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ABSTRACT

An advanced development program, conducted at the Jet Propulsion
Laboratory, to develop the technology for autonomous operation of planetary
spacecraft power systems-, initiated a study to develop a methodology for
selecting an optimum microcomputer architecture.

Unique to most applications of microcomputers, performance
requirements such as throughput speed and data handling capacity, are not as
sign4ftcant to autonomous operation of a spacecraft power system as they are
to more common applications such as signal processing and data manipulation.
Planetary spacecraft power systems, however, are complex in terms of the
number of different functions performed. Spacecraft power systems are also In
a unique class, on which the total mission is dependent; therefore,
reliability and fault tolerance are primary requirements.

Various microcomputer system architectures are analyzed to
determine their application to spacecraft power systems.

Of the many microcomputer system architectures analyzed and
discussed, no dominant system topology, applicable to automating spacecraft.
power systems, emerged. Indeed, there exists no standardized formula or
common set of guidelines which will provide an optimum configuration fora
given set of specifications.

Future work is shown to be necessary to develop performance and
reliability models o£' alternate microcomputer architectures as a methodology
for optimizing system design.
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SECTION 1

INTRODUCTION

The trend of onboard computational capability, to satisfy more
demanding mission requirements, has increased dramatically ovar the past 10
years. Ultra-reliable computer architectures are necessary for data acqui-
sition and real time control. The purpose of this study is to investigate
microcomputer system architectures with particular application to developing a
design methodology for spacecraft power systems. Initial study effort has
focused on two issues:

(1) Examination of several microcomputer architectures which may
be suitable for spacecraft power system monitoring and
control...

(2) Investigation of currently available redundancy/fault
tolerance techniques.

Relatively speaking, it is easy to design a computer system, but it
is very difficult to design a system that is optimized for a given set of
requirements. In other words, techniques for logic design and system
trogramming are fairly well understood, and there are also a number of
techniques for analyzing the performance of a computer system. But designing
a system that will perform well in a specific application area is a very
intuitive undertaking. A good deal of experimentation is usually involved.
This report examines possible design approaches, the trade-offs involved, and
points out factors which affect the choice of computer system architecture for
a spacecraft power system.
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SECTION 2

POWER SYSTEM PERFORMANCE EVALUATION AND CONTROL REQUIREMENTS

To establish a basis for the performance requirements of a power
system computer network, typical power system functions and estimated timing
requirements were reviewed and are summarized in this section.

Current spacecraft power systems typically perform the following
functions:

(1) Load switching

(2) Power processing

(3) Fault detection and correction

(4) Battery charging

(5) Battery reconditioning

The implementation and priority of the above functions may change subject to
mission requirements and type of energy source.

Table 2-1 is a list of functions which have been identified
(Ref. 1) as candidates for autonomous control on future planetary power
systems.

The magnitude of the number of measurements and control commands
necessary for autonomous monitoring and control of a planetary spacecraft
power system is shown in Table 2-2.



Table 2-1. Typical Power System Functions and Their
Computational Requirements

Power System Functions Estimated Time Requirement Computa';i,onal Asoessmsnt

1. Fault Detection 10-me response Simple ;logical
and Correction processing

2. Command Processing 1-me decode time Moderate logical
processing

3. Relay Status As required Simple logical
Monitoring processing

4. Relay Control 10-ms Simple logical
processing

5. Data Acquisition, All parameters every Moderate logical
Processing and 100-ms processing
Storage

6. System monitoring 1 s Moderate logical
and diagnosis processing

7. Subassembly As required Moderate logical,
Monitoring and processing
Diagnosis

8. Load Sequencing 100-ms response Moderate logical
and Control processing,

9. Load Equipment 100-ms response Moderate mathematical
Monitoring and processing
Diagnosis

10. Power Capability l to 10 s Complex mathematical
and Margin processing
Management

A
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Table 2-2.	 Estimated Power, System Commands and Measurements
for Autonomous Operation

Subassembly Analog Measurementu Relay Comsands

Battery Electronics B 14

Solar-Array Electronics 12 4

Power Control 13 6

Battery Charger 1 1 5

Battery Charger 2 1 5

Boost Regulator 1 2 0

30-Vdc Converter 2 4

Power Distribution 34 42

Battery 30 56

Total.. 103 136

Although this table summarizes a particular spacecraft power system design
incorporating autonomous functions, it can be seen that hundreds of
measurements and control commands are typically necessary (Refs. 2,3,4).

3
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SECTION 3

FACTORS AFFECTING SELECTION OF COMPUTER ARCHITECTURE

The date, processing requirements ( speed, timing, and computational
complexity) for a spacecraft power system are not as demanding as those for
none other subsystems, (e,S. Attitude Control). However, the criticality of
the power system to mission success dictates that the data processing and
control functions be highly reliable. Some of the key factoi :s which affect
the selection of architecture are discussed below,

31	 TYPE OF COMPUTER

Unless there are clear .ladications that a particular microcomputer
in required (e.g. by throughput requirements), designers usually select one
with which they are famil:lar and/or one whose development system is available,

3.2	 PERFORMANCE

The first decision to be made is whether one computer can meet the
throughput requirements demanded by the system. Designers find it difficult
to generalize on the procedures and thought processes they use to make this
decision. Some general comments follow.

Usually a synchronous executive is written where measurements and
monitoring tasks are cycled through at a specified rate chosen by the rate at
which the central computer needs data and/or the rate at which critical load
management or survivability actions need to be taken. Any necessary
calculations and logical decisions, along with subsequent corrective actions,
must be processed well within the synchronous executive ' s cycle. Therefore,
in deciding whether one computer is sufficient, the following steps may be
taken:

9

L--,_

^

(1) Translate the functional requirements of the system into
precise specifications of required tasks.

(2) Develop efficient algorithms to accomplish those tasks.

(3) Examine the timing and memory requirements for the
algorithms; this task includes:
(a) Estimate lines of code necessary
(b) Estimate time required for execution
(c) Estimate memory requirements, including access time.

K

(4) Establish time line -'or sequence of tasks - listing all
tasks in the order (and at the frequency) which they must be
executed for a sample executive clock cycle. This includes
recording measurements, simultaneous checks for load faults,
interrupts to eliminate faults, or control signals to relays
within critical times for effective problem resolution, etc.

4
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(5) Examine latency restrictions (i.e., Once an error is
deitected # how ,long can one wait until a corrective action
must be taken) and look for ways to overlap tasks or condense
the time :line.	 d

(6) Add a "comfortable" time margin for software overhead
(executive control, computer communication software, etc).
Some designers choose as much as 50 percent margin.

The result of this procedure is an estimate of the time required to
process the necessary tasks with the chosen computer. If all tasks cannot be
executed well within the synchronous executive's cycle, then a faster computer
or a multicomputer system should be considered.

The throughput requirements of a spacecraft power system can
generally be met by efficient use of a single computer. If more speed is
necessary, a faster computer or more computationally efficient algorithms may
be chosen. The decision of going to a multicomputer or distributed network is
usually made for other reasons. These are discussed in subsections 3.3
through 35.

3.3	 RELIABILITY

Computers for use in planetary spat;ccraft power systems will
perform functions which are computation-critical and which require long life.
The equipment cannot be maintained, repair is impossible, yet reliable
operation is demanded for the duration of the mission (5 or more years). This
Imposes the most stringent fault tolerance requirements in a real-time
environment to avoid jeopardizing the success of the mission. These stringent
requirements can be met by a reliable version of a single computer system. (A
fault tolerant uniprocessor - the self-testing and repairing (STAR) computer
was developed at JPL (Ref. 5)). To achieve reliability, such a system usually
requires redundancy and, if graceful degradation is desired', a fine
partitioning of the computer system into programmable replacement modules.

Partitioning can occur at different levels. With many machines in
the past, partitioning was at the subprocessor level. W:#.th c"rrent
technology, it makes little sense to partition a system below the level of a
microcomputer. Thus due to very large scale integration (VLSI) technology,
the partitioning concept has evolved into an architecture in which individual
computers make up the replaceable system modules. Such a distributed computer
network is well suited to applications like the power system where the
computing system controls a number of relatively autonomous (although possibly
functionally interdependent) subelements (i.e., inverter control and load
management).

Thus, even if a single computer can handle the throughput
requirements, reliability goals may require a distributed network,
particularly if the reliability goals include graceful degradation.
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3.4	 OTIL,''k CONSIDERATIONS

By embedding small, dedicated processors into functionally
partitioned subsystems, several advantages result.

3.4.1	 Ease of Development

Subsystem designers, who are most familiar with their own equipment
can develop independent software necessary for its peculiar control and/or
fault diagnosis if a multicomputer approach is taken (i.e., software design is
modularized). Also, if local subsystems are independent, local control
frequently results in simpler higher level control and data handling programs.

3.4.2	 Survivability

Graceful degradation is possible in distributed multicomputer
systems because the total system can be designed to continue to operate
despite individual computer failures.

3.4.3	 Flexibility

As future spacecraft systems change in size and complexity, system
redesign is simplified by incrementally deleting or adding microcomputers and
modifying software.

These benefits are, however, accompanied by some disadvantages.
The designer is faced with increased software complexity. Distributed systems
typically require their own executives which must communicate with other
executives in the system (or other systems). This also means the distributed
system is more depend4 c vn computer communication technology. In addition,
overall diagnostic software development is usually more difficult in
multicomputer systems.

3.5	 BOTTOM LINE

The choice of using a single computer or a multicomputer network is
a function of long-term design objectives. If the power system is to be
custom redesigned for each mission, then a practical engineering approach will
probably result in a single microcomputer with a standby unit to avoid a
single point failure. However, if a general power system design is desired
one which is flexible and can be "programmed" to ease development efforts for
different missions, then a distributed multicomputer approach seems more
appropriate.

3-3



COMPLETE INTRRrnNNRrTTnN4.1

k

SECTION 4

POSSIBLE MULTICOMPUTER ARCHITECTURES

Six basic multicomputer architecture types (or interconnect
technologies) are described in the literature:

(1) Shared memory
(2) Shared bus
(3) Loop systems
(4) Star configurations
(5) Hierarchical configurations
(6) Point to point interconnections

Each topology has certain attributes that affect its suitability
for power system applications. These attributes are related to cost,
reliability, performance (responsiveness, speed, throughput), ease of
development, modularity, reconfigurability and survivability, and such
physical parameters asvolume.p weighty and power consumption.

Some of the more common interconnect technologies (with a few
variations of the basic six) are briefly compared based on selected design
attributes in the discussion which follows. The architectures are discussed
in the order of decreasing reliability based on vulnerability to a single
component failure.

The completely interconnected architecture is conceptually the
simplest design. Each processors connected by a dedicated path to every
other processor. Communications software becomes extremely complicated as the
number of processors increases.

Cost:	 High - function of the number of micros in the system.
Modularity:	 Fair - number of ports on each micro is N-1.	 S

Reliability: Most reliable-only local problem if micro fails.
Redundant paths alleviate single kink failures.'

4-1



4.2	 PACKET SWITCHED NETWORK

Messages are broken into packets and transmitted by way of
available nodes. At least two paths exist between any two computers In the
systems

Cost:	 Nigh - each node requires routing control.
Modularity:	 Good.
Reliability: Only local problem if a computer fails.

4.3	 REGULAR NETWORK

Every computer is connected to its own neighbor and another
computer above and below it. The network gets complicated if there are very
many computers. The "tree" is a hierarchically structured variation with any
computer able to communicate with its superior and its subordinates as will as
its two neighbors.

Cost:	 Nigh -.function of number of computers in system.
Modularity:	 Poor.
Reliability: Only local problem if computer fails. Redundant paths

eliminate single connect failures.

4-2
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4.4	 IRRRGUI.AR NETWORK

The irregular network configuration has no consistent neighbor
relationships. It is common in geographically dispersed networks where
communication links control the design.

Cost:	 Medium - function of distance between computers.
Modularity:	 Fair.
Reliability: Partial redundancy for link failure.

4.5	 HIERARCHY

i
9



4.7 GLOBAL BUS

The he;irarchy configuration is used in process control and data
acquisition applications. The capabilities are specialized at lower levels
and more general purpose at the top.

Cost:	 Medium function of distance between computers.
Modularity:	 Good.
Reliability: Systems operability reduced with single point

failure, more serious the higher up the failure
f occurs.
i

4.5	 LOOP OR R

Loop architecture evolved from the data communication environment.
In this configuration, each computer is connected to two neighboring
computers. The data can flow in both directions, but circulating traffic in
one direction is less complicated.

Cost:	 Medium - main cost is adapters.
Modularity:.	 Good - limited by addressing capability.
Reliability: System unaffected with single loop failures

for a redundant two-loop system catastrophic
for single, unidirectional loop.

f	 I
r	 The use of a common or global bus requires some allocation scheme

for sending messages from one computer to another.

I
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°LOOP WITH "T'"^"4.s

Cost:	 Medium - main cost is bus adapters.
Modularity:	 Good.
Reliability: Only local problem if a computer fails - catastrophic

with bus failure.

4.8	 STA

The star configuration has a central switching resource. Each
computer is connected to the central switch. Traffic is in both directions.

Cost:	 Medium to Low - major cost item is switch.
Modularity: Good - until switch saturates.
Reliability: Only local problem if a computer fails - catastrophic

if switch fails. Switch is possibly less reliable
than bus or loop.
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This refinement of the loop provides a switching element that

removes messages from the loop, maps their addresses, and replaces them on the
loop properly addressed to their intended destination.

Cost:	 Medium main cost is switch.
Modularity:	 Good-Fair, until switch saturates.
Reliability: Catastrophic if either switch or loop fails.
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4,10	 BUS WINDOW

The bus window configuration has more than one switch. Messages
may be transmitted on the path they are received or on another. The switches
provide "windows" for passing messages between buses.

Cost:	 Low main cost is switch.
Modularity:	 Poor.
Reliability: Serious contention problems. Partial system failure

if switch or bus fails.

4.11	 BUS WITH SWITCH

This is more like the global, bus, since each computer is connected
to the central switch and traffic flows from the originating computer to the
switch, and from the switch to the destination computer. The computers share
the path (bus) to share access to the switch.

Cost:	 Low main cost item is the switch.
Modularity:	 Good - Fair, until switch saturates.
Reliability: Catastrophic if bus or switch fails.

4-6



4.12	 SHARED MEMORY

The most common way to interconnect computer systems is to
communicate by leaving messages for one another in a commonly accessible
memory. The key characteristic is that the the memory is used as a data path
as well as storage.

Cost:	 Low - main cost is multi.ported memory.
Modularity:	 Poor limited to number of memory ports.
Reliability: Least reliable - catastrophic if memory fails.

In the design of multicomputer systems, the consideration of all
possible interconnect technologies may not be necessary. Practical aspects of
specific applications frequently lead to a limited choice of architectures. A
methodology for making such decisions is discussed in the next section.

7
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SECTION 5

MULTICOMPUTER DESIGN METHODOLOGY

Since the design of distributed microcomputer systems is an g
dependent on experience, there exists no standardized formula to provide
optimal, configuration. Key attributes in a typical data acquisition ano
control system are performance, reliability, availability, fault tolerance,
and failure reconfiguxabillty. Other attributes, but slightly less important,
are life-cycle cost and modularity/growth. System design becomes a trade-off
analysis weighing the relative contributions of alternate architectures to
maximize the important attributes of the system. Although a methodology for
an optimum universal design is virtually impossible, there are some general
statements which can be made concerning the choice of microcomputer
architecture and the subsequent implementation of fault tolerance.

5.1	 CHOICE OF ARCHITECTURE

The design of a distributed microcomputer system is primarily a
function of the experience of the designer. It is usually approached in a
sequential :fashion with the following considerations.

5.1.1	 Problem Definition (or Process Identification)

It is not necessarily clear from the functional requirements what
the consequences are of the specific tasks required by the system. It is
necessary to determine as precisely as possible what is to be automated. This
should also include the number and type of measurements, the number and type
of controlling functions and signals, the relative criticality of each of the
above, and the timing requirements. It is also necessary to identify the
specific communication requirements in order to interface with other computers.

5.1.2	 Problem Decomposition

This is a functional breakdown of the system requirements. The
value of identifying major functional groups is that the designer will develop
an understanding of the major subtasks to be performed by the system with a
qualitative feel for the workload imposed by each function. One should
identify critical functions, which may demand ultra-reliability, and those
which may be allowed to gracefully degrade. This usually leads to allocating
separate processor memory resources to handle different functional groups.

Some schemes have been developed to aid the designer with this
task. Weitzman (Ref. 6) uses a structured set of data-flow primatives which
are arranged in process architecture trees. This phase also embodies the
experience of the designer.

5-1
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5.1.3	 Process Interaction

One would like to obtain and formulate adequate quantitative
knowledge of the information flow between functions. Analytical tools
available to develop an understanding of the various interrelationships
between subprocesses include state exchange diagrams, process interaction
diagrams, and N charts (Ref. 6).

	

5.1.4	 Performance Requirements

One must define as specifically as possible the system's physical
performance requirements. These include

(1) Sizing of tasks

(2) Defining relationships between tasks

(3) System control for information movement and processing which
involves identifying:

(a) Information transfer strategy

(b) Transfer control method

(c) Transfer path structure

(d) Shared and dedicated system resources.

	

5.1.5	 Choice of System Architecture

In the selection of appropriate hardware and software elements and
system structure, the consideration of all possible architectures may not be
necessary. The pros and cons of information transfer strategy, control
methods, and path structure may provide an indication of the most attractive
solutions. Figure 5-1. indicates a general methodology for such choices.

5-2



1

1

I
1	 WW

Rot

1	 j

^	 ^	 I
^s I

I

I	 c 51	 I

o
G	

1

z

UA

y	 I
I

1-
c^	 I
ui	 1
z	 I
z	 1
O	 I

vcr  I
LAJ

f-	 1

?	 I

I

M

1	
ND

I 	 ^	 v
I	 Y	 ^

I	 ^^	 a

	

r	 a
I	 s ^	 D►

	

r	 b

1

1 r	 C W1

N
-8 44
 q

I um	
^ b1I	 ^ H
r+ b

ju
.I u^i	

a A

I	 W ^	 r-i
i

1	 ^

y	
t

1

I	 I	 !	 ^
I	 I	

1	 W	 1I	 is	 (	 c r	 1

I	 ^<	 I	 ^ ^	 I	 ^s	 I	
W
^

p ct,	 r	 rc.In	 +	 Ai
4

1

l

S-3



SECTION 6

HIERARCHICAL CONFIGURATION TECHNOLOGY

Of all the interconnect technologies discussed, data acquisition
and process control, systems have most frequently been based on hierarchical
architectures. This does not mean that loop or bus systems should be
automatically ruled out. However, some design considerations for hierarchical
structures should be mentioned.

A hierarchical configuration, as its name implies, consists of a
tree structure of computers. In general, the capability of the computer
increases as the top of the pyramid is reached. This is often due to
practical rather than theoretical reasons. In a manner similar to a corporate
organizational structure, the capabilities at the base are generally
applications -dependent, with a special -purpose capability, dedicated to
performing well-defined, specialized tasks, whereas the top of the
organization has a more general-purpose capability, controlling and
coordinating the entire system. In such a system, computer functionb are
usually distributed. The tedious repetitive functions and algorithms, such as
data collection and reduction, are handled at the lowest levels, whereas data
processing and command execution (control) are performed at the top.
Typically, shared data bases are also stored at the ,top rather than
distributed throughout the system.

The partitioning of overall system processing loads into
approximately equal-size processing segments can make it possible to use one
type and size computer in the system (at least in the lowest level). This has
an advantage in that, since all computers are identical, the system may be
implemented in such a way that a standby unit is always available and can be
switched online to perform the tasks of any other computer in the system
(should one become inoperative). Thus reliability can be improved without
complete redundancy.

From a reliability standpoint, if a failure occurs in the computer
located at the top of the pyramid, total system control is lost. This
requires a redundancy along with doubling all communications paths at the
top. An Y;;dmple of such a structure is shown in Figure 6-1. Thus, the
addition of redundancy greatly increases the complexity of the system as well
as software overhead. (Doubling of hardware does not necessarily double the
reliability of the system. See the reliability discussion in the Appendix.)

Whether redundancy is used or nut, hierarchical microcomputer
systems should be designed to be capable of operating in a degraded mode. The
loss of a single computer should result in the absolute minimum amount of
information being lost and should not cause the entire system to cease
functioning. To ensure operation in a degraded mode, the following design
features should be incorporated:

(1) When a low level computer fails, all of its process outputs
should be frozen and transfers should automatically be made
to backup control by reconfiguring the system (e.g. by
switching to a spare).

'^	 6-1
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SPARE

MEASUREMENT AND CONTROL 1/0 BUS TO 	 - -^
TRANSDUCER AND RELAY INTERFACE

Figure 6-1. System Reliability Increased With Redundant Control
and Spare Local Computers

(2) Each computer should be able to store, for a reasonable
period of tine, information destined for another computer.
This information could be transmitted when the target
computer becomes operational again.

(3) No computer should depend solely on information arriving from
another computer. Crucial programs should always exist at
the site where they are needed. Mathematical results or
measurements should be replacements for old results
(calibrations for example), and old, results should continue
to be used until new ones become available.



SECTION 7

IMPLEMENTING FAULT TOLERANCE

Recent literature, based on research + analysis, and experience
accumulated over the past decade, indicates definite guidelines exist for the
implementation of tolerance of physical faults in digital systems (Ref. 7).
These are summarized as follows:

(1) Devise a fully satisfactory system according to given
performance specifications, assuming fault-free conditions.

(2) Specify reliability goals for the system.

(a) Explicitly identify classes of faults that are to be
tolerated. (This usually ,limits the faults to less
than all possible things that can go wrong.)

(b) Specify quantitative reliability goals for each fault
sets

(c) Postulate a method to evaluate actual reliability.

(3) Select and incorporate fault-detection algorithms. This
usually leads to the addition of new elements or software
accomplishing parity checks, self-test programs, etc.

(4) Devise recovery algorithms which are evoked by signals from
fault-detection algorithms and whose goal is to return the
system to some level of normal, operation, or to shut part of
it down safely. Recovery consists of all actions that take
place after the fault is detected. These may include:

(a) Error correction

(b) Fault location

(c) Exclusion or replacement of failed parts

(d) Recording of actions taken

(e) Restart of normal operation.

This may involve addition of spare computers or bus elements,
or increase in memory size, etc,

A special .form of recovery results from the use of
fault -masking techniques in which redundant elements
instantly conceal the effect of faults without a separate
fault detection being required.

(5) Evaluation is performed by means of modeling and/or
simulation. Reliability prediction is compared to that of
the original systems Degradation of performance is noted for
each fault set.

7-1
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(6) Refinement of design is performed. Initial evaluation is
likely to demonstrlate that various subsystems display unequal
reliability contributions to the total system reliability.

Hardware implementation of fault tolerance to physical faults has
led to several system design concepts. Triple modular redundancy (THR),
standby, hybrid, self-paging, and duplex redundancy techniques are some of the
schemes discussed in the literature (Refs. 8-12).

Physical faults are not the only events that disrupt the specified
behavior of digital systems. Many events can be traced back to some imperfect-
ions in the software that had remained unidentified. At least two approaches
to software fault-tolerance design have appeared in the literature. They are
the recovery block (Ref. 13) and N-version programming (Ref. 14). Both
methods ute some redundancies analogous to successful fault-tolerance
approaches to physical faults.

v,
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SECTION 8

CONCLUSIONS/RECOMMENDATIONS
r

The choice between a single computer or multicomputer architectures
is determined primarily by the system considerations of performance,
reliability, and flexibility. For most power systems, a single microcomputer
will handle throughput requirements. Multicomputer configurations may be
chosen for the additional considerations of flexibility and ease of
modification. In addition, distributed control of a multicomputez system may
provide the benefits of graceful degradation and considerable fault
tolerance. Hierarchical configurations are most frequently used in similar
applications and appear to be an adequate compromise between maximizing fault
tolerance and flexibility. Although not the only scheme possible, these
systems can be made reliable with redundancies and/or spares, yet permit
modular design for ease of development and modification.

A general design methodology is presented for both single computer
and multicomputer systems. For either approach, a combined hardware/software
fault tolerant design has the most advantages. Hardware redundancies increase
the reliability of the physical systems, but extra software efforts can provide
more than a computer system with built in spares - that is continued
computational, and control capability.

It is recommended that the power system be standardized including
bus characteristics, power processing equipment, data bus interfaces, battery
cells, etc. The benefits of a distributed multicomputer system can be gained
by implementing a reuseable power system design, incorporating sufficient
flexibility for expansion to a wida range of missions. In such a system,
modification of control functions tar system reconfiguration can become a
matter of software manipulation rather than major hardware change. This can
also permit development of analytical methods to model the system's
performance and reliability. These tools, in the form of computer programs,
can then be used to optimally reconfigure the system to suit new mission
requirements.
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APPENDIX

APPLICABLE NOTES ON RELIABILITY

A-1 Definition of Reliability

4

	

	
The definition of reliability commonly accepted for engineering

applications is the characteristic of a component or system, expressed by a
probability, that it will perform a required function under stated conditions
for a specific period of time. Models are usually developed to calculate and
compare reliability of alternate systems. Since multicomputer systems
frequently are required to carry out more than one type of function (e.g.,
load management and battery conditioning), separate reliability models for
each of these functions may be necessary to make the problem more tractable.

Several parameters may have a marked effect on the reliabilityi

	

	 P	 Y	 Y of a
given system. These include: environmental conditions (temperature,
humidity, vibration, etc.), operating conditions (voltage, current, power
dissipation).

When comparing alternate systems, the relative system reliability
can be measured both quantitatively and qualitatively.

Quantitative measurements:

o	 Mean time between failures (MTBF)
Usually specified in hours, this can be related to component
reliability and type of redundancy.

o	 Mean time to repair (MTTR)
Also in hours, this can be minimized with built-in
redundancy, real-time-self check, and diagnostics.

o	 Failure reconfiguration time
A reliable system requires redundant paths and/or
microprocessors that can be activated as soon as a failure is
detected. The time to reconfigure may be critical to avoid
system failure.

Qualitative measurements:

o	 Graceful degradation
This is applications related. One cash register failing is
not a'great loss (except on Friday nights), but one part of a
measurement system in a spacecraft may be. Computers must be
connected in such a way as to minimize the effect of failure,
on the total system.

o	 Fault tolerance
This attribute allows a system to function when some
component fails. The level or depth of fault tolerance
depends on the fault set and recovery procedures.
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A-2 /Availability

Availability is a term frequently used when discussing reliability,
since it also is measured by the same parameters. Availability is'Jefined as
the percentage of time a microcomputer system is up (available). Ii",may be
expressed quantitatively as follows:

MTBF
A FITS+ MTTK

From this equation, it can be seen that availability can be
improved by increasing the MTBF and/or decreasing the MTTR.

The ultimate in MTTR can be achieved by having spare units wired
into the system either as hot or cold standbys. This combined with automatic
fault-detection devices and an automatic reconfiguration capability that
switches failed units out and backup units ino reduces MTTR to virtually zero.

Such fault tolerant design requires additional critical components,
however, that are in turn subject to failure.

A-3. Reliability of Interconnected Components

The failure pattern of equipment placed in service can be
categorized into three periods of operation, as illustrated in Figure A-1.

At the very beginning, any inherently weak parts that are the
result of improper design, improper manufacture, or improper use usually fail
fairly soon. The early failure rate decreases progressively and eventually

USEFUL LIFE PERIOD
EARLY
	

WEAR-OUT
FAILURE
	

FAILURE
PERIOD	 CONSTANT FAILURE PERIOD

	
PERIOD

FAI LURE
RATE

TIME
Figure A-1. Typical Bathtub Curve of Failure Rate Versus Time-

i
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levels off as the weak components are replaced (usually during tests under
accelerated conditions). Spacecraft systems, which are , Aon-repairable during
missions should be operated for a period of time under varying conditions to
ensure detection of early failures After the early failures have been
replaced, the components settle down to a long, relatively steady period at an
approximately constant failure rate. The normal working life of a system
occurs during this interval. In the wear-out period, the components rapidly
deteriorate, and each component eventually wears out.

A reliability calculation may be made rather simply during the
constant failure rate portion of the curve. The constant failure rate implies
that the probability of .failure is independent of age. A reliability function
so characterized is the negative exponential distribution

R e-Xt

where
X w failure rate, t = time.

It is assumed that at t - 0, all components are operational..

A physical system consists of many'different types of components,
each of which has a different instantaneous fa;`,lure rate. The ultimate
concern of the designer is the reliability of the total system.

Logically, the components are connected in either series or
parallel (as with redundancies). The reliability of such interconnections of
components (whose individual reliability functions are exponential) may be
derived and is summarized in Table A-1.

It can be seen that the system reliability increases with the
number of parallel paths and that it decreases with the number of units in
series.

A-4. Effect of Redundancy on MTBF.

The overall reliability of a system may be improved by adding
redundancy so that, if one unit fails, another is available to perform the
necessary functions. There are active and standby types of redundancy. The
parallel configuration discusser previously is an active type in which the
redundant elements are continuously energized and used to perform the required
circuit or system functions. In standby redundancy, the additional units are
activated only when needed. The advantages of active and standby redundancy
can be expressed in terms of the mean, time between .failures (MTBF) MTBF is a
quantitative measure of reliability which may be expressed as the integral of
the reliability function.

MTBF f R(t)dt 	 e 'tdt
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Table A-1. Reliability of Series and Parallel Connections of Elements
with Exponential Reliability Distributions (Re 6)

Connection	 Reliability

n series elements

m parallel elements

m parallel paths with
n series elements

^n'jR • ^ 1Ri
i=1

ail

R _ 1	 a Ri)
i=1

m
R - 1 (1 0)

If the reliability functions of redundant computers have the same
exponential form (.e. identical failure rates), then the combined redundant
system will have MTBF as given in Table A-2.

For the standby case, the spare unit remains unused until placed in
service. The active redundant spare is used continuously and wears out along
with the original. Thus, the MTBF of the standby configuration is twice the
value of the one-unit configuration, whereas the active redundant pair (as
calculated from the reliability of a parallel connection) has a smaller MTBF.

A-5. Fault Tolerance

Fault tolerance is the attribute of a digital system which makes it
possible for a logic machine to continue with its specified tasks after the
physical system suffers failures of its components. The ' implementation of
fault tolerance is an approach to system design whose purpose is to increase
reliability (or the probability that the system will function as designed)..

Fault tolerance is the survival attribute of a logic machine.
because its purpose is to cause a return from error states back to a specified
behavior, thus assuring the survival of the information processing system
(Ref. 7).

The presence of fault tolerant features does not add any
performance advantages during normal (fault-free) operation. On the contrary,
fault-tolerance usually requires additional hardware and/ox software that is
redundant during normal operation and would be superfluous in a fault-free
system.
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Table A-2. MTBF of Redundant Computer Configurations

Configuration	 MTBF

One unit, no redundancy
	

1/2

Two units, active redundancy
	 3/27

Two units, standby redundancy	 2/7

To increase reliability, the only alternative to fault-tolerance is
fault-avoidance, which requires the physical components and their assembly
techniques to be perfect. As outlined previously, because of the constant
rate of random failures (A), the reliability of a system without redundancy is
R - e-Xt . The only way to increase system reliability is to force X as
close to zero as possible.

The exclusive use of fault-avoidance has two serious drawbacks:

o	 Cost of obtaining nearly perfect components rises very
rapidly after failure rates have been reduced to threshold
values that are characteristic of the physical parameters and
manufacturing technology of the components.

o	 Since the system will cease proper operation upon the first
failure or malfunction, manual maintenance is necessary.

Many systems have combined fault-avoidance and manual maintenance
as a method to assure reliability (Ref. 7). This is not practical in space
vehicles. There are strong reasons for the use of fault tolerance in
spacecraft computer design:

o	 Initial investment in fault-tolerance can reduce the lifetime
cost of the system.

o	 Space vehicles are placed in environments that do not allow
access for manual maintenance.

Fault tolerant design involves implementing hardware and/or
software redundancies, fault detection, and reconfiguration strategies.
Typical steps in a recovery strategy (Ref. 8) are:

o	 Initial fault diagnosis

o	 Identification of faulty module

o	 Determine reconfiguration strategy

l
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o	 Perform reconfiguration

o	 Condition new elements

o	 Recover elapsed time

o	 Rollback application programs

Methodology of ,implementing fault-tolerance is discussed in
Section 7.
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