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ABSTRACT

An analysis of Synchronous Time Division Multiplexing is presented. Packets

of information arrive at the system as a compound Poisson process, and can

be transmitted only during individual periodic intervals. Packet arrivals

may be blocked (Lost) if the system has a finite capacity and is congested.

Using the theory of semi-regenerative processes, the distribution of the

number of packets in the system (system size) is found. This nonstationary

distribution is used to determine the complete system behavior, including

the delay distributions, the blocking probability, and the density of the

system size at arrival instants. Numerical examples illustrate applications

of the results given.
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Spacecraft data is collected by means of a variety of sensors which typically

operate simultaneously. The data from the various sensors must be funneled

through a common telemetry channt . The current method of combining the

data is by Synchronous Time Division Multiplexing (STDM).

This paper represents the initial phase of research in the study of Deep

Space packet telemetry techniques [1]. This study, which is part of the

NEEDS (NASA End-to-End Data System) program, will identify and compare

various strategies for managing, packetizing and multiplexing spacecraft

data. The baseline technique defined in [1] is STDM.

A unified approach to analyze the performance of STDM is given hereiai.

Using this approach, several new results are obtained for a large class of

arrival streams, particularly for the finite buffer capacity case.

The design engineer may use these results to completely predict system

behavior, including channel utilization, probability of data loss due to

buffer overflow, and queueing delay, . By varying the design parameters of

the model, the appropriate channel allocation and buffer sizing can be

determined such that the performance will meet the prescribed criteria for

each source. In addition, sensitivity analyses can be done by exploiting

the generality of the arrival process model.

In STDM, each source is assigned a fixed sequence of time intervals during

which it may transmit information. The assignment is predetermined and

does not adapt to fluctuations in the traffic load. In the definition of

STDM in this study, a structure is imposed on the time intervals assigned
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to the sources, and is defined as follows. Time is divided into equal

length frames. Each source is allotted a fixed contiguous portion of

each frame, defined as a slot, which remains in a fixed ordered position

from frame to frame, While the slot sizes are constant for a given source,

they may vary between sources. The amount of information transmitted in

a slot is called a packet (for that source).

It is clear that STDM provides excellent performance if the data arrival

times are deterministic, one packet per frame. In the past, spacecraft

data were collected in a predetermined fashion so that STDM was well suited

for the environment. However, future missions will use source encoders

as well as sensors that are triggered by random-time events. These will

cause the information packets to arrive at random times, in which case

STDM may not be as efficient as other alternatives. This paper investi-

gates the performance of STDM with random time-of-arrival input streams.

In any multiplexing scheme the source data are colocated at the concentrator.

This allows the possibility of sharing another finite resource: buffer

space. However, in this paper we will assume each source has its own

individual buffer. This important assumption implies that the queueing

behavior of any source is independent of all other sources, and only one

source needs to be considered. Since the STDM scheme considered here does

not utilize any of the advantages due to the coloration of the sources, 'it

is also referred to as Time Division Multiple Access (TDMA).

The analysis of the STDM queueing process presented here is based on the

`	 theory of semi-regenerative processes, assuming a Poisson message arrival

r	 stream. Messages will consist of groups of packets, where the distribution

t
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of the group size is arbitrary (i.e. a compound Poisson packet arrival stream

is assumed). The quantities of interest are: the number of packets or

messages in the system ("system size"), the total time spent in the system

("delay"), and in the case of a finite capacity system, the probability of

being blocked.

In this paper we give new results describing STDM/TDMA behavior, including

the actual delay distributions and a complete characterization of intraframe

system behavior for finite packet capacity systems. A list of previous work

on STDM/TDMA is given by [21-[8] and [131-[17]. Birdsall et al. [13] and Dor

[2] found the system size distribution at framing instants as well as

the blocking probability for a finite capacity system. Chu [14] extended

these results to the case of compound Poisson arrivals. Konheim [3], Hayes

[4], Lam [5] and Rubin [6,7] all concentrated on the infinite buffer capacity

case. Konheim [3] derived the packet system size distribution at framing

instants and the mean virtual packet waiting time. Hayes [4] describes intra-

frame behavior, and gives the actual waiting time distribution as well as the

packet system size distribution. The first work to consider the packet trans-

mission time within the frame was Lam's [5]; his paper gives the message system

size distribution and mean message delay. Yan [8] extended Lam's work to allow

a finite message capacity. Rubin [6,7] used a discrete-time model (with infi-

nite buffer capacity) to obtain the system size and delay distributions. His

model is more general than the one used here in that a source is allowed multi-

ple contiguous slots in each frame. In addition, Rubin points out that the

interarrival times may be correlated within the discrete time unit, so that a

more general arrival process is allowed. Generalizations in other directions

are given by [15]-[17].
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The STDM model will be defined in the next section. Section III will

present the fundamental analysis leadirg to the key result (28)-(29), the

steady state packet system size density. This is used to find the packet

system size at arrival instants (a non-Markov chain), as well as the

blocking and truncation probabilities, Section IV contains the deriva-

tion of the packet and message delay distributions. Transform relations

are given in Section V for the infinite capacity case. Numerical examples

are then given in Section VI, followed by a concluding summary. The

appendix contains an analysis of the message system size for a possibly

finite message capacity system; this extends the works of Yan j8] and Lam [5].

5



II. DEFINITION OF THE STDM MODEL

In STDM, time is divided into equal length frames. Each frame is further

divided into ordered slots, and one o1ot is assigned to each source. Let

T = frame duration

M a number of sources being multiplexed

6m = proportion of frame assigned to source m, m = 1, 2, .,., M

so that

6mT = slot duration for the mth source, m = I t 2, ... M

The STDM structure is illustrated in Figure 1. Frequently, STDM (or TDMA)

is used with all the source ;Paving the same slot size, so that 6m = l/M

As was previously mentioned, the queueing behavior for a given source is

independent of all the other sources, so that only one needs to be con-

sidered. Define the time origin as though a slot for the source under

consideration has just ended. Thus, the source may use the cross-hatched

slots of duration 6 
M 

illustrated in figure 1.

All subsequent definitions will refer only to the individual source under

consideration. for example, the "packet system size" is the total number

of packets in the system belonging to that source. In addition, the

subscript on d M will be dropped, so that

d = proportion of frame assigned to the source

1
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Messages enter the system as a Poisson arrival process. Thus, letting

An = time of ttvi nth message arrival

X - message arrival rate, messages/time unit

we have that the interarrival times are independent and have the distribution

P(A
n+1

 - An < t) = 1 - e-1Xt , t > 0, any n

Messages are assumed to consist of a positive integer number of packets.

Let

Gn = number of packets in the nth message

Then (Gn} is a sequence of independent and identically distributed random

variables with finite mean and an otherwise arbitrary density given by

gR = P(Gn = R) , z = 1 0 2 1, ..,, n - 1 0 2 0 ...

A packet is transmitted whenever the system is not empty at the beginning

of a slot. If a packet arrives to an empty system during a shot interval,

it must wait for the next slot before it can begin being transmitted (i.e.

a complete slot is required for transmission).

The "system size" can be counted either in packets or in messages, and is

defined to include both those in the buffer and that "in service" (i.e.

being transmitted). Figure 2a illustrates a packet system size sample

path, while Figure 2b shows the message system size for the same arrival

stream. The sequences (Rd and fftn) represent the departure instants of

packets and messages respectively. Each of the systems illustrated has a
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irretrievably lost. From Figure 2 it is clear that placing a finite

constraint on the packet state space implies a different blocking procedure

for the system than placing a finite constraint on the message state space.

The primary concern of this paper is the determination of theap cket system

size distribution (although the message system size distribution is derived

in the appendix), Therefore we define for the body of this paper

Xt - packet system size at time t

N z capacity of the system in packets (possibly infinite)

For N < - the implicit blocking procedure is as follows; if a message of

G packets arrives to a.system containing N-L packets, and L is less than

G, then L packets will be accepted and the remaining G-L will be blocked

(lost). Thus message integrity is not maintained, and several partial

messages could be in the buffer at the same time. (The term "message"

seems to imply an underlying mutual information between packets in the

same arrival group, which may not be the case. The packets may actually

contain independent information, with multipacket "messages" being used

solely to model the burstiness of the arrival process.)

The next section begins by defining processes which are "embedded" within

the {Xt) process. These processes are then characterized, and provide the

means for determining the distribution of Xt.

j^
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III. PACKET SYSTEM SIZE ANALYSIS

In this section we utilize the theory of semi-regenerative processes to find

the distribution of the packet system size Xt . We will identify the proc-

esses and functions necessary for the development of the theory, and outline

the approach leading to the main result ((28), (29)). Some immediate

applications are then provided, including computation of the blocking

probability.

The following processes are embedded within the process (X t): Let

Rn = time of the nth packet departure

Yn = XR+ = packet system size just after the ntb departure
n

and define

Z  = Yn for Rn-1 ` t 
e 

Rn

Since the arrival process is Poisson, {Ynl is a (time-homogeneous) Markov

Chain (MC), {(Y n , Rd) is a Ma;^kov Renewal Process (MRP), and {Zt ) is the

minimal Semi-Markov Process (SMP) associated with {(Y n , Rd) . {Xt } is

a Semi-Regenerative Process (SRP) with respect to the MRP {(Y n , Rd) .

These facts can be easily checked. For"definitions of the above terms

see (9].

An illustrative example showing the various processes defined above is

3

given in Figure 3.	 # ,
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Before proceeding further, let us first define a convenient mAation for

convolutions of the density (g t ) of the number of packets per messages let

gtj = P(G l + G2 + ... + Gj 	R) , R = 1, 2 0 ..., j =,1, 2 9 .

and Iet

1 ifR =O*o-

gR
0 if t 0

Now consider the MC (Yd. het the transition probabilities for (Yd be

denoted

(1)y ij =P(Yn+1 = jlYn =i)	 0<i, j <N-1

Then for 0 < i < N - 1, 0 < j < N - 1

j-i+1	 k

yij	
E 

Pk messages arrive in [0, T) and	 Gn 	 i + 1

k=0	 n=1

-NT (XT) 	 *k	 if j - i+1>0

	

L.^ e	 !
 9
-NT
 

(2)k=0

0	 otherwise

For  =0,0< j <N -Iwehave

Yoj = E [P(Yl = j 1Y0	0, Al, Gl)]

j+1	 °°

L] gr	 P(Y l	j1YO = 0, Al	 t, G
I
	 r) ae

-Atdt

r=1	 0

d



j+lT-dT j-r+1
_	

g	
e-a(T-T) a T -	 , g*k	 ae-X(T+mT)dT

r	 f	 j-r+1
r=1	 m=0	 0	 k=0

T j-r+1
+	 -r+ e-A(2T-T) a 2T - T lk *k Ae-X(T+mT)dt

(_,r	 gj-r+l
T-aT k=0

74

j+l	 j-r+l *k

= e- 
AT L^r gr 1: (k+l+l 

(xT k+1 +	 l -aT (e-XT	 k+l

r=l	 k=0	 1	 e

- (ATd)k+l)

IThe case j = N - 1 is found using

N-2

yiN-1	 1 -	 yi j	 (4)
J=O

or by summing (2) or (3) from j = N - 1 to infinity.

Define

P OT
	

(b)

to be the traffic intensity, where

G = E(G1)

is the mean number of packets in a message. By assumption G < -.

The MC (Yd is Oreducible and aperiodic, and is positive recurrent if and

only if either N < m or p < 1. In this case the stationary distrib ution

,rj = lim P(Yn	,i'YO	i)	 j = 0, i t ..., N - 1
n-►m`

(3)



If N < 00 , Yan c8] gives an efficient meznoa Tor evaivaLing ty..

Now consider the MRP (( Yn , Rn)). Let

Q i j (t) = P (Y n+ l = j, R n+ l - R n < t i Y n = i)	 0< i, j< N- 1
	

(N)

be the Semi-Markov Kernel (SMK) for (Y, R). Also, for i, j fixed let

{Rn(i, j)) be the sequence of times at which a departure occurs and j are

in the system immediately thereafter, given that we start with i in the

system. This is a delayed renewal process for each i, j. Let

N• i (t) = sup {n • Rn (i, j) < t)i,	 n>0 

be the associated counting process to the process {Rn(i, j)). Let

mi j (t)	 E(Nij(t))

12

E

j	 ^

for the chain exists independen

N-1

Tr3 = E ,r iy i j P j = 0,

J=O

N-1

E 'Tj 1
j=0

(9)

(10)



be the average number of visits to state j by time t, given we start in

state i, Then (m ij ) is the Markov Renewal Kernel (MRK) for the MRP (Y, R).

The MRK can be written in terms of the SMK (useful for transient results):

0

m
ii

(t) _	 QUM	 (11)
n=0

where

Qij (t) = P(Ym+n
 = j, Rm+n -Rm < tlYm = i)

is the n-stage transition distribution, which satisfies

N-1t
Qi jl(t) _ E	 Qkj (t - s)dQik (s)	 (12)

k =0 0

For each i, j the process {R n (i, M is periodic, so that each state of

(Y, R) is periodic with period T.

R1 (j, j) is the recurrence time for state j. Note that we are speaking of

the state space of (Y, R), which is easiest to visualize in terms of {Zt).

Thus Ri O , j) is the time Z t spends between two successive visits to

state j

Let

n j	{E[R-i ( j , J)]^ 1
	 j = 0, 1, ..., N - 1 	 (13)



Let

m  = E [Rl )Y0 a j]
	

j=0, 1 .... N-1

be the mean sojourn time in state jo i,e. the mean time Z t spends

state j before going to any other state. Then ([9], p. 329)

j=0,1s...,N-1
Itl

where

N1

m = 1: Trim
J=O

is the mean steady state sojourn time (for fZt}).

(It can be shown that the steady state probability density of (Zt ) is

given by {mj nj ), independent of t, even though the SMP (Z t ) is periodic.

In our examination of the SRP 
(Xt), 

however, we will find that the

periodicity of (Xt ) is evidenced by the periodicity of its steady state

distribution.)

Having established the necessary machinery, we may finally investigate the

SRP (Xt ). Denoting

-tohave

Pi (Xt = j) = Pi (Xt	j, Rl > t) + Pi (Xt = j, R l < t)



Now

N-1	 t

P i (Xt = J. Rl < t) _ E P i (Xt = jlYl - k, R1 = s) dPi (Y l = k, R1 s s)

k=0 fO
N-1 

_ 1: Pk(Xt-s = j ) aQik(s)

k=0f

t

since {Xt} is semiregenerative. Thus {X t} satisfies a Markov Renewal

Equation (MRE);

N-1

P i (Xt = j) = Pi(Xt = j, R1 > t) + 	 Pk(Xt-s = j) dQi k(s)	 (17)

k=0f

t

The solution (which can be shown is unique) to this MRE is ([9], p. 324)

N-1

Pi(Xt	j) =	 Pk(Xt-s - j , R1 > t - s) dmik (s)	 (18)

k-=0

Eft

We are interested in the steady state behavior of {Xt }. If either N < -

or p < 1 then the (periodic) MHP (Y, R) is irreducible and recurrent, so

we may apply the Key Renewal Theorem ([9], p. 334) to obtain

N-1

lim Pi(XT+mT _ j) = T E n k E Pk (XT+mT = j ' Rl > T + 
MT)	

(19)
m+-	 k=0	 m=0

where 0 < T < T and 1, j = 0, 1, ..., N - 1. Using (15) and defining

lim P i (XT+mT = j ) _ X( T )	 0 < T < T, j = 0, 1, .., N	 (20)
m+-

15
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we have: if N < - or p < 1, then for 0 < T < T

N-1 EW

x 
j(T)_ E'rk 	Pk(XT+mT j	 R, > T + MT)	 (21)

m k =O 	 m=0

j= 0. 1 0 ...,N-1

and

N*1

xN(T) = 1 - E xj(T)
	

(22)

j=0

If k > 0, j < N then

j-k	 R

Ee- 
XT k! 9*Rk if m= 0, j-k > 0

Pk (XT+mT = J, R
l > T+mT)	

k=0

(23)
0	 otherwise

while for k = 0, j < N

PO (XT+mT '= j , R l > T + MT)

j

L^ 9

*R a-JET (aT R
+ e-aT ( 1-a) e-a(

T+aT) a T+aT 
R	

(24)i	 k!	 1- C
AT	 Z t

=0

For j > 0 the mean sojourn time is simply

mj	T	 (25)

i

l

i
I

w..



while

m0 = T - p (at least i arrival in (O, T	 ST))

00

+E (m + 1)T - P (none arrive in CO, mT - 5T) and at least
m=1	 l arrives in CmT - 6T, (m + 1)T - 6T))

T	
1 + 

e-aT(1-d)	

(26)

Thus

_	 -JET (1-d )

m = T	 1 + 7r0 a
1	 e- AT
	 (27)

-

Combining (2l)-(24) we obtain the primary results if N < w or p < 1 then

the steady state probability density of tT+mT exists, m integer, 0 < T < T,

and is given by

x•(T) = T	 n 
e-AT(1-S)9 	 e-A(T+ST) [a(T + ST)]t

W	 0 1- e-1T	 k i

j	 j -k

+ Lnk E
*R. a -AT

(AT)j - 0, 1, ...o N - 1

k=o	 k=O J-k	
R 1

N-1

xN(T) = 1 _ E xi(T)
j=0

where m is given by (27).

(28)

(29)

17



The formulas (28), (29) provide the basis for the determination of the

various quantities that describe STDM queueing behavior at steady state,

Having found the "virtual" packet system size distribution, we next find

the "virtual" truncation and blocking probabilities. We then complete

the section by investigating these same quantities from the perspective

of an "actual" arrival.

If a message arrives at a time t = mT + T and finds X = N - J packets in

the system (N = capacity), then the message will be truncated if it contains

more than J packets. Our definition of truncation includes the possibility

of J = 0, i.e,, the probability of being truncated includes the probability

xN(T) that the entire message is lost. The steady state virtual message

truncation density is given by

N

P
T
 (T) = E xN-j (T)

a=o

00

r
L.^.^ gR 0 ` T c T
Z=J+1

(30)

where the term "virtual" is used to indicate that this event is conditioned

on the arrival occurring at a time T + mT, m integer.

Consider the probability that a packet is blocked, where the packet is

chosen uniformly from all packets which attempt to enter the system.

Suppose the packet arrives within a message of length L packets, which

arrives at time t = T + mT and finds N-J in the system. The packet will

be blocked if L > J and the packet is one of the L-J packets which are

not accepted. Since the packet is randomly chosen,

P (packet arrives in a message of size z) _ Zg 
Z	

(31)
G

18



and

P (packet is one of the (x-J) not accepted out of k)--R	 (32)

Therefore, the steady state virtual packet blocking probability is

N

PB (T) _	 xN_j(r) E !g2 R,,,_-_J 0 < T < T	 (33)

,i=0	 R=J+1

This represents an "average" virtual blocking probability, with no prior

knowledge relating to a bias in the selection procedure. If an ordering

exists on the packets within a message, and if the selection of which are

blocked or not is based on the ordering, then the appropriate (nonuniform)

distributions may be used to determine the blocking probabil{Wies for each

packet position.

In Appendix B it is shown that for large n, the arrival time within the

frame T = An mod T tends to be uniformly distributed over [0,T). Since

the arrival process is memoryless, the unconditional density

x
j
	 nim P(XA- j)

= P (arrival at steady state finds 3 packets in system)

j = 01 19 , .. , N

can be obtained by averaging (28) and (29) over T, T uniform on CO, T).
Thus the "actual" steady state packet system size density is

19
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i

_	 oa

1	
1^T	 *	 1	 -aT 	 ino -	 L gj i` (e C

XT (I +6)]1
  - [ T61

am	 1	 e	
XX0	

i ttx+1

F j	 -k	 0°
e-^fi	

"k	 gj-k	
XI 	 00 1 ..	 P	 1	 (34)

kz0	 R=	 ix+l

N^-1

XN =1 E xJ
	

(35)
J=O

where m is given by (27) .

By averaging ( 30) and ( 33) over T we obtain the actual steady state

message truncation and packet blocking probabilities respectfully;

N

PT =	 xN-j E gt
	

(36)
j=0	 Z=J+1

N	
0*

PB = (G) E_N_j E (R - j)gZ
	 (37)

j=0=j +1

The throughput s for the system is then

S = (1	 PB)R
	

(38)

The throughput s represents the average number of packet departures (or

unblocked arrivals) per frame.

At equilibrium, the average unblocked packet arrival rate, (1 - TB) X'6$

equals the average packet departure rate, l/m. Thus simpler expressions

for the packet blocking probability and throughput are
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r^.



`^	 1 - 1-----	 (39 )
^^ m

S K T	 (4Q)

W

Before concluding this section, let us consider the "actual" packet system

size when the messages consist of single packets. Evaluating (34) for this

case we find; if 9
1 
a 1, then

n=

jr- 
m	

,)=Q, 1,,..,N-1

and

xN-TB=1-1
am

This result could have been deduced from the following theorem C10): for

	

	
4

E:

any stochastic system size process which changes only in unit steps, if

either of

a. = lim P (unblocked arrival at t finds j in system)J	 t.+.

na = lim P (departure at t leaves j in system)
t4-

exists, then so does the other and they are equal. Note that the message

_system size process satisfies the conditions of the theorem (recall

Figure 2b) even in the case of multipacket message arrivals.

In the next section further utilization is made of equations (28) and (29)=

Both the packet and message steady state delay distributions are obtained

by a straightforward application of these results,
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IV. DELAY ANALYSIS

The packet delay is defined to be the total time the packet spends in the

system, and similarly, the message delay is the time from its arrival until

its last packet has completed transmission. This section presents results

for the steady state packet and message delay distributions. Both the

"'virtual" and "actual" delay distributions are given. The term "virtual"

signifies that the probabilities are conditioned on the arrival occurring

at a time t s T mod To while the "actual" distribution is unconditional.

The results of this section require that an additional assumption be made

on the STDM model defined in section II: the messages are transmitted in

the same order that they are received in. That is, we assume a First-Come=

First-Serve (FCFS) queueing discipline is used.

Packet Delay:

We will first find the steady state density of the virtual packet delay.

This density will be representative of an "average" packet in exactly the

same sense as discussed for the packet blocking probability. Thus, the

order of service of packets in the same message can be assumed to be

random (uniform).

Let D(T) be the virtual packet delay for a packet which is contained in a

message that arrives at a time A A T mod T, 0 < T 4 T. We set D(T) Z +

if the packet is blocked; the probability of this event is Pg(T)

(eqn. (33))

22'
a
4

f



The distribution of D(r) is discrete with atoms at the points D(T) = nT -

n = I t 2 1 ..., N + 1, and +-. We look for

P(D(T) = nT - TID(T)	 m> = P (D(T) = nT - T, D(10 < °°	 (41)

where

P(D(T) <	 PB(T)	 (42)

First consider the case 0 < T < T -- 6T:

fort <n <N

n-1

EP(XT = j, L > n-j, (n-j) th served)

P(D(T) = nT - TID(T) < ^) - j=0	 -
1	 P  T

(43)

where

L = size of the message that the randomly chosen packet arrived in

The density of L is given by (31). The probability that the packet will be

served at a particular point in order ((n-j) th) within a group of L is 1/L.

Since the indicated events are independent,

n-$	 m

P(D(T)

	

	

Rg
nT - TID(T) < ^, _ [1 - PB(T)]-1 	 xj(T)	

t	
(44)

=0=n-j G



Now consider the case T - ST T < T. In this case the delay now depends

on whether the packets already in the system all arrived since the beginning

of the current slot. If at least one arrived before the slot began, then

a departure will occur at the end of the slot; otherwise a departure will

not occur until a frame later. Thus we have for T - ST < T < T

P(D(T) = nT - TID(T) <

n-2	
\

[l - PB(T)I-1 
E 

P`XT = J ' 
XT-&T = 0, L > n-j-1, (n-,j-1) th served)

j=0

n-1

+ E P(XT = j, XT -aT > 0 L > n-j, (n-j) th served)	 (45)

J-1

fort <n <N , while O=N+1)

P(D(T) = (N + 1)T - TID(T) < 00)

N1

P B (T)F l E P`XT = j, XT-IT = 0, L > N-j	(N-j)th served)
J=0

(46)

Since the arrival process is Poisson, it possesses the property of stationary

independent increments, so that

P(XT = j, XT-6T = 0) = xo (T - 6T) PCj packet arrivals in (0, T	 (T - 6T)))

j - 0, 1, ... , N	 T - dT < T < T	 (47)
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where from (28)

e-^T(1-S)

x0(T - ST) -	 _^0	 -X	 -6	
(48)

1 - e	 + Yrpe

Separating independent events we may proceed as in the previous case,

yielding:

ForT - aT <T<T

T(T) = nT - TID(T) <

-^ n-2
	 -	 _

	

E^gR

[1 - AO(T)]11P(XT - j, XT-ST - D) 
j=0 =n-j-1 G

n-1	 00

+ E Cxj (T) - P(XT = j, XT-6T _ 0)a	 9x 	
(49)

j=1=n-j G
for 2 < n < N	 while

PCD(T) = (N + 1)T - TID(T) < -)

N-1	 CO

[1 - PS(T)
-1
	P(XT = j, XT-ST - 0) E gk	 (50) 1:
j=0	 z=N-j

G

where

r	

P(X= j, 	 - 0) = x (T - ST) r^, e
-XtT- (T- aT)1 ( A CT	 (T	 aT^ ])^ *i

!	 T	 XT-ST	 0	 1:	 i !	 9j
i=0f	

(51)
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and xo(T	 6T) is given by (48),

Together, (44), (49) and (50) give the steady state virtual packet delay

density.

Next we investigate the actual packet delay, which will be denoted simply

D. As before we set D = + if the packet is blocked. We wish to find

the distribution

P(D < to lD < -)

for all t0 . For each fixed t0 , define (uniquely) no and To so that

t 0 = n0T - TO , n0 integer , 0 < To < T
	

(52)

Let A be the time of arrival of the packet, and define T so that A = T mod T,.

0 < T < T. Conditioning on T we find that

for T > To

P(D < tolT, D <	 P(D(T) < to ID(T) < -)

= P(D(T) < noT	 TACT) <
	

( 53)

while for T < TO

P(D < tolT, p < m ) = P(D(T) < (no - 1)T 	 TID(T) < -)
	

(54)
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(55)

Since T is uniform on [0, T), unconditioning on T gives

T

P(D < tO ^D < °°) =-	 P(D(T) < nOT - TID(T) < «^)dT
t

t	 TO

TO
+ T
	

p(D(T) < (n0 - l)T - TID(T) < +T

f
0

or changing variables

tO

P ( D < tO ID < m)_ T	 P(D(nOT	 t) < tID(nOT - T) < -)dt
 
f
(no-l)T

nOT

	

+ T
	

PCD(nOT - t) < T	 tID(nOT - T) < -)dt (56)

t0

This is the desired distribution function, and can be shown to be continuous

even at the points to = nOT, no integer. It is differentiable except when

to = nOT; using Leibniz' rule we obtain

dt P(D < tO ID < W ) = T P(D(T0) = toI D( TO) < °°,	
(57)

0	 \

for to /T # integer

where To is given by (52).



Summarizing, the actual packet delay, conditioned on the packet not being

blocked, has a steady state distribution given by (56). This distribution

I e	

is atomless, and has a density given simply by (57).

Message Delay:

The message delay analysis is similar to the packet delay analysis, and is
F

actually simpler since the order in which the packets are served is not a

concern. Therefore only the definitions and final results are presented

here,

Let b(T) be the virtual message delay for a message which arrives at time

A = T mod T, 0 < T < T. Set b( T ) _ +	 if the message is completely blocked,

thus,

P(b( T ) _ +^> = XN (T)	 (58)

The steady state conditional density of b(T) is given by (59)-(63):

If0<T <T - ST,

n-1

P(b(T)	 nT - TID(T) < °°, _ ^l - XN(T)]-1 
1: 

Xj(T) 
gn-j	 (59)

j=0

fort < n < N - 1 , while

N-1

P(D(T) = NT - Tjb(T) < ^^ _ D - XN (T)I -1 E X (T) E
	

gR	 (60)

j=0	 P,=N-i

I
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IfT-aT< T <T,

P(D(T) = nT - Tf U(T) < «^^

n-2

= 
C1 - XN(T)]^l f 

P(XT - 0 ' XT-I T = 0) 9n-j-1
j=0

+
 1:

nr-1

CXj(T)	 P(XT = 0 ' XT-ST	 0)] 9n_j

j=1

for 2<n<N-1, while

P(6(T ) = NT - TID(T) < -)

N-2

= C1 - xN (T)J
-1

	

	
P(XT 

= 0, XT-ST = 0) 9N-j-1
j=0

N-1	 0	 1

+ 1: Lxj ( T) P(XT - 00 XT-6T _ 0)] E 9R(

j = l	 k=N-j	
!

and

P(D(T) = (N + 1)T - TINT) <

N-1	 00

C1	 XN(T)]-1 !: P(XT :- j ' XT-BT = 0) 
2: 

gR

j=0	 t=N- j
where P(XT	

3 ' XT-&T	 0 ) is given by (51).
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Let 6 be the actual message delay. The steady state distribution of

conditioned on b < -, is atomless and has the density

d P(b < t0 [b < ,) _ . P(p( TO )	 tolb(TO ) < ^,}
o	 /

	
(64)

for t0/T # integer, where T o is given by (52).

In this section we determined the virtual packet and message delay distribu"

tions, expressed in terms of the virtual packet system size probabilities

(28). The actual delay distributions were then given in terms of the

virtual delay densities.

If we were only interested in the mean actual packet delay E(DID < -), it

could be easily computed us-Ing Little's Result [11]:

sE(DID < -) = T E(X)
	

(65)

where s is the throughput (38) and E(X) is the mean of the actual packet

system size density (34), (35). This simple result does not depend on any

assumptions on the capacity N. Unfortunately, if N < -, any higher moments

of the actual packet delay must be computed by a numerical integration

involving the density (57). In addition, a finite capacity constraint

imposes a similar numerical burden in obtaining any of the actual message

delay moments. These numerical difficulties are alleviated in case N

30



The next section concentrates on the infinite capacity system. 'transform

expressions are found for the steady state system size and delay distribu-

tions. These transforms are useful for determining moments; in particular,

moments of the virtual delay distributions can be expressed in terms of those

of the virtual packet system size distribution,
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V. TRANSFORM EXPRESSIONS FOR THE CASE N = CO

Further analysis is possible when the STDM system has an infinite buffer

capacity, In this case simplifications occur in the transforoi representa-

tions of the various probability distributions of interest, The transforms

can be used to obtain moments, some results are given in this section.

First consider the stationary distribution of the MC {Y.}. Define for

I Z I < 1

G*(Z) _	 99ZZ
	

(66)

to be the Z-transform of the number of packets per message. Also define for

IZi < 1

00

Y*(Z) _	 yOjZj	 (67)

J=0

and for i > 0

M

Yb(Z) =
	 YijZj-i+l .	 y1JZj	 (68)

j =i- 1 	 J=0

The latter equality holds because y ij is a function only of j-i (see (2)) for

i >0. Using a straightforward generalization of Welch"s result [12] to the

case of compound Poisson arrivals, we find that the stationary distribution

t ,ffj } exists uniquely if p	 I. In this case the Z-transform of { ,ffj } is

given by O ZI ` 1)
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00

Y*(Z) E 7r j Zi

J=0

Yb(Z) - ZYe(Z)

Yb(Z) - Z
6it 	 _	 (9)

3

where

^1 - p) 1	 e-XT	

(70)^r0 .,	 p e
-A	 -6

Using (2) and (3) we find

Y*
(Z) = Z-1e-Ar(1-r*(Z)) 1_ e-aT(1-s)G*(Z) 1- e-AT(1-G*(Z))'^

e	 1 - e-A

(71)
and

Yb*
(Z) = e-AT(1-G*(Z))
	

(72)

so that

Y*(Z) _ 1-	 e
-ATa(1-G*(Z

(Z

)) 
1 

M e-xT(1-G*(Z))

(73)

C	 ZP 
e-xT 1 G	 _ 

1
Now define the Z-transform of the steady state packet system size density

at time t = T + mT (large integer m) to be (I Z I < 1, 0 < T < T)

C	 X*(Z# T) 
E Xj

,( T ) ZJ
	

(74)

t	 j=0



'rhe mean steady state sojourn time is from (27) and (70)

m = T/p	(75)

Using this and (28) we find for p + 1, IZJ c 1, 0 < T < T

X*(Zp 
T)	 (l - p)e-

a(T+8T)(1-G*(Z)) + py*(Z)e- XT(1-G*(Z))

1	 1 - Z e-
X(T+8T)(1-G*(Z))

(76)
-afiTT-7T _ Z

Equation (76) provides a transform expression for the "virtual" packet

system size probabilities at any time (during steady state conditions),

and is primary to all subsequent developments in this section.

Note that X*(Z, T -6T) is the Pollaczek-Khinchen transform equation for the

system size at departure instants of a bulk arrival M/D/l queueing system.

If we let 6 0, the Z-transforms of the packet system size just before and

just after framing instants, X*(Z, T) and X*(Z, 0), agree with the results

given by Konheim [3] and Hayes [4] respectively.

Differentiating (76) with respect to Z and evaluating at Z = l shown that the

mean packet system size is the linear function of T

E(XT+mT)	 0 P ) ps + aY + ATG	 ( 77)

where-

Y=pd	 +G
	

1_	 (78)
G 2
	 p

where " and G are the first and second moments of the group size G.
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The Z transform of the packet system size density 4

arrival at steady state is defined as

f°	 J M0

and is found using either (34) or by averaging (76) over T to be (p < 1,

+Z^ < 1)

I

x*(Z)	 1	 el T( 1*G *(Z)) r (1 - p)e-7^Ts(t-G*(z)) + py*(Z
XT ( l -	 (Z)) 	 L

1	 p) 0 - Z)e-aT6(1-G*(Z)) E1	 e-)'rO- G*(Z)q
AT() - G*(Z)) [e- " * Z]

The mean (actual) packet system size is found to be

EM 0 + G 2(	 p	 (81)
G

We now determine the transforms of the delay distributions (assuming FCFS),

using the results of section IV. Define for 0 < T < T, Re(s) > 0

D*(s, 
T) = E[e-sD(t)i	 (82)

to be the Laplace-Stieltjes Transform (LST) of the virtual packet delay

steady state distribution. From 0 S.;-(50) and (70) we find that

if0<T< T	 aT

D*(s, T) _ e-s(T-T) 1 - G-* e^
-s
-
T
^- X*(e-sT T)	 (83)

e-s G
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while if T 6T < T < T

D*(s ► T)	 e-s(T-T) 1- q
* a-sT	

X*(e-ST + T)
r

{ 1 - e
's )

- (1 - p )( 1 - 
e"sT)e X[r-(T-6T)][1-G*(e'sT)j 	(84)

Rubin [7] pointed out that

(1 - z) G

is the z-transform of the Backward Renewal Time (BRT) G of the renewal process

with inter-renewal-times (G.). For an arbitrarily chosen packet, this BRT

simply represents the number of packets in the some message that are served

in front of the chosen packet.

Equrtions (83) - (85) allow moments of the virtual packet delay to be

evaluated from moments of its components. For example, using

E(G) = 
2G - G

2G

	 (86)

and (77), we find

^ Q	 if  <T 6T
E[D(T) 7 =	 - T + XTu -	 + T	 I I	 + pT6 +

2(l	 P)G	 (1-P)T if T > T - 6T

(D7)

Now consider the LST of the actual packet delay, defined as

D*(s) - E[e-sDi	
($8)

t

3
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This can be determined from (83) and (84) by unconditioning on t:

D* s	 (1	 0)(1 - 
e
-sT ) G*(e-sT ) a-sdT

sT	 XT [1	
G*(e-ST)]

The mean actual packet delay is

E(D) = sT + T	 G2

2(1 - p) G

Unfortunately, a simple relationship between D*(s) and X*(s) does not occur,

except in the case of single packet messages. If g l = 1, we obtain the usual

M/G/l result

D*(X - XZ) = X*( Z )	 (91)

("generalized Little's Result").

Next define the LST of the virtual message delay as

D*(s, T) = E[e-s5(T) 3 ,	 0 < T < T	 (92)

From (59)-(63) we find

D*(s,T) = 
esT G*(e-sT ) X*(e-sT^ T) ,

1	 ifT<T	 ST

e-sT+aT[1-G*(e
-
sT)] if T > T - dT

(93)

Define the LST of the actual message delay to be

D*(s) = E[e-sD]	 (94)
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Averaging (93) over T we find

p*(s) _ 1	 p 1- e
-`T) G* a-sT esT(1 -s) 	

(95}
sT - AT [1	 G*(e-s )]

The mean actual message delay is

T	 TpG2E(D) = ST + TG - +	 _	 (96)
2(1 - p ) G

This concludes the analysis of the STDM/TDMA system. In the next section the

various results presented will be illustrated by numerical examples.



VI. NUMERICAL EXAMPLES

In this section several examples are presented in order to illustrate

applications of the preceding theory. All cases refer to packet behavior

at steady state. Examples of message behavior are contained in Yan [8]

and Lam [5].

Figure 4 gives an example of the steady state packet system size probabilities

versus time for each possible state, computed from (28) and (29). A vertical

slice taken at a particular time t = MT + T will yield the complete density

{x
i

(T)} for that time. Also included on the graph is the virtual packet

blocking probability P B (T), represented as a dashed line. The nonstationary

(periodic) nature of the system size process is clearly evident. The

example used for Figure 4 is a source allotted 6 = . 5 of each frame, with

traffic intensity p = .85 and a capacity constraint of N = 5 packets. The

message length is fixed at 2 packets, so that g 2 = 1, Note that this causes

xl < x2 < x0.

Figure 5 shows the mean system size versus traffic intensity for the simple

case of single packet messages and an infinite capacity. The curves are

parameterized by the slot-to-frame ratio 6, which determines the degree

of "funneling" in the system. This figure indicates that as 6 is decreased,

its incremental impact on the system behavior decreases rapidly.

Figures 6, 7 and 8 were generated for a source allotted 6 = . 01, with

either 98 = 1 or 92 = 1 (i.e. packets arrive in either groups of 8 or in

groups of 2 respectively). For each of these configurations the:syttem

capacity is either 10, 20, 40, or an infinite number of packets.
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Figure 6, like Figure 5, illustrates the mean ("actual") system size as a

function of the traffic intensity p. We see that more congestion occurs

for the more bursty input stream (9 8 = 1). The two cases cross over (same

N) for large p values due to the relatively larger number of packets blocked

in the case 
g8	

1 (see next figure).

The packet blocking probabilities TB are given in Figure 7 as a function of

P. Notice that the 98 = 1, N = 40 and 92 = 1, N = 10 cases coincide, con-

firming the intuitive notion that a system with traffic four times as bursty

requires four times the capacity to obtain the same FB.

Figure 8 shows the mean packet delays versus p. These curves were generated

by dividing the mean system size (Figure 5) by the unblocked arrival rate

(Little's Result); i.e., the mean is conditioned on D < ^.

In the next example we consider two input streams with the same mean number

of packets/message G, but which differ in higher moments. Specifically, in

one case 94 = 1, while in the other we have g2 = 1/2 and 94 = 98	1/4. The

mean (unblocked) packet delay versus the throughput s is given by Figure 9.

A smaller delay is attained by the zero variance case, 9 4 = 1. Note that

no crossover occurs for fixed N as it did in Figures 6 and 8, because s is

used instead of p for the abscissa.

Figure 10 presents the actual packet and message delay densities for the

same example as was used for Figure 4. Because of (57), this graph can

also be used to determine the virtual delay densities.



V. SUMMARY

An exact analysis of the STDM/TDMA system with Poisson message arrivals

has been given. The results were obtained by rigorously defining the under-

lying processes involved and then applying the theory of semi-regenerative

processes. Steady state packet and message queueing behavior is predicted

for possibly capacity-limited systems.

The embedded chain is defined as the system size at departure instants.

The transition probability watrix is given, from which the stationary

distribution can be obtained using either Yan's [8] method (N < -) or

transform methods (N = -). The steady state system size at all times is

then determined, and is shown to be time-periodic. By averaging over the

period, we obtain the system size density as viewed by a typical message

or packet arrival.

The system size densities are used to obtain the blocking and truncation

probabilities (j f appropriate). I:n addition, the delay distributions are

expressed in terms of the packet system size density.

Numerical examples illustrate the probabilistic behavior or the STDM/TDMA

system. The periodic nature of the queueing process i.s exemplified, and

its effect on the delay density. Other examples present the mean system

sizes, mean delays and blocking probabilities for various system parameter

values.

The results of th.i's paper will enab.l e a performance prediction of the

STDM/TDMA system. Considerable flexibi'li.ty is allowed in modelling the

packet arrival process. The design engineer can determine what buffer
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size and allowable traffic load is required to maintain given blocking

and delay constraints.
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APPENDIX A: MESSAGE SYSTEM SIZE ANALYSIS

The STDM/TDMA model is essentially the same as for the packet system size

analysis. The parameters T, a, A, (g^) and p are defined as before. The

remaining parameters are defined similarly except that they are measured in

messages rather than packets. For example,

7
N capacity of the system in messages

Xt = system size in messages at time t

Rn = time of nth message departure

etc. It is hoped that this duplication of notation does not cause

confusion.

Note that for N < - the system inherently operates in a different manner

than in the packet capacity-limited case. Messages that arrive to a full

system are completely blocked, so that messages which are accepted into the

system are transmitted in their entirety. If N - the system operation is

identical to that of the previous model, except now messages are counted

instead of packets.

The discrete process 
TYn}, Y 
	 XR+ is a MC with transition probabilities

n

(,see Yan [81):

i > 0, j < N - 1:

j-i+l

a 
e-AQT (AZT) J-  i+ 1> 0

ij=l	 A.1

0	 otherwise



j < N	 1.

$,	
y =
	 9 CUT	

(aRT)J+1 +	 1	 e XT_ 	 j+1

f	 R=1	 1 -e

r

and for any i

N-2

yiN-1 = 1 - E yij
j=0

(A.:1)

The MC (Y n I will possess a stationary distribution (n n ) if either N < or

p < 1, and will satisfy equations (6) and (7).

The mean sojourn times are

mo = T 'G+ e-- —
l - e

and for j > 0

mj = G T

so that

e-aT(1-8)
m T G+ 

n0 1- e-aT

Since Xt is semi-regenerative, (21) and (22) will remain true. We now

have for 0 < T < T:

(A.4)

(A.5) i

i

(A.6)
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(A.11)

= J. Rl > Tf = e- AT AT	 (A.7)PolxT 

while form > 0 (m integew)

P
0 ( XT

= j, R1 > T + MT) = P(C 1 > m) e-
	 [A ( T + mT j

0

+ E 9 
e-a[mT+T] N R - 1)T

ji
 + dT + T I)J,	 (A.8)

R=1

and for k > 0, m > 0

-X(T+mT) A T + MT 
j -k

e	 (J _	 P(G1 > m) j - k > 0

Pk( T+mT = j . R1 > T + mT) _

0	 otherwise

(A.9)

Combining ( 21), (22), (A . 6) - (A.9) we find that the steady state message size

density at time t T + MT, 0 < T < T is

-7^T (1-d) m	 j
xj (T) = 

m 
n0 

1e	 ^^ 9^e-a[(t-1)T+aT+Tl (aj,(^, - 1)T+ sT + T])

J 1

t=1

. ĵ- k+	 ^k	 P(G1 > m)e-X(mT+T) X (MT
 

+ 
T !

(A.10)

k=0	 m=0

0<j <N,and

N-1

xN ( T ) - 1	 XJ(T)

r	
j=0
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Of course, there is no message truncation, and x,(T) represents the virtual

message blocking probability.

Averaging 010) over T (uniform) we find after simplification

	

3	 N-1

x	
1:	

nk	 yki	 0 < 
j < N	 (A.12)

	

am _	 i=j

But it can be easily shown that

,i	 N-1-1

"k E yk _ 
na	 (A.13)

k=0	 i=j

so that the steady state message system size density as viewed by arrivals

is simply

ir
x -

am 
0 < j < N	 (A.14)

with the actual message blocking probability

N..1

XN 1 - L^ 
xa	 (A.15)

J=0

1 - l
^m

i



The Case N = w:

If the system has an infinite buffer capacity, Lam (,6] showed that ((ZI < 1)

Sb (X - AZ) - Z S** ( X - AZ)

(Z)	 0	 Sb (A	 AZ) - Z

where

nQ im

AT e A
	

(A-18)

and where

Sb(u)	 G*(e" uT )	 (A.19)

S
*(u) = aG*(e

-UT)	 l	 e-(.a-u)(T-BTj ^ 1 	a	
(A.20)

e	 A- u	 -	 1- e-AT

are the Laplace- Stielt,ies transforms of the message "service times",

conditioned on whether the message arrives to a busy or an empty system.

Combining (A.17)-(A.20) yields

* -XT(1 -Z) 	 -AT(1-Z)
Y*(Z) _ -(I ^- ? G (e	 -.-.)-	1 ` e	

(A.21)

Using (A.10) we find (,ZI < 1)

X*(Z, T) = (1 - p)e-A(T-T+ST) ( 1-Z) G*(.e-AT( . 1-Z))

AT(1-Z) *	
I _ G*(e-aT(1-Z)

Te	 Y (Z) 1 - e -JET 1-Z	
(A.22)

i
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The mean steady state message system size at time t x r + MT, m integer,
0{T<Tis

Et T+mT) - A(T " T + ST) + a[Y' + ?	 a + AT(l - a)] + 
T 
2 ^.

(A23)

where

 2
Y A - 2T + AT6 + ^)T) r

'  
G -
A

By summing (A>14) over all 3 we find that am = 1 and that

x3 = nj	 for all 3

or

,f*(Z) = Y*(2)

(A.24)

(A.25)
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APPENDIX _B: DISTRIBUTION OF ARRIVAL TIME MOD T

s

It is intuitively clear that the limiting distribution of the arrival time

within a frame is uniform when the arrival process is Poisson. A formal

proof of this fact is given here.

As before we let

An =time of the nth arrival

and assume that arrivals form a Poisson process of rate X. Let

In=An-An-1

be the interarrival times, and let

T  
= An - TLAn/Tj

be the time from the last frame instant to A n , where T is the frame duration

and notationally

Lx1 greatest integer less than or equal to x

It is clear that the sequence of random variables IT 
n ), defined on the state

space [o,T), forms a Markov Chain (MC). We compute the transition probabilities

P(Tn+l s tl I T  = tO)

by considering two separate cases.

i)	 t j > t-



P(Tn+1 < tl ( Tn = to ) = NO s Intl

tE P(MT

M-1

= 1 e- *1

e
-a(to - t.

1-

ii)	 tl < to

w

P( Tn+l < tl ( Tn = to )	 P(mT - to <

M=

e-X(T - to) [1 - e-Xtl]

1 - e- XT

Given the distribution of Tn , the distribution of Tn+l can be found via

	

P(Tn+l < t l ) =	 P(Tn+l < tl ( T n 	 to ) dP( Tn < to)

Suppose Tn is.uniformly distributed on [0,T). Then for tl a [0,T)

P(T < t	 tl , - e-X(tl - to) dton+l 	 fo	 T

	

T e_
` (T - to) [1	

a-at1
3
 dto

+ 	 - P-aT	 T



. t1
T

so that Tn+l is also uniform on

stationary for the MC. By Propc

distribution is unique, and by t

the distribution of the MC conve
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