on the

turbulent time scale k/e. 	 Nevertheless, this kind of model cannot account

for the non-isotropy of the stress tensor. Moreover, no correction for the

rotation effects are introduced.	 In fact, these effects are not very

important for the calculation of flow on spinning cylinder.	 On the problem

of the rotating cylinder, an approach similar to Sharma's is due to

Spitz (1980) who solved the same momentum equations as Sharma with the same

numerical procedure.	 In this work an attempt is made to include the non-

isotropy of the Reynolds stress tensor by taking account for two eddy

viscosity factors which represent the difference between the two principal

directions.	 The turbulett a model is based on the mixing length hypothesis.

We may also mention the work of Cousteix and Aupoi (1979) who made the

same assumptions but used a k-e model. 	 But in each of these works no

rotation effects were included.
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One of the first analysis of the rotation effects on the turbulence

quantities has been carried out by Raj and Lakshminarayana (1975) and

Raj (1;975), who gave the exact equation in generalized tensor notations and

k
analyzed the turbulent processes in the wake of the rotor blade, but no

I« calculations were carried out.	 Lakshninereyana and Reynolds (1979) carried

out c qualitative analysis of the effects of rotation on turbulence in the

near wake of a rotor.	 This analysis indicates that the rotation has sub-

stantial effects on the structure of turbulence. 	 Such as radial component

of intensities is higher than the axial and tangential In the near wake and

decay more rapidly than the others. 	 The radial components of the stresses

are generally higher than those of a corresponding non-rotating rase.

Another analysis based on spectral calculus has been carried out by

r Bertoglio et al. and Bertoglio (1980) to study the effects of the rotation

,. on an homogeneous turbulent field.	 The effects of stabilizing and destabilizing

Y

due to corioiis forces are observed, but this kind of approach does not

account for the non-linear and inhomageneous termu in the computation.

Nevertheless, some important results show that the pressure-strain correla-

tion in rotating frames may have to be modeled carefully, 	 Another fact is

that the use of isotropic functions when modeling may be inadequate, and

some parameters, like the direction of the force, have to be taken into

account.

The only complote calculation available, which takes into account the

rotation effects, is the one performed by Howard at al. (1980). These

authors, following the work of Majumdar et al. (1977), used a modified

procedure based on the partially-parabolic method of Majumdar and Spalding

(1977). They solve the three-dimensional boundary layer equations within

a rotating frame. The turbulence model is based on the k-e model. Three

l	
'
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modifications to the basic k-e model are tested which Include effects

Coriolis f6rce on the turbulent energy and dissipation rate. The fir

In based on the work of Wilcox and Chambers (1977) and rake account of the

Coriolis effects in both the k and a equations assuming that the kinetic

energy is proportional to u' . The second and third models are based on

a study of curved boundary layers by Launder at al. (1977), where the k

equation is maintained in its usual form and where the Coriolis effect is

introduced through the e'equation. Two forms of the 'Richardson number are

considered. Their conclusion is that the Wilcox-Chambers model give the

most satisfactory prediction, and they point out the need for inclusion of

a Coriolis model for turbulence modification. Finally, the approach of

Hah and Lakshminarayana (1980) and Hah (1981) who introduce an algebraic

Reynolds stress model coupled with a k-e model which, though the convection

and diffusion are not included, take account forrotation and curvature

effects.

Comments

The review of the different paper point out three main features;

1. Only few calculations are available for the calculation of the

three-dimensional boundary layer in rotating frames.

2. No complete Reynolds stress model is available for rotating turbulent

flows. Very few attempts have been made to account for the rotation effects

in the k-e model, but none are really based on a logical analysis. In fact,

the most up to date results in modeling are those of Raj (1975) and Hah and

Lakshminarayana (1980). The major effort, then, should be given to the

analysis of the dissipation rate equation and to the Reynolds stress equations.

I	 ^

f

Li,._.



60

3, Detailed measurements providing intorsation on the effects of

both the Rossby and the Richardson number on turbulence are not very

t
numerous. So, every new result would be of great interest, particularly

Ii the rotation effect can be isolated from the other effects.

t

1.

a

c
i
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