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ABSTRACT 

Th1e report documente aodel1na aDd control .yetem deaign for the 

Larae Space Syat .. Teclmolol1 (LSST) leterence Platform. The LSST 

laference Platform coneists of a central bus structure, solar panel., and 
platform arma on which • variety of exper1manta lII8y be mounted. Simple 

structural models and claaeical frequency domain control system designs 

are developed. The report ehow. that operation of multiple independently 

articulated payload. on a ainale platform preaent. major problema when 

subarc second pointing stability i. required. Experiment compatibility 

.will be an import.nt operational consideration for systeme of this type. 
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I • INTRODUCTION 

This report documents modeling and control system design for the 

Large 5pace Systems Technology (L5ST) Reference Platform. The L55T 

Reference Platform consists of a central bus structure, solar panels, 

and platform arms on which a variety of experiments may be mounted. 

Figure 1-1 shows one possible configuration. 

1 

The objective of this report is to identify major control problems 

associated with precision pointing of experiment payloads. Simple 

structural models and classical frequency domain control system designs 

are used. 

A major result of this report is to show that operation of multiple 

independently articulated payloads on a single platform will present 

major problems when high performance is required. Experiment compatibility 

will be an important operational consideration for any systems of this 

type. 

The report which follows has six sections and six appendices. 

Section II defines the structural model for the platform. Mode shapes 

-'~----~-'.- . 

and frequencies are presented and controllability/observability issues 

discussed. Section III defines control system requirements. In Section 

IV the control system design is developed. Rate plus position feedback 

controllers are used. Control system design is evaluated in Section V, and 

in Section VI a summary is given along with comments on future study options. 

The Appendices document the model development for the platform 

structure. The model is developed in a building block fashion using 

finite element techniques. In Appendix A a model for the flexible 

platform cross arms is given. In Appendix B the flexible solar panels 

are added. Appendix C presents transfer functions for the model of 

Appendix B. Two-hinged experiments are added to the model in Appendix D, 

and in Appendix E a technique for reshaping rigid body modes is given. 

Appendix F presents time responde plots ~n support of Section V. 
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II • STRUCTURAL tl)DEL 

This .ection presents mode shape. for the LSST Reference Platform. 

Techniques developed in Appendix E are used to reshape the riaid body 

mode shapes so that they are easier to interpret. Some comments on 

controllability and observability are then made. 

A. CONFIGURATION 

Figure 2-1 shows a model of the spacecraft configuration, This 

configuration is the same as that presented iu Appendix D. The variables 

Vi i· 1,2, ••• ,6 are translational degrees of freedom; 6i i· 1,2,3 and 

Yl , Y3 are rotational degrees of freedom. VI' V2, V3, 61 ,6 2 , and 63 are 

associated with the platform arms, V4, V5 , and V6 with the solar panels 

and Yl , Y3 with the experiment packages. The central bus mass and inertia 

arc represented by M2, MS' 12' and 15("2 • H5 • 1/2 total bus mass, 

12 • IS • 1/2 total bus inertia). The bus is assumed to be rigid. 

The experiment packages are hinged with respect to their bases. These 

bases have masses Ml , "3 and inertias 11 , 13 and are connected to the 

central bus by massless beams of length L and flexural rigidity E1 • a a 
The experiment packages have masses HI' M3 and inertias about their 

hinge point of II' 13, The distances from the hinge point to the 

experiment package mass centers are Ll , L3 , The experiment packages 

and their connecting arms are assumed to be rigid. 

The solar panels ar~ represented by M4 , 14 , "6' 16 ("4 • M6 , 14 • 16), 

The masses "4 and "6 are connected to the central bus by massless becms 

of length Lb and flexural rigidity Eib • 

B. PARAMETER VALUES AND NATURAL FREQUENCIES 

Table 2-1 lidts two sets of parameter values used for simulation 

purposes. Parameters for the bus and solar panels are similar to those 

of Appendix B. Parameters for the experiment packages approximate those 

of SlRn*. As can be seen from lable 2-1, the two data sets are identical 

except for the length of the platform arms. 

* . Shuttle Infrared Telescope Facility lSee Aviation Week, Sept. 15, 1980), 

_~~._._ •• ""-~_ -.I _""'" ________ ~ _______ -"'OH ___ • ______ ... ____ IiIIl· 7_._ .. m ____ '--__ ~_ ..... · ___ ...... ______ ..... __ ...i 
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Table 2-2 li.ts the natural frequencies for the 6 ela.tic mode. of the 

model. The primary difference between .et 1 and eet 2 i. the chanae in 

frequency of the platform arm modee which reaulta from ahorten1n& the 

arms per Table 2-1. 

C. MODE SHAPES 

The mode shapes for the 5 rigid body modes and first 4 elastic modes 

are sketched in Fig. 2-2 and Fig. 2-3. These mode shapes do not change 

qualitatively for the different data sets. 

Numerical values for the first 9 mode shapes for the parameters of 

Table 2-1, set 1, are given in Table 2-3 for the coordinates of interest 

(e l , a2 , e3, Yl' Y3)' These coordinates are associated with act\~tion 

and/or sensing. The center of mass for the solar panels ("4' HS' "6) and 

platf()rm arms ("1' H2, H3, Hl , H3) has been appended to each mode shape. 

Note that these mass centers are not associated with any physical point 

of the structure. 

The rigid body mode shapes of Fig. 2-2 and Table 2-3 are more 

complicated than they need to be. For this reason, the t~chnique developed 

in Appendix E was applied to obtain more pleasing shapes. The resulting 

shapes are presented in Fig. 2-4 and Table 2-5. 

In order to obtain the rigid body shapes the following steps were 

used. First it was deaired to eliminate translation of the solar panel 

center of ~ss from all but one mode. The computer algorithm selected 

the mode shape with the largest value of solar panel center of mass 

translation (mode 3 of Table 2-3) and using this mode shape as described 

1n Appendix E it eliminated this coordinate from modes 1, 2, 4, and 5. 

This resulted in five new mode shapes. 

Next the algorithm was told to eliminate the arm center of mass 

translation from all but one of ::;le mo<ies 1, 2, 4. or 5. Mode 1 was 

selected and four new mode shapes found. 

Next, the algorithm was told to eliminate the bus rotation angle (6 2) 

from all but one of the modes 2, 4, or 5. Mode S was selected and three 

new mode shapes were found. 

0_; --.-.--- -~---"""--------__ • __ "'Os""' .. _____ ~_ ,_~~_~._--",_ 

... , .. .,." '" 
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Finally, the alloritbm was told to eltmiDate the expertment rotation 

ensle (Yl) from all but one of the mode. 2 or 4. Mode 4 waa .elected and 

two new mode .hape. resulted. 

It should be noted that if a different set of coordinates or a different 

orderina had been .alacted, then diffarant ria1d body mode shapes may 

have reaulted. Tha reason for .alectina the mas. center coordinates will 

be more clear when controllability/ob •• rvability issuea are discussed 

later 1n this section. 

D. CONTROLLABILITY 

The controllability of various mode. can be seen as follows: 

The equations of motion for the platform are 

.. . 
Mx+Dx+Kx- Bu 

where 

K, D and K -
mass, dampina, and stiffnes8 matrices for the structure, respectively. 

x - physical coordinate vector (dt-ension n) 

u - control vector (dimension m) 

B - control distribution matrix (n x m) 

In modal coordinates this equation becomes 

~ + .T D • q + A2 q •• T Bu 

where • (the modal matrix) 8atisfies 

x - • q 

.T M • • In 

.T K •• A2 • diag. (A~. • ••• 

th Ai • i natural frequency 

T 
If we assume modal damping. then • Dt • 

thet the matrix product .TB determines 

in! luence the modal dynamics. 

D is diagonal. Hence, we see 

the ability of the control u to 
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The control forces '(torques) applied to the platform are given by 

F • Bu 

where 

u· r'- T T]T 
·2 1 3 

- actuator torque vector (I2 is central bus torque, Il and T3 

are experiment torques) 

0 0 0 

0 0 0 

0 0 0 

0 -4.BE4 0 

0 0 -4.BE4 

B - 2.07E6 0 0 

0 0 0 

0 0 0 

0 0 

4~J 0 4.BE4 

0 0 

.. Control distribution matrix 

Notice that B includes torque scaling for each actuator. Notice also that 

the actuators which articulate the experiment systems (Il and I 3) apply 

a torque to the experiments and an equal and opposite tOlque to the platform 

arms at the point of attachment. 

T Iable 2-6 gives the matrix product t ! for the eigenvectors of Iables 2-4 . 

and 2-5. Here, only th~ first 9 modes of t are included, so that tTB is 

a 9 x 3 matrix. 

We can determine the ability of an sctuator to influence each mode 
I directly from the elements of I~ B. For example, mode 1 (arm translation), 

mode 3 (solar panel translation). and mode 6 (solar panel symmetric bending) 

cannot be influenced by any of the three torque act'..lators and hence these 

modes are uncontrollable. Modes 4 and B can be influenced by Il and I3 

but not T2• 

\ ; 

1 
" 

1 
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It should be noted that for distinct eiaenvalues, the ability of a 

fo~ce to influence a mode implies controllability of that mode (see 

Ref. 2-1). For modes associated with repeated eigenvalues, however, this 

is not the case. Since there are five rigid body modes, then~t least 

five actUitors are required to provide controllability of these modes. 

Clearly torque actuators cannot move the spacecraft mass center, so any 

mode shape having a spacecraft mass translation is not controllable. In 

Table 2-3 all of the rigid body modes have mass center translation. In 

Table 2-5 only modes 1 and 3 have CH translation, so that modes 2, 4, 

and 5 form a controllable subset of rigid body modes and modes land 3 

form an uncontrollable subset. 

E. OBSERVABlLITY 

The sensors we will consider measure positions and rates of 62 , Yl , 

and Y3' Since we have 

x - ~ q 

th~ outputs are y '" Cx where 

Now 

c '" 
[

0 0 0 

000 

000 

y '" Cx = C~q 

o 0 1 

000 

000 

000 

000 

000 

o 
1 

o 

so C~ determines the influence of a given mode on the sensor outputs. 

Table 2-7 gives C~ for the eigenve~tors of Tables 2-4 and 2-5. 

From Table 2-7 we see that modes 1, 3 r and 6 do not influence the 

system outputs, and hence are unobservable. A comparison of Table 2-7 

with Table 2-6 shows that actuator and sensor influence results are the 

same (e.g. if ~i is influenced by TI , then it influences the sensor output 

in Y1 • Similarly for T2 and e2, and for T) and Y3'>' 

: 
I " 
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For distinct eigenvalues, the ability of a mode to influence a sensor 

output implies observability of that mode. For repeated eigenvalues, 

however, this is not the case. A minimum of five aensors would be required 

for observability of the rigid body modes of Table 2-3 or Tabl~ 2-5. 

The three rotation sensors have no capability to sense translation of 

either the platform arms or the solar panels. In Table 2-5 modes 2, 4, 

and 5 form an observable subset of rigid body modes, and modes land 3 form 

an unobservable subset. 

Since modes 1, 3, and 6 are neither influenced by the actuators, nor 

do they influence the sensor outputs we may eliminate them from further 

consideration in control system design. 

~ 

l 

I 
) 

i , 
i 
j 
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Table 2-1. Parameter Values 

Parameter Set 1 Set 2 - -
.., Platforlll ArIIl8 I, " J La (m) 15 b 
't I ~ 

El (N_m2 x 106) ! 

i:' Ii 
20 20 

" M- (kg x 103) 0.3 ,:,. same 
~I ~ 

?'-.-, 

(kg x 103) t\ M2 6.0 .. 
,'-
1 

M3 (kg x 103) 0.3 " 
*" 
,'. 

11 (kg-m2 x 103) 0.1 ~ 
It 

r 
12 (kg-m2 x 103) 50.0 .. 
13 (kg-m2 x 103) 0.1 " ;-

Solar Panels 

Lb (m) 20.0 same 

EIb (N-m 
2 106) 0.1 " x 

M4 
3 (kg x 10 ) 0.5 " 

MS (kg x 10l) b.O It 

M{) (kg x 10l) 0.5 " 
2 l 

" 15 (kg-m x 10 ) included 
in 12 

. 
r 

Experiment Packages 

Le1 (m) 3.6 same 

Le3 (m> 3.6 " 

Mel (kg x 103) l.3 " 
iI Me3 (kg x 103) l.3 II 
i 
i 

(kg-m2 x 103) ~ lel 48.0 " 1 ,. 
2 x 10l) Iel (kg-m 4ij.0 " 
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~.' 
Table 2-2. Natural Frequencies for the LSST Reference Platform 

Set 1(1) Set 2(2) 
.. , 

Mode (Hz) (rad/s) (Hz) (rad/s) 

-

Rigid Body Modes 

1-5 0 0 0 0 

Solar Panel Mode 

6 (1st symmetric) .0471 .296 .0471 .296 

7 (1st antisymmetric) .0639 .401 .0984 .618 

Platform Arm Modes 

8 (1st symmetric) .912 5.73 3.59 22.5 

9 (1st antisymmetric) 2.18 13.7 4.54 28.5 

10 (2nd symmetric) 36.8 23l. 58.4 367. 

ll. (2nd antisymmetrlc) 36.8 23l. 58.5 3f. 7 • 
.-

(1) Platform arm length = 15 m 

(2) Platform arm length = b m 
--

I 
I 

i 
i 
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Table 2-3. Rigid Body Mode Shapes Before Reshaping 

I . Coordinate 

RIGID BODY MODES 

3 4 5 1 2 
, 

~ 1.49 E-4 , 1.23 E-5 -8.57 E-10 7.23 E-6 1.15 E-3 

~ 1.49 E-4 j 1.23 E-5 -8.57 E-I0 7.23 E-6 1.15 E-3 
, 
! 

I 

~ I 1.49 E-4 1.23 E-5 -8.57 E-I0 7.23 E-6 1.15 E-3 , 
I 

: 
, , 

: 
2.46 E-3 -3.46 E-3 2.11 E-7 -2.92 E-3 -4.59 E-3 I Yl 

Y3 : -3.58 E-3 -3.08 E-3 3.82 E-7 3.24 E-3 -3.85 E-3 i 
I 

I -1.22 E-ll 
I I 

CM (S.P .) i -4.20 E-11 1.06 E-6 1.20 E-2 -3.99 E-7 
I I , 

I I -8.38 E-4 CM (ARMS) i 6.14 E-3 3.30 E-4 1. 74 E-7 6.10 E-3 I 

Table 2-4. Elastic Mode Shapes 

ELASTIC MODES 

Coordinate 6 7 8 9 : 

3.1~ 
3.12 E-3 I 

e 
I 1 

Ie 
3.28 E-18 ·-3.04 E-3 1.25 E-3 

2 97 E-18 1 25 E-3 3 04 E-3 3 i 
. . I . 

I 

I I I le 2 
I 

3.03 E-13 1.24 E-3 I 3.01 E-11 -4.14 E-3 I 
I ! ! I ! I 

i -4.62 E-3 6.16 E-3 -2.57 E-3 I 

!Y 1 -2.90 E-16 

I -1.01 E-17 -4.62 E-3 -6.16 E-3 -2.57 E-3 lY 3 , 

CM (S .P .) ! -4.99 E-11 4.84 E':'17 -8.56 E-19 2.29 E-20 I 
eM (ARMS) I 2.44 E-16 -2.36 E-9 -·2.13 E-11 -3.53 E-11 

_""--........:tc=.::T;t'~::r'.::.-.;:, .- -.c") .~--..Iil'l.."'':i-..... t .. rr ___ * __ M''' ______ .. n''''' __ IIIIIIiIItI ____ rtlliOoit .... : __ • ___ • __ .;..~ ...,_ .. j 
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I 
Coordinate 

81 

83 

82 

Yl 

Y3 

CM (S.P.) 

CM (ARMS) 

Table 2-5 •. Rigid Body Mode Shapea After Reshaping 

1 

3.28 E-I0 

3.68 E-I0 

3.38 E-I0 

-1.21 E-9 

-1.34 E-9 

-2.38 E-15 

8.70 E-3 

RIGID BODY MODES 

2 

-5.28 E-12 

1.85 E-ll 

3.24 E-14 

3 4 

1.66 E-15 1.01 E-11 

1.67 E-15 -2.25 E-11 

1.67 E-15 1.01 E-15 

-2.10 E-11 -5.28 E-14 -5.40 E-3 

5 

1.16 E-3 

1.16 E-3 

1.16 E-3 

-4.30 E-3 

-5.18 E-3 4.53 E-14 1.55 E-l -4.30 E-l 

2.37 E-15 1.20 E-2 -1.24 E-15 -1.1l E-17 

-1.52 E-11 -1.88 E-1) 2.02 E-11 -1.20 E-11 

Table 2-6. ~TB for the Eigenvectors of Tables 2-4 and 2-5 

Mode T2 T1 T3 

1 0 0 0 
2 0 0 -2.48 E2 
3 0 0 0 
4 0 -2.59 E2 7.43 E1 
5 2.l9 El -2.62 E2 -2.63 E2 
6 0 0 0 
7 2.56 E3 -2.81 E2 -2.81 E2 
8 0 4.42 E2 -4.42 E2 
9 -8.56 E3 -2.73 E2 -2.73 E2 

Table 2-7. C~ for Eigenvectors of Tables 2-4 and 2-5 

Coor-
MODE 

dinate 1 2 4 5 6 7 8 9 

0 0 0 1.16E-3 1.24E-3 0 
i 

2 I I 0 ,-4 14E-31 
I I 

:. 1 , 

1 0 0 I -5.40E-3 -4.29E-l 0 -4.6IE-3 6.16E-3!-2.57E-ll 
I 

-6.16E-31-2.S7E-3! 
3 

0 -S.18E-3j 1.55E-3 -1 •• 29E-3 0 -4.61E-3 
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111. CONTROL SYSTEM UQUIRBMENTS 

This section lives a brief ~tatement of the controla.objectivea.4nd 

requirementa for the platform. 

A. OVERVIEW 

There are many requirements which attitude control systems for the 

LSST Platform have to satisfy. These include a capability for: 

(1) stabilization and initial acquisition of celestial references 

(2) maintaining a prescribed attitude in the presence of various 

disturbance inputs 

(3) experimerat "ointing control 

(4) reorientinE: the gross pointing direction to obtain a new viewing 

configuration or for reboost 

(5) reboost (or station keeping) to maintain a specified orbit 

Of these five requirements, only the second and third will be addressed in 

what follows. 

B. STABILITY REQUIREMENTS 

Requirements for attitude control include both accuracy ~nd stability. 

In this report we shall limit ourselves to a consideration of stability. 

In addition to pointing stability we will also consider linear acceleration 

levels, since some experiments (e.g. material processing experiments) are 

concerned with these. 

Table 3-1 lists requirements for pointing stability and acceleration 

levels for some of the more stringent missions being considered for the 

platform. Pointing dtabilities in the range of .01 to 1 arc sec will 

almost certainly require sophisticated pointing systems. The shuttle 

infrared telescope facility has pointing requirements in this range 

(.1 arc sec). 

Pointing stabilities in the range of 10 to 1000 arc sec will require 

less sophisticated pointing systems. In this range many users would prefer 

- -~ ~--~-~-------........ -.-..-----
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the basic platform control .yat .. to .. et their atability requirements. 

The cryolenically cooled tele.cope baa pointing requirements in tbis 

range (30 arc sec). 

Pointing stability requirements below .01 arc sec will probably 

require image motion compensation. Thia problem will not be addreaaed 

in this report. There are a number of users with pointing requirements 

between 1 and 10 arc seconda. Most probably they will require pointing 

systems although there are some users that would like the basic platform 

to provide this pointing capability. The high energy gamma telescope has 

pointing requirements in this range (6 arc sec). 

Table 3-1. Platform Requirements 

Requirement Specification 

pointing system stnbility .05 to 5 ~rad (.01 to 1 arc sec) 

platform stability .05 to 5 mrad (10 to 1000 arc s~c~ 

platform acc~leration 2 -5 -3 .1 to 10 mm/s (10 to 10 g) 

________ ~ __ ~ __ ~_~ __ ~._ ... ,,--_.-._-.. _____ ...... _m_-.. __ ~ 
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IV. COlmWL SYSTEK DBSIGN 

rbi. ..ction document. control .y.t .. de.ian for the LSST a.ference 

Platform of .ection II. The purpo.e of th1. de.ian .ffort waa to obtain 

some .imple control .y.tem de. ian. which would be .uitable for identifying 

the major control problema a •• ociated with the LSST reference platform. 

No attempt has been made bere to obtain design. havin8 optimal performance 

in any .en.e. Cla.sieal frequency deaign technique. are used ba.ed on 

simplified ri8id body modela of the platform. Rate plus poaition feedback 

controllera are u.ed with ideal actuatora and aenaora aa.umed. The bue and 

experiment packa8e controllers are deaigned independently. Before be8innin8 

the control system design. several control concepts are discuased. 

A. CONTROL CONCEPTS 

Three control concepts for the LSST platform will be discussed in 

what follows. The first technique is the aimplest conceptually altd provide. 

independent control for the bus structure and experiment packages. The 

second scheme allows for limited one-way info~tion exchange between ~he 

bus and experiment package control systems. The final concept provides 

limited, or unlimited two-way information exchauge between control systems. 

1. Independent Control 

Figure 4-1 illustrates the various control schemes symbolically. 

Only two experiment packages arc illustrated. but in actuality there 

could be many more. lndep~udent control La the simplest conceptually. 

Here, each control system operates independently using its own set 

of sensors and actuators. 

2. One-Way Interface 

With the one-way interface scheme the central bus can send 

information to each experiment package. In this case the bus controller 

operatea independently, but the experiment package controllers take 

into account the data from the central bus structure in some way so 
88 to iQprove pointIng accuracy. 

- . - '"= -+-- -
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The one-way interface scheme could also be implemented in the 

other direction. That is, each experiment control system could send 

the bus controller information which would help it to minimize th£ 

effects of disturbance inputs introduced by that experiment package. 

This might be as simple as a status bit indicating whether or not the 

experiment control actuators are torquing, or, it could be a more complete 

information exchange. With this scheme the experime~~ package control 

systems would operat~ independently, but the bus controller would not 

be totally independent. This one-way interface approach would make 

the bus controller design dependent on varying experiment package 

designs and as such may not be very practical. 

3. Two-Way Interface 

This method gives each control system access to information 

available to the other control systems. This might be a partial or 

total information exchange. With this scheme the controllers are all 

interdependent to some extent. This dependence could be complete, so 

that in effect there is only one central controller, or it could be 

less complete allowing more independence of action. As t:.le nUl'lber 

of experiment packa~~~ increases, this two-way interface could become 

rather complicated. The two-way interface also makes the bus controller 

design dependent on the various experiment package designs and as such 

may not be very practical. 

4. Sensors and Actuators 

As a minimum we assume that each experiment package has some 

means of torquing to maintain its desired orientation. A two-axis 

(e.g. azimuth, elevation angle) torquing capability might be typical. 

In addition, each package may·or may not have its own (angular) 

position and raL~ sensors. If an experiment package has position 

sensors, it mayor may not have the ability to directly measure target 

position. 

The bus controller will have a torquing capability plus position 

and rate sensors. As a minimum, sensors and actuators will be located 

• 'M e.. 'Zh at .m tsr. _ 
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on the central bus structure, but additional actuators and sensors 

could be located on the flexible portion of the structure if 

necessary to obtain the desired performance. 

The information exchange, then, can be one in which sensor and 

actuator information is exchanged, and/or one in which estimated 

state vector information is exchanged. 

5. Design Approach 

The approach to designing a control system for the LSST platform 

should be in the order of conceptual complexity. First the independent 

controls approach, then the one-way interface. The two-way interface 

mayor may not be a viable alternative and should be attempted only 

as a last resort. In fact any scheme which makes the bus controller 

dependent on the various experiment packages would be an operational 

nightmare and should be avoided if at all possible. 

The bus controller should be attempted first with all actuators 

and sensors on the rigid central structure. However, if performance 

improvement is needed, the location of sensors on portions of the 

flexible structure might be considered. Location of actuators on the 

flexible structure is much more difficult and should be attempted only 

if other approaches fail to provide the required performance. 

Th~ renainder of this report considers only the simplest design approach, 

that being Llci~pendent control systems for the central bus and each experiment. 

It will be aE.Sl'.U1ed that each control system has its own torquers and its 

own position and rate sensors. All sensors will measure inertial pos~tion 

and rate. 

B. BUS CONTROLLER DESIGN 

A block diagram for the bus controller is shown in Fig. 4-2. Symbols 

in Fig. 4-2 are defined as follows 

i . ~ 

, 
I • 
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6
c 

• Commanded bUB ansle (nominally zero) 

6 • Actual bUB ansle (relative to 80me inertial coordinate Byste~ 

T • Torque applied to bUB by controller 

Td • Disturbance Torque applied to bUB 

J • Platform inertia 

J • Torquer gain (an estimate of J) 

Kp - Position gain 

Kr -Rate gain 

In Fi~. 4-3 the block diagram has been redrawn in a format convenient for 

controller design purposes. Here Kr/Kp is the rate to position gain also 

called K ·in what follows. rp 

The forward loop transfer function fro~ Fig. 4-3 is 

K J 
G(s) '" ...E.

JS 2 

The feedback loop transfer function is 

H(s) ::0 K S + 1 rp 

From this the closed loop transfer function is 

e G(5~ - (s) • 
Bc l+G(s)H(s) 

,. 
K J 

• E 
JS

2+K .iK 
,. 

S+K J 
p rp p 

• 
6 

K J/J 
(5) • I! or e S2+(K K j/J)s+K j/J 

. 
c p rp p 

t 

t 
f 

, j 

I~ 
, I 

Ii 
I ~ 

i ~ 
I 

i 
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.. 
Now if J • J then we have 

e 
- (s) e c 

K 
• P 

S2+!{ K S+!{ 
p rp p 

The characteristic equation for the system is then 

s2 + K K S + K • 0 p rp p 

Next define the damping and natural frequency as ~ and w respectively, n 

so that 

2 w ... K 
n p 

2Z;w ,'" K 1.<. n p rp 

From this we can determine Kp and Krp given desired v~l~es for wn and ~ 

2 
K - w p n 

K = 2~w r 10 n 

K - 2r;./w rp n 

O i en K and K we can determine l;, and w r, g v n p rp 

w -n 

- ~ K 11K r p 

- ~ w K n rp 

For the purposes of this design, we will cho()se 

w - 0.01 Hz n 

- 0.0628 rad/s 

z; • 0.707 

(4-1) 

(4-2) 

(4-3) 

I 

i 
i 
,i 
; 

j 
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then 

K • w2 • 3.94E-3 rad/s2 
p n 

K - 88.6E-3 rad/s 
r 

K • 22.5 s rp 

To complete the controller design we must have a value for J. Figure 2-1 

shows a sketch of the platform model. It is not immediately obvious how 

to calculate J. because of the hinged experiment packages. Suppose, 

however, that we assume that the experiment pointing angles (Y l and Y3) 

remain zero. This is equivalent to saying that the commanded (inertial) 

pointing angles are zero for Y
l 

and Y3 , and that the experiment controllers 

are functioning ideally. Then so far as the bus controller is concerned 
* the mass of the experiment Mel can be lumped with the platform mass Ml , 

and similarly with Me3 and M3• Then J can be calculated as follows 

Then for the parameters of Table 2-1, set 1, we have 

J = (0.3 + 3.3 + 0.3 + 3.3)E3 (15)2 

+ (0.5 + 0.5)E3 (20)2 + 50E3 

? 
= 2.07E6 kg-m-

For Table 2-1, set 2 data we have 

J = 7.2E3 (6)2 + 1.0E3 (20)2 + 50E3 

O.709E6 kg-m 2 = 

This completes the bus controller design. 

C. EXPERIMENT CONTROLLER DESIGN 

A block diagram for the experiment controllers is shown in Fig. 4-4. 

This figure is identical to Fig. 4-2 except for the additional commanded 

* The inertia of the experiment about its hinge point need not be included 
since we assume that the experiment does not rotate relative to an inertial 
reference frame • 

f ~ 
i 

I 
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inputs Tc and Yc' Tc and Yc are the commanded torque and rate 

respectively. 

For the experiment controllers we will choose two values for 

the natural frequency: 

and 

w = 1 Hz = 6.28 rad/s 
n 

w ... 0.1 Hz - 0.628 rad/s n 

In each case we will select ~ = 0.707. 

Now using Eqs. 4-1 through 4-3 we can compute the gains K , K , P r 
and K rp For a I-Hz controller we have: 

K = 
P 

Kr ... 2~wn • 8.88 rad/s 

y. • 2t/w - 0.225 s rp n 

For the O.l-Hz controller we have: 

2 K ... W ... 0.394 rad/ s2 
P n 

Kr ... 2tw - 0.888 rad/s 
n 

The value for Jean 

J = I - I el 

be read directly 

2 
e3 ... 48E3 kg-m 

from Table 2-1. 

This completes the design of the experiment controllers. 

D. COMBINED DESIGN 

25 

A block diagram for the combined system is shown in Fig. 4-5. The 

commanded inputs are shown ec2 for the bus controller, Yc3 !or the experiment 

3 controller, and Ycl ' Tcl for the experiment 1 controller. For the 

purposes of design evaluation, only the experiment 1 controller has a non-

*. • Ycl is not shown on this diagram, because for the simulations conducted, Yel 
was set to zero. A better design could have been achieved using a nonzero 
value for Ycl' but this was not realized until after all simulations had been 
completed. 
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zero commanded input. The success of the control system design is to be 

measured by how closely the bus and experiment 3 controllers maintain 

82 and Y3 near zero in the presence of commanded slews of the experiment 1 

controller. 

E. CLOSED LOOP SYSTEM EIGENVALUES 

The open loop eigenvalues for the LSST reference platform are given 

in Table 2-2. Table 4-1 shows the system gains used for simulation purposes. 

Figures 4-6 and 4-7 show the associated closed loop eigenvalues for these 

gain values, (uncontrollable/unobservable modes are not plotted unless 

noted otherwise). 

Figure 4-6, Run F12, shows the closed loop eigenvalues for the IS-m 

platform arms when open loop torquing is used for experiment 1. Note the 

2 closed loop poles at the origin. This is an indication that tne rigid 

body mode associated with experiment 1 becomes uncontrollable when the 

feedback gains are set to zero. The bus controller frequency and damping 

are somewhat higher than the design values of .0628 rad/s and .707 damping. 

Also, the experiment 3 controller frequencies are somewhat higher than the 

design values, and critically damped. The elastic mode vibration 

frequencies all have low values of damping. 

Figure 4-6, Run FlO, shows the closed loop eigenvalues for 15-meter 

platform arms and 1.0·Hz experiment controllers. Note that the bus 

damping and frequency is close to the desired values of 0.707 and 6.28E-2 rad/s. 

The experiment control frequencies, however, are critically damped with 

frequencies of 5.0 and 59.0 rad/s. The elastic mode vibration frequencies 

(for the coutrollable modes) all have small values of damping. 

Figure 4-6, Run F13, is similar to Run FlO except that the eigenvalues 

associated with the experiment 3 controller are shifted lower because of the 

lower gains used. 

Runs Fl7 - FI9 use the same estimate for the pl.It.I:;ul'w inntia 

(J • 2.07E6 kg-m2) as for Runs Fl2, flO, and F13. The design value of 
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0.709 kg-m2 was not used to demonstrate the effect of parameter error on 

system performance. The results are shown in Fig. 4-7. Note that in 

all cases cloled loop system relronle remains Itable. In fact, damping 

for the elastic modes of the plstform ia actually improved over many cases 

with l5-m platform srms. Baaed on the resulta shown in Figa. 4-6 and 4-7, 

we might say that the design is adequate for the purposes of identifying 

major control problems, although it is in no wayan optimum design. 

Table 4-1. Control System Gains for Performance Analysis 

ARM CONTROL EXP. 1 GAINS EXP. 3 GAIN RUN LENGni BANDW 1 Dni 

K I K wn1 Wni K ~ P 2 P 2 r 
(m) (Hz) (Hz) (rad/s ) (rad/s) (rad/s ) (rad/s) 

F12 lS * 1.0 0.0 0.0 39.4 8.88 

FlO lS 1.0 1.0 39.4 8.88 39.4 8.88 

F13 15 1.0 0.1 39.4 8.88 .394 .888 
-

F17 6 * 1.0 0.0 0.0 39.4 8.88 

F18 6 1.0 1.0 39.4 8.88 39.4 8.88 

F19 6 1.0 0.1 39.4 8.88 .394 .888 

ALL RUNS USE 'DIE FOLlDJING DATA: 
A 2 

Bus Inertia est. J • 2.07E6 kg-m 
Exp. 1 and Exp. 2 Inertial est. J • 48.0E6 kg_m2 

Bus Gains K • 3.94E-3 rad/s2 K· 88.6E-3 radls p r 

~ Open Loop Torquing -

1 
1 
1 
1 
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V. CONTROL SYSTEM EVALUATION 

In this section the transient response performance of the combined 

system is examined. Comments are als~ made on additional factors which 

can affect performance. 

A. TRANSIENT RESPONSE 

Computer simulations were performed to determine system performance. 

Table 5-1 summarizes the results (for a definition of the symbols used 

in Table 5-1, see Figs. 2-1 and 4-5). All runs were made with a bus 

control frequency (wn2) of 0.01 Hz. The commanded torque (Tel) was a 

square wave input of + 20 N - m, followed by an equal duration -20 N - m 

input. The commanded torque durations were chosen to give the desired 

final commanded angle (Yl ) at the end of the torquing sequence assuming 
c * that the base point (Hl ) was inertially fixed. The cOIIIDanded angle as 

a time function was taken as the second integral of torque according to 

Newton's law (again with the assumption that the base point was fixed) • .. 
The experiment inertias of Table 2-1 were used (Tel • Iel Ycl )' 

Table 5-1 presents the peak transient responses for the experiment 3 

p?,inting angle (Y3), the bus pointing angle (6 2) and the bus acceleration 

(V2). A comparison of Tables 5-1 and 3-1 shows that Y3 exceeds a stability 

requirement of 5 ~rad by up to70 times, 8pd is 60 to 7000 times a O.OS-urad 

requirement. Acceleration levels are within the 10-rom/s2 requirement but 

exc€ec! a 0.1- mm/sL requirement by 6 to 30 times. 62 performance is between 

2 and 5 mrad (400 to 1000 arc sec). This is within the 5-mrad requirement 

but 40 to 100 times the 0.05-mrad requirement. From this we see that the 

pointing requirements of Table 3-1 cannot be easily met using controllers 

of the type considered here. 

A comparison of the six representative simulation runs illustrates 

several clear trends. It should be kept in mind that experiment 1 i~ 

creating the disturbance, and experiment 2 (fixed to the bus) and ~x!)eriment 

3 are feeling the influence of the disturbance. Using a closed loop 

* In the simulations, the base point (Hl) was not 1nert1ally fixed, so that 
the open loop torque command was 1n error • 

~_,'-____ .t ....... *-.. 11 • b 'tr • r_ ' _= eM • . - .* 
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controller for experiment 1 (compare Runs'P10 and F12) results in a smoother 

disturbance torque profile, and as such improves pointing stability for .. 
both Y3 and 62 , It also reduces acceleration levels at the bus (V2). 

Increasing experiment 3 bandwidth (compa~e Runs FlO and F13) increases Y3 

stability, but has an adverse affect on v2• Decreasing the arm length 

(compare Runs FlO and F18) increases pointing st~bility of both Y3 and 62 

and in most cases decreases acceleration level (V2). The reader 1s referred 

to Appendix F for time plots of an example simulation (Run FlO). 

B. ADDITIONAL FACTORS WHICH CAN AFFECT PERFORMANCE 

There are many factors not considered in this study which could have 

a major influence on the absolute performance of the LSST reference platform. 

Imperfect sensors and actuators, gimbal friction and flexibility, and more 

complcx structural dynamics could all result in poorer performance than 

that presented here. On the other hand improved controller gain selection 

or more scphisticated controllers could improve the performance results. 

For example, base motion compensation could be added using an additional 

sensor for ea~~ expe~imeat package (an accelerometer), and image motion 

compensation could be implemented for some types of experiment packages 

by the addition of another actuator (a secondary mirror drive for example). 

For these reasons, the performance results of Table 5-1 should not be 

taken as absolutes in any sense. Yet Table 5-1 does indicate the difficulty 

. which is faced when attempting to design a control system for a platform 

of this type. 

Table 5-1. Performance Results 

CONTROL BANDWIDTH PEAK RESPONSE 
ARM Wn W Vz LENGTH n3 ')'3 °2 I 

(mm/l, RUN em' (Hz' (Hz' (I-i rac!) (mrad' 

F12 15.0 * La 56.00 5.11 3.001 

flO 15.0 LO LO 7.59 3.27 0.964 

fl3 15.0 1.0 0.1 357.00 3.25 0.608 ----
Fll 6.0 * LO 12.20 3.10 0.848 

FI8 6.0 LO LO 3.13 2.28 0. 819 
Fl9 6.0 1.0 0.1 254.00 716 0.819 

*OPEN LOOP TORQUING; 

y = 88 mrad. Tc • 20 N-m, Wn • 0.01 Hz for all runs. cl 1 2 

~~_~_~ __ ~,"_~~ ____ "._C _____ d", __ , __ ,,-, __ ~." _____ · ______ In .. __ ~_~ 
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VI • SUMMARY AND FUTURE STUDY 

Several control problems for the LSST Reference Platform have been 

identified and quantified in this report. Perhaps the most important of 

these is that operation of mUltiple independent control systems on a 

single platform presents a major problem when high performance is 

required. Experiment compatibility will be an important operational 

consideration. Control system design is complicated by large shifts in 

structural parameters which occur as a result of variations in the number 

and location of experiments mounted on the platform. Structural vibration 

frequencies in the controller bandwidth further complicate the design 

problem. It has been found that convent J.~);".:' controllers miss performance 

requirements by a wide margin when these factors are taken into account. 

It should be noted that the lighter the platform is, independent of 

its stiffness, the greater is the controller interaction problem. The 

best structural design solution, from this standpoint, would be to place 

the Queen Mary in orbit. This might post other problems, however, from 

socio-political-economic viewpcints. 

It should also be noted that problems with platform flexibility cannot 

be solved by simply making the platform arms more rigid. As Appendix F 

illustrates, elastic vibration of the solar panels is the dominant pointing 

error once the initial slew transient (of experiment 1) has subsided. 

Two control approaches have been identified for future study. The 

first approach is to add additional sensors and/or actuators to individual 

experiment controllers. Base motion and image motion compensation fall 

in this category. The second approach is to allow information exchange 

between controllers, particularly one-way exchange from the bus controller 

to the experiment controllers. The challenge is to develop controllers 

which can significantly reduce the controller interaction problem and at 

the same time reduce controller sensitivity to structural parameter 

variations. 

-J 

J 
1 
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APPENDIX A. MODEL FOR PLATFORH WITH FLEXIBLE CROSS ARKS 

This Appendix documents the application of standard finite element 

techniques to modeling the LSST reference platform with experiments rigidly 

attached to the platform arms. The platform arms are modeled as flexible 

appendages to a rigid bus. The solar panels are assumed to be rigid. 

A six-degree-of-freedom model is developed for planar motion of the platform 

cross arms. The equations of motion are developed using a lumped mass 

approximation and a consistent mass matrix approach. The double diagonali

zation procedure for obtaining mode shapes and frequencies is discussed 

and the effect of parameter variations on mode shapes and frequencies is 

illustrated. 

The purpose of this appendix is to provide a building block to more 

complete models of the L55T reference platform as developed in Appendices 

Band C. It is felt that this building block approach to modeling provides 

increased understanding of the structural model which is useful for controls 

design work. 

1. Configuration 

Figure A-1 shows the simplified configuration used for modeling of 

the platform cross arms. Motion is constrained to the plane. The motion 

of interest for the initial modeling activity will be for rotations about 

the x axis. These rotations are tightly coupled with displacements along 

the z axis. For small angles the y axis motion is considered negligible. 

Hence, the model has six degrees of freedom, the vertical displacements 

VI' V2, V3 and rotations 81 , 82 , 83• The masses M1 and M3 (taken to be 

point masses) and inertias II and 13 are associated with two rigidly 

attached science and applications packages. The mass M2 and inertia I2 are 

associated with the central bus. The connecting elements are taken to be 

beams with 12ngth L, mass per unit length m, and flexural rigidity EI. 

2. Stiffness Matrix 

The stiffness matrix for a beam element is the standard one used for 

finite element techniques (see for example Ref. A-I, p. 158). With 

reference to Fig. A-2 we have, 

·tt ... .' d 1 • '$ • -ott _"de" r •• . ....... __ w 

I 
l 

I, 
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F1 6 -6 3l 3l V1 

F2 2EI -6 6 -3l -3l V2 • ? (A-l) 

T1 3l -3l 212 l2 81 
T., ... 3l -3l l2 212 82 

Here, VI and V2 are the vertical displacements of the beam end points, 

and 8
1 

and 82 are the rotations at these points (positive slope • positive 

rotation). F1 , F2 are the corresponding applied forces and T1 , T2 are 

the applied torques. 

Equation (A-1) can also be written 

Fl 6 3l -6 3l V1 

T1 2EI 3l 212 -3l L2 81 • ? (A-2) 

F2 -6 -3l 6 -3l V2 

T2 3L L2 -3l 212 82 

Next, if we have two beam elements, we can find the combined stiffness 

matrix using t~~ standard direct stiffness approach. With reference to 
Fig. A-J we have, 

6 3l -6 3l 

3l 212 • 2EI 
? (A-J) 

-6 -ll 6 -ll 

3l 

*' '1 1 
I . 
! 



_ W =.iC 
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So that combinina Iq. (A-2) and Sq. (A-l) we obtain 

• 2EI 
T 

I 
6 3l -6 3l I 0 0 

• 
3l 212 -3l l2 : 0 0 

.- - - . - - - .... ~ - .. _-
-6 -3l I 12 0 I -6 3l 

3l l2 0 412 : -3l l2 
- - - - '- - - - - .. o 0 I -6 -3l 6 -3l 

o 0 3l l2 -3l 212 
K 

W Ii"., +p. 
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(A-4) 

Equation (A-4) defines the stiffness matrix (K) fQr the system of ,ig. A-l. 

3. Mass Matrix 

The consistent mass matrix is the standard used for finite element 

techniques (see Ref. A-l, p. 163 for example). 

If the mass per unit length of the beam in Fig. A-2 is m then the 

consistent mass matrix for this beam element is 

Fl 156 54 22l -13L V1 

F2 mL 54 156 13l -22L V2 • m 
(A-S) 

T1 22l 13l 412 _3l2 8
1 

_3l2 412 
.. 

T2 13l -22l 8
2 

Equation (A-5) can be rewritten 

.. 
F1 156 22l 54 -13L V1 

T1 ZZL 412 13L _3l2 .. 
mL 81 = 1m 

(A-6) 

FZ 54 -13l 
.. 

156 -22L Vz 
TZ -13L _31 2 -22L 4L2 

.. 
82 .. 
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The consiatent .. a8 matrix for the aecond .. sa element ia identical 

(aince we aaaume m and L are the same), so the cOllb1ned result 1& 

.. 
F1 156 22L 54 -13L 0 0 V1 

Tl 22L 4L2 13L _3L2 .. 
0 0 81 .. 

F2 54 13L 312 Ill. 0 54 -13L V2 • mr (A-7) 

T2 -13L _3L2 0 8L2 _3L2 .. 
13L 82 .. 

F3 0 0 54 13L 156 -22L V3 

T3 0 0 -13L _3L2 4L2 
.. 

-22L 83 
\,. -r .. 

"a 
To the mass matrix of Eq. (A-7) we must add the discrete masses and 

inertias of Fig. A-l 

"1 
11 

MO • 
"2 (A-8) 

12 
"3 

13 

so that the mass matrix for the system of Fig. A-l is 

with Ha taken from Eq. (A-7l. 

4. The Eguation of Motion 

The equation of motion for the system of Fig. A-l is 
.. 

MV+KV-F (A-9) 

where 
T V • [V161 V262 V3631 • nodal coordinate vector 

T 
F • [F1T1 F2T2 F3T31 • force vector 

&ld M and K are as defined above. 

1 
1 

I 1 

i 1 
i 
I 
~ 
\' 
I ~ 
i 
I 
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In many cases, the effect of Ha i8 ne,l1aible and the equation of 

motion may be approx~ated as 

.. 
MoV+KV-P 

with Mo defined by Eq. (A-8). 

5. The Eigenvalue Problem 

If we set V - v eist f where v is a scalar and f i8 a vector of 

dimension 6, then Eq. (A-9) gives us 

(_52 M f + K f) v eist • F 

now set F • 0 and s2 • A, so 

(A-lO) 

(A-ll) 

(A-l2) 

To put this in the standard eigenvalue problem form we will use a double 
diagonalization procedure: 

First we chose tl so that 

(A-l3) 

here tl is the eigenvector matrix of M, with the individual eigenvectors 

scaled to satisfy Eq. (A-l3). 

Applying Eq. (A-13) to Eq. (A-12) we obtain 

(A-l4) 

or 
(A-lS) 

This is now in standard eigenvalue form. Now set 

A 

where t2 is the eigenvalue matrix for K. Then 



.. ""Iff' 
''44_ 0. 4 

44 

.. T .. 
Now. It is s~tric and hence It is too. SO.2 1t.2 i. diagonal 

and consists of the eigenvalues of the .yst_. The eigenvectors are· 

hl - [1 0 0 0 0 0) 

h2 - [0 1 0 0 0 0] 

h6 - [0 0 0 0 0 1] 

These can be transformed back into the coordinates of Fig. (A-2) with 

i • 1 •••• ,6 

(A-H) 

(A-18) 

This solution procedure for the eigenvalue problem is well known and avoids 

inverting the mass matrix. It also allows the eigenvalue routines to work 

with symmetric matrices throughout. Notice, however. that if Eq. (A-lO) 

is to be used, "n is already diagonal and hence easily inverted. In this 

case, there is no need to use the double diagonalization procedure. 

The ~i of Eq. (A-l8) are the system mode shapes and the natural 

frequencies are given by 

i • 1, ••• ,6 

6" Effects of Parameter Variations 

(A-l9) 

Table A-l presents eight sets of parameter values which were used to 

represent the platform arm model for Fig. A-I. These values are believed 

to be representative of a power system/platform similar to the 2S-kW 

power system reference concept proposed by Marshall Space Flight Center. 

Table A-2 presents the modal frequencies associated with the parameter 

values of Table A-l. The mode shapes are shown in Fig. A-4 (the mode 

shapes do not vary qualitatively with changes in parameter values). The 

following observations can be made: . 

• A comparison of the results for data sets 7 and 8 show that the 

mass per unit length of the beam element has a negligible effect 

on the frequencies. Hence, the consistent mass matrix approach may 

be set aside in favor of the simpler diagonal lumped mass matrix. 

~ ._ .. _-_ . .........-.. _-..... ....-....._. -,--... ........ .• ~--------~~. jl e'-* _ 
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• A comparison of results for data sets 2 and 3 ahows that the inertias 

(11 , 12, 13) have little effect on the first symmetric bending 

mode (mode 3)·. 

• A comparison of results for data sets 4 and S shows that the inertia 

12 has little effect on the second bending modes (modes S and 6). 

• Increasing L, "i' or Ii reduces the modal frequencies and increasing 
El increases them. 

7. Comparison of Results to those for a Simple End Loaded Cantilever 
Beam 

The modal frequencies for the first bending mode may be compared to 

those of a simple end loaded cantilever beam (see Fig. A-S). 

The tip deflection is (see for example, Ref. A-2, p. 518) 

So the stiffness is 

The differential equation is: 

.. 
My+Ky·O 

So that the natural frequency of vibration is just 

using the parameter values of data set 2 we see 

6 
3 x 38.45 x 10 37 74 d/ 

w • n (3xl03) x (3)3 

• 6.0 Hz 

• • ra sec 

(A-20) 

~."""" ___ ---" _____ .~ ___ ",.",,,._,, __ -, _____ ,,,, _______ •• _' ___ •• ____________ ~ ........ __ .. J 
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Thi. i. clos. to the re.ult. of data •• ta 1-5 (5.) to 7.) Bz). Bence, to 

• first approxtmation. Iq. (A-20) can be u.ed to e.Cimate the lowest 

frequency of the .ystem of P1a. A-l. 

Data 
Set 

1 

2 

3 

4 

5 

6 

7 

8 

L 
(m) 

3 

I 
~ 

15 

I 
I 

~ 

38.45 

\I 

19.2 

t 

Table A-l. Paramecer Value. 

11 

(ka/1I) 

12.3 

o 

12.3 

Table A-2. 

) 

M2 
(kI
x10) 

13 ) 

Modal Frequencies (Hz) 

o 
o 
1.2 

1.2 

4.2 

1.2 

1 

12 
(ka2 
xlOJ) 

86 

o 
47 

559 

o 
o 
1.0 

1.2 

4.2 

1.2 

1 

, Data ~ Mode Number 

Set I 1 2 3 4 5 6 
t , 

1 0 0 7.3 7.7 641 642 

2 7.3 907 1139 1753 

3 6.8 8.4 34 35 

4 6.0 6.8 34 35 
! 5 5.3 5.8 20 22 

6 0.6 1.0 14 14 

7 0.5 0.7 10 10 

8 ,,' 0.5 0.7 9 9 

'1 
, 

( 
r 
! ' 
I 
I 
I 
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MODE 1: RIGID BODY TRANSLATION 

MODE 2: RIGID BODY ROTATION 

MODE 3: 1st SYMMETR IC BENDING 

MODE 4: 1st ANTISYMNETRIC BENDING 

MODE s: 2nd SYMMETRIC BENDING 

M>DE 6: 2nd ANTISYMN£TRIC BENDING 

Fig. A-4. Mode Shapes 
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APPENDIX B. MODEL FOR PLATFORM WITH RIGIDLY ATTACHED EXPERIMENTS 

This Appendix documents the application of standard techniques to 

modeling the LSST platform with experiments attached rigidly to the 

platform arms. The platform arms and solar panels are modeled as flexible 

appendages to a rigid bus. 

Nine-degree- and eleven-degree-of-freedom models are developed by 

adding flexible solar panels to the model developed in Appendix A. 

1. Configuration 

Figure 8-1 shows a simplified configuration used for developing an 

eleven-degree-of-freedom model for the LSST reference platform. The two 

degrees of freedom 64 and 65 are later eliminated (see sections which 

follow) to obtain a nine-degree-of-freedom model. The variables 8
4

, 85 , 06' 

V4 ' VS ' and V6 are associated with the soldr panels. The central bus mass 

and inertia are represented by M2, MS' 12 , and IS (M2 = MS = 1/2 total bus 

mass, 12 = IS = 1/2 total bus inertia). The two experiment (payload) 

packages are represented by Ml , II and M3, 13 , The masses Ml and M3 are 

assumed to be connected to the bus by massless beams of length La and 

flexural rigidity E1a' The solar panels are represented by M4 • 14 and 

M6 , 16 (M4 = M6 , 14 = 16), The masses M4 and M6 are assumed to be 

connected to the central bus by massless beams of length Lb and flexural 

rigidity Eib • Since the bus is rigid we have 62 = 6
5

, 

2. Solar Danel Model 

7he solar panel model has six degrees of freedom (before applying the 

constraint that 62 = 6S)· The stiffness matrix found by finite element 
techniques (see Appendix A, Eq. (A-4» is 

F4j 6 -6 3L 0 0 V4 
T4 2E1b 

L2 0 0 6
4 

FS. : -6 3L Vs 
1 "Tb -3L L2 Tsl 65 

F6; synwnetric 6 V6 
T6J 86 

I 
I 
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Here 'i' i a 4,5,6 are the forces associated with the displacements Vi' 

i • 4,5,6; and Ti' i • 4,5,6 are the torques associated with the rotations 

8
i

, i - 4,5,6. 

A diagonal mass matrix is used (see Appendix A, Eq. (A-8)). 

1 
M4 rV4 F4 I 

T4 14 I 84 

Fs MS Vs 
• 15 85 Ts 

F6 M6 V6 

T6 16 66 
.... ..... • 

"b 

3. Constraint Implementation (6 2 = 6~ 
The stiffness and mass matrices for the platform have an identical form, 

(Appendix A Eqs. (A-4) and (A-8». In order to combine them we set T2 = TS' 

and 6
2 

= 6
5 

to obtain an 11 by 11 mass matrix and stiffness matrix. 

This procedure is straightforward. First reorder the rows and columns 

of the matrices so that for the platform arms we have.the T2, 62 equation 

on the bottom: 

F, reordered V, 

T, stiffness 6, 
F2 = matrix V2 

F3 (or reordered V3 

T3 mass matrix) 63 

T2 e2 

For the solar panels reorder the rows and columns of the matrices so that 

the TS' 6
5 

equation is on the top (and then set TS = T2 , 65 = e2): 

.., 

T2 reordered 62 
F4 

stiffness V4 matrix 
T4 = (or reordered e4 
Fs 

mass matrix) Vs 

l~:J 
V6 
e6 

I 
I 
j 
• 
i , 
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Now, combine these equations to obtain an 11 x 11 matrix. For 

example t the mass matrix becomes 

,. 

r Fl "1 
T1 11 

F2 "2 
F3 "3 
T3 13 

T2 = (12+15) 

F4 "4 
'T 14 4 
FS "5 

F6 tt6 

. T6 
~ ~ 

The stiffness matrix is similar, it will look something 

: 

Reordered 
K matrix 
for platform I 
arms r; L - -

CJ 
• - - - T Reordered 

I K matrix 
I for solar 

panels 

.. .. 
V .. 1 
6 . .1 
V .. 2 
V .. 3 
6 .. 3 
6 .. 2 
V .. 4 
6 .. 4 
V .. 5 
V .. 6 

16 166 ~ oJ 

like: 

The common element (C) will be the sum of two terms, one from each of the 

two stiffness matrices. 

4. Static Condensation 

What we have now is an eleven-degree-of-freedom model. However, the 

degrees of freedom associated with the rotation angles 84 and 86 are not 

essential for a preliminary model. Excluding these degrees of freedom 

still provides two flexible modes for the solar panel (first symmetric 

and antisymmetric bending modes) as will be shown in what follows. 

I 

I 
\ 
\ 

I 

I 
\ 

I 
I 
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The process of e11lll1nating e 4 and 86 from the lumped mass matrix is,. 

stmply to set 14 • 16 - 0 and compress the matrix to a diagonal matrix (M) 

of dimension 9. 

8
4 

and 8
6 

can be eltminated from the stiffness matrix using a process 

known as static condensation (see, for example,Ref. A-l t p. 172). To 

accomplish this we begin by reordering the elements of the stiffness matrix 

and partitioning it so that it has the following form 

F1 
I V1 I T1 61 

F2 I V2 
F3 I V3 
T3 

:: Ktt IKt6 
63 

T2 62 
F4 I V4 
F5 I V5 
F6 I V6 

-- 1 T4 
Kat 

64 Kea 
T6 I 66 .. 

or 

[::] [ \t \6] [vt
] :: 

Kat K6e Va 

where F = T 
t [F1T1F2F3T3T2F4FSF6] 

Fe 
T = [T4T6] 

v = 
T 

t [V161V2v363e2V4VSV6] 

v = 
T 

6 [64661 

i 
! 
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and Ktt , Kte , Ket , lee' are the partitioned elements of the reordered 
stiffness matrix. 

Now set 14 • 16 • O. Also set T4 • T6 • 0, since we assume that no 
external torques will be applied to the masses H4• H

6
• 

[:} 
~hen 

or 

-1 
Va - - Kaa Kat Vt (B-1) 

and so 

So the reduced stiffness matrix is represented by: 

(B-2.) 

Using K and M we can now work the problem with nine degrees of fruedom 

instead of eleven. Also, Eq. (B-1) can be used to solve for 6
4 

and 6
6 

under the assumption that 14 = 16 = O. Notice that 64 and a
6 

will ~~ 
be zero. 

5. The Equation of Motion 

The equation of motion for the system of Fig. B-1 is 

A A 

where M, K. Vt , and Ft are as previously defined. 

6. The Eigenvalue Problem 

The eigenvalue problem has the same form as that given in Appendix A, 
Eq. (A-l2) 
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2 where A is the scalar eigenvalue (A • Wn • natural frequency squared) and 

f is the eigenvector (or mode shape) associated with A. 

7. Mode Shapes for System Elements 

In order to visualize the system mode shapes, it is instructive to 

first examine the mode shapes of the individual elements. Our model has 

two types of elements as shown in Fig. B-2. Type 1 has 4 degrees of freedom 

giving two rigid body modes and two elastic modes. Type 2 has 3 degrees of 
~ 

freedom, glving two rigid body modes and one elastic mode. 

Figure B-3 shows the mode shapes for the type 1 element. The type 2 

element has the same first three mode shapes shown in Fig. B-3 but lacks 

the 4th mode. 

The first two mode shapes involve no strain energy (since the beam 

element connecting the end masses is undeformed) and have w·O. The 4th 
n 

mode shape has a higher strain energy than the 3rd mode and also a higher 

natural frequency. 

8. Sample Computer Run Results 

Four computer runs were made with the eleven-degree-of-freedom model and 

two runs with the nine-degree-of-freedom model. Table B-1 lists the parameter 

values used and Table 8-2 the resulting natural frequencies. 

Comparison of runs 4 and 5 show that the results are identical for 

the first nine modes. In other words, run nine confirms the fact that 

eliminating 84 and 86 is equivalent to setti~g 14 and 16 to zero. 

Comparison of runs 2 and 3 shows that increasing the mass and 

inertia of the experiments (MIll' H3,I3) results in lower frequencies for 

the bending modes of the platform arms, but has little or no effect on the 

solar panel modes. 

Comparison of runs I and 2 shows that increasing L and decreasing EI 

lowers the natural frequencies as we would expect. 

. As pointed out in Appendix A, the lowest frequency is roughly propor

tional to I EI/ML3 or 

/ EI 
w - C --_. C • constant 

n 3 • HI. 

---1111!!111-~~--~-=-~,.----,-,-"-"--"""",-"-"_""",,,,_#,,,,,~ _____ ,,,, _____ ~-._= ___ ........ _~ ......... _______ ~~~ ___ 
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Between runs 1 and 2 this ratio for the platfora arms changed by an amount 

This agrees well with the computer run results for the 1st symmetric mode: 

for platform arms 

.356/.035 -10 for solar panels. 

Comparison of run. 2 and 4 shows what the result of neglecting 14 

and 16 is on the modes retained. The platform arm modes are unaffected 

and the solar panel mode frequencies increase somewhat (compare modes 8 and 

9 for runs 2 and 4). When using the nine-degree-of-freedom model, the 

flexural rigidity (EI) can be reduced somewhat as compared with the eleven

degree-of-freedom model if the same modal frequencies are desired for the 

modes 8 and 9. 

The mode shapes for the system of Fig. B-1 are sketched in Figs. B-4 

through B-b. The mode shapes do not differ qualitatively from run to run. 

The shapes are various combinations of the element shapes sketched in 

Fig. B-3. Table B-3 lists the mode shapes quantitatively for run 6. 

9. Comments on lnteraxis Coupling 

The mode shapes of Figs. B-4 through B-6 demonstrate clearly that x 

and y axis rotations are tightly coupled (see Fig. B-1 for axis definition). 

For example, any input which excites the symmetric bending modes of the 
, * platform arm will cause the rotations 81 and 83 , But, because the symmetric 

bending mode results in a displacement V2• this motion will cause rotations 

of K2 and KS about their y axes. This in turn will excite torsional 

modes (not modeled in this paper) associated with the solar panels and 

platform arms. In this way, we can see that all six masses will have 

rotations about their y axes a8 a result of an excitation of a platform 

arm symmetric mode. 

* The torques Tl and T3• for example. will excite these modes (but T2 will not). 

, .. ' .. 1 ..... 
l 

~ 
I 

I 
r 
i 

I 



The magnitude of this coupling will depend on the parameters of the 

model and mayor may not be small enough to permit meaningful single axis 

control system designs. This coupling effect will be examined more 

carefully in future work. 
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Table 1-1 Run Parameters 

~~ 
~ Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 
~ -
~. 

r\ Platform Anns 
t' La (m) 5 15 - 15 

Ela(N-mZxl06) 
( 

40 20 ,... 20 I 

", (kg x 103) 3 3 12 3 3 3 r 
I 

1, (kg_m2xl03) 
, 

1 1 4 1 1 1 i 
I 

M2 (kg x 103) 6 6 
, 

--
12 (k9-.fxl03) 60 .. 50 

"3 (kg x 103) 3 3 13 3 3 3 

13 (kg-Jxl03) 1 1 4 1 1 1 

Solar Panels 

Lb (II) 20 .. 20 

E1b (N-m2x106) 10 .1 .. .1 

"4 (kg x 103) 0.5 ... .5 i 
, .~ 

14 (kg-m2xl 03) 50 50 50 0.001 0 0 

"5 (kg x 103) 6 .. 6 

Is X X X X X X 

"6 (kg x 103) 0.5 ... .5 

16 (~.nfxl03) 50 50 50 0.001 0 0 
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Table B-2 

Rigid Bogy Modes 

1 (solar panel translation) 

2 (arm translation) 

3 (rotation) 

Platform Arm Modes 

4 (1st synmetric) 

5 (1st antisymnetr1c) 

6 (2nd synllletric) 

7 (2nd antisymmetr1c) 

.Solar Panel Modes 

8 (1st sYlIIIletric) 

9 (1st antisymmetric) 

10 (2nd synmetric) 

11 (2nd antisymmetric) 

Natural Frequencies (Hz) 

Run 1 !!!!!.1 Run 3 

0 

0 

0 

3.91 .546 .1,30 

5.75 2.04 1.98 

29.3 11. 7 5.86 

29.3 11.7 5.95 

.356 .035 .035 

.584 .039 .035 

1.33 .133 .133 

1.37 .130 .129 

61 

!!!!L! Run 5 Run 6 

'" 0 

• 0 

... 0 

.546 .546 .546 

2.04 2.04 2.04 

11. 7 11.7 11.7 

11.7 11.7 11.7 

.047 .047 .0471 

.049 .049 .0493 

22.5 X X 

22.5 X X 
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~oor-
di-
~ate 1 

V, 0 

V2 0 

V3 0 

1 0 

3 0 

2 0 

V4 1.2E-2 

V5 ~ .2£-2 

V .2E-2 6 , -

2 

-9.1E.3 

-9.1E-3 

-9.1E-3 

0 

0 

0 

0 

0 

0 

'""'" , "-;'I!'" -.....- ~ • ... $ $ WiD' .p ...... 

Table B-3 Mode Shapes for Run 6 

Mode Number and Dtsplacement 

3 4 5 6 1 8 9 

·1.1E·2 9.1E .. 3 2.4E .. 3 7.4E-4 7.5E-4 0 -6.0E-3 

0 -9.1E-3 0 -7.4E-4 0 0 0 

1.1E-2 9.1E-3 -2.4E-3 7.4E-4 -7.5E-4 0 6.0E-3 
• 

7.4E-4 -1.SE-3 -2.5E-3 2.2E-2 2.2E-2 0 4.0E-4 

7.4E-4 1.8E-3 -2.5E-3 -2.2E2 2.2E-2 0 4.0E-4 

7.4[-4 0 4.I\E .. 3 0 4.6E-4 0 3.9E-4 

-1.5E-2 0 4.0E-5 0 1.3E-7 2.9E-2 ·2.8E-2 

0 0 0 0 0 -4.9E-3 0 

1.5E-2 0 -4.0E-5 0 -1. 3E-7 ~.9E-2 -2.8E-2 

-
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MODE 1: RIGID BODY TRANSLATION 

MODE 2: RIGID BODY ROTATION 

I\.oDE 3: 1st BEND I NG MODE 

MODE 4: 2nd BENDING MODE 
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Fig. B-3. Hode Shapes for Type 1 Element 
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MODE 1: RIG 10 BODY TRANSLA T ION OF 
SOlAR PANELS 

MODE 2: RIGID BODY TRANSLATION OF 
PLATFORM ARMS 

MODE 3: RIGID BODY ROTATION 
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Fig. B-4. Rigid Body Modes 
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MODE 4: 1st SYMMETRIC BENDING MODE 

MODE 5: 1st ANTISYMWJRIC BENDING MODE 

MODE 6: 2nd SYMMETR I C BEND I NG MODE 

MODE 7: 2nd ANTI SYMMETRIC BENDING MODE 

Fig. B-S. Elastic Modes for Platform Arms 
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MODE 8: 1st SVMtt£rRIC BENDING MODE 

MODE 9: 1st ANTISVMMETRIC BENDING MODE 

MODE 10: 2nd SVMMETRIC BENDING MODE 

MODE 11: 2nd ANTI SVMMETRI C BENDING MODE 

Fig. B-6. Elastic Modes for Solar Panels 
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APPENDIX C. TRANSFER FUNCTIONS 

This Appendix documents transfer functions for the nine-degree-of

freedom model of Appendix B. Transfer functions are developed from modal 

data. Comments on observability and controllability are made for torque 

actuators and angular position sensors on the central bus or on the 

platform arms. Transfer functions are included for noncolocated actuators 

and sensors. 

1. Transfer Function Derivation 

This section addresses the derivation of transfer functions between 

a force (or torque) at any point in a structure to a sensor at any point 

in the structure. 

For this purpose the system model is assumed to have n degrees of 

freedom and be of the form 

Mx + Kx = F = Bu 

where 

y = Cx 

x is the n "dimensional" nodal coordinate vector 

u is the m "dimensional" control input vector 

F is the n "dimensional" force vector 

y is the 2. "dimensional" output vector 

M is the n x n mass matrix 

K is the n x n stiffness matrix 

B is the n x m control distribution matrix 

C is the 2. x n output matrix 

(C-l) 

Let ~ be the n x n matrix of eigenvectors for this system such that: 

~T M ~ = I 

and 

2 where I is the identity matrix and A is the diagonal matrix of eigenvalues 

(or modal frequencies squared). 
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Then Eq. (C-l) can be rewritten in terms of the modal coordinates q 

(x • tq) as 

.. 2 T 
q + A q. t F 

* Suppose we now assume modal damping and write 

where 0 is a diagonal damping matrix. 

Now take the Laplace transform of Eq. (C-J) to obtain: 

q(s) = (s2r + sO + A2)-1 .T F 

or in terms of the original coordinates 

x(s) = .(s21 + sO + A2)-1 .T F(s) 

(C-2) 

(C-J) 

(C-4) 

(C-5) 

Equation (C-5) gives the transfer matrix relating F to x. The transfer 

matrix between u and y is given by 

(C-6) 

To find the transfer function between any force (F
j
> and nodal coordinate 

(xk) we proceed as follows: define 

Q(s) = (s2r + sO + A2)-1 

= diag. (Ql (s) Q2 (8) ••• Q
n 
(s» 

2 2 -1 Qi(s) = (s + 2 ~i wi + wi ) 

and 

* See, for example, Rei. A-I, pages 194-199 for a discussion of this assumption. 
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where 

+ji ie the jth component of the ith eigenvector 

'i • ith modal damping coefficient 

wi • ith natural rrequency 

Then, from Eq. (C-5) we have 

1 
I 

Q (s) 
n 

4t T 
1 

4t T 
2 

+ T 
n 
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F(e) 

(C-7) 

Equation (C-7) is an alternate representation of the transfer matrix given 

in Eq. (C-5). Now define 

xes) = (xl x2 
x )T 
n 

F(s) '"' (Fl F2 F )T 
n 

so that 
n 

xk(s) • ( r +ki Qi(s) +ji) Fj (s) (C-8) 
i-1 

Equation (C-8) defines the transfer function between the force F. and the 
J 

nodal coordinate xk • 

Using (C-7) we can write (C-6) as 

yes) 

now set 

n T 
'"' C (r + i Qi +1 ) B u(s) 

i-l 

'"' (~ C .1 Qi • iT B) u(s) 
1-1 

B = [B T B T ••• BnT]T 
1 2 

(C-9) 
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where each B1 1s a 1 x m row vector and each C1 1s a n x 1 column vector. 
Then 

• 1 x m row vector 
and 

• 1 x 1 column vector 

(C-lO) 

(C-ll) 

now, define 

~ ~ 

Bi = (Bil Bi2 ••• Bim) 

where Bij and Cki are scalars. Define 

y(s) = (Yl Y2 YR,) 
T 

u(s) = (u
l 

u2 
u )T 
m 

so that n A A 

Yk(S) = l r Cki Qi(s) Bij ] uj(S) 
i=l . 

(C-12) 

Equation (C-12) defines the transfer function between the control input u
j 

and the output Yk • 

2. Transfer Function Symmetry 

Equation (C-8) demonstrates that the following two transfer functions 

are equivalent: 

I' 
I 

" 

! 
( 

~ 
1 
! 
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This result is known as Maxwell's law of reciprocal deflections (discovered 
* in 1864) , The symmetry seeD here arises because of the symmetry of the 

original M and K matrices. 

3, Transfer Function Zeros 

... ~ 

The number of zeros (Nz) in the numerator of Eq. (C-7) (or (C-l2» is not 

at all obvious. An upper bound is Nz • n - 2. This can be seen by expanding 
Eq. (C-7) over a common denominator which is the product 

n 2 2 
X (s + 2 ~iwi s + Wi ) 

i-I 

However, in many cases the degree of the numerator polynomial will be less 
than n-2 when k~j, 

As an example, consider the system of Fi~~. C-l. For this system the 

transfer funLtion X1 (s)/F1 (s) has 6 zeros, X2\s)/F
l

(s) has 4 zeros, 
x3(S)/Fl (s) has 2 zeros, and x4(s)/F

l 
(s) has no zeros.' 

This can be demonstrated as follows. The system equations are 
(Kij ~ Ki + K

j
) 

-It1 
Xl '1 

Ktr2+~2_ -iC2 x'2 '2 • 

-Ie 
1 

-iC2 Kl;~l ~J x
J 'J 

-ll 2 L F4 
K,' '+ItJ x, 

K;2 + I 
, 

To find the inverse of the matrix (Ms2+K) we can use Cramer's rule. The 
numerator of the inverse has the form 

* See for example, Ref, C-l) p. 494. 

t st - • • =. s 

j 

r~ 
: j , 

~ 
1 

• 

~ 

'1 

.,4 
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IU 112 ~3 114 

121 .IU 123 124 

131 ·'2 133 I,. 
1.1. 142 143 144 

and the denominator 1s the determinant of (Ha2 + It). Each element N
ij 

1s 

found by deletina the ith row snd jtb column of Ms2 + It) and taldna the 
determinant with proper sian. So 

2 
-&2 .128 ~2 0 

111 • -12 Kji2+1z3 -13 

0 -&3 
2 

"48 'f«3 

In this case, the coefficient of tbe.6 term 1s"2 "3."4 so Nlt has degree 
6. For Nl2 we have: 

1 

112 • - 0 

o 

-12 
2 ..,S 'tCz3 

o 

-13 

2 
11.8 :.tel 

In this case, there 1s no .6 term and tbe .4 term coeff1cient 1s Itl "J "4. 

For Nl3 we have: 

o o 

o 

-13 

114·2~ 

• 

~ 

! ~ 
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For Nl4 we have: 

114 • - 0 

o o 

75 

so Nl4 is just a constant t.rm, and there are no zeros in the transfer 

functions x4(s)/Fl (s) • xl(s)/F4(s). 

So we conclude that for chain systems of this type we car. d.termine 

pretty much by inspection the number of (finite) zeros. For other systems 

this is not so easy. especially when the M and K matrices are full or nearly 
full. 

It should be noted. however, that if zeros at infinity are included, 

then every transfer function can be thouaht of as hav1na the same number of 
zeros as poles. 

Suppose that we compute the transfer functions using Eq. (C-7). Then 

because of computational inaccuracies the order of the numerator polynomial 

for each transfer function will almost always turn out to be n-2 for systems 
of any size. 

If a polynomial root finder is e.ployed it will attempt to find n-2 

roots. It mayor may not be successful and if it 1s successful, some 

of the roots found may have very larae magnitudes. The USdr of such a 

program should understand that the most probable explanation for the root 

finder bombing out or obtaining roots with very larae magnitude is that the 

true system has fewer zeros than n-2. 

If the root finder does bomb out, it is necessary to reduce :he 

polynomial to a lower degree (by simple truncation) before attempt ina 

another solution. If the root finder obtains very large value. for the 

zeros (as compared to the pole maanitude.) then these zeros should usually 

be discarded (which i. equivalent to replacing them by zeros at infinity). 

Some judl_ent is required, however. on what is "too larae." 
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4. Nuaerical aelulu for Nine~raa-of"r .. dOll Model 

The initial control proble. for thi. Itructure il ralated to the ·nale., 

8
1

, 8
2

, 8
3 

where 8
1 

and 8
3 

are the experiaent pointinl angle. and 82 is the 

central bus orientation anale. 

The a.lociated control torque. are defined as Tl , T2• and T3; where 

T
i

, i • 1,2,3 is the torque applied at Mi' i • 1,2,3 about the x axis. 

The transfer functioD8 of interest are: 

81 - (s) • 
11 

82 (s) • 
T2 

61 (8) 
T2 

• 

• 

transfer function between a torque applied at Ml and the 

rotation anile at same location. 

tranafer function between a torque applied at the central 

bus and the rotation angle at same location. 

transfer function between a torque appl~ed at the central 

bus and the rotation angle at Ml • 

transfer function between a torque applied at M3 and the 

rotation angle at Ml • 

Also of interest are the following transfer functions 

62 (8) 
81 (s) 

Tl 
.-

and 
T2 

6 81 ~ Cs) .- (8) T . T3 1 

There arc many other possible transfer functions of lesser interest 

which will not be discussed. 

Fiiures C-2 through C-S present pole/zero configurations for the four 

principal tranafer functions resulting from the modelof \ppendlx B uslng 

\ 
I 
i 
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the Run 6 dattl. set par_eters. For simplicity of plattill8 no damping has 

been added. The (lain (K) of the traufer function has alao been shown us1D8 

the following convention 

K (s-ZI)(S-Z2) ••• (s-Zm) 
G(s). (s-P

I
)(s-P

2
) ••• (s-P

m
) 

where 

and 

Zi = the ith zero 

P = the jth pole. j 

5. Observability and Controllability 

The pole/zero plots of Figs. C-2 through C-5 give us information on 

observability and controllability. Whenever pole/zero cancellation occurs 

this is an indication that either observability or controllability (or both) 
has been lost (see next section). 

9
1 

Figure C-2 shows us that for r- ~) there is a pole/zero cancellation at 
I w = 0.296 rad/s. This frequency corresponds to the first symmetric mode of 

the solar panels. Any motion observed at MI as a result of solar panel motion 

must be transmitted through the bus. The symmetric modes of the solar 

panels, however, are not transmitted to the platform arms (see Appendix B) 

so this indicates a lack of observability. Furthermore, this mode is not 

controllable since rotations and displacements of the platform arm cannot 

excite the symmetric modes of the solar panels. 

82 . 
Figure C-3 shows us that for r- (s) there are pole/zero cancellations at 

2 w = 0.296, 3.43, and 73.3 rad/s. These frequencies correspond to the 

symmetric modes of the solar panels and platform. Since the synunetric modes 

do not affect 82 these modes are not observable, and since a torque T2 

cannot excit£ these modes they are not controllable either. 

8 8
2 Figure C-4 shows us that for Tl (s) and r- (s) there are pole zero 

cancellation at w = 0.296, 3.43, a~ 73.3 rad/l. As before the solar 

panel mode is neither controllable or observable. This is true for both 

, . 
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82 and T (s). The platform arm s)'BDetric modes are 
1 82 

8 i:- (s) 
91 observable in T (s) but 

2 
not controllible. In the case of T (s) the reverse is true: . the 

platform arm symmetric modes are conlrollable but not observable. 

83 and ~ (s) all the modes are control-
1 panel symmetric modes which are 

81 Figure C-5 shows U~ that for ~ (s) 
3 lable and observable except the solar 

neither controllable nor observable. 

It should be noted that controllability and observability of a particular 

mode are necessary if we are to change the dynamics of a system related to 

that mode, but do not in themselves assure us that a satisfactory control 

system design can be achieved. For example, the confi8urations of 

Figs. C-3 and C-4 will be much more difficult to control because of the 

consecutive pole patterns on (or near) the imaginary axes, and because of the 

right-balf plane zero(s). 

It should be noted that although the symmetric modes of the platform 

arms and solar panels are not controllable or observable at the central 

bus when considering 92 and T2, they become both controllable and observable 

when torques and motions about the y-axis of the bus are included. The 

present model does not include these torques explicitly, but they are 

implicit in the forces F2 and F5 and the displacements V2 and VS' 

6. More on Pole Zero Cancellations 

In the previous section we used arguments associated with the mode shapes 

to determine whether pole zero cancellation arose from loss of controllability 

or from loss of observability, or both. In this section we will make the 

argument a bit more precise. 

The system equations as stated earlier are: 

and 
•• 2 T 
q + A q. t F (C-13) 

where 

J( • t q (C-l4) 

• . ; 

.~ 

~--....-.-. .. -·"~-~-~""--"'''''''---__ '''·"·'''M ___ ...... ' illlir ..... iIiIliill. ¢F .. IiI" !1III* .. r5ii·_ .... -.._ ....... _~~_-...; ______ ~~ ____ 
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and • is the ei88Dvector (mode shape) matrix. Rere x represents physical 

coordinates t and q the .odal coordinates. For illustrative purposes. 
T T 

consider a 3-dimensional systea with x - [Xl x2 x3] • q - [ql q2 q3] • 
T 

, • [Fl '2 '3] t and 

T Here [.il 'i2 .i3] represents the ith mode shape. Now, Eq. (C-13) can be 

written as follows 

- 2 
ql + fill qk ·11 ·12 ·13 '1 
- 2 
q2 + f112 q2 • ·21 ·22 ·23 '2 
.. 2 
ql·+ f113 q3 ·31 ·32 ·33 '3 

From this it is clear that for ~ to be influenced by Fj we must have 'mj + 0 

(this is the controllability issue). 

Similarly, Eq. (C-l4) can be written 

&2 t12 ·22 ·32 q2 

&3 t13 ·23 ·33 q3 

From this we see that for qm to influ~nce the output at xk we must have 

'mk + 0 (this is the observability issue). 

Now consider an n-dimensional system. The transfer function between 

the Force F
j 

and uutput ~ was found before (see Eq. (C-7». For the 

----------------------------------- -,- _. -- -~- ~-

I ~ 

i 
" , 
" 

I 
.,.J 
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undaaped case we have: 

"k (5). I 
F

j 

Now, if either, j • 0 or +mk - O. then the term involving s2 + w 2 
m 22 m 

disappears (i.e., the transfer function has no pole at s + w ). 

(C-15) 

xk 22 m 
Hence, if ,- (s) is written with the term s + w in its denominator, it 

j m 
must have the same term in the numerator. In other words, we must have pole 

zero cancellation. Hence, we can examine the entries in the eigenvector 

matrix to determine controllability and observability; or we can look for 

pole zero cancellations in the transfer functions and if they occur look 

at the eigenvector matrix to determine their cause. 

The discussion in this section and the last has implicitly assumed 

that the natural frequencies are distinct. If they are not distinct (for 

example we may have several rigid body modes) then our comments must be 

modified slightly. 

Looking at Eq. (C-1S) we see that pole zero cancellation will certainly 

occur 1£ 'mj - 0 or 4mk '" O. However. 1£ wI .. w2 (for example) then it is 

possible to have pole zero cancellation even when 'lj 'lk and '2j '2k are non

zero. Thus 'mj 1 0, 'mk 1 0 is necessary for controllability/observability 

but not sufficient. If. however. 'mj 'mk ~ 0 and wm is a distinct (nonrepeated) 

eigenvalue, then this mode will be controllable and observable ('mj 'mk ~ 0 is 

necessary and sufficient). For additional discussion on this topic the reader 

is referred to Ref. 2-1. 
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APPENDIX D. MODEL FOR PLATFORM WITH TWO HINGED EXPERIMENTS ATTACHED 

Thia Appendix ex tend a the model of Appendix B to include two hinged 

experiment packqea, each \lavina a sinale rotational dearee of freedom. It 

is assumed that these packages are riaid, The reaultlna model has eleven 

dearees of freedom. The mass and stiffness matrix for the combined system 

is given. 

1. Configuration 

Figure 2-1 shows the configuration for the Reference Platform. This 

configuration is the same as that in Appendix B except for the two experiment 

packages represented by the masses Mel' Me)' The additional degrees of freedom 

are given by the angles Yl and Y)' Yl and Y) are taken to positive for a 

rotation about the plus x axis. Yl is measured from the negative y axis and 

Y) is measured from the positive y axis (i.e. for the nominal configuration 

shown in Fig, 2-1. both Yl and Y3 are zero). 

2. Development of Equations of Motion for an Experiment Package 

Figure D-l shows a sketch of the experiment packages located on the 

y axis of the platform arm. Figure D-2 shows a free body diagram. The 

model developed will be for Yl and y) near zero so that forces along the 

y axis will not be considered. Symbols are defined as follows: 

T) • torque applied about the x axis of the experiment package located 

on the plus y axis. 

Fv3 • reaction force applied by the base mount to the hinge point (P 3) 

of the experiment package in the direction of the z axis. 

p) • point of force application 

Y) - angle of rotation about the x axis relative to the inertially 

f!xed axis y. 

V) • inertial displacement of point p) along z axis. 

Me) • mass of experiment package at location ), 

Ie) • inertia of experiment package about hinge point P3 , 

Le) • distance between hinge point p) and center of mass of experiment. 

Tl , Fvl ' Pli Yl ' VlI Mel' Lel are defined similarly. 

'I ,; 
i 
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Now, if the point P3 were initially fixed, then we would have 

But, since P3 is not fixed we must account for the base acceleration. The 

proper relationship in this case is (Ref. D-l, p. 146) 

.. . 
M -p xMr -H -p -c -p-p 

where 

M - torque about point P3 -p , 
p - vector from point P3 to em -c 
M - mass • M .. e3 
r - acceleration of point P3 relative to inertial space -p 
~p - rate of change of angular momentum relative to point P3-

(D-l) 

The model being considered will consider only motion along the z axis and 

rotation about the x axis (actually there is also rotation about the y 

axis because of x-y axis coupling but this effect will be neglected in 

what follows). 

For Y3 near zero we have 

M - T3e -p x 
p - L 3 (e + Y3 e ) -c .. e y z 
r - vle -v z 
~i = 1 lYl e -p e x 

The assumption here is that x is a principal axis for the experiment package 

and that base motion is along z only 

the x, y, and z axes respectively_ 

Substitution into Eq. (D-l) gives 

or 

ex' e • and e are unit vectors along y z 

(D-2) 

(D-3) 
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Now. we can obtain the for~. equatiol' by application of Newton Law. 

P
v3

ez • He3 x (acceleration of OM of experiment package) 

Since the position of the eM of the exper1ment package relative to inertial 

apace is eiven by (V3 + Y)Le) ez we have 

.. ,. 
Pv3 • Me3 (V3 + Le3l 3) (D-4) 

EquatiODs (D-3) and (D-4) gave the force and torque applied to the 

experiment package at point p). The force and torque applied to the platform 

arm at this point is the same with a minus siln. 

Por the experiment pacl" .. ge on the -y axis of the platform arm Eqs. 

(D-3) and (0-4) must be modified slightly. Equation {D-2) becomes 

00 

Tlex - Lel (-ey - ylez)x HelVlez • IelYl ax (D-5) 

or .. .. 
Tl • - MelLelVl + IelYl 

(D-6) 

Also, since the eM position for this experiment package is (Vl-llLel ) ez 
we have 

.. .. 
Fvl • Mel (Vl - llLel ) (D-7) 

To summarize what we have so fsr: 
For the experiment package on +y axis (location 3) the forces and torque 

applied to the experiment package are 
00 

T3 • Me3Le3V) + Ie3l 3 
.. .. 

FV3 • Me3 (V3 + Le)l) 

For the experiment package on -y axis (locatiOD 1) the forces and torques 

applied to the experiment package are 

.. .. 
Fvl • Mel(Vl - Lell1) 

The forces and torques applied to the bus are of opposite sign. 

zr= C 52' s' OM * S m 

1 
l 
~ 
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3. The Maee Matrix 

Define the new atate variable vector to be 

The 'quationa of intere.t are: 

.. .. 
• Fsl - "el (Vl - LelYl) (D-8) 

.. .. 
• Fa) - "e) (V) + Lely) (D-9) 

F 4 • F4a - Tl (D-10) 

F5 • FSa - T) (D-ll) 

.. 
FlO • - "elLelVl + IelYl • Tl 

(D-12) 

(D-13) 

wbere 
Fl • sum of external forces (Fal ) and expertment package reaction 

forces (Fet • - Fvl ) applied to "1" 
F) • sum of external forces (Fa3) and experiment package reaction 

forces (Fe3 • - Fv3) applied to "3" 
F4 • sum of external torques (Fa4) and experiment package reaction 

torques (-Tl ) applied to 11" 

FS • sum of external torques (FaS) and experiment package reaction 

torques (-T3) applied to 13" 

FlO • T 3 • torque applied to experiment package at location 3 about 

binge point P3" 

be tbe ID&8S matrix elements of Appendix B. Then. by using Eqs. (0-8) to 

.1 
1 
I 
~ 
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(D-1l) we CaD obtain the new may matrix •• 

ail - -11 + Mel 

m
' -311 , 

, 
• 1 -10,10 eJ. 

, 
-11,11 -Iel 

, 
• Ili 10 1110 ,1 , 

, 
• mj 11 1111 ,3 , 

, 
• 0 for allj except 1 aDd 10 

1I10 ,j 

, 
• 0 for all j excepL 3 and 11 

1I11 •j 

II' 
1,1' • 0 for all 1 except 1 and 10 

, 
111,11 • 0 for all 1 except 3 aDd 11 

, 
1I1j • lIij for all other.l and j. 

4. The Stiffness Matrix 

The stlffness matrix is unchanged from that of Appendix B except for 

the addition of ¥ero elements to increase the dtmension from 9 to 11. This 

i. because the rotations Vl and Vl c.\ be made without any strain enersy 

~i.e. there are no forces or torques proportional to Vl or YJ). 

. I 
': ' 

f 
[' 
! 



Hence, the new stiffness matrix is liven by 

, 
• k' i- 1,9 kij ij 

j • 1,9 

k' • k' • k' • k' 
• 0 10,j ll.j i,10 i.U 

for 1 • 1,11 

~. j • 1,11 

I 

1 
1 

1 
i 
A 
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APPBRDIX B. A TBCllNIQUB POll RBSllAPDG TIl RIGID BODY II)I)IS or A SPACBCRAn 

This Appendix presents a technique which can be used to re.hape the 

eiaenvectors associated witb a CoaDOn eipnva1ue. Thi. 18 of particular 

interest for application to reshaptng riaid body mode sbapes for flexible 

spacecraft. Standard e1&envalue/e1genvector proarams do not neces.arily 

give rigid body mode shapes which are pleasing. The algorithm presented 

here allows considerable fresdom for reshaping the modea. 

1. 5yst_ Equations . 

The syn_ to be considered 18 of tbe fon 

Hx + Ex • 0 

where M i8 tbe system .. ss matrix (symmetric, positive definite) 

l( 1a tbe sUffoe.s matrix (ayaaetric. positive semidefinite) 

x i. the coordinate vector (dimensloo 0) 

Suppose we .et x.. q 

where • satisfies 

.T H •• I 
o 

10 • Id8llUty matrix 

• • • 

• 18 the matrix of system eigaDvectors, or IIOde shapes. A is tbe .. trix 

of sy.tem oatural frequen';.!e •• 

2. Reshaping Algorithm 

Suppose the first a e1aenva1ue. are rep .. ted (for example, all zero 

for tbe ri&ld body .ode.). 

Set •• [.1 .2 • • • to] 

. , 

(E-I) 

(E-2) 



tb vheft .1 18 tb. 1 .ipD".cto~. Thea IUPPOI ... vi.b to ..... ,. 

t l , .2' • • • ••• III p.~tlc"la~ I.PPO •• t J • [t1j .2J • • • taJ]T 

and ."ppo .... vi.b to .U.inat. tij fo~ ... 1 and fo~ Mcb j 

j • 2,3, • • • , •• 

In oth.~ wo~d., we vi.h only .1 to contain the coapon_t 1 I 

'il ~O, .1j· 0 j. 2,3, • • • , m • 

We can accomplisb this by proceeding as follows: 

Firat eliminate '12 from '2. This can be accomplisbed by .etting 

'12 wbere a • - -==---'11 .. 
DOW '2 and '1 are DO longer orthogonal with respect to M and K so we 

A 

1IlUst modify '1. So set '1 • '1 + b '2. Then to maintain tbe orthogonality 

conditions of Iqs. (E-1) and (E-2) we must have 

'"T A 

'1 M '2 • 0 (E-l) 

;r K .2 • 0 (E-4) 

or 

10 that 

likewise we must bave 

(.~ + b'~) K <'2 + a '1) • 0 

or b .~ K '2 + a .I K '1 • 0 

T T 2 
but if '2 I '2 • '1 K .1 • Al then again b·-a do •• it. 

I 

I 
'. 



Now note that 

2 
• 1 + a 

So to renonal1&e ~ and ~ we 1Iust divide each of th_ bY~l + a2• 

This results in the following: 

;1 • (.1 - a .2)/(~1 + .2) 

;2 - (.2 + a .1)/(~1 + a
2
) 

·i2 
where a ---

·11 
.. 

This procedure can now be repeated using .1 and '3 to elimtnate the 

component 'i3 from .3 ' and so on UDtil we have a new set of m rigid 

body eigenvectors, only one of which has the component 'ij ~ 0 • 

Now we can work with m-l eigenvectors, and eliminate a different 

th coordinate from all but one of these; and 80 on until for the 11 

eigenvector m-l components have been eliminated. Tnis procedure is 

illustrated in Fig. E-l for the cese H • S. Note that at each Btep any 

one coordinate can be eliminated from the remaining eigenvectors. These 

coordinates need not be consecutive as ahown in Fig. E-l. 

3. A Property of the Reshaping Algorithm 

Suppose that '1 i. to be used to eliminate 'i2 from '2' Then we can .. 
ahow that '11 has the same magnitude as '11 • 



l 
" 

.0 that 

This property .hows us that if +1 begin. with a large value for +11 

then it will .t111 have this larse value after the reahaping proc .... 

In other word., w~ are •• sured of a certain ..aunt of cGmputatioaal 

.tabUitY. 

., 

4. Examples of Ways in Which the aashapins Algorithm Can Be Used 

Aa an illustration of how the reahaping alaor1tba might be applied 

consider the following example. Suppose the rigid body modes for a space-

craft include rotation and translation of the Center of Hass (CM). An 

attitude control system does not control eM translation. If there are 3 eM 

translational coordtnates for tha spacecraft. then it would be desirable to 

eliminate eM translation from all but 3 of the rigid body modes. This can 

be accomplished using tbe reshaping algorithm of tbis appendix provided that 

the eigenvectors contain coordinates defining the eM location. If the 
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-
e18envectors do not contain tbe CM coorclinates. tben they can be aupaentecl 

80 that tbey do by usins tbe mass properties of tbe spacecraft. 

If tbe CM translations are not eliminated from tbe eilenvectors used 

to deaign an attitude control syatem. tben there will be uncontrollable 
! ' 

modes asaociated with the design problem. These uncontrollable modes can ba 

~. 
eliminated by reshaping followed by truncation. 

As a second example conaider the following control problem. Suppoae 

we wish to design an attitude control system for a single spacecraft axis 

using classical design techniques. If the spacecraft model has 3 rigid 

body rotational degreea of freedom then two of these are uncontrollable 

when performins a sing1e-axis design. If the actuator/sensor pair used 

to accomplish sing1e-axis control is colocated, then we can eliminate the 

rotational coordinate with which they are associated from all but one rigid 

body mode using toile reshaping algorithm. If they are not co1ocated we could 

choose either the coordinate associated with the actuator or the one aSSOCiated 

with the sensor and eliminate it from all but one mode. In this way we can 

eliminate two rigid body rotational modes from the spacecraft model which 

are either uncontrollable, unobservable, or both uncontrollable and unobservable. 

Through this process we can achieve a cleaner mathematical system model for 

use in the control design problem. 
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STEPS 1-4: COORDINATE 

.lj IS ELIMINATED FROM 

.j: j • 2. 3. 4. 5 

STEPS 5-7: COORDINATE 

.2j IS ELIMINATED 

FR,* +j: j • 3. 4. 5 

STEPS 8-9: COORDINATE 

+3j IS ELIMINATED 

FROM +j: j • 4. 5 

STEP 10: COORDI~TE 

+45 IS ELlMI~TED 

FROM +5 

Fig. E-l. Reshaping Process for Mode Shapes Having Identical Eigenvalues 
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APPDDlX F. lIMB RBSPCMSI PLOTS FOIl llUN FlO 

In thia Appendix t~ plota are pr ... nte4 whleh illuatrate the traDaient 

reaponae for a repreaentative aimulation (Iun FlO of Table 4-1). Stmulatioua 

We" couducted uatna ACSL (Advanced COlltilluoua S1aulatlO1l Laft8\l&le) on an 

1100/81 Univac computer. 

Fiaure F-l showa the experiment 1 actuator torque and auaular reaponse. 

Filure F-2 ahows the central bus a • .:tuator torque and 8Illular responae. 

The actuator torque and aDlular response of exper~ent 3 is shown in 

Fia. F -3. COIIIIl8nts on 1DCli vidual plots follow. 

1. Fiaure F-l 

The actuator torque (Tl ) and angular reaponse (Y l ) for experiment 1 are 

shown in Fig. F-l. The commanded torques (Tcl) for this run were +20 N-m 

for the first 14 seconds, -20 N-m for the next 14 seconds, and zero ~hereafter. 

The commanded angle (Ycl) was consistent with this. The.actual torque 

applied shows the strong influence of the structural elastic response fed 

back to the controller by the rate and position sensor. The two dominant 

frequencies eeen in the torque curve are at .30 radls (.048 Hz) and 2.8 radls 

(.45 Hz). Note that the t~e plot results of Fig. F-l agree with the closed 

loop eigenvalues plotted in Fig. 4-6. Figure 4-6 along with Table 2-2 show 

that the .3-rad/s frequency is associated with the solar panel asymmetric 

mode (open loop .4-rad/s) and that the 2.8-rad/s frequency is associated with 

the arm symmetric mode (open loop 5.7 rad/s). 

2. Figure F-2 

The actuator torque (T2) and anlular response (8 2) are shown in Fig. F-2. 

The commanded angle (ec2 ) was zero. The primary response is a rigid body 

rotation which occurs because the bus controller frequency i8 low (0.01 Hz) 

compared to the frequency of the disturbance input. The only structural 

vibration frequency evident in this plot is at .048 Hz and is associated with 

the solar panel aayaaetric mode. 
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3. Fiere F-3 

The actuator torque (T3) and anlular response (y,) are shown in 

Fil. F-3. The commanded anale (Ycl) was zero. The frequency content of 

T3 is very s1milat to that of Tl for this run. In fact, after about 40 

seconds, the two torques are almost identical. Both of these torques show 

the influence of the structural vibrations associated with the Bolar 

panel asymmetric mode (.048 Hz) and the arm symmetric mode (.45 Hz). Note 

that the oscillation caused by the solar panel asymmetric mode is!l ~rad 

at the lOO-second point of thi5 plot. This oscillation all by itself lawell ln 

excess of the .05~rad pointing requirement presented in Table 3-1. 
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