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SUMMARY AND INTRODUCTION

The erection of large space structures requires construction, deployment, or a
!

	

	 combination of these procedures. Some space structures also experience varying
geometry as a result of on-board moving antennas or solar panels. The object of this
contract is to develop practical methods for the dynamic analysis of structures with
variable geometry. This includes exploring the applicability of standard fixed-geom-
etry programs, such as NASTRAN, to the variable-geometry problem. To make de-
tailed structural analyses feasible, methods are also required that are far more effi-
cient than direct numerical integration of the equations of motion in pysical coordinates.
This latter technique is extremely costly and time-consuming to formulate for each
problem, and, in addition, is prohibitive for detailed idealizations in terms of computer
time.

The study began with a literature survey of variable-geometry studies. Except
for the Martin Marietta/NASA Goddard DISCOS program, and, to some extent, the
Grumman SPACER program, existing variable-geometry structural programs are limited
in their use to very -specific problems with non-detailed structural idealizations.
DISCOS can be used to study a structure composed of several flexible bodies that
are hinged or somehow linked together. We attempted to use this program, and feel
that it has significant potential but is not yet ready for widespread use. SPACE 12
includes features such as internal mass motion (e.g. , crew, elevator, or fluid move-
ment within the vehicle); however, its variable-geometry modeling capability is-limited
to two flexible bodies that can have general prescribed motion relative to each other.
Neither of these programs are well suited to problems involving growing structures

f
	 such as the beam- fabrication problem studied under this contract.

It was also found twat mechanism analysts have developed some interesting concepts
to reduce the number of coordinates required for flexible mechanism problems. These
concepts can, of course, be applied to variable-geometry space structures. One con-

-n t

	 cept involves a coordinate-reduction scheme based on the deletion of coordinates, and
1

	

	
is identical to the Guyan procedure often used for fixed-geometry structures. Other
concepts employed vibration modes that vary with the geometry. As diboussed later,
a somewhat different variable-mode technique was developed under the present con-
tract for application to space structures.
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t
A review of selected space- structure configurations was conducted in order to

define dynamic-analysis problems associated with variable geometry. This review was
used as a basis to select a configuration that embodied many of these problems (see
Appendix A). The selected configuration is illustrated in Fig. 1. Two seperate
construction tasks are studied.

In the first task, "Beam Fabrication," a beam is fabricated by an Automatic Beam
Builder (ABB) mounted in the orbiter. The 25 KW power module attached to the or-
biter has very flexible solar panels; consequently, this configuration enables us to
investigate the dynamics of a beam being constructed from a flexible base. Beam
growth occurs in a pulse-like manner. As each bay is constructed within the ABB,
the system's geometry does not change; however, after each bay is completed it is
then expelled from the ABB. This recurring sequence of events gives rise to an
approximately periodic axial load in the growing beam. The Remote Manipulator
System (RMS) shown in the 'figure is stowed during this problem.

In the second task, "Beam Relocation," the completed beam is moved through a
large angle (typically 90 0 ) by rotating the RMS about the shoulder joint (Fig. 2).
The power module with its solar panels is present, but is not shown in the figure.

The equations of motion were formulated in physical coordinates for both of these
problems, and FORTAN computer programs were developed to generate solutions by
numerically integrating the equations of motion. These solutions served as a standard
of comparison to gauge the accuracy of approximate solution techniques that were de-
veloped and studied. Vibration was excited by either, or a combinatk4n of, three
effects:

• acceleration of structural components as the geometry varied
• applied loads that are a function of time
• control-system loads

Control-system loads were generated by a simplified but closed-loop model of the
orbiter vernier control system that was incorporated into each of the programs.

Good control was achieved In both the Beam- Fabrication and the Beam-Relocation
problem. Unstably control-system coupling with the system flexibility did not occur.
Also, it was found that variations in the stiffness of the beam due to the pulsating
axial load during beam fabrication was not a significant effect.
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An approximate method was developed for each problem to enable the analyst to
investigate variable - geometry effects during a short time span by using standard
fixed- geometry programs such as NASTRAN. This method is useful for investigating
the dynamics during possible problem periods such as times when sudden changes in
geometry occur. In thds technique, called the Average -Geometry Technique*, the
geometry is held fixed at its average value during the run. Variable - geometry
effects are approximated by applying inertia loads that are based on rigid-body
accelerations relative to the platform (orbiter plus power supply) . In the
Beam-Fabrication Problem acceptable approximate results were obtained provided the
geometry variations were limited to 3% or less; however in the Beam -Relocation Problem,

t	 the RMS shoulder joint was moved as much as 40 deg., and a reasonably good approx-
imate solution was obtained. The limitation of the method appears to be largely a
function of the rate-of-change of the vibration frequency with the structural geometry.

A method employing modes of vibration that vary with the structural geometry was
investigated for the Beam -Fabrication Problem. In this method, called the Var!able-
Mode -Technique, modes were computed at specific intervals. Between these intervals,
the modes, modal masses, and modal stiffnesses are obtained by linear interpolation.
Good accuracy was achieved for the problems investigated, and, in typical cases, the
computer time was 85% lower than the time used to generate the corresponding phys-
ical-coordinate time-history solutions. Also, the use of modes has the potential to
greatly simplify the analysis since many of the constraints are accounted for in the
mode shapes.

l

'The method is called the Average -Length Technique in Section 2, which deals with the
Beam- Fabrication Problem, and the Average-Angle Technique in Section 3, which deals

r	 with the Beam-Relocation Problem.
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RECOMMENDED STUDIES

To ensure that the Average-Geometry Technique can be used as a reliable pro-
cedure to approximate the dynamic behavior of variable-geometry problems, it is
necessary to determine whether the accuracy of the method is influenced by the mass
of the construction platform (orbiter plus power supply for the problems considered
in this report). It is possible that the success of this method is dependent on having
a massive platform compared with the mass of the construction project (e.g., the beam
being fabricated or being r6located by the RMS) . This question was not explored
during the current study.

The Variable-Mode Technique shows great promise of providing the capability for
solving detailed structural problems with large geometry changes. It would be desir-
able to generalize this procedure so that the analyst Could perform investigations
without writing and programming the equations of motion for every specific problem.
Before this is done, the technique should be explored further for geometry changes
that are sufficiently large so that YieW nodes emerge from the construction base. In 	 P!

addition, a method is needed for automatically tracking the modes as they vary with
the structural geometry to ensure that modal interpolation is performed among like
modes. Since the method neglects the time rate-of-change of the modes with geometry,
the limitations of the method for rapid geometry changes should be explor 4.:d. If
limitations for practical problems are discovered, correction terms should be developed
for incorporation into the equations of motion. Finally a set of general equations
should be developed which constitute the foundation for employing the Variable-Mode
Procedure in a general-purpose program Otat would be applicable to any arbitrary
structural configuration. It is envisioned that the program would be coupled with a
general finite-element program such as NASTRAN to exploit existing structural- mode-
ling capability.
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NOTATION

IN )]	 cross-product matrix; i.e. given a vector Sx} with components

x l , x
2, 

and x3

0	 -x 3	x2

[ r (x) l = x3	 0	 -x1

-x 2	 x 1	0

[1 k] 	 identify matrix of order k

x	 the tilde under a symbol represents a matrix or vector when itow
is a partition of a larger matrix. It is also used to denote a co-

ordinate system; e.g. Z is a coordinate system with axes Z 1 , Z 2 ,

and Z 3'
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1 - LITERATURE SURVEY
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1.1 Variable-Geometry Space Structures

DISCOS - The DISCOS (Dynamic Interaction Simulation of Controls and
Structure) program described in Ref. 1 provides considerable capability for
treating a very large class of variable-geometry problems; namely structures that
an be idealized by a number of flexiblc bodies ( See Fig. 1.1) . Each body cannot

g.eow in size. Consequently, DISCOS would not be suitable for the beam-builder
problem treated herein; however, almost any type of constraint between linked
bodies can be specified (e.g., pivots or a mechanism between bodies can be
treated) . The beam relocation problem studied herein would therefore be a good
candidate for DISCOS. Additional capability includes built-in models for on-board
inertia wheels and gravity- gradient loads. Other control effects and environmental
loads may be treated; however, the user must write FORTRAN subroutines con-
taining math models of these effects. Also, there is a provision for automatic
linearization of the equations to enable control- system stability studies.

The method employed in the development of DISCOS is to assemble the equa-
tions of motion for each body and to account for ±hn ^onstraints between bodies by
employing Lagrange multipliers. The vibration modes of each body are used to
reduce the size of the problem. While the Lagrange-multiplier procedure provides
great generality it also suffers from some inefficiency since the equations are not
reduced by the number of constrairEs between bodies. In fact, while all of the
accelerations are computed, requiring inversion of the mass matrices of each body,
they are not all integrated since some of the velocities are more accurately obtained
from the constraint equations. If this were not done, as time progoesses, the
solution of the constraint equations would be satisfied less and less accurately.

We have Used the program at Grumman to solve simple problems and we have
found that the solutions generated for these problems were correct. Unfortunately,
we have found the documentation of both the theory and the program to be
unsatisfactory. The considerable effort required. to learn DISCOS could be
significantly reduced by improved documentation. Also, we feel that the output
of the program is incomplete and inadequately labeled. In summary, DISCOS

1-1
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promises to provide great capability for variable-geometry structural analysis;
however, we feel that the program and the documentation must be improved before

r	 it becomes a widespread tool.

SPA.CE10 - The SPACE10 computer program (Refs. 2 and 3) can be used to
(	 study the deployment of a class of two-body spacecraft. Each body can be

represented by up to 100 physical ►;ass points, each with six degrees of freedom.
Modal analysis techniques are emph.-yed to reduce the order of the problem, and
numerical-integration is used to obtain time-history solutions. Capability is pro-
vided for specific on-board control systems including attitude control using jet

r
thrusters, system spin-speed control (both rotating and nonrotating satellites can
be studied) , and spacecraft nutation and precession control using a CMG. On-

}	 board disturbances include crew or other mass motion as well as fluids being
1	 pumped through pipes. Figure 1.2 shows a structure °,'hat could be analyzed with

SPACEI0. Subroutine interfaces have been provided to incorporate user-supplied
R	 control concepts and environmental loads. Additional control concepts and

environmental loads on specific configurations were incorporated into a later
i!	 version of the program, SP ACE 12. These loads include gravity- gradient, aero-

dynamic, and solar-radiation pressure effects.

Studies on Specific Configurations - DilPare studied the constant-velocity
deployment of a long slender antenna from a uniformly accelerating infinite mass,

t representing a booster rocket (Ref. 4). The antenna was idealized as a six-node
lu:_iped-mass beam, and the equations of motion were numerically integrated. The
nonlinear geometrical effects associated with large deflections were included;
however, the effects of the variation of the linear and angular motion of the space
vehicle resulting from the reaction of the beam on the vehicle were not addressed.

Wrenn, et al. studied the deployment of a flexible-rib antenna (Ref. 5) . The
ribs are the primary structural mir gibers that support flexible mesh in an umbrella-
like fashion. In the retracted position, the ribs are wrapped around a central hub.
Deployment is initiated by releasing restraints enabling the ribs to release their
stored spring energy and unfurl. The study was confined to the case of planar
motion, and all ribs were assumed to unfurl in phase. The order of the problem
was greatly reduced by these simplifying assumptions.

Hedgepeth investigated the deployment of a 1500 m diameter Wire-Wheel
antenna (Ref. 6) . The depooyment is powered by the centrifugal force induced by
spinning the system. Again, simplifying assumptions were made including equal

1-3
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i	 motion of all meridial members enabling the structure to be reduced to a three
t	 degree-of-freedom system. The resulting equations were solved by numerical
{ integration.

13ainum studied the dynamics of a rigid spinning spacecraft during the deploy-
ment of four flexible booms (Ref. 7) . The booms were massless except for the tip
mass. First, the complete equatons of motion of this 14 degree-of-freedom system
were developed. Then the geometry was fixed at various intermediate positions of
deployment, and the stability of motion was determined; thus all variable-geometry
effects were not evaluated.

r

1	 Lang used an analog computer to simulate the dynamics of two rigid masses
deploying from a spinning rigid satellite (Ref. 8) . He also studied the momentum

iand energy equations. Two techniques of deployment were investigated, each
employing the centrifugal forces to actuate the deployment.

Developing the Equations of Motion - Various investigators have suggested
methods for developing the equations of motion. These methods include:

r
(1) Lagrange 's equations with generalized coordinates, ( 2) Lagrange 's equations
with a mix of generalized and quasi coordinates, ( 3) variations of each of the last
two methods by adding redundant coordinates ( handled by Lagrange multipliers) ,

i

	

	 (4)	 ~ious Newton -Euler approaches, and (5) hybrid -coordinate approaches.
Williams, et al. have prepared a comprehensive review of the methods used which

^	 4
includes a description of each technique (Ref. 9) .

1.2 Structural-Analysis of Mechanisms

In addition to variable - geometry space structures, dynamic structural analysis
methods have been developed for studying mechanisms such as four-bar linkages.
Since the mechanism is a variable-geometry structure, many of the concepts
developed for mechanism analysis are also applicable to space structures. A
literature survey on the structural analysis of mechanisms is presented in Ref. 10.
The papers discussed in more detail below, describe methods that are applicable to
variable - geometry space structures.

r _.

	

	 Reference 10 also describes a method in which the finite-el^ ;:,ent technique is
used to generate the mass and stiffness matrices for fixed snapshots of the struc-
ture at specific intervals as the geometry varies. These matrices remain fixed
between intervals. The variable effects are introduced by applying reverse-
acceleration forces obtained from a rigid -body analysis of the mechanism. This
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reverse-acceleration technique is common to all of the mechanism-related methods
discussed in this section. Modal analysis may be used to reduce the coordinates
for each snapshot problem. On the other hand, the modes must be recomputed for
each snapshot; therefore, there is an efficiency tradeoff to be made between modal-
and physical-coordinate analysis. The paper does not provide numerical examples
of these methods.

Reference 11 describes a method of variable-mode analysis for reducing the
size of the system of equations of motion. Modes of vibration are computed at
specific intervals and are extended between intervals by assuming linearity, using
the derivatives of the mode shapes and eigenvalues (1 /w1 's) with respect to a
geometric variable, the input crank-angle of a four-bar linkage. For two examples,
both four-bar linkages, reasonably accurate eigenvalues could be obtained by this
;nf thod for intervals of up to 14 deg. of variation in the input crank-angle. Time
histories were generated by this variable-mode approach for both four-bar linkage
configurations and For a six-bar mechanism that looks like two four-bar linkages in
series. The equations of motion were not also solved in physical coordinates;
therefore no comments can be provided regarding the overall accuracy of the
method.

Another approach to reducing the size of the problem is described in Ref. 12.
In this approach a number of physical coordinates are selected for elimination.
Their values are assumed to be equal ^.o the static deflections induced by the
deflections of the retained coordinates at each increment of mechanism position.
The method is based upon the Guyan procedure described in Ref. 13 for fixed-
geometry elastic structures.
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2 - BEAM FABRICATION

2.1 Idealization
t

The idealization for the beam-fabrication problem is shown in Figs. 2.1 and
2.2. The beam manufactured by the ABB is idealized irdth axially inextensible
beam segments separated by nodes that are a distance 11 9• 11 apart. These nodes
are numbered 1, 2, ... , n, where n is a variable that increases as the beam is
constructed. The rotatory inertia of these nodes is neglected. The ABB is
idealized as a rigid point with variable mass which decreases as each beam node is
expelled during beam construction. The orbiter and power supply, nodes 100 and

t	 200, respectively, are rigid bodies, with rotatory inertia, that are rigidly
connected to each other. The solar panels are represented as beams. Each of the
nodes P 1 , P2 , ... , P6 has a mass and pitch rotatory inertia. Its rotatory inertia
in bending is neglected. Each of these nodes has two elastic degrees-of-freedom,
fore-and-aft bending and pitch xotation. For the other degrees-of-freedom, the
nodes are constrained to move as if the panels were rigidly attached to the power

supply.

The portion of the structure with nonvarying geometry (the orbiter, ABB,
power supply, and solar panels) will be referred to as the platform, and the ABB-
constructed beam will be referred ,to as the beam.

2.2 Stiffness Matrix

The details involved in forming the stiffness matrix are presented in
Appendix B. The main concepts are discussed in this section.

F	 The stiffness matrix for the beam is re-formed each time the beam changes in
length by assembling the stiffness matrices of beam members in accordance with the
displacement method used in finite-element analysis (Ref. 14) . All rotational
coordinates, except those at the root of the beam, are deleted from the resulting
matrix by employing the Guyan reduction procedure. By using this procedure,
the coordinates which are to be deleted are set equal to their static values; i.e.,
the values which they would have if their associated mass properties (moments of
inertia in the case of rotations) were zero.
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Member n of Fig. 2.2 requires special attention. When I  is small, this	 ^
member is very stiff and therefore gives rise to a very high vibration frequency.
In fact, when node n first emerges, and k  is differential in size, this frequency
is infinite. In order to solve the problem by direct numerical integration, this
high-frequency component was deleted from the formulation. Whenever I n is less
than a given length kc, that is input data to the program, the coordinates of 	 w
node n were deleted by assuming that their values are set equal to their static
values. The mass of node n is redistributed, in a consistent way, by multiplying
the mass as well as the stiffness matrix by the transpose of the matrix that
reduces the coordinates. The reduction was first accomplished by using the
Guyan procedure; however, numerical inaccuracies still resulted when In MAS

small. This problem was traced to the fact that In appears in th denominator of
the stiffness terms of member n, and in some terms kn 2 and kn3 appear in the
denominator. When kn is near zero, extremely large stiffness terms arise. These
high stiffness terms would be added to the lower stiffness terms of the adjacent
beam segment causing several digits of the smaller terms to be lost. As a result,
when the high stiffnesses are then removed i ►y the Guyan procedure, the result-
ing stiffness matrix is very inaccurate whenever a new node emerges from the
ABB.

For this reason a geometrical procedure was selected to eliminate the coordi-
nates of node n whenever kn < -, c . The stiffness matrix for the beam is formula-
ted with node n deleted; i.e., the length of member n-1 is assumed to extend from
node n-1 to the ABB, node 50. The curve of the deflected beam between these
nodes is a cubic, consequently, given the deflection and slopes at nodes n-1
and 50, the cubic coefficients and therefore the deflection of node n can be com-
puted. When only one node is exposed, the beam is assumed to be undeformed
whenever k 1 < kc. In either case, this information will later be used to reduce
the mass matrix and applied load vector. Since the actual curve between nodes
is also a cubic, this procedure provides the same resul% as the Guyan procedure*;
however, it is more accurate when kn is small.

After a bay of the beam is completed, the bay is pushed out of the ABB. The
resulting acceleration and deceleration of the beam gives rise to axial loads.

*This was numerically verified for cases where kn was not very small.
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In order to evaluate this beam-column effect, its influence on the stiffness matrix

is accounted for. The axial load in each beam member is obtained by summing the

acceleration and applied loads on all nodes above the member. Since this requires

recomputing the stiffness matrix at each time point, even when the beam is not

growing, it is a costly procedure; consequently an input-data option has been
r(	 provided in the program to neglect the beam-column effect when the user feels

that it is not significant.
r	

The stiffness matrix for the platform (orbiter assembly and solar panels) is a
fixed quantity. It was obtained by using NASTRAN and is input data to the pro-
gram. The total stiffness matrix for the structure is obtained by assembling the
beam stiffness matrix and the platform stiffness matrix using the displacement
method of finite-element analysis.

y "	 The resulting tructural stiffness matrix was compared with ag 	 p	 matrix generated
by NASTRAN for a system containing a fixed-length beam, and the results agreed
However, because of numerical round-off, the rigid-body properties of the result-

._	 ing stiffness matrix were slightly inaccurate; i.e., when the structure was given
a rigid-body displacement, it very slowly drifted in space. The behavior was
characteristic of very small positive or negative spring ties between the structure
and ground. The drifting led to inaccurate total deflections in long computer
runs. This effect was rectified by making small adjustments to some of the terms

I	 in the stiffness matrix so that

CKJ N9 J =10 ]	 ( 2-1)

where [UR] is the sic-column matrix containing the six rigid-body modes. When
the beam-column effect is included, only the platform stiffness matrix is adjusted
since [K] ruR } will be equal to a required applied load and will therefore not be
zero when {uR, } is a rigid-body rotation (see Fig. 2.3) .

Another precaution that was taken in the program to improve the accuracy
of the stiffness matrix was to perform key operations in double precision.

2.3 Kinematics of Beam Emission

As indicated in Fig. 2.4, the beam is composed of a series of bays. After
each bay is fabricated within the ABB , it is emitted by expelling it, first at con-
stant acceleration until it reaches cruise velocity, then it cruises at constant

i	 2-5
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velocity, and finally it decelerates at constant deceleration until it comes to a
stop. Then there is a pause as the next bay is fabricated, and, after that, the
process is repeated. The resulting beam motion is shown in Fig. 2.5. The
equations used to characterize this motion are presented in Appendix C.

2.4 Treatment of Constraints

The method of treating constraints is described in this section and is justi-
fled in Appendix D. Although F = ma and T = I a are used to derive the equations
of motion, it is assumed that the equations of motion are in the Lagrangian form
(i.e., arranged so that the mass matrix is symmmetric). As an example of the
constraint procedure, it is assumed that the equations of motion are

CI , J 7. x 	- I	 (2-2)

and that the constraints are expressed by the following linear equation with a
constant coefficient matrix [TI: 	

ffx = r r  11111	 (2-3)
{y } will contain fewer coordinates than {x } ; therefore forces of constraint will
usually arise if {x} is constrained, so that it must be equal to a linear combination
of the columns of [ T ] . However, if (2-3) is substituted into (2-2) and the result
is multiplied through by [T] T , the forces of constraint will no longer be present
in the right-hand vector; i.e., the equation

LTJ

does not contain any contribution of the forces of constraint. Thus, multipli-
cation of the equations of motion by [ T ] T not only systematically reduces the
number of equations while retaining the symmetry of the reduced mass matrix, it
also eliminates the forces of constraint from the problem.

Equation (2-3) may be a geometrical relation among coordinates arising from
rigidity within the structure. Another possibility is a Guyan tranformation which
is a systematic way of determining [T] so that selected coordinates are omitted
( see Section B4 of Appendix B) . In this case multiplication of the equations by
[ T ] T redistributes the mass of the omitted coordinates to the retained coordinates.
Equation (2-3) may also represent a modal transformation where the columns of
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[l
[T] are the mode shapes and {y) contains the modal displacements. When the
deformation vector is constrained so that its value is a linear combination of a
few modes, forces of constraint arise, and the constraint therry is applicable. In
this sense, the modal transformation may be viewed as a constraint transformation.

Appendix D also treats more complex constraints such as time-varying con-
straints and nonlinear constraints. However, the procedure to be used is the
same. The constraint equation is substituted into the equations of motion, and
the result is premultiplied by the transpose of the constraint matrix.

2.5 Equations of Motion

2.5.1 Equations Before Applying Constraints

The following equations of motion are written before applying the constraints.

1. Newton's law in all three directions for each node on the beam. The
rotatory inertia of these points is neglected; therefore no torque equations
are written.

2. Newton's law in all three directions for Node 50, the portion of the ABB
which contains the masses that eventually will turn up on the nodes of
the manufactured beam. The beam masses are located between bays as
indicated in Fig. 2.4. The bays are expelled from the ABB at a stop-
start pulsing rate (Fig. 2.5) ; therefore each node begins from rest and
is then accelerated away from the ABB. Accordingly, the mass of the
ABB decreases incrementally as each node leaves it. The constant portion
of the ABB may be lumped together with the orbiter so that its rotatory-
inertia properties can be included.

3. Newton's law and Euler's equations are written in all three coordinate
directions for the orbiter, node 100.

4. Newton's law and Euler's equations are written in all three coordinate
directions for the power supply, node 200.

5. For each node on the solar panels, Newton's law is written in all three
coordinate directions. Only the pitching inertia of the solar-panel node
is considered to be significant; therefore, Euler's equation is written
for rotation about the 2, or pitch, axis only.
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where mk is the mass of node k and [Ik) (or Ik - the tilde is used alternatively
to denote a matrix or vector) is its mass moment-of-inertia matrix. [ 1 

3 1 is the
3 by 3 identity matrix, Ipj is the pitch moment of inertia of node P j , and the
terms in the displacement vector are defined in Fig. 2.6. The notation is used
that {ri 1 contains the components of ri in the Z coordinate system. ,Also,

and epj = epj 2, the pitching, or axis-2, rotation of node P j . {'ri 1 is used to
represent the acceleration of node i on the beam instead of the second derivative
of the elastic deflection because {ri 1 contains the component of acceleration due
to growth of the beam. The load vector {FG1 contains the forces and torques that
correspond to the coordinates. The forces are

F. 1
e
	

€F; l = I F . a > .4 C 2, „.^ n^ Sa,'iOo^ ,2co j 	 (2-10)

r
	

w3

and the torques are

7.

^T- =	 T • Z	 ,eO _ X00, .200
	

(2-11)
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and tpj = Tpj2 , the torque on node Pj in the pitch direction ( j=1, 2, ..., 6).

2.5.2 Reduction to Independent Coordinates

The detailed relations used in reducing the equations of motion to independent
coordinates are developed in Appendix E. The basic concepts are summarized in
this section. Using geometry, the acceleration vector is expressed as a function
of the derivatives of the independent coordinates {Z F ) as follows:

G -CU JZ^F + fV.-  1	
(2-12)

where the subscript F denotes the flexible coordinate set, and [U] is a function
of the geometry (defined by (E9)), {Z F ) contains the independent coordinates
(defined by (E10)) and {vG ) is a function (defined by (E10)) of L, the prescribed
acceleration of the beam emanating from the ABB . In accordance with the method
of treating constraints described in Appendix D, (2-12) is substituted into (2-5)
and the result is multiplied through by [ U] T . The resulting equations are

"+PF F J	 F 	 —	 F	 (2-13)

where the subscript F denotes the flexible set a coordinates. The matrices in
(2-13) are defined as

T

L MFF J	 [v [MrrC' CU	

(2-14)

TF	 CU T L F	 (2-15)
 C-

3	 ((^^tt^^	
..

^'F _ [U 7
T

 Lr,GG J	 ;	 (2-16)

Equations ( 2-14) - (2 - 16) must be evaluated every numerical -integs!ion time-
point. In order to increase the computational speed, the matrix multiplications
indicated in these equations were performed algebraically, and the resulting
expressions, (E24) , (E39) , and (E43) , were programmed.

As discussed in Section 2.2, when node n is close to the ABB (i . e., when

in ` Rc) , the deformation coordinates of node n are eliminated. This is
accomplished via the transformation
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1

zTF _ E& ]IF F 1	 a ^(^	 (2-17)

where {ZF } is identical to (ZF) except that tho deformation coordinates of node n
are deleted. The equations of motion for the case where to < Rc are obtained
by substituting ( 2-17) into ( 2-13) and multiplying the result by [G]T.

2.5.3 Final Form of Equations of Motion

The reduced equations of motion are given by (1349) . If stiffness and
damping terms are incorporated, the matrix equation becomes

[MY '300-1 + [CHP + [K19-1 f f 1 	 (2-18)
where the stiffness matrix [K] is obtained by the method described in Section 2.2.
Since the problem is solved in physical coordinates, modal damping cannot be
used. To incorporate some damping, in this work the damping matrix is assumed
to be proportional to the stiffness matrix; i.e. ,

CC1 _ a LKJ	 (2-19)

where a is a constant that is input data. One reason foi determining [C] in
accordance with (2-19) is that, since [ K ] is a matrix for a free structure, rigid-
body motions will not give rise to damping forces. It is shown, in Appendix F,
that the higher-frequency contributions to the response are more highly damped
than the lower-frequency contributions for the case of stiffness-proportional
damping. The ratio of the damping coefficient to the critical value of each con-
tribution to the response is proportional to the frequency of that contribution.

2.5.4 Solution of Equation s of Motion

Equation (2-18) is solved for {z } and the vectors RU and {i } are numerically
integrated to obtain (i) and { z} of the next time interval. A Axed -interval
Runge-Kutta numerical -integration routine was used for this purpose.

When 1tn ,. Rc, all of the flexible displacements and velocities are known
(see E51 and E10). However when the distance between Node n and the ABB is
less than Z. ( in < kc) , the coordinates of node n {q n } and {4n) are not
among the integrated variables since they were eliminated by the reduction
procedure discussed in Section 2.5.2. In this case the motion of node n is

2-1G



computed as a function of the integrated variables by using (G1) - (G3) of
Appendix G.

As the beam expands, whenever the lowest node, node n, reaches the elevation
L. (see Fig. 2.2) , the elements of {qn ) become independent coordinates, and the
number of equations increase by two. This change is accomplished in the
program by re-starting the integration procedure. Equations (Gl) and (G2)
are used to obtain the initial conditions for the coordinates of node n.

Appendix G also contains the equations for supplementary results that are
printed and plotted by the computer program. These results include the dis-

c	 placements of nodes relative to axes fixed in the orbiter ( (G4) and (G5) ), and
the motion of beam nodes before they emerge from the ABB ( which is set equal
to the motion of the ABB -(see ( G6) and (G?)). In addition, equations are
provided for the torque at the root of the beam (see (G8)). Finally, an equation
is given for the axial load in the beam (Eq. (G9)). This load is used in (B 10)
which, in turn, is used in the stiffness matrix coefficients, (B2) - (B9) when
the option to incorporate its influence on [K] is selected by the program user.

t	 Otherwise, the axial load is set to zero in the stiffness matrix.

Several checks were made on the equations of motion and the computer pro-
gram. These include

• Re-derivation using a different app^.,oach

• Comparison of subroutine outputs with hand calculations

• Symmetry checks when symmetric mass and loads data were used and the
initial conditions were symmetric

• A comparison of the results when the geometry was not permitted to vary
with results of the same problem solved by direct numerical integration
(Rigid Format 9) in NASTRAN .

• The solution of the equations, including the variable-geometry effects,
was checked at one time point by performing these operations in
NASTRAN. Variable geometry effects at this time point were incor-
porated as input data using DMI cards, and the equations were gen-

r
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2-18

erated to obtain the acceleration vector by altering Rigid-Format 8
with DMAP instructions.

All checks were successfully completed.

2.6 Control System

A control system was incorporated into the program in order to enable
studies into the Influence of controls on the structural dynamics of variable-
geometry systems. The control system model is a simple approximation to the
orbiter vernier attitude-control system. As in the actual control system, thruster
levels are 25 lbs , and the thrusters are located and directed in accordance with
the specifications on the orbiter (Ref. 15) . However, the thruster firing logic
has been simplified. Specific thrusters have been selected to induce specific
rotations about each axis; e.g., if an upward pitch motion is desired, the two
forward thrusters would always fire. To simplify the model, if the same thruster is
needed for twu corrections at the same time, say positive pitch and positive

roll, the program will apply the loads corresponding to the two corrections si-
multaneously. Consequently, the load for that thruster is doubled. In a real
control system, the loads would be applied sequentially; however, the total im-

pulse would be vE- - nearly the same as for the model. Another astsumption is
that certain thrusters have been assigned to fire for shorter times than others
during a maneuver; however, the model has been simplified by applying reduced
loads corresponding to these thrusters, so that all thrusters fire for the same
length of time during the maneuver. The reduced load compensates for the
increased firing time so that the total impulse is correct.

Thrusters are switched on and off in accordance with the attitude misalign-
ment of the orbiter relative to a desired painting direction and the rate-of-change
of this quantity. The control law is illustrated in Fig. 2.7 for the jth axis, where

i j=1,2,3 for roll, pitch, and yaw, respectively. The coordinates are the attitude

error ej , and its rate 6j . The term ej is equal to the shuttle angle about .fins j,

e100,j, minus the commanded value of this angle. In this study, the commanded

•	 values were set to zero; therefore, e j = 0100,' *,n regions 1 and 2 of Fig. 2. 7,

a positive torque is applied, in regions 3 and 4 a negative torque is applied. and
in regions 5 and 6, the dead band, a zero torque is applied. The regions are
separated by parabolic switching curves (A .B , C , and D) which have. predeter-
mined curvatures that are based on the rigid-body angular accelerations that
are induced by the thrusters.
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If there are no disturbance torques, the trajectory of the motion in the
error phase plane is as shown in Fig. 2.7; the trajectories are a sequence of
parabolic curves during thrusting and horizontal lines corresponding to constant
angular-velocity cruises across the dead-band region. As indicated, the tra-
jectory spirals into the origin. Actually, the trajectory will reach a limit-cycle
for small errors and error rates because the thruster-firing decisions are not
made continuously, but at specific intervals, every T seconds. Thus. the
sample time T is the minimum time that a thruster can be on or off.

The same control system is employed for the beam relocation problem.
Control-system details are presented in Appendix H.

2.7 Modes That Vary with Geometry

For many variable-geometry structures problems, direct numerical integra-
tion would not be practical because of the number of coordinates required to
represent the structure. This is especially true of the more complex systems
discussed in Appendix A. Consequently, a method was explored to reduce the
coordinates by employing modes of vibration that vary with the geometry.

2.7.1 General Procedure

It is assumed that the number of modes used in the solution is r. Ideally,
at each instant in time, the modes would satisfy the following equation:

.4Z [M 1 {^.r = CK 1 ^^,^ j ^i =l, 2, 	 f (2-20)

where the mass and stiffness matrices are those of (2-18) . These matrices vary

with the structural geometry. The modes are normalized so that the modal mass

is unity for each mode; i.e.,

20 .,,, r

The following transformation to modal coordinates is employed:

41 = 1q 7 Lfi

where the columns of [flj are the mode shapes { ^i } , From ( 2-22),

2-20 )
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^	 I1	 I	 '(2-23)
JL1 + 7.[ f-If

In the current procedure it is assumed that the structure varies sufficiently
slowly so that the boxed terms can be neglected. Equations (2-22) and (2-23)
are substituted into ( 2-18) with [ C ] given by ( 2-19) . The result is premulti-
plied by [ 0] T and orthognality is employed yielding

..	 '	 •

{	 where Kj is the modal stiffness and is equal to wj 2 , and

1 . = € T • T( 	 —	 0 	 (2-25)

a	 a
The terms aK; 4i could be replaced by modal damping, if desired.

In practice, the { ^i } 's and Ki 's are computed at intervals of configuration
geometry. Between these intervals, the values of [^ i } and Ki are obtained by
linear interpolation. Orthogonatity is assumed between intervals so that the
form of the equations is still ( 2-24).

For the beam fabrication problem an eigenvalue routine was introduced into
the program and modes were computed at predetermined beam lengths L 1 , L2 , ...
If at Li+1 a new node has emerged from the ABB , it is not present in the modal
vectors at Li . For the purpose of interpolation, the modal displacement of this
node is set equal to the modal displacement of the ABB (i.e. of node 50) as
determined by (G6). In order to improve the accuracy of the interpolated modes
in the region where new nodes emerge, the set of the Li Isshould include those
lengths that correspond to the emergence of new nodes.

The details concerned with the emergence of new nodes during the variable-
mode analysis were not programmed. The results that will be discussed in
Section 2 . 8.7 were obtained for time spans during which no new node emerged.
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2.7.2 Initial Conditions

The initial conditions in modal coordinates are obtained by premultiplying

	

(2-22) and (2-23) by [ ^ ] T [M ] and using orthogonality and (2-21). The results 	
7

Tr	 4.
are

^^ ^TL M J	
(2-26)
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(2-27)

It can be shown that this procedure provides a best -fit solution to the initial
conditions in a least -square error sense where the error function is weighted
by the mass matrix; i.e. {E} as obtained by (2-26) minimizes the function

where
JF' i e jTI M I Z E 1	 (2-28)

lei = 1^ I — ro 1 ` T ^	
(2-29)

2.7.3 Advantages of the Procedure

An important advantage that is gained by using modal analysis is that the
variable-geometry derivation can be written with the rigidity constraints
disregarded. If the modes are obtained with the use of a finite -element
structural -analysis program such as NASTRAN , the constraints will already
be embodied in the modes. Another advantage is that by eliminating the high-
frequency modes, the high - frequency component of the solution is no longer
present when a node is close to the ABB, i . e., when x  < ic. Consequently,
the modal procedure avoids the need to eliminate the coordinates of node n when
Jtn < Ic . These advantages significantly simplify the derivation and formulation.

Finally, there is the potential of reducing computer time. The procedure
not only reduces the size of th^ problem, it also uncouples the equations of
motion. In addition, deletion of the high - frequency modes, enables the use of
a larger numerical -integration step size. These factors must be traded against
the time required to compute the modes; however, as indicated in Section 2.8.7,
for the beam fabrication problem a savings of 85 % of the computer time was 	 y
effected with no appreciable loss in accuracy.
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2. ?. 4 Additional Considerations

It is necessary to track the modes as the structure varies so that the

interpolation will always take place between similar modes. This cannot be done

simply by ordering the modes in accordance with the order of their frequencies.

For example, when the beam begins to emerge from the ABB , the mode with

the fundamental fore-and-aft beam bending motion is the 19th mode of the

structure. As the beam grows, the frequency of this mode drops and it even-

tually becomes the seventh, or lowest, flexible mode. Evidently, it is not accept-
able to simply interpolate between the 19th mode before incrementing the
geometry, and the 19th mode after incrementing the geometry. In the present
study, the tracking took place manually; i.e., the computer run was do..e in
two steps. First the modes were computed and examined at the desired incre-
ments of beam length. Then, the mode -tracking information was supplied to
the program as input data to the second step. It appears possible to automate

this procedure by comparing modes for the different structural increments, using
_	 either a root -mean -square error method, an inner product weighted by the mass

matrix*, or some other procedure to provide a basis for comparison.

r Since the sign of the mode is not uniquely determined by the normalization
(

	

	 procedure ( 2-21), it is necessary to account for the fact that the mode computed
by the eigenvalue routine may suddenly change sign as the structure is incre-
mented. This actually occurred in the numerical problems addressed in this
study.

Another problem that must be avoided is that when the frequencies of two
modes cross, the mode shapes become coupled; e.g., a solar -panel mode could
contain significant beam motion and a beam mode could contain significant solar-
panel motion when their frequencies become equal as the geometry is varied. If

! `	 these modes are used to derive interpolated modes, the numerical -integrationt.

i

	

	 results will be in error since the theory assumes that the modes vary gradually.
This problem can be avoided simply by deleting the problem set of modes and
incrementing the geometry slightly to obtain a replacement set of modes.

*If {^^ } is a mode with the geometry incremented, and {^i} is a mode prior
to incrementing the geometry, then the product { Tj )T [M] { ^i } would be formed
for each mode {^i}. Because of orthogonality, this product would be close to
zero for all values of { ¢ i } except the one that corresponds to { j j ) .
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A similar problem arises with the rigid-body modes. Since they are all of
equal frequency (actually zero frequency) , the eigenvalue routine may compute
modes with very different amounts of coupling as the structure is varied. For
example, a mode which is primarily aft translation may contain significant pitch-
rotation after the structure is varied. This problem was resolved by computing
the rigid-body modes from geometrical considerations, orthogonalizing them using
the Gram-Schmidt procedure (Ref. 16)*, and then normalizing them in accordance
with (2- 21) .

2.7.5 Comparison With Existing Procedure

As discussed in Section 1.2, Ref. 11 describes a method for using variable-
modal analysis to solve flexible mechanism problems. The procedure of this re-
port differs from that of Ref. 11 in that the modes are obtained by interpolation
rather than through the use of the derivatives of the modes with respect to a
geometric parameter. The interpolation procedure involves significantly less
computation. On the other hand, the derivative procedure avoids the complexity
of tracking the modes. Another significant difference is that in the current pro-
cedure the generalized stiffnesses and generalized masses** are also obtained by
interpolation. Since it is unnecessary to perform matrix operations to compute
these quantities and the left side of the equations of motion remains uncoupled, a
further saving in computation time is achieved.

2.8 Numerical Results

Properties of the structure are presented in Appendix I. These include
mass, stiffness, and geometry data. Kinematic: data on beam fabrication is
also provided.

* For the current application, the inner product and the norm used in the
equations of the reference are defined as follows. The inner produce (x,y) of
two vectors {x } and {y } is defined as { x }T [M ] _ {y} and the norm x
is defined by the relation I Ix 112 = {x} [M] {x}.

** Actually, the modes are normalized to unit modal mass so that interpolation
of generalized masses is not even necessary.
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Several runs were made with and without the influence of the pulsating

a

	

	 axial bad on the stiffness matrix, and, except for the case discussed in Section
2.8.4, where the beam was expelled at an artificially rapid rate, this influence

•

	

	 had no discernable effect on the response. Consequently, the other results
that will be presented are for runs that did not include this effect. The
inertia-load effects of the pulsing are, however, included in all of the runs.

2.8.1 Mode Shapes and Frequencies for Fixed-Geometry Structure

The mode shapes and frequencies of the free-free structure were computed
by using NASTRAN for eleven different stages of beam construction with beams

k

	

	
ranging from 0 to 199.5 m. Figures 2.8 to 2.15 show the first eight flexible
beam modes for a configuration with a beam of 189 m. Mg. 2.16 shows the first

Y flexible beam mode, fore and aft bending, for the free-free structure with three
different beam lengths. The variation of the lower system frequencies with beam
length is illustrated in Fig. 2.17. Since the orbiter is relatively massive, ..nd the
beam has symmetric cross-sectional properties; the frequencies of the fore and

r--	 aft bending modes are nearly identical to the frequencies of the right and left
t•	 bending modes.

The free-free system modes that primarily involve solar-panel motion are
described in Table 2.1. Beam growth has almost no effect on these modes;

{ -

	

	 e.g. , the frequencies are the same, within four digits, for the case with the
beam fully retracted as for the case where 199.5 meters of beam extends from
the arbiter.

2.8.2. Fabrication of Seven Bays

In order to examine the vibration due to only variable geometry, several
l	 computer runs were made with no disturbances present other than beam growth.

In one of these runs the dynamics of the structure was simulated by direct
(	 numerical integration during the fabrication of seven bays. The beam is initially

103.5 m long (69 bays) as indicated in Fig. 2.18 and grows to 114 m at the end

t. of the run. Five nodes are present on the beam at t = 0; however after the first
bay is fabricated the sixth beam node appears; thus, the study includes the

i
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TABLE 2.1 VIBRATION MODES THAT PRIMARILY INVOLVE SOLAR-PANEL BENDING

FREQUENCY
IHsI DESCRIPTION OF SOLAR PANEL MOTION

.0382 FIRST SYMMETRIC BENDING MODE

.0389 FIRST ANTISYMMETRIC BENDING MODE

AS44 FIRST ANTISYMMETRIC TWISTING MODE

0544 FIRST SYMMETRIC TWISTING MODE

.1485 SECOND ANTISYMMETRIC TWISTING MODE

.1485 SECOND SYMMETRIC TWISTING MODE

2028 THIRD ANTISYMMETRIC TWISTING MODE

2029 THIRD SYMMETRIC TWISTING MODE

2149 SECOND ANTISYMMETRIC BENDING MODE

2150 SECOND SYMMETRIC BENDING MODE

.5348 THIRD ANTISYMMETRIC BENDING MODE

.5349 THIRD SYMMETRIC BENDING MODE

801665-138M
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influence of an emerging beam node. The history of the beam growth, shown in
Fig. 2.19, is based on the performance of the Grumman ground-demonstration
ABB.

When a module is first expelled (L > 0) , the beam pushes down on the ABB.
Since the total system cm is aft of the ABB, this causes the orbiter to pitch
down slightly. As the expulsion of the module stops (L < 0) , the beam pulls on
the ABB, and the result is a braking effect on the pitching motion. The angu-
lar displacement of the orbiter is shown in Fig. 2.20. During the interim period,
when the beam does not grow, the average angular motion of the system is
zero since the total angular momentum must be equal to its initial value which is

i
	 zero. The orbiter has cross products of inertia, and this mass coupling causes

I

	

	 some small angular displacement in roll and yaw; however the amount is too
small to be noticed in the curves.

The linear displacement of beam Node 1, the beam tip, is shown in Fig. 2.21.
The result is mostly rigid-body motion, with some small superimposed vibration.
Fig. 2.22 shows the vibration of the beam tip relative to axes fixed in the orbiter.
Most of the response is at the first mode. The amplitude changes every time
a beam-growth acceleration pulse occurs (see Fig. 2.19) . The frequency of
vibration varies from .078 Hz' (at the beginning of the run) to .067 Hz (at the
end of the run) in accordance with Fig. 2.17. A damping coefficient, a, of .01
was used. In accordance with Appendix F, the higher frequency modes are dam-
ped more than the lower frequency modes. The lateral vibration is very small.
Since the lateral and fore-and-aft fundamental bending frequencies are nearly
equal, some energy transfer, or beating, occurs between these response
components.

Figure 2.23 shows the total fore-and-aft displacement and the pitch rotation
of Node P 3 , the,tip of the left solar panel, and Fig. 2.24 shows the same quan-
tities relative to axes fixed in the orbiter. As indicated by Fig. 2.25 which
shows the response at the tip of the right solar panel, the motion of the solar
panels is aimost precisely symmetric.

The bending-moment components at the root of the beam are shown in Fig.
2.26. They are well within the 13,600 in-lb maximum allowable bending moment.

2.8.3 Average-Length Technique

The vector -1g) that appears on the right side of the equations of motion

2-38



r

l	 ,

f

l

r

n

P

Fig. 2.19 Growth of Beam During Expulsion of Seven Bays.

2-39



COMPONENT 1. CCW ROLL 9VID).

Cil

C3	 COMPONENT 3. TAW LEFT (RPU)C2
7

08
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Fig. 2.21 Linear Displacement of Beam Tip, Node 1, During Expulsion of Seven Bays.
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Fig. 2.23 Motion of Mode P3, Tip of Left Solar Panel, During Expulsion of Seven Bays
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Fig. 2.24 Motion of Node P3, Tip of Left Solar Panel, Relative to Axes Fixed in Orbiter During Expulsion of Seven Bays
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t	 .
(2-18) contains inertia loads, i.e., rigid - body mass-times-acceleration terms

given by ( E53) - (1355).

These inertia loads are equal in magnitude, but opposite in direction, to

the upward acceleration of the beam relative to the orbiter times the mass of

the beam nodes. This observation led to the formation of the following approx-

imate technique which can be performed with a conventional fixed-geometry

(	 transient-response program such as NASTRAN. The beam length is held fixed

1	 during the run at its average value and the above described inertia forces are

a	 applied as loads on the structure.

This technique, which will be referred to as the Average-Length-Method ,

was explored to determine its limitations. Several runs were made, starting

with a beam length of 103 . 5 m (69 bays) , the same length as the run described

in Section 2.8.2. It was found that reasonably accurate results could be obtained

as long as the change in length of the beam was small.

Figure 2.27 i llustrates the beam growth during one run in which two bays

are constructed. By comparing the results shown in Figure 2.28, it is seen that

the overall motion of the beam tip can be approximated fairly well by the average-

length method.. The vibration of the beam tip relative to coordinates fixed in the

orbiter can also be approximated fairly well by using the new method (See Fig.

2.29) . The approximate motions of the other nodes in the structure were even

more accura^a than the motion of the beam tip. Good agreement was also ob-

tained for the rigid - body motion (e.g. see Fig. 2.30) and the torque at the root
i

of the beam.

4 
However, when more than two bays were constructed, the average-length

method provided unacceptable results for the beam motion. For example, con-

sider the case studied in Section 2.8.2 where seven bays are emitted (Fig.

'	 2.19) . Figure 2.31 shows that the flexible vibration of the beam tip is poorly

represented by the average-length fixed-geometry approximation for this case.

The primary reason is that the frequency of the structure varies as the beam

grows; consequently the exact and approximate solutions are out of phase. The

pulse exerted on the system whenever the beam is accelerated out of the beam

builder will either amplify the beam vibration or decrease it depending on the

phase of the vibration relative to the pulse. However, since the vibrations are

small, the overall motion of the beam tip, which is primarily attributable to rgid-

{	 body motion, is reasonably well represented by the approximate method (see
t
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Fig. 2.28 Comparison of Fore and Aft Motion of Beam Tip During Expulsion of Two Bays
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Fig. 2.29 Comparison of Fore and Aft Motion of Beam Tip Relative to Axes Fixed in Orbiter During
Expulsion of Two Bays Using Exact and Average-Length Methods
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Fig. 2.30 Comparison of Pitch Motion of Orbiter During Expulsion of Two Bays
Using Exact and Average-Length Methods

2-51



Fig. 2.31 Comparison of Fore and Aft Motion of Beam Tip Relative to Axes Fixed in Orbiter
During Expulsion of Seven Bays Using Exact and Average-Length Methods
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Fig. 2.32) . Also, the motion of the solar panels is well approximated by the

new method (see Fig. 2.33). This occurs because the orbiter is relatively mas-

sive and there is therefore very little coupling between the beam and the solar-

panel vibrations. Each panel is excited by the motion of the orbiter which is

1	 induced by the beam as it is periodically pushed out of the ABB .

Computer runs were made for different quantities of emitted beam length

using the Average-Length Method and the exact method. The beam vibration

frequencies in each average-length run are of course slightly different, since

the average fixed beam length is different from run to run. The error, the peak

deflection of the beam tip, measured relative to an axis system fixed in the

orbiter at the root of the beam, was used as an indicatioar_ of the accuracy of the

method. The results are shown in Table 2.2 and pictorially in Fig. 2.34. As

f
	 indicated, runs were also made with beam densities equal to ten times the nominal

value. The results show that as long as the beam length does not vary more

than two or three percent, reasonably accurate results can be obtained with the

average-length method. The method can therefore be used to evaluate short-

duration disturbances such as a sudden variation in the system's geometry. In

addition, the method may be useful. as the basis for a technique in which longer-

duration motion is computed by making several runs with a conventional program.

The average length would be updated in each run, and the final motion of the1	

previous run would be the initial conditions of the current run.

2.8.4 Effect of Large Beam Growth

In order to study the effect of a large quantity of the beam emanating from

the orbiter without using an extravagent amount of computer time, the rate at

which bays are expelled was increased from one bay every 187.5 sec to one bay

every 6 sec. The hypothetical rate of change of beam length is shown in Fig. 2.35.

The maximum beam velocity of 29.5 in/sec is computed by the program so that one

bay, 1.5 m (59 in) , is expelled during the first 3 see. portion of each cycle.

Initially, the beam is 37.5 m long (1476 in) . The beam grows during the run

until 645 sec. elapse when fabrication of the 199.5 m (7854 in) beam is complete.

$'	 Figure 2.36 illustrates the fore and aft motion of the beam tip, and Fig. 2.37

illustrates the motion of Node 4 which does not emerge from the ABB until 102 sec

have elapsed. Figure 2.38 shows the aft acceleration of the beam tip and the pitch

torque at the root of the beam. This figure also contains a schedule of events

(See Table 2.3 for more detail) . As the beam is expelled, its frequencies drop

a
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TABLE 22 VARIATION IN ERROR, OF APPROXIMATE AVERAGE-LENGTH METHOD
WITH BEAM LENGTH EXPOSED DURING RUN

ERROR, %
(NOTE 3)

NOMINALAVERAGE CHANGEIN AL
NUMBER OF BEAM LENGTH BEAM LENGTH LAVG BEAM

BAYS
EXPOSED

DURING RUN, L
(IN)

AL
(IN)

(,x. DENSITY
p

DENSITY	 j
10p	 I

1 4104 59.1 1.44 1.45 1.13

1.6 4123 96.5 2.34 6.09 7.67

2 4134 118.1 2.86 11.46 7.60

NOTES:	 1.	 INITIAL LENGTH IN EACH CASE IS 4(74.8 IN. (1035 m).

2. NOMINAL BEAM MASS PER UNIT LENGTH IS 1.843 x 10'4 LB SEC2/IN2

3. THE ERROR INDICATED IS THE PERCENT ERROR IN PEAK DEFLECTION OF BEAM TIP
RELATIVE TO AXES FIXED IN ORBITER.

1665-139(T)

^. Y

^x

-T
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Fig. 2.35 Beare Velocity for Run with Large Growth
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TABLE 2.3 SCHEDULE OF EVENTS FOR RUN WITH LARGE BEAM GROWTH

TIME
(SEC)

BEAM LENGTH
(IN)

FIRST
BEAM

FREQUENCY
IHs) EVENT

0 1476 .50 START OF RUN (25 BAYS EXPOSED)

43 1900 .333 FIHST BEAM FREQUENCY EQUALS SECOND
HARMONIC OF EXCITING FREQUENCY

122 2700 .167 FIRST BEAM FREQUENCY EQUALS EXCITING
FREQUENCY

343 4867 .050 SECOND FORE AND AFT BEAM FREQUENCY
EQUALS SECOND HARMONIC OF EXCITING
FREQUENCY (.333 Hz)

453 5950 .0382 FIRST BEAM FREQUENCY EQUALS FIRST
SOLAR-PANEL FREQUENCY

553 6930 .028 SECOND FORE AND AFT REAM FREQUENCY
EQUALS EXCITING FREQUENCY (.167 Hz)

645 7854 ,0232 FABRICATION OF BEAM IS COMPLETE

R80-1665-140(T)



in accordance with Fig. 2.17, and resonances begin to form at the times when

the first and second beam frequencies are equal to the .167 Hz exciting frequency

of the pulse shown in Fig. 2.35. This pulse may be decomposed into its

Fourier-series harmonics, and resonances also begin to form when the beam

j	 frequencies are equal to the second harmonic (. 333 Hz) of the pulse. The ampli-

tudes never grow too large since the beam frequency varies as the b^am grows

i
and passes through the resonant frequency. Also, the formulation conains a

damping matrix which is equal to one percent of the stiffness matrix. As indi-

cated in Figure 2.39, some of the beam energy is transferred to the solar panels

near 452 sec, when the beam frequency becomes equal to the solar-parel fre-

quency. If the beam frequency remained fixed, a beat would be expected to

form. This effect is explored further in the next subsection.

When this run was repeated with the influence of the pulsating axial load

l on the stiffness included, it was found that the character of the motion was

basically the same although some differences in the response amplitudes could be

measured. This was the only run in which this effect had any influence which

could be discerned by overlaying the response graphs. There is the possibility

of a primary instability (similar to resonance) due to parametric excitation when

the pulsating axial load has a frequency which is twice the beam frequency

(Ref. 17). This would be expected to occur at t = 224 sec when the beam length

is 3700 in and the fundamental beam frequency is .0833 Hz; however the instability

was not observed. According to the theory, the instability will not occur in the

presence of damping if the amplitude of the axial load is sufficiently small

relative to the buckling load. Also, the bead frequency falls through .0833 Hz,

and the instability requires time to develop.

2.8.5 Solar Panel- and Beam-Frequency Crossover

A run was made staring with a beam length of 5669.29 in (144 m or 96 bays)

and ending with a beam length of 6259.84 in (159 m or 106 bays) . The beam

growth is a function of the ABB kinematic characteristics as illustrated in Fig.

2.40. As the beam grows, its frequency drops, and at 794 sec into the run the

beam length is 5950 in and the fundamentru beam frequency becomes equal to

.0382 Hz, the fundamental solar-panel frequency (See Table 2.1 and Fig. 2.17).
1

The transverse bending frequency drops, but remains higher than, the solar-

panel frequency during the run.
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The motions at the tip of the beam and at the tip of the left solar panel are

shown in Figs. 2.41 and 2.42, and the torque at the root of the beam is shown

in Fig. 2.43. There is some evidence of energy transfer in the form of beats

occurring between the small lateral components of the beam motion and the solar-

panel motion; however, it is not conclusive since the times of maximum amplitude

of one component of the motion do not always coincide with the times of minimum

amplitude of another component. This may be due to the fact that there are three

nearly equal frequency components in the run, fore and aft beam motion, lateral

beam motion, and solar-panel bending. In addition, the motion is complicated by

the beam-growth pulsing effect (Fig. 2.40).

2.8.6 Control System

In this run, the initial beam length is 3897.64 in (99 m or 66 bays). As indi-

cated in Fig. 2.44, three bays are expelled from the orbiter during the run.

The control-system sample time T, which is equal to the minimum thruster pulse

time, was taken as .125 sec, and the numerical-integration step size was .0125 sec

for this run. Actually, the orbiter control-system sample time is .080 sec;

however, .125 sec was assumed so that the pulse time could be represented by

10 integration steps with a somewhat larger step size than .008 sec.

The system was given an initial orientation error of 1 deg (.017 rad) about

each axis. The control system deadband was .1 deg for each axis. Fig. 2.45

shows that the angular motion of the orbiter is well controlled. The torques

exerted by the control system are shown in Fig. 2.46. The impulses are high at

the beginning of the run when the initial error is being corrected, and then they

become smaller when the errors are small and the system drifts into the deadband

boundary. As indicated in Fig. 2.47, the beam-tip displacement is under 8 in.

and the bending moment at the root of the beam is under 2000 in-lbs (Fig. 2.48) ,

well under the 13,600 in-lb allowable moment.

2.8.7 Variable Modes

Several runs were made with variable modes, and good correllation was obtain-

ed with direct numerical-integration solutions. The set of runs described in this

section is typical. The initial length of the beam in these runs is 3897.64 in

(99 m or 66 bays) , and the final length is 4015.75 in (102 m or 68 bays) . The

beam growth is illustrated in Fig. 2.49. In addition to this variable-geometry

effect, a pitch torque of 20,000 in lbs is applied to the orbiter in the positive
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Fig. 2A6 Total Control Torque About Orbiter Center of Mass
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Fig. 149 Beam Growth. Direct Numerical Intagration Run for Comparison with Variable-Mode Technique
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n
direction for 10 sec and then ii. the negative direction for 10 sec (see Fig. 2.50).
Three sets of modes were used in the run for the interpolation. These modes were
computed for the system with the beam length set at the initial value in the run,
the final value, and the average value. Figures 2 . 51 - 2.56 show typical response

^s
curves done by direct numerical integration and by the variable-mode technique.
It is seen that very good agreement was obtained with the new technique.	

i
Additional data and results are presented in Table 2.4. The above runs

correspond to 37A and 37C in the table. As indicated, in Run 37C, the peak
deflection at the beam tip was in error by only .80%. The variable-mode tech-
niques saved 85% of the computer time. In a similar run (37B) , twice as many
modes ( 24) were used with an integration step size that was one -half as large
(.10 sec) . However, the additional accuracy obtained generally would not 	 = p o
warrant the expenditure associated with the additional computer time required. a
In another run, 37D, modes were only calculated for the initial and final struc-
tural geometries; thus the interpolation interval was double that used for Runs K

37B and 37C. This saved very little additional computer time. Although the	 f
maximum beam deflection was a little more accurate than the value for Run 37C,	 Y
this was not indicative of the overall accuracy of the response. During most of
the time history, the responses generated in Run 37C were more accurate. In
summary, the new method appears to be very accurate, and has the potential
to save a significant amount of computer time.

2.8.8 Variable Modes with Control-System Active

The final run that will be discussed is a repeat of the run described in
Section 2 . 8.6, except that the variable -mode method is used. The system has
a 1 deg initial error that is corrected by the control system, and three bays are
expelled during the run; however, the variable-mode technique is used. The
first twenty - four modes were used with an integration step - si..e of 0 . 0125 sec.
These interpolated modes were obtained from three sets of modes that were com-
puted from eigenvalue analyses. The system geometry for the interpolated modes
was the initial geometry (corresponding to a beam length, L1 = 3898) , the average

geometry (L2 = 3986) , and the final geometry (L3 = 4075) .	 ;k

Selected response curves are shown in Figs. 2-57 - 2-60. Again, good con-

trol was achieved, and the overall solution is roughly the same as that achieved

using direct numerical integration (Figs. 2.45 - 2.48) ; e.g. the peak values of

the responses agreed in both runs. In the early part of the run the correlation
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Fig. 2.52 Linear Displacement of Beam Tip Relative to Axes Fixed in Orbiter. Variable-Mode Technique
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Fig. 255 Torques Applied by ABS to Beam. Direct Numerical Integration
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TABLE 2.4 COMPARISON OF VARIABLE-MODE TECHNIQUE WITH DIRECT NUMERICAL INTEGRATION 	 ) 1

COMPUTER TIME (2)
MAXIMUM BEAM NUMERICAL

CPU SEC %BEAM I ENGTHS TIP DEFLECTION INTEGRATION
RUN NUMBER FOR COMPUTED STEP SIZE ON IBM SAVINGS
NO. TYPE OF MODESII! MODES TIN) % E.SROR (SEC) 3033

37A DIRECT NUMERICAL — — 6.231 — .10 257.2 —
INTEGRATION

378 VARIABLE-MODE 24 3898 6.241 .16 .10 88.3 66
TECHNIQUE 3957

4016

37C VARIABLE-MODE 12 3898 6.281 .80 .20 37.8 85
'TECHNIQUE 3957

4016

370 VARIAaLE-MODE 12 3898 6.277 .74 .20 36.3 86
zL^HNIQUE 4016

(11 ALL LOWER-FREQUENCY MODES WERE USED. NUMBER INCLUDES RIGID-BODY MODES.
(2) INCLUDES TIME TO COMPUTE MODES.
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Fig. 2.58 Total Control Torque About Orbiter CM. Variable-Mode Method
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r
is very good; however, after some time passes, as the system drifts back and

forth across the deadband , the correlation becomes inexact. The reason ie that

a very small difference in the solutions will cause the thrusters to turn on

and off at slightly different times. This accentuates the difference in the motion,

and the next time the thrusters turn on, the difference in the turn- . on time in

1	 the two runs will be larger. This effect is cumulative, and after a while the

thrusters turn on and off at very different times tcompare Fig. 2.46 and 2.58).

The effect occurs when the system drifts back and forth across the deadband

because the thruster pulses are small and the minimum pulse width is .125 sec

which is only represented by ten numerical-integration time intervals. In con-

sequence, a theoretical small delay in the time to switch a thruster off could

result in an impulse error which is as large as ten percent. It is not practical

to use a much smaller integration time interval for the entire run; however, this
(	 could be corrected by reprogramming to use two intervals: one when all

thrusters are off, and a smaller interval when any thruster is on. This tech-

nique has been successfully used in the SPACE12B program which is an updated

version of SPACE10 described in Ref. 2. It should be noted that the correlation

problem is not related to the variable-mode technique. The problem occurred

i	 when correlations between direct numerical-integration and conventional modal

analysis were attempted with the beam length held fixed. Also, it was demon-

strated that more of the run correlates when the numerical-integration step size

is decreased. The step size of .0125 sec, used in the two runs that are pre-

sented, was the smallest step size that was used.

T
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3 - BEAM RELOCATION

In the beam relocation problem, the completed beam is grasped t hy the RMS and
moved through a large angle by a rotation about the shoulder joint (Point h in Fig. 2
of the Summary and Introduction) . The power module with its solar panels is present

't

	 but is not shown in the figure.

3.1 Derivation of Equations of Motion

The general idealization shown in Fig. 3.1 is used to derive the equations of
motion. The platform, Body A, is composed of the orbiter and the power supply
including its solar panels. Body B consists of the RMS and the beam. The two
bodies are connected by the hinge h located on the orbiter by the coordinates
{ah } relative to the orbiter mass center, Node 100. As previously, a set of axes
Z , consisting of the Z 1 , Z 29 and Z 3 axes, is fixed in space. The X axes are fixed
in the orbiter at Node 100, and the Y axes are fixed in Body B in the rotating
part of the hinge. The vector {ah ) is expressed in the X axes. The deformation
of any node mi in Body A is {ui I, and the deformation of any node m j in Body B
is (vi I. The undeformed locations of these nodes are {a.1 and {b j ), respectively.
{ i } and {ui } are expressed in X axes, and {bj } and {vj } are expressed in Y axes.

The method used in developing the equations of motion is summarized in this
section; a detailed derivation is presented in Appendix J. First, the equations of
motion are written for Body A and Body B, separately. In this step, the loads
that each body exerts on the other, at point h, are considered to be externally

i
	 applied loads.

_	 The equations for Body B are written using coordinates that are relative to
the rotating Y axis system which has its origin at point h. Very stiff areas in
the structure are idealized as rigid areas in order to eliminate high-frequency
effects so that direct numerical integration would be practical. In accordance with
the constraint procedure of Appendix D, the equations are first rearranged and
combined so that they are in the Lagrangian form, i.e., with a symmetric mass
matrix. Then the constraint procedure is used to delete the forces of constraint
due to the rigidities and to reduce the number of coordinates by the number of
constraint equations.

3-1
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The equations of motion for Body A, taken as a free body, are obtained from

the equations of motion for the Beam Fabrication Problem by setting the beam

terms to zero. The equations for Body B and Body A are combined into the

following matrix equation:

Mbb Mbr Mbr, 'v ebb
,T	 ,r	 i

Mb^t Mtr Marl Q NIT	 ,TM br MRr +

I
(3-1)

i S	 YO B;^ I	 K^ eoo R

I	
Mry ur

I uo !(i fv

3-3



3-4

where the upper equations represented in (3-1) are the equations for Body B and
the lower equations are the equations for Body A. (w) contains those deformation
components in the {vi }'s (for Body B) that are independent after the rigidity
constraints are applied (see (K6) of Appendix K); i.e.,

^Z

i,

UV,,

vri2

f-,a

^QZ

(3-2)

The node numbering scheme for Body B is shown in Fig. 3.2. As indicated all of
the via s except vq-1,3 have been eliminated as independent coordinates. Also

vq-1,1 and vq,3  were eliminated by rigidization-constraint equations. The vector
{up J in (3- 1) contains the solar-panel deformations; i.e.,
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The other terms in (3-1) are as follows:

{uh } = deformation vector of hinge, Node h, expressed in Z axes

{ w } = total angular velocity of Y axes expressed in Y axes

[Kbb] = stiffness matrix of Body B cantilevered at point h for deformation
components along Y axes.

[KA ] = stiffness matrix of Body A, taken as an unsupported body, for
deformation components a Long Z axes

and the vector on the right side of ( 3-1) contains externally applied loads, forces
of constraint exerted at Point h, and lower -derivative mass-times -acceleration
terms.

In the program developed for this project, the manipulator rotation angle
at the hinge, or shoulder joint, (see Fig. 3.3) is prescribed as a function of time.
Consequently, from geometry, the hinge linear and angular acceleration can be
expressed in terms of the orbiter coordinates by using an equation of the following
form ( see 059)) :

Ltd; .0 	(3-4)

,.
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where W is a function of +, J. and j which are prescribed quantitiss. Thus,
the acceleration vector in (3-1) can be expressed in terms of fewer coordinates
as follows:
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where v are the number of independent coordinates in Body B, i.e., the dimension
of (w). Also, the displacement vector in ( 3-1) can be contracted by the equation
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The %;Gnstraint procedure of Ap pendix D Is also applicable to the case where
angular velocities appear among the derivatives of the coordinates. The proce-
dure is the substitute ( 3- 5) and (3- 6) i nto (3-1) and to premultiply the result
by the transpose of the acceleration-vector coefficient matrix on the right side
of (3-5). The resulting equation is

[A]	 + [C]	 [K	 (3-7)0	 ^	 T
are the damping ;arms [C] {y} have been added at this stage to attenuate the
iponse, the form of the mass matrix [A ] is specified in Appendix J, {s,
stains lower derivative mass-times-acceleration terms as well as external loads 	 -



and its form is also specified in Appendix J. The hinge constraint loads
a

have been eliudnated by the constraint procedure and do not appear in
(3-7). Also, in (3-7)

tom'N

Pie 0	
(3-8)

.`

	

	 uoN

KTj _ ^
►6	 y
 (3-9)

tiA

f
and, as in the Beam-Fabrication Problem, the damping was assumed to be
proportional to the stiffness matrix; i.e.,

[C] = w [K]	 (3-10)

The solutions are generated by solving (3-7) for C30 and numerically
integrating {y } and {y } to obtain {#) and {y) at the next time point The
same fixed -interval Runge-Kutta scheme was used for this purpose as was
used for the Beam Fabrication Problem.

Once these solutions are obtained, the loads in the RMS at the shoulder
and at the wrist can be obtained. Equations for these quantities are presented
in Appendix L.

f _ .

	

	 If the hinge control torque is specified instead of the hinge angle 0, this
angle becomes an unknown and the number of equations increase by one.
The derivation of the equations of motion for this case is similar to the

Tderivation in this section. The equations are developed in Appendix M;
however they were not programmed. A special case of this problem is the
freewheeling situation where the hinge control torque is specified as zero.

3-9



3.2 Motion of Hinge Angle

The specified motion of the hinge angle at the RMS shoulder is indicated in
Fig. 3.4. It consists of a constant angular-acceleration phase, followed by a
constant angular-velocity cruise, and then a constant angular deceleration until

= 0. The equations describing this motion are analogous to those developed for
beam growth in the Beam Fabrication Problem (see Appendix C), except that only
one velocity pulse occurs.

3.3 Numerical Results

Properties of the structure and the assumed characteristics of the RMS motion
are presented in Appendix I. The idealization of Body A, the platform, is the
same as the idealization for the platform used in the beam-fabrication problem. The
idealization for Body B is shown in Fig. 3.5. The beam is 105 m long. The
stiffness matrix of Body B cantilevered at the hinge [KbbI was obtained by
using NASTRAN and was transferred to the FORTRAN program.

3.3.1 Modes of Vibration

The vibration modes of Body B were computed by using NASTRAN . The
first six modes are illustrated in Figs. 3.6 - 3.11. As indicated, the lower-
frequency modes are primarily beam bending. Significant manipulator deforma-
tions occur in Modes 5 and 6.

Modes were also computed for the total system with the RMS handling a 39 m
beam. This was done for manipulator angles 0 of 0 and 90 deg. It was found
that the frequencies of the modes associated with platform motion did not change
with manipulator angle. They remained fixed at the values presented in Table 2.1.
Also, the change in the frequencies of the modes involving motion of Body B was
small. The system with the 105 m beam will probably also have these modal
characteristics with the modes primarily involving motion of Body B being very
close to the modes of Figs. 3.6 - 3.11.

3.3.2 Average-Angle Technique

In addition to the direct numerical-integration solutions, results will be
presented for an approximate technique which will be referred to as the
Average-Angle Technique. This method is analogous to the Average-Length
Technique that was evaluated for the Beam Fabrication Problem. In the
Average-Angle Technique, the manipulator angle ^ is held fixed at its average

3-10
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value during the run. Loads that are equal to the inertia loads (reverse mass-
times acceleration loads) due to varying geometry are applied to the nodes on
Body B only. The accelerations that are used in computing the inertia loads are
the accelerations that Body B would experience if it ware rigid and rotated at the
angular acceleration 4 of the X axes with the orbiter held fixed. Centrifugal
forces were not included, although it is believed that they would improve the
results. This technique was attempted because an analysis of the terms on the
right side of the equations of motion indicated that they would be well approxi-
mated by applying the described inertia loads.

1	 3.3.3 Illustration for 20 Degree Rotation of Shoulder and Comparison With Average-
Angle Technique

In the run which will be illustrated, the RMS is moved from a shoulder-
'	 rotation angle ^ = 30 de to ^ = 50 de as indicated in F ig. 3.12. In this run,g	 g	 g	 g

the angular velocity does not reach the cruise rate of . 0062 rad /sec (. 36 deg /
sec) ; therefore, there is only an acceleration qnd a deceleration phase.

The maximum linear deflection at the tip of the beam is in the fore and aft
direction and is under 4.5 in as indicated in Fig. 3.13. It is seen that the
pitching deformation is biased in accordance with the applied acceleration at the
hinge shown in Fig. 3.12. The same deformation components obtained by the
Average-Angle Technique are si:own in Fig. 3.14. By comparing Figs. 3.13 and
3.14, it is seen that the new technique provides a very good approximation to
the solution.

The roll and pitch rotations of the orbiter are shown in Fig. 3.15. The yaw
rotation is small and is not shown. After the RMS motion has been completed at

r	 about 133 sec, the average angular motion of the orbiter becomes a constant.
This is consistent with the conservation of angular momentum. By comparing
Figs. 3.15 and 3 . 16, it is seen that, the Average -Angle Technique provides a

go P	 ^good approximation to the rigid-body motion of the system.

Figures 3.17 - 3 . 20 show that the wrist and hinge (or shoulder) torques in
the RMS can also be well approximated by the Average -Angle Technique. The
wrist torque is under 800 in-lbs and the hinge torque is under 1000 in-lbs. These
torques are well below the slip torques of 2770 in-lbs and 9260 in-lbs, respectively.

{	 3-19
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R3.3.4 Evaluation of Average-Angle Technique

Additional runs were made by direct numerical integration and the Average-
Angle Technique for the manipulator angle ^ changing to 40, 60, and 70 deg. In
each case the starting angle was 30 deg. In all of these runs the Average-Angle
Technique provided a good approximation to the motion. The peak beam-tip
deflection v 11 was used as an indicator of the quality of the approximate solution.
As seen in Table 3. 1, the peak beam-tip deflection is closely approximated by the
Average-Angle Technique in all cases. Also, the time of occurrence of the peak
response is nearly the same in all cases. The per cent error for A ^ :: 30 deg is
lower than the value for A ^ = 20 deg because the peak response happens to occur
very early in time for the 30 deg angle.

The closeness of the appru`amation for large changes in the manipulator angle
is truly remarkable, especially since the quality of the solutions obtained by the
approximate method deteriorated rapidly in the Beam-Fabrication Problem for
changes in geometry greater than three percent. It is believed that the greater
accuracy achieved in the Beam-Relocation Problem is attributable to the fact that m:
the vibration frequencies of the system (especially the lower frequencies) remain
nearly constant as the manipulator angle 0 is changed. Consequently, there is	

s

almost no phase difference between the exact and approximate solutions; there-
fore, inertia loads due to geometry changes affect both solutions in the same way.

It is possible that the technique would not work so well if the orbiter were 	 y
not so massive in comparison with the RMS and the beam. This question has not
been addressed.

.	 1

3.3.5 Hinge Angle Rotates From Zero To 90 De b;. - With and Without Control System
Active

Figure 3.21 shows the motion of the manipulator hinge angle 0 for the case to
be discussed, a 90 deg rotation of the RMS at the shoulder j ,)int. Figures 3.22 to
3.24 show the linear displacement of the beam tip and the torques at the wrist and
shoulder (or hinge) .

The run was repeated with the control system active. A control-system 	 g
sample time T of .1 sec was used. Figure 3.25 shows the orbiter orientation as a
function of time. Most of the time the pitch and roll angles drift back and forth
across the deadband. The yaw angle drifts within the deadband and never
reaches the deadband boundary. Figure 3.26 shows the torques exerted by the_.P

r
,.
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TABLE 3.1 EVALUATION OF AVERAGE-ANGLE TECHNIQUE

PEAK BEAM-TIP DEFLECTION v 11 (IN)

CHANGE IN APPROXIMATE AVERAGE-ANGLE
MANIPULATOR DIRECT NUMERICAL INTEGRATION TECHNIQUE

ANGLE AO
(DEG)

% ERROR IN
v 11

VALUE
(IN)

TIME
ISEC)

VALUE
(IN)

TIME
(SEC)

10 4.9475 54.75 $.9745 54.75 .39

20 4.4696 72.95 .4.5021 7225 .73

30 3.6013 71150 3.5874 7.850 .39

40 AIA761 122.9 4.5631 122B 1.94

NOTE: MANIPULATOR ANGLE 0 I INITIALLY 30 DEG IN EACH RUN.

1665-142(T)
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control-system actuators about the orbiter cm. The linear displacement of the
beam tip and the torques at the wrist and shoulder (or hinge) are shown in
Figs. 3.27 - 3.29.

The run was then repeated, but this time an initial error of 1 deg (.017 rad)
was introduced about each axis. Typical response curves are illustrated in
Figs. 3.30 - 3.34. From Fig. 3.30, it is seen that good control is achieved early
in the run.

Peak responses for the three runs are compared in Table 3.2. It is seen that
when there is no initial error, the control-system loads do not have a significant
influence on the peak responses. This occurs because the thrusters are only on
for short time periods ( see Fig. 3.26) since only small disturbances must be
corrected; consequently, the impulses applied by the control system are small.
However, the impulses required to correct the one degree initial error are much
larger (see Fig. 3.31) ; therefore, larger responses occur. Nevertheless, the
torques at the wrist and the shoulder are below the slip torques of 2770 in-lbs and
9260 in-lbs, respectively.

TABLE 3.2 PEAK VALUES OF SELECTED RESPONSES DURING 90 DEG ROTATION
OF RMS AT SHOULDER JOINT

CASE PEAK VALUE
LINEAR DISPLACEMENT TORQUE AT TORQUE AT SHOULDER

OF BEAM TIP WRIST (OR HINGE)
0N) IIN-LBS) (IN-LBS)

UNCONTROLLED -5.65 910. 1090.

CONTROLLED -5.53 896. 1110,

CONTROLLED. INITIAL 10.28 -1650 -2040
ERROR OF i DEG ABOUT
EACH AXIS

1665-142(T)

n

i
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Appendix A

CONFIGURATION REVIEW AND SELECTION OF PROBLEMS

Al. Configuration Review

A review of selected large space-structure configurations was conducted in
order to define associated dynamic analysis problem areas. This review includes
near-term (1980 1s) structures that are intermediate in size with lengths in the
order of hundreds of meters. These structures could .be constructed or deployed
from the orbiter. The review also includes ultra-large structures, with lengths
in the order of kilometers, required for applications such as the Solar Power
Satellite for the 1990's and beyond. All of these structures experience major
changes in geometry during on-orbit fabrication, assembly or deployment.
Finally, key construction machines, beam builders and the orbiter remote
manipulator system, are discussed.

A1.1 Intermediate-Size Structures (orbiter assembled)

Typical intex~nediate size structures that can be fabricated from the
orbiter are:

• Large Space Structures (LSS) Platform (Grumman, Ref. Al)

• Space Construction Automated Fabrication Experiment Definition Study
(S CAFEDS ) Ladder ( General Dynamics, Ref. A2)

• Large Space Structures (LSS) - Lollipop (Grumman, Ref. A3)

Characteristics of these structures are summarized in Fig. Al. All struc-
tures are assembled from a triangular beam which is fabricated on-orbit using an
Automatic Beam Builder (ABB) . Similar structures could also be assembled from
beams which are prefabricated on the ground and assembled in orbit.

The purpose of the LSS Platform program is a demonstration of space
c, :.struction. The structure also has potential use as a spacecraft or space

.t	 platform (i.e., a structure that is designed to be connected to a spacecraft) .
Figure A2 shows the assembly sequence for the LSS Platform. A spider-like

t	 fixture is erected and nine 10.5m-long beams fabricated by the Grumman ABB
are placed in it to form one triangular shaped bay. Cross cables are attached to

r
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GRUMMAN GENERAL DYNAMICS GRUMMAN
LSSPLATFORNI LADDER LOLLIPOP

GEOMETRY

LENGTH Im) 30.5 199.93 72.5
WIDTH Im) 10.5 10.68 4.5
DEPTH (m) 9.09 2.45 4.5

MASS

STRUITURE Ikg) 500 995.6 279

STRUCTURE & EQUIP Ikg) 3 164 2143.6 5269

MOMENTS OF INERTIA

ROLL-Ixx lkg-m 2 ) 3 013 000(+139%) 144940001+1134%)" 21300004+80%)

PITCH-Iyylkg-m 2) 10 641 400 (+22%) 90450001+5%)•• 94880001+10%)
YAWIZZ (kg-m 2) 9 2418001+2%) 21 596 000 1+140%) ^• 9104000 (+1%)
1% INDICATES CHANGE RE-
LATIVE TO ORBITER)

NATURAL FREQUENCY
FREO. IHA 0.071 0.0336 — 0.072 096
PERIOD (SEC) 14.1 29.5-13.9 10.4

BASIC MEMBER I m TRIANGULAR 1.225 m TRIANGULAR 1 m TRIANGULAR
BEAM (ALUMINUM) BEAM (COMPOSITE) BEAM (ALUMINUM)

• INCREASE TO ORBITER INERTIA
•• INCREASE IS ABOVE ORBITER INERTIA WITH FIXTURE

1665.010(7)
Fig. All Orbiter-Constructed Specs Structures
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Fig. A2 LSS Plodorm - As wnWy

A-3

__.

i

STEP 1

TRIPOD DISPENSER
AUTOMATIC	 0
BEAM BUILDER IABB) Srl

FIXTURE BASE	 ^^, - :(^;% •.^^

ir't ,i1
• ••e

r .c ^i' -.•tom

• AS LAUNCHED - ABB, TRIPOD DISPENSER &
FIXTURE BASE IN PLACE

S' EP 3
SHUTTLE IMAGING RADAR-A (SIR-A)
INTERIM FnSITION

OTHER SENSORS

STEP 2

REMOTE MANIPULATOR i îBEAM BEING
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provide shear stiffness. After the completion of one bay, the assembly is verti-
cally indexed and construction of the second bay is initiated. This process is
repeated until the three-bay structure :s completed. With equipment and pay-
loads in place, the total inertia of the orbiter plus completed structure increases
by 139°, (Fig. Al). The natural frequency of the completed structure is
0.071 Hz.

The ladder asseir • ly shown in Fig. A3 is another space demonstration project
with potential use as 1 ,ie structure for a spacecraft or space platform. Assembly
starts by erecting a fixture on which an ABB is mounted. Four longitudinal
beams, 299m in length, are fabricated at an average rate of 1.1m/min. The four
longitudinal beams are longitudinally indexed to enable the attachment of nine
cross beams and equipment. Natural frequencies vary from 0.0338 Hz for the
independently extended beams to 0.072 Hz for the completed structure. A major
increase in roll inertia of the orbiter (1130%C) occurs between the beginning and
the end of construction.

The "Lollipop" shown in Fig. A4 is a gravity-gradient stabilized spacecraft
with a radiometer experiment to measure soil moisture. A sequential representa-
tion of the assembly process is shown in the figure. Assembly begins with the
fabrication of two 10.5m-long 1-m beams, which are then stored in the payload
bay. A third ground-fabricated 10.5m-beam, fully instrumented, has already
been stowed. A 72.5m-long boom is then manufactured by the ABB , and the
three 10.5m beams are positioned. Then ground-fabricated verticals and diago-
nals are attached to complete the lower tri-beam structure. Next, structure is
moved by the orbiter's Remote Manipulator System ,to an athwartship location
to allow installation of the radiometer experiment. After assembly has been
completed, the RMS is used to deploy the satellite. As indicated in Fig. A5,
the natural frequencies of the vehicles are:

• Cantilevered from the orbiter - .096 Hz

• Captured by the RMS - .028 Hz

• Free - .18 Hz

In the cantilevered position, the roll moment of the orbiter plus completed
structure increases by 69%.
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AUTOMATIC BEAM
BUILDER IABB)

EARTH —4110

n i

FIRST DAY
• FIRST LONGITUDINAL BEAM FABRICATION 	 SECOND DAY
• FIRST BEAM DYNAMICS EXPERIMENT	 1 • REMAINING THREE BEAMS FABRICATION

THIRD DAY
• FABRICATE & ATTACH NINE-CROSS BEAMS

• INSTALL EXPERIMENT

	

• TRANSLATE TO BEGIN	 INSTRUMENTATION

	

EQUIP INSTALLATION
	 & SUBSYSTEMS BY EVA

Note: Platform Length Scale Foreshortened by 7 to 1
1665-012(T)

Fig. A3 SCAFEDS Ladder - Asmmbiy
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Fig. A4 LSS "LOLLIPOP" - Assembly
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• ABS CONSTRUCTION	 • RMS DEPLOY	 • FREE
fn - 1.096 Hz	 OR CAPTURE	 fn = 0.18 Hz

fn = 0.028 Hz

4TIMFS VERNIER	 =FREOCONTROL FREQ	 APPROX EQUAL 
TO VERNIER

^I	 CONTROL FREQ
t(J

i

i ,

000 i

1665-014(T)	 0 100.5 METER BEAM LENGTH	 i

Fig. A5 Frequency Considerations - Orbiter VRCS Coupling
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A1, 2 Deployable Structures

Deployment techniques can be classified as follows:

• Controlled - motors and regulators d . • j -nine deployment rates
(rigid-body kinematics are known)

• Uncontrolled - there is no active system restraining deployment 	 F

(rigid-body kinematics must be calculated)

The deployment of a Solar Electric Power System (SEPS) solar array where
extension is regulated to occur at a relatively constant rate is an example of
controlled deployment. A more complex controlled technique is used to deploy
the Grumman Wire Wheel (Ref. AO, where synchronous motors are used to
open hinges at a known rate. Uncontrolled deployment is typified by the
tetrahedron building block structure deployment (Ref. A5) , where the expan-
sion is unrestrained; consequently, the deployment geometry must be calculated
as a function of time, using joint-spring, 'friction and element-mass data.

The deployment sequence of the Power Extension Package (PEP) is shown in
Fig. A6. This system is used to extend the possible STS mission times and to
increase the power available for experiments. In the first phase of deployment,
a packaged solar array is translated to its deployment location by the RMS. 	 a
Each of the two wings of the solar array is deployed at a controlled rate by
extending a central mast which pulls a solar array out. Each wing is 38m long
by 4m wide and the total package weighs 1, 668 lb. The fundamental frequency
of the deployed array is approximately 0.02 Hz.

Another example of a configuration which used a controlled solar-array
deployment is the 25 KW Power Module (Fig. A7). This free-flying module
provides heat rejection, attitude stabilization, communications and data handling
as well as power to docked modules. It is estimated that the solar-array deploy-
ment mast can provide sufficient stiffness to meet at least a .04 Hz frequency
requirement at lengths of up to 150 feet.

The Grumman Wire-Wheel antenna (Ref. A4) shown in Fig. AS has been used
in designs of space-based radars, radiometers, and solar-power generation
systems. Deployment of this structure is shown in the figure. A six-foot
diameter engineering model was built to verify deployment feasibility and is
shown partially deployed in Fig. A9. When packaged for shuttle launch, the

A-g
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rim members are almost parallel to the central drum axis. Membrane-like gore
panels are wrapped around the drum and attached to the rim members. Synchro-
nous motors in the hinge assemblies joining the rim members provide the power

Y	 that deploys the rim and gores at a predetermined rate. After the rim is
deployed, the central mast is extended. Antenna designs are available with
diameters ranging from 71 to 300m with fundamental frequencies ranging from
0.035 to 0.00187 Hz.

The Tetratruss (Ref. A5) shown in Fig. AN is a module of a general-purpose
space structure. Fig. A10c shows the deployment geometry of a typical
tetrahedraltruss element. The tetrahedron is driven open by rotational springs
located at the midpoints of the upper and lower folding members (or alternatively
by spin deployment) . Times for deployment of the single tetrahedral truss vary
from 1 to 10 seconds depending on deployment spring rate. The complete module
is 103.49m long, 119.51m wide, and 3.48m deep and has a fundamental frequency
of 1.14 Hz. The module consists of 5250 axial members, and, with variations of
friction forces and spring tolerances at each joint, even a rigid-body deployment
analysis of such a structure is a formidable task.

Al. 3  Space Stations

'	 Some space-station concepts extend orbiter experiment time. Others also
serve as construction platforms for fabricating large space structures. One such
configuration is the JSC Space Operations Center (SOC) described in Ref. A6.
The basic SOC, which consists of four separate modules, is shown in Fig. All.
The service modules provide passageways between modules, control, electrical
power, and thermal rejection. Two large solar arrays are mounted at each end
of a long service-module boom. Antennas, radiators, and RCS units are also
mounted to this boom. Two habitation modules provide crew living quarters
while a logistics module is used to supply provisions. An orbiter is shown
docked to the SOC. Figure Al2 shows the SOC with a construction base in
place to fabricate a solar-array structure. A similar SOC-mounted construc-
tion base can produce a tribeam structure such as the communication-platform
concept shown in Fig. A13. A beam machine is used to form the truss members
and a crane is provided to aid in the construction.

- A summary of estimated natural frequencies is shown in Fig. A14. The range
of frequencies is of the order of .01 Hz. to 10 Hz for the indicated components of
the SOC, while boom-mounted solar-array frequencies are of the order of .1 Hz.
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A 1.4 Ultra-Large Space Structures

Ultra-large space structures are under investigation for use as Solar Power
Satellites. Fig. A15 summarizes the characteristics of two versions developed by
Boeing and Rockwell. Both versions have dimensions in the order of kilometers,

{	 masses of millions of kilograms, and require space construction bases.

l

	

	 The Boeing construction concept (Refs. A7 and A8) is depicted in Fig. A16.
An end-builder is used in GEO to construct a four-bay strip. However, since
the satellite is 8 bays wide, the end-builder must translate laterally across and
then longitudinally down the first four-bay strip to complete the final four bays,
Each bay will be indexed out at approximately .5m to 3m/minute. Indexing

{

	

	 operations are also required for antenna construction (Fig. A17) which is occur-
ring simultaneously. At completion, the fundamental frequency of the satellite
and construction base is .0031 Hz.

'

	

	 Rockwell's construction sequence (Ref. A9) is similar. The maj:;-1° exception
is that the satellite is constructed in one pass since both the end-builder (Fig.
A18) and the satellite (Fig. A15) are 3 bays wide. The resulting satellite is
longer and narrower. Beam machines produce longerons at a rate of 2m/min and
solar array blankets are deployed on the fly. After completion of a bay,
extension stops and transverse beams are attached. The completed satellite will
have a frequency greater than 1 cycle/hour ( .0003 Hz) .

A1.5 Automatic Beam Builder (AT3)

Automatic beam builders are used to construct the basic elements for larger
assembled structures such as the Platform, Ladder, and SPS configuration.
Fig. A19 shows the Grumman ABB, which produces a lm-deep triangular
aluminum beam. As with the larger structures, the beam fabrication involves an
indexing operation. Triangular caps are formed by the rolling mills for a length
of one bay (1.5m) . Longitudinal motion is stopped while preformed diagonal and
vertical braces are welded in position. The completed bay is then extended while
forming the caps for the next bay and the process is repeated. A ground
demonstration unit has been built by Grumman and is operational. This unit
fabricates beams at an average rate of 1.6 ft /min and extends the beam at a
maximum rate of 5 ft /min. The ABB mounted in the orbiter is shown in Fig. A20.
The composite beam builder (Ref. A2), used for the SCAFEDS Ladder assembly
(Fig. A3) , also operates in a stop-start fashion.
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Al.6 Remote Manipulator System

The orbiter is equipped with a 50 ft. -long Remote Manipulator System
mounted on the port side of the vehicle. This arm (Fig. A21) can be used to

1.
deploy a 65,000 lb. payload and retrieve a 32,000 lb. payload. The RMS can be

(	 operated manually or automatically. It has 6 degrees-of-freedom, and it can
t	 move payloads through large translations and rotations. This system and

extensions thereof, such as the crane shown in Fig. Al2, will be used exten-
sively in large space-structure construction. The boom and joints are relatively
flexible; the RMS has a tip stiffness of 10 lb. /in. when fully extended.

A2. Study Configuration Selection

In selecting a study configuration, the following ground rules were a:3sumed:

• The configuration must exhibit characteristics of representative large
space structures

a The configuration must be amenable to representation by a relatively
coarse finite element model, so that it would be practical to generate
solutions by direct numerical integration, using physical coordinates.

Table Al contains a list of important dynamic characteristics and problem
areas of large structures with variable geometry, cross referenced with typical
configurations (discussed in Section Al).  Some configurations such as the Wire
Wheel display different characteristics during the various phases of construction
or deployment. The analysis of each of these configurations requires an ideali-
zation employing a large number of degrees-of-freedom; consequently, each
configuration requires a method for coordinate reduction. With the exception of
the Tetratruss and RMS, these structui,^.:- 'a have a construction phase where
structure is extended linearly (along one tj-"is) either continuously or by index-
ing. Prior to construction or deployment, these structures are very stiff
(infinitely stiff if they are represented as rigid bodies) , and their stiffness
decreases drastically as they are extended. For most structures, the,rigid-body
shape can be defined as a function of time. On the other hand, Tetratruss
expansion is an example of uncontrolled deployment where the rigid-body shape
muse be determined as a function of time, using a rigid-link dynamic, analysis.
Membrane deployment is required for the PEP, Power Module, and SPS configu-
rations where solar-array blankets and reflecturs are extended, and for the
Wire Wheel where the gores unroll from the central drum. Differential stiffness
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would have to be included for such concepts. In six of the concepts, structures 	 tit
emerge from a large, relatively concentrated, variable mass, either the orbiter
or a construction base. For the SOC and Boeing SPS, the construction base is
relatively flexible. Certain configurations have two-dimensional (plate-like)	 rr

structures. This effect is particularly important when cross coupling is induced 	 W-M
by large offset masses. The buildup of a large structure by assembling large 	 r
modules introduces a docking (or berthing) and joining problem.,

Another problem occurs when a flexible structure is extended from a rigid
base. As indicated in Fig. A22, when a node of the flexible structure first
emanates from the rigid base, the structural member between the node and the
base is differential in length, and therefore, infinitely stiff. This gives rise to
an infinite-frequency component in the vibration solution.

A study configuration is proposed which will incorporate a linearly extending
structure because this feature is used in the deploymer t_ or construction of most
of the configurations. In addition, an idealization inec:rperating this feature can

x^
be used to investigate methods for treating the infinite-frequency phenomenon.:
The extending structure will emerge from a mass which has flexibility due to
added appendages. In addition, large changes in geometry and natural
frequency will be included. Figure 1 of the main text shows the basic configura-
tion that was selected. It contains a 1-m aluminum beam that extends from a
beam machine installed in the orbiter. This beam is a candidate for early
experimental verification to determine modal properties, damping, and the
effects of construction rates. A 25 KW power-module is attached to the orbiter
to introduce flexible appendages.

In the first problem that is addressed, the beam is fabricated by the beam
machine. The solar arrays are present in the deployed state; however, the
RMS shown in Fig. 1 is stowed. The system flexibilities are selected so that
the cantilever-beam frequency, which is initially infinite, will decrease to •a value
that is less than the initial system frequency.	 i

In the second problem, the RMS is initially attached to the beam. In order 	
K

to study the dynamic effects of large three-dimensional rotations, the beam is
detached from the orbiter and rotated 90 deg. about the RMS-shoulder pitch-axis.
Since this axis is located 19,6 deg. from the Z 2 axis (see Fig. 2), the beam is
rotated out of the orbiter pitch plane.

}
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Appendix B

DETAILS FOR FORMING THE STIFFNESS MATRIX FOR THE
BEAM-FABRICATION PROBLEM

The computation procedure for the development of the stiffness matrix is
outlined in Section 2.2. Further details are developed in subsequent sections of
this appendix.

B1. Computation Procedure for the Development of the Structural Stiffness Matrix

• The orbiter and power module, together, are the fixed-geometry portions of
the structure, and are referred to as the platform. At t = 0, the platform stiffness
[Kp] is corrected for rigid-body drift (see Sections B6 and B?). If the beam has
not been emitted, the structural stiffness matrix [K] is set equal to [Kp] . If
1) t > 0, 2) beam column effects are not being included, and 3) there has been
no beam growth between the current and previous times, [ K ] has not changed
from the previous time point, and the following procedure is therefore omitted at
the current time point.

ABB Beam

If Rn < kc : develop the beam stiffness matrix, assuming there are only n-1
nodes on the beam; set m = n-1, where m is the number of nodes on the beam.
If n = 1, go to Step 5.

If in > kc , set m = n.

1. Compute the element stiffness matrices in accordance with Section B2. These
matrices are [K(1)]. [K (2) ], ..., [K (m) ] ([K (1) l = [K(2) l = ... _ [K(m-1)]")

2. Transform [K (m) ] to the orbiter cm coordinates to obtain [K (m) ] (Section 112).

3. Assemble [K (1) ] , [K (2) ] , ... , [K
(m-1) ] 

, [K (m) ] to obtain [KB ] using the
displacement method of finite-element analysis (Ref. 14) .

4. Use the Guyan reduction procedure (Section B4) to eliminate all rotation coor-
dinates except those for the orbitor (e100 ,1' e100 , 2' ®100,3 ) ° Call the result
[KB ] . If i n < it , save the partition of [G] , containing the last two rows, and
call this matrix [G e] .

Ifin >Rc,goto Step 6.

B-1



5 • When kn < Rc , it is necessary to obtain the deformations of node n and
expressions to reduce node n from the mass matrix and apF,'Aed bad vector.
This is accomplished by computing [Gn ) (see Section B5) , and saving it for
future use.

Final Assembly

6. Use the displacement method to assemble [Kp ] and [KB] to form [K] , tie
stiffness matrix for the entire structure.

7. Correct [K] for rigid-body drift. (See Section B6).

B2. Beam-Member Stiffness Matrix

A program option has been incorporated to include the influence of the axial
load on the stiffness of the beam. This axial bad can have a different value for
each beam member. The stiffness relation for the i-th element shown in Fig. B1
is as follows*:

f% 1

t 2
AV

7;4,,^

4+%Z

K 2 1 -^:	 I -K=,s
-K

8

K 3 1< - K?

K, Ks -K3 K9

— Kg K6 I K8,

T K^o

K? ! °K7 
i KrK,

— K K,	 K,Ka i K^

M.

^i 2

09''^

sz (B 1)

ew,

* See Ref. B1 for t Ie basic stiffness and Ref. B2 for the incremental stiff-
ness. Some of the signs differ from those of the references to account for differ-
ences in the coordinate systems.
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where

KZ o mss t ^2 (B2)

KJ
(B3)

^3

Kr ^	 3

ly

k7 =
6 El 

^. ^Y (BS)

fC8 X ! (B7)

,40' 
2 Y (B8)

e	 3

2 E Z"z	 .l2-	 r (B9)3

where
P

Y a (B 10)

The above equations apply to member i, where E is its modulus of elasticity, I1
and I2 are its area cross-sectional moments of inertia about axes 1 and 2, respec-
tively, R is its length and F is its axial load. uij and Op are the linear and
rotational displacements of node i along axis j cor: - roc ; ng to the force and
moment, fij and mij , shown in Fig. B1. The eiemei , . stiffness matrices for the n
beam members, as dete •rrdned by the coeffle.	 rix n (B1) for each member,
are called [ K (1) 1, [K (2) 1, ..., ( K (n) I-

The deformation coordinates of the lower node of member n are the deformations
of node 50, the ABB. Since the ABB is rigidly attached to the orbiter, the coordin-
ates are transformed to the coordinates o s node )0, the orbiter CM. The transfor-
mation between coordinates is

BA 4
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1
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I

u„ 2

e„ Z
uoo,^ (B 11)

glop,

0/00,/

e,^^ 3

where the a50 ,j 's are the coordinates of node 50 relative to node 100. If. [Tn] is
the coefficient matrix in (B11), as justified in Section B3, the transformation of
the element stiffness matrix of member n to the coordinates on the right side of

r
	 (B 11) is

	 1 7 E 1,<`1K"'I -=[ T.
r 
;nJ	 (B 12)

B3. Transformation of Stiffness Matrices

Assume{ fi } and {qi} are the generalized loads and corresponding generalized
{	 deflections for a particular structure in coordinate system i; i.e., these quantities

correspond to each other in the following sense. Consider alternative deflections
that are consistent with the constraints but are so close to the current deflections

t	 that their difference is a differential quantity { S qi } known as a virtual displace-
ment. Then { ti } and {qi } correspond to each other if the work done in moving

r- 	
{fi } through the displacement {dqi} is {fi }T{dqi }, This quantity, known as the

virtual work, is the same, regardless of the coordinate system so that, if the

— 3	 B-5



subscript j corresponds tc another coordinate system,
sL 1T 	 _	 T

The-load -deflection relation in each coordinate system is

K^ J ¢^	 and ^ j ' - [K- 1	 (B 14)	
1.

Substition of (B 14) into (B 13) yields

J^1
CKe ^e

Assume that the matrix [T] relate
r
s the two deformation vectors; i.e.

,cS — FT- Iflj	 (B 16)

The result of substituting (1316) into 
{
(B 15) is	

f c 
jf	 Tj T 1 T [K, I E T I f9	 =	 1 [K - J1 	 (1317)

Thus, the transformation for the stiffness matrix is
a

(B18)[K.1= [TJ[KsJjrJ
which is symmetrical.

The transformation between loads may be obtained by substituting (B16) into
(B13), yielding	

ETj[	 SS

so that {fi IT [T] = {fj }T , or

Z T• _ LTI Tf Ŝ  I	
(B 20)

Ta 	 -

If (B16) involves a coordinate reduction (i.e. , if there are fewer coordinates
in { qj } than in {qi}), the solution {qi will be restricted to linear combinations
°. [ T ] and therefore will generally be approximate. Consequently , if (B 16) is
ibstituted into the first relation of (B 14) , forces of constraint are required to

B-6
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r maintain the solution in its approximate form; i.e.,

^.^^.<<) 	 (821)_

	k	 where { fi (c) } represents the forces of constraint. It will be shown that multipli-
cation of (B21) by [ T ] T not only transforms the problem, it also eliminates the
forces of constraint. The virtual work none by the forces of constraint is always
zero, so that T 

^^t(c)
A 	 _ O	 (1322)

	

1	 '

and, from B 16) ,
t (c) T

r
	 f

.	
7•	 L TJ  d	 1	 (1323)

	

{	 for arbitrary, but differential {oqj }'s. Consequently, the coefficient of {Sqj),
and, of course, its transpose in zero; i.e.,  

(B24)w

It is seen from (1324) that if ( 13.21) is pre-multiplied by [T] T , the forces of
constraint will not appear in the result.

	

J	 E T TL K,. C T j [ R• j ' C T I T ON	 (B25)

If (3318) and (B20) are substituted into (B25) , the result is the force deflection
relation in j coordinates

r

t	 [ ^^ •a 	 • = ^^^ 	 (3326)

which is in agreement with the second of Eqs. (1314).

(	 In summary, the transformations (B18) and (B20):

a) transform the loads to generalized loads that are consistent with the new
displacement coordinates

	

r	 ^

b) maintain the symmetry of the stiffness matrix

c) delete' any constraint forces from the formulation

	

f	
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B4. Guyan Reduction of Stiffness Matrix

In the G•uyan procedure (Ref. 13) , certain coordinates of the structure are
selected to be omitted. The procedure •begins ".)y rearranging the rows and columns
of the stiffness matrix so that the coefficients corresponding to the omitted coor-
dinates appear to the bottom and the right of the matrix. Both the rows and the
columns are rearranged in the same way so that the symmetry of the matrix is
retained. This step is equivalent to rearranging the force-displacement equations
and the order of the coordinates. The force-displacement relation is

XA 	 F
hA	 AO	 (B27)

	

L K VA 1 0 0	 x0	 FO,

where subscript A denotes the retained coordinates and O denotes the coordinates
to be deleted. The displacements . of the omitted coordinates, the elements of {X011
are assumed to be equal to the values they would have if FO were zero; thus, from
the lower equations embedded in (B27); [ KAO 1 {XA 1 + [KOO K {XO 1 = 0, or

I Xo 1 =' I& I i ;•A I	 (B28)

where

[ Cr]
1

 = - [K,,j _ L KO,4 I	 (B29)
a y

Thus

(;(Al

lx 1

I { xA
G

y.
(B 30)	 T..^

Y w

The method of Section B3 is used to transform the stiffness matrix and load vector.
The resulting stiffness relation is in termsof the retained coordinates as follows:

F[F/^AR /'t'A
 

	(B 31)



1	 .
1

where	
1 r	 ('

LKAA] .. [K;-4 f' C^`,^0 J L^T = LK'oa — LK	 L oo —,̂ K . (B32)

	

AO	 QA

r	 and 

	 I 
s

	

JF,- Z FA ' j + [CTI£F,1	 (1333)

B5. Deformation of Beam Node t hat is Near ABB

As discussed in the main text, when the distance kn between the lowest beam
ti

	

	 node, Node n, and the ABB is less than a prescribed quantity tc, Node n does not
appear in the stiffness matrix. The displacements of Node n are determined using a
geometric relation. If n =1 and X 1 < kc , the beam is assumed to be undeformed .
Tien the absolute displacement of Node 1 is

— G,J uooz
an (B 34)

ei0o^ i

r.	
®/OOH Z

eioo 3

where uij is the linear displacement of Node i on the beam in direction j (see Fig. 2.6),
%j is the angular displacement of Node i about axis j, and

1	 O	 D	 Q 	 - a 12.

(G 7 _	 (B35)

O	 -'213 	 all
4

where the aij 's are the undeformed locations of Node i relative to Node 100; i.e.,

L at)	 z	 ' 	 (B 36)
^p 0
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When n is greater that one, the deformation curve of the beam between
Node n-1 and the ABB is assumed to be equal to the static deformation curve
which is a cubic.	 The coefficients of the cubic can be evaluated in terms of the
linear and angular deflections at Node 50 (the ABB) and Node n-1. The deflections
of Node 50 are in turn related, by rigid-body equations, to the deflections of

`	 Node 100.	 The cubic equation is written separately for motion in the 1,3 plane
and the 2,3 plane (Figs. 2.1 and 2.2). 	 Once this is done, the linear deflections of
Node n on the beam may be obtained. The result is

U"/ 	 b3

^,,Z	 bb	 -b^	 b.3	
7	 60

5

e ao -
(¢

,00 3

k n

s-x:R

f

1

The bi 's are defined by the following relations:

"^ (B 38)h
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s

s'

where Hi is the height of Node i above the ABB (Hn R n) as shown in Mg. 2.4.
l	 Then

!6o = I-3 r 2 f2 r3

(B 39)

b 3rZ"Zr3

rL+r3)

bs = b, asoj 3 t' b%

y	 (B40)
b6	 b , aso, 2	 t(

0.7	 , aso, 1

The beam rotation angles en-1,1 and en-1, 2 are not coordinates that are among the
generalized coordinates, the variables that are available from the numerical inte-
gration output, since all beam rotations are removed by the Guyan process. The
rotations may be obtained as follows. In performing the Guyan procedure a
matrix [G] is developed which relates the omitted to the retained coordinates
(see B28) . In this case the relation is

^^	 t

w'=

z

T
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m

	

L	 — --

	

.	 =IG
L	 u^-/^t	 (B41)

S	 ,;ioo^ 3

The last two rows of [G] are called [ G e] . The matrix [ G o]  provides expressions
for en-1 and 6n- 2 in terms of the variables in the vector on the right side of

	

(B41) , which are generalized coordinates. These expressions are substituted into	 arse
(B37) and the result is

N

A•

(B42)

3

uioo, i

i00/ 2

/p D
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where

f-' =f8;3= 
u,	

(B43)

e
êOD	 8/00 Z

f
(B44)

and

*Ax -V•

Q •-•	 0 63 0 b, ® 0

0 • + • 0 1 0	 b= 0	 6 1 -6s. 0	 b^
.	 i

(B45)

0 . b^
t	 GB

0

Equation (B42) will be used to reduce Node n from the coordinates of the mass
matrix as well as to determine the deformation of Node n.

B6. Adjustment of [K] to E liminate Rigid-Body Drift

Small errors in the system stiffness matrix [K] , due to computer round-off,
cause the matrix to behave as if very small springs, with positive or negative
rates, connect the structure to ground. In long computer runs, the structure
therefore tends to slowly drift from the correct location after it experiences a

B-13



dt it

motion with a rigid -body component. In order to rectify this situation, a small
matrix [ e] is added to the stiffness matrix as follows:

[K] _ IK,,.,] f [E1 B4s(	 )

[e] adjusts [K] so that, if [UR ] is the matrix of the six rigid-body modes,

r K ] CU ] = (Ck	 + [9 ])[URI= O	 (B47)

Since [UR ] contains six vectors, it is only necessary to adjust six columns in

[K OLD ] . The six columns of [K OLD ] corresponding to the orbiter degrees of free-
dom are selected for adjustment. To maintain the symmetry of [K] , [ e] is made
symmetric; thus the six corresponding rows of [K OLD ] are also adjusted. Con-
sequently, [e] has the following form:

1 
ZM 

1
b I	 02	 1'

O ^
zM

._.^ ~	 (B48)
O	 6

Al

LW
J

where the subscript m is equal to the number of beam nodes represented in the
stiffness matrix (m = n if in > kc and m = n-1 if Rn < kc). By geometry, the
matrix of rigid -body modes is

I!
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(B 49)
l
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"I"

! o o o a;s 'aa
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0 1 0 - az3 Q^
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A matrix [S] is defined as follows:

s m

	

2	 .,1 [Olt

► 2	 53

(1350)

Equations (1348) - (B50) are substituted into (1347) and the resulting equations
for the matrix partitions are solved foe the [ 1]'a. The results are

SS ^
T
lu"I

  is$]TCU(3^
	 (1351)

1  	 R

[sj = [5ar]
These quantities may be used in (B48) , and the result is used in (B46) to adjust
W. Since [K OLD ] is, except for computer round-off, a free-free stiffness
matrix, the [Si] 's determined by (B50) are very small, and therefore the adjust-
ments to [K] are very small. Nevertheless, this adjustment improved the solutions
for the absolute deflections considerably in long computer runs.

B7. Adjustment of [Kp] to Eliminate Rigid-Body Drift

The platform stiffness [Kp] is also adjusted to eliminate rigid-body drift.
The derivation of the required equations parallels that of the previous section.
The resvIts are



16

6	 S z 	-_ [ K P
I [URA/z	 $ 3

I 
b 

I ,^

F	 E3	 6
w. 2	 r

i
(B53)

(B 54)

where

LO z ] — L S 2 1 C §a ,	 1J

and

C^3	 S3

[Kp] is adjusted by replacing it with [Kp] + [7].

(B55)

(B56)
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Appendix C

EQUATIONS FOR KINEMATICS
OF BEAM EMISSION DURING

BEAM FABRICATION

C1. Input Data

Many of the kinematics input - data quantities are indicated in Figs. 2.4
and 2.5. The data are as follows:

L1	 length beam at reference time tli

h	 bay length

n 	 number of pulses; i.e., number or bays emitted during run

nb number of bays per node

The following data is only required if n  > 0

tll time that first pulse starts ( t 11 is set to a negative number to begin
the run in the middle of a pulse) .

to	pulse acceleration time

tb	pulse cruise time

tc	 pulse deceleration time

T	 pulse period ( must be greater than to + tb + tc) .

C2. Equations

Equations Used at t=O

The times at which the nature of the motion changes (see Fig. Cl) are

Z = ski t ^Q

`c 1)

A3	
'00 for 	 / 2,

C-1

9

i

l
4
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If Vm is the maximum velocity reached, the acceleration and deceleration are,
respectively

ar	 V	
(C2)

ad = — Vw	 (C3)

lea

The increase in height during each phase of the motion is (refer to Fig C1)

^a 	z Q r

_ ^ 7n 4	 (C4)b 3

h am -	A- -^Zad ^
and	

II

Na	 b + G	 (C5)

The beam length at the beginning of each phase of the motion is

L
(C7)

L03 , LA 

Equations ( C2) and ( C3) are substituted into ( C4), and the result is substituted
into ( C5). yielding

(C8)
^n - z .fa + ^b  aG
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(C10)

(C11)

r^
f;

w

5

4

T	 I

Y( i

a

Also, for future use, it is noted that the distance between nodes is

The procedure at t=0 is to compute V. from (C8), then ar and ad from
(C2) and ( C3), and ha , hb , and he from (C4). Then the times at which the
pulse changes in shape are computed from ( Cl) and the corresponding beam
lengths are computed from ( C5) and ( C6). Also, the distance between nodes
is computed from (C9).

Equations Used at Each Time Point

In the intervals where the beam is stationary (tk-1, 4 4 t S tk1 for k=1, 2, ... ,
np where t0, 4 = 0 and when t > t o 4 for k=np •F 1) the beam length and its deri-
vatives are	 p

i

L = Lk

^ = 0

L" = v

When the beam is accelerating (tk1 < t < tk2 for k=1, 2, ... , np ) ,

L
L 	 A + z r^^ ki ^

aL	 Y

C-4



During the cruise portion of the cycle (t k2< t 4 tk3 for k=1, 2, ... , n p ) ,

(C 12)

When the beam is decelerating ( tk3 < t < tk4 for k=1, 2, ... , np)

lz

	

•)	 (C13)

Once the beam length is determined, the number of beam nodes can be
computed by doleting the digits to the right of the decimal point in the result
of the following equation:

^.	 + ^— /^	 (C 14)

(truncated to an integer)

where a is a small number, typically 10 -6 . Equation (C-A) assures that even
i

when a node just emerges from the ABB , it is counted as one of the total number
of nodes, n.

Finally, from Fig. 2.4, the height of each beam node is

f	 C-5

r



Appendix D
4

THE TREATMENT OF CONSTRAINTS
IN THE DYNAMICS PROBLEM

Dl. Linear Constraints

Consider a general dynamics formulation of the form

Im IZ	 q	 (D1)0
where {g} contains the loads and any : (ower-derivative terms. It is assumed
that the equations embodied in (D1) have been arranged so that [M] is symmetric;
therefore, these equations have the same form as Lagrange's equations. Assume
a linear constraint relation of the form

Z x l = CT]p + le! 	 (D2)

where the number of coordinates in {y} are reduced from those in {x} by the
number of constraints. {y } may contain some of the coordinates in W. The
constraint matrix [ T ] can be used to describe such constraints as rigidization
of a portion of the structure. In the general case [T] and {c} can be time-
varying matrices. For example, this occurs when the motion of a joint is a pre-
scribed function of time. Substitut`ng (D2) into ( D1) yields[M] [TIN I _ {_ j + [F I	 ( D3)

where {Fc } has been added and represents the additional forces required to
satisfy the constraints and

{	 f _{ }-2CT]f^ - CT 	 l
The additional forces of constraint are eliminated by using the following

method which is similar to the technique used in the derivation of Lagrange's
equations. The procedure also has similarities to the method used in Section B 3
to tr& .nsform the stiffness matrix. Consider an alternate position of the system,
consisteat with the constraints, at the current time. {d x } represents the differ-
ence betwPen that position and the - current position; i.e., {6x}  is the virtual
displacement vector.

D-1



As in the derivation of Lagrange's equations, the virtual work of the forces of
constraint vanishes; i.e., if (DO is in the Lagrangian form, with the generalized

4

coordinates corresponding to the generalized loads,

rFc }^ x = 0	 (D4)

Note that, from (D2)
b x i [T]	 S	 (D5)

Substituting (D5) into (D4) yields

IF T [T] €S	 = 0
Since the elements of {d y } are independent and arbitrary

{ ^ I T[T] = 0 or [T ]r[ ^ } = 0	 (D6)

Equation (D6) indicates that the forces of constraint can be eliminated from (D3)
by multiplying through by [T] T ; i.e.,

ET 
j T [M] [- IqI = ET r,  3	 (D?)

Equation ;D?) represents the desired equations of motion in terms of the reduced
coordinates with the forces of constraint eliminated.

In summary, to eliminate the constraints from the formulation, substitute
the constraint equations (D2) into the formulation and premultiply the equations
by the transpose of the constraint matrix.

D2. Nonlinear Constraints	 'Y

Instead of (D2), if the constraints are nonlinear, they can be expressed
in the following form:

(D8)

or

(D9)

Defining d xi as a differential virtual displacement,
r
	 (D10)

D-2
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a

or

where the elements of [T] are

aa -

	

T.  	 (D12)

	

. =fa	
aYi

The same derivation can be used as was used for the case of linear constraints.
The resulting procedure is to reduce the number of coordinates by substituting
(D8) into the equations of motion and to eliminate the forces of constraint by
premultiplying the formulation by [T] T , where the elements of [T] are defined
by (D 12) .
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Appendix E

REDCTCTION OF EQUATIONS OF MOTION FOR
BEAM-FABRICATION PROBLEM

E 1. Deletion of Coordinates That are Dependent Because of Rigidity

The independent coordinates include uil and ui2 , the deflection components
of Node i (i--1,2,...,n) on the beam in the 1 and 2 directions. The deflections •
are measured from node i on a hypothetical undeformed structure which has the
same beam length as the deformed structure at the current time. The other inde-
pendent coordinates are {u 100 1, { 9100 1, up j = upj 1 and epj = 6pj 2 for j=1, 2 , ... , 6.
All of the remaining coordinates are related to the above beam, orbiter, or solar-
panel coordinates.

The acceleration components in (2-5) will be expressed in terms of deriva-
tives of these coordinates. The components of {'ri} in the 1 and 2 directions
are

(E1)

	

.4 	 =	 "Of' Z

Since the beam is axially inelastic and node 50 is rigidly attached to the orbiter,

r/ 3/00 3 + Qs0! 
Z/D0f / LSD/ / 8/00 Z + (E2)

where the aij 's are the components of {ai } which is defined by (B 36) . The
equation for the acceleration of node 50 is

	

uSO	 ZC/oo — L r ^Qso ^^ Z e/D©	 (E3)

where the notation [ T( )] is used for the cross -product matrix; i.e. given any
vector {x) with components xl, x2, x3,

r.
r.
r.
f.
L

E.

F,
F.

F.
r.

E-1



JE• 2

o —x3 xZ

f	 >

- x2 x,	 o
s

Node 200 is also rigidly connected to the orbiter; therefore

X200 —	 /00	 C r l azoo ^^ L9	 (E5)

and

82 GG	 (900	 (E6)

The solar panels are assumed to be rigid axially (in the Z 2 direction) and in
the up-and-down (or Z 3) direction. Consequentiy,

..	 I If	 . •	
.I

SO(
^va^ 2 ap.3 8/00 4- Gib &00^3

	

a	 >

	

.,	 ,.	 ..	 ..	 (E7)

uP.3 = uivv 3 t Q^. 2 g/o,

In view of (El), (132), (E3) , (E5) , (E6) , and (137), the acceleration vector
of (2-5) can be expressed in terms of the independent coordinates as follows:

1 0, I = jUIZZF	'' 'iT^	 (E8)



"T-
f.
f.	 where

^

6	 12

 I
U,	 I U

z U3

I
U'	 I Us ^s I	 3^

V3I_.^--------I I	
Vy

I

3	 i

I	 II	 3

I

i
i 1

3

	

Ur i 	 (E9)

------ 4-- -------- —

I Vo VG, (^'

V,
I	 (	 ^
i	 (off

I	 I	 ^

I

^	 I

	

I	 ^

and
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0

N	 0
N

0
N	 0

x

e'w/1

4ZFI= 
u
 P

®P

UPS

ePs

left"

ePb

V	
••	

(E10)

0

0

1

0

0

0

where, upj = upj 1 , the aft linear displacement of node P  ,
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0 0

D a

ro % —Oro,1 0

E-5

(E14)

(E 15)

(E11)
u^

i	 o

M12)

0 0

0 0 0

[uj	 o	
(E13)

	

0 0	 ^



0 0 0

lJb	? 3 0 Q^ !

z
	

0
(E1?) II

I-A

n
C u	 - C r	 ) 1	 (E16)

	 u
0

1

(E18)

0 0 0

u¢ ]	 o	 1	 0	 (E19)
0	 0	 J

Equation (E8) is substituted into the equations of motion (2-5), and, in
accordance with the procedure of Appendix D, the result is premultiplied by
[ U ] T yielding

MFF ^ ^F ^	 ^ i	 -' ^	
(E20)

1
QQ^

F	 d'^

7T

.w

s

w
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E

where	
AA,,^^	 r r ' T

r_ 'FF	 L v] [M6
7 r

^ 7	 (E21)^1 L J

T

If
F } — [ U	 F	 (E22)

and	

{ 
F ` }
	 [U jT [MC

(E23)

(gF ) contains the lower - derivative mass times acceleration terms. Equations
(E21) - (E23) must be evaluated every numerical -integration time point. To
reduce the computational time required, the matrices were multiplied algebraically
by partitions, and the results were programmed. The result, for the reducied
mass matrix, is

• ^ h1

	

.

ti is

V^ V^

V3 v1•

M^

I ►,

M^
a

I ►,

(E24)

m,
•

I^

E-7
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where [ 12] is the second -order identity matrix.

To evaluate the matrices [ Vi] , it is first necessary to compute the following
masses. In accordance with Fig. 2.4, the mass assigned to beam node i is

(E25)

9".	1001V

where p is an input -data quantity equal to the density of the beam per unit
length. The total beam mass is

B	 (E26)

If all of tho, material within the ABB were used to manufacture a beam, its length
would be equal to the input -data quantity, L max . Then

Nin	 _	 orr	
(E 27)

and the variable mass of the ABB is

s

m7rlar^	 " B
The [Vi] Is in (E24) have the following values:

NI i?

CV, ] -	 MPtMR

r'I

where MR is the mass 
of,.tAP

he rigid portion of the structure,

I - x,50 f /00 f ^zO0
^

the mass of the solar panels

} A	
(o

(1328)

(E29)

(E30)

E-8
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and M is the mass of the total structure

M ' '"Mo4r f' m/G D t m.2 D 0 'f' 14P

C V2 1  MBCU3 7 T W" fv,] 4 L„z<<^^.
whereY., (C )^ 	 to

00 US. + ,^ m jU 1P ' 1J

V3 	 V2,

where

C W) = C U31rCU3I

C W2	 l^'^^^ ^ ^^ 1

Tqq

(E32)

(E33)

(E34)

(E35)

(EM

(E3?)

and

[V ,C, j
 ^i o a Cus a CUs) ^ ^P C 6 J^ 6 1

d '	 (E38)

+ [-1 100 1  + C I2 00 1

The [Vi(c) ] 's are the constant portions of the [V i 's that are evaluated only
once, at t=0.

r
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The reduced load vector, (E22) , is

where

E-10

f
f2

F'R

Tz

IPL

XPz

^P
b

^P
6

^^ 1

F-2.

if I - (E 39)

(E40)

i



l
D	 0

6	 v

R 	 sa	 goo	 zoo	
t : 

r	 2
^^ 3 p 3

or
Ova 2

(SS c	 Q 	 r	
FFA-3	

_s^+ [Utj [Fs-0 + L^.5.] b20a

O

	

+ 
z	 u CP']f F , 1 + f T l + f T	

( E42)

C ^	 goo	 goo T

	

6': ► 	
p
d

Also, fps = Fps 1, the fore and aft component of the force on node P
i .

The reduced lower - derivative inertia vector, obtained by carrying out the
operations indicated in (E23), is

E-11
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I
E 2. Deletion of Coordinates of Node n

As discussed in Section 2.2 of the main text and Section B5 of Appendix B,
when Qn < Qc the coordinates of node n are eliminated in accordance with (B42).
The transformation required for this step is derived from this equation and

t	
the result is as follows: 	

(' _
1

	

	 F	 L	 F	 (E 44)

where {ZF } is identical to {Z F } except that {qn } is omitted; i.e.

toN

^L
N

N

uo,

.	 eioo

t	
(E45)

^^FS ^	 uP

OF

uP:
F

^p

f
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NI =

	

.^	 ^'la	 /Z

2	 I zn-^

^Wr	 ^T	 • • .	 ^	 'Z(E46)

I ti3	
^	

6	 ^_

I

I	 12
OPT

I	 ^

Theartitions of G involving the letter G are obtained b partitioning B 45P	 [ l	 g	 YP	 g(	 )
(or (B 35) when n=1) as follows

'	 ^E 47Gx. ^n Z	 Gn n Gnu Gn a	 ( )

where

	

[Gni	 (i=1, 2, ... , n=1) is a 2 x 2 matrix. These terms are only present
when n > 2.

"RAW

[G nu ] is a 2 x 2 matrix

[G e] is a 2 x 3 matrix



and, in (E46) ,	 r G '	 ^	
7

where the {0} in (E48) is a 2 x 1 zero vector. When kn < lac , (E44) is substitu-
ted into (E20) and the result is premultiplied by [G]T in accordance with the
procedure of Appendix D. When (E44) is differentiated twice, the derivatives of
[0] appear. These matrices were found to be small for the ABB problem and are
multiplied by small quantities deflections and velocities. Consequently, the
effects of the derivatives of [0] were neglected.

E3. Equations of Motion

The equations of motion are (E20) when kn > Re, or are given by the result
of the above procedure when Rn < Rc ; i.e., the equations of motion are

1^ 	 d'
where

^MFFJ	 ^n ^. ^c
r I' 1	 '°	 T

L	 cal 

1	 ^'^ Ic'
f 
Z I	 < "ec

(E49)

(E50)

(E51)

(E52)

p]	 y^R
4, 9 / e

_	 0
 

fjF	 ,I
E-15



E-16

In view of (E43) and (E46),

(E53)	

1k>

41

0

0

2W*2

C)

hat + $1

G'x vtis
0

0



where

P
^2 9rt i 3	 E

o21.tfq

^2x! f-S, - P6 Aso, i

of

P9 = Mg L	 (E55)

1

with
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Appendix F

STIFFNESS - PROPORTIONAL DAMPING

To obtain some insight into stiffness -proportional damping, consider the use
of this type of damping in a conventional fixed-geometry vibrationproblem, i.e.,[MY "I + °c [ K J{ • j + [Kl f ^ S = € f }	 (F1)

Equation ( 171) is reduced to modal coordinates by substituting the following
transformation:	 Q' I 

_ [^
(F2)

The result is premultiplied by [ ] T  yielding
2	 —

+ of Gt! . 	 . + GtJ . 	 .	 F	 (F3)
/	 A	 s	 d	 A

r

where wi is the ith undamped natural frequency, pi is the ith modal mass, and
Fi is the ith modal. force. If viscous damping were assumed, then in place of
(F3) , the equation would be

	

-f .2 LK - W .	 ^- W 2	 _	 (F4)

where yi is the ratio of the damping coefficient to the critical damping coefficient
t.	 for the ith mode. By comparing ( F3) and (F4) , 

(F5)

	

,c	 ,Z	 s

It is seen that the damping ratio is proportional to the frequency; consequently
higher - frequency contributions to the response are more highly damped than
lower - frequency ...itributions when stiffness - proportional damping is used. In
Section 2 . 7 modal reduction is extended to variable-geometry structures,
consequently this conclusion will also be valid for these structures.

f
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Appendix G

MISCELLANEOUS COMPUTATIONS FOR BEAM -FABRICATION PROBLEM

G1. Recovery of Coordinates of Point n When I  < z 
I

Substitution of (E47) into (B42), for the case when t o < 9,c , yields

2
+jGn:c] f uioo f + `^» ®^ {Boo

Therefore,

x-i
•N 	 Cans ,¢• } t ^G»xI{^^oo^'

s=^	 0

^ M ^ = G. ^Gni^^o^^+[G^^]
€u^oo^ +[Gn g)

€8/00^
;_1

In forcing (G2) and (G3), the variation of the partitions of [G n] with time was
neglected. The derivatives of these partitions are multiplied by small displace-
ments; therefore, unless the beam emerges rapidly, the effects of the variation
of [Gn ] are small. Also, the solution for node n when Z  < R c is approximate
to begin with; consequently it is felt that the additional effort to compute the
derivatives of the partition of [Gn] is unwarranted. Equations (G1) - (G3)
are used to compute the motion of node n when Q,n < Z c and {qn ) is not an
independent variable obtained by the numerical -integration process.

G2. Displacements of Nodes Relative to Coordinates Fixed in the Orbiter

If {v	 the displacement of node i relative to axes fixed in the orbiter,

(G1)

(G2)

(G3)



i
fu,;} s £ tr. i +- fu oo} tfr(eoo)Jfa.i

	 i
Since the last product in the Jove equation represents a cross product

Cr(e,,, )1 f a^ _ - Ct'<a; )j {100
	 l.^

Therefore,

fu - j - f a	 + rr(^..)j [a19	 0,0 ^	 (G4)

Y

The pitch deflection angles of the solar -panel nodes relative to the orbiter

are

P 	 ,
v	 J	 (GF)

v	 •	 1

G3. Motion of Beam Nodes Before They Emerge From the ABB

In the program output, before the beam node emerges from the ABB , its

motion is set equal to the motion of the ABB ; i.e.,

zeSO	 X00	 So	 ioo	 (G6)

By differentiating (G6) ,

use r fit ?00 1- Cr^asa
(G7)

^± Y 	 G	 G 7 an E 3 define eEquations( 6) , ( ) , d ( ) 	 the motion of any node before it emerges	 _ e
4

from the ABB .	 {
_

G-2
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G4. Internal Torque at Root of Beam on ABl3

The torque applied by the beam on the ABB is obtained by summing the

torques attributable to the applied and inertia loads on the beam (see Fig. G1) .

The result is

it
F . y{

n

,^:, 

G5. Axial Load in Beam
t.

The axial tension load in the beam applied between nodes i and i + 1 is

denoted Pi . Its value is obtained by summing the applied and inertia forces on

the portion of the beam above and including node i. The result is

s

P	 r=	 F•3 -(•^ 3
(G9)

where 'r3 is the acceleration of the axially rigid beam in the Z ,, direction. Its

value is given by (E2) where the subscript i has been dropped since the value

is the same for each node.
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Appendix H

i
APPROXIMATE ORBITER VERNIER CONTROL SYSTEM

Hl. Control Law

The basic concepts for the control system are discussed in Section 2.6.
Details are presented in this appendix. The switching curves of Fig. 2.7 are
based on the angular Accelerations induced by the thrusters on a hypothetical
rigid structure. For the beam -fabrication problem, this structure consists of
the system under consideration prior to beam fabrication. For the beam reloca-
tion problem, the hypothetical structure consists of the system under considera-
tion with the beam and RMS (i . e., body B) absent.

The equations for the switching curves are the phase-plane trajectories
for constant negative angular acceleration, a N. for curves A and C and constant

7
positive angular acceleration, a P. , for curves B and D ; thus a N < 0 and

ap_ > 0. These curves are used to define the regions in Fig. 2.7. If

•z

e' C 0 and e • <	 eDda	 v 
or	 (H1)

^ z

e •	 ®  and ^°^ < Z ^, eDB.v	 y Apply positive
torque about
axis j

then the angular motion is in Region 1 or 2 and positive torque is applied about
axis j. If

H-1



or

.z
^° • o and	 e• --d- + ep B .

e

and G ' -_" + e
f	 O	 Z ASP ,	 D eJ

v
Apply negative
torque about
axis j

s

(H2)	 a

then the angular motion is in Region 3 or 4 and negative torque is applied
about axis j. If neither (H1) nor ( H2) is satisfied, then the motion is in
the dead band, and no torque is applied about axis j.

In order to determine the value of a N and a pj , the inertial characteristics
l

of the hypothetical structure are first determined. The location of the center of
mass of this structure is

^ ^^ ►^ S ^^ ` mSD ^ zd'6 ^  m/at F-/04 + m2OOM	 Z0O
6

(H3)

where the primed symbols have the following meanings:

Symbol	 Definition

Beam	 Beam
Fabrication	 Relocation

M'	 M	 M

m50	 mmax	 m50

The location of each node relative to the center of mass is

I F-Col -
= so ioo, .^ oo; P, P= , ..., r	 (H4)

H-2
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e	
Once the 

(al ) 's are computed, the total moment of inertia of the system about
the center of mass may be computed by the following equation:

`Ir	 ` ItooJ L-1.2001 —	 ' L r(4 ' 	 (H5)•	 ^	 1

so,ioo, 200; P„ Pz ... P
where m50 is replaced by m'S0

The six thrusters are shown in Fig. H1, and their location and thrust
vectors are stated in Table H1. The moment-arm vector from the CM to the i th
thruster is

zj';
i

	

	 (H6)

and the torque that ii exerts is

I T; I = [r (a ;)] f Fi

The contribution of the i th thruster to the angular acceleration of the hypo-
thetical structure is

jai,	
—1

(H8)

The thruster assignments are shown in Table H2. For example, if e 2 and
e2 are in Region 1 of Fig. 2.7, a positive torque is required about Axis 2. Then,
in accordance with Table H2, Thrusters 1 and 2 have been designated to fire.

{	 They cause an angular accelerationof a R1,2  +a R2,2 of the hypothetical
system about Axis 2. Because of cross products of inertia, there will also be
some acceleration components about Axes 1 and 3; however, these components
will be small. Their effects are left as a disturbance which is automatically

OIL
I^
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TABLE H7 LOCATION OF VERNIER THRUSTERS AND VALUES OF THRUST VECTORS

THRUSTER
DESIGNATION

GEOMETRY
(in)

THRUST

THIS
STUDY NASA ZA1 ZJI2 ZJ13 FA1 FJ12 FJ 3

(u

1 F514 324.35 53.33 357.9 0 -Fj sin 37' Fj cos 37°

2 F5L 324.35 -53.83 357.9 0 Fj sin 37° FJ cos 37'

3 R50 1566.0 118.0 455.44 0 0 F^

4 1-51) 1555.0 -118.0 455.44 0 0 F^

5 R5R 1565.0 143.38 450.0 0 -F^ 0

6 1-51- 1585.0 -143 38 458.0 0 F^ 0

1665-037(T)

TABLE H2 THRUSTER ASSIGNMENTS AND ANGULAR ACCELERATIONS THAT
THEY INDUCE ON HYPOTHETICAL STRUCTURE

TORQUE DIRECTION THRUSTERS FRACTION ANGULAR ACCELERATION
OF TIME WITH BEAM RETRACTED

AXIS DESCRIPTION PULSED
to ROLL PITCH YAW

+Z1 COUNTER 3 1.0 %3.1 %3,2 %3.3CLOCKWISE
ROLL 1,2 µR µR(%I,I+%2,1) AR'%1.2+%2,2) AR(%1,3+%2,3^

TOTAL *'0tR3,1 0 "'DR3,3

-Z1 CLOCKWISE 4 1.0 %4,1 %4,2 %4,3
ROLL

1,2 OR "R'%I,1#R2.1) ;R(%1,2+%2,2) "R (% 1.3+0'R2.3)

TOTAL %4^1 0 ftojR4,3

+Z2 PITCH UP 1,2 1.0 %1,1+%2,1 aR1,2WR2,2 %1,3+%2,3

-Z2 PITCH DOWN 3.4 1.0 %3,1+%4,1 aFi3,2	 R4,? %3,3+(kR4,3

+Z3 YAW LEFT 6 1.0 %6,1 %6,2 6,3

-Z3
I

YAW RIGHT 5 1.0 aR5,1 DR5,2 - 3

1665 (T)
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corrected by the control system if it becomes sufficiently large. Thus %1,2 +
'^U , 2 is the main angular-acceleration component induced during a pitch-up
maneuver while the roll and yaw accelerations are disturbances. The main
angular acceleration components are enclosed in a box in the table.

For the case of roll, the induced pitch error would be large; therefore it
is assumed that thrusters fire immediately to correct the pitch error. For example,
for a positive roll torque, Thruster 3 is fired, and Thrusters 1 and 2 also immedi-
ately fire to counteract the induced pitch disturbance. It is assumed that they
fire only "R times as long as Thruster 3 where "R is selected so that there
would be no pitch disturbance; i.e.,

° V S, L

	f 	
(H9)

The accelerations used to set up the switching curves of Fig. 2.7 are the
main accelerations of Table H2. i.e., for Axis 1,

°rP	
f'3.

(H10)

t

v^

r

For Axis 2,

s
°rP= ^R/ 2 f °rR2^ 2

°SRS; z
For Axis 3,

aCN3 ^ °fRs 3
H-6

(H11)

(H12)

r;



H2. Control Loads on Orbiter

The moment arm and torque exerted by each of the six thrusters on the

orbiter about its center of mass are, respectively,

aJt i	 zJ< S jZz^Ov ^ ^ ^= ^ Z' ... J 6	 (H13)

r	 tt

T^	 L rtaej,	 rjt	 I	 = / ,Z^ ,, ,l 6	 (H14)

The total control force and torque on the orbiter, about its center of mass, due
to a positive torque command about axis i is called {F Pi} and {T Pi }, respectively.

For a negative torque axis i, the values are called {F Ni} and {T Ni }. The
equations for these quantities are

FPS	 L Fj s S i',GIR 
fPz 	 (H15)

where

IF. I = [F I +€F Z i 	 (H17)

jFt.j,11 _ JFi3 1  t tFj t 	 (H18)

H-7



and

2

[F3 FJ6
 I	 (H18)

I F13
23 	 f FS	 (H20)

€ T, - fT3 } +,a, IT, I	 (H21)

[To 1 - fret I + A? 	 1	 (H22)

where

iTPij _ €TJI I + J2I	 (H23)

i-r,i i 3 = I J3 I + IT y I	 (H:4)

and

T.	 € Je	 (H25)

ITN31 1 Ts3	 (H26)
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Appendix I
t.

NUMERICAL DATA
t'

t,
The initial structural data was obtained from NASTRAN models that were generated

from previous investigations. Models were available for the RMS and the 25 KW power
t	 supply. The data for these models was used in the generation of the input data for

the NASTRAN and FORTRAN programs of the present study.

i '	 I1. Platform Geometry

IF	 The platform is composed of the orbiter and the power supply with its solar
tr panels. The node numbering scheme is shown in Figs. 2. 1, 2.2, and I1, and the
V

	

	 geometry is given in Table I1. Nodes 201, 202, and 206 are used to define the stiff-
ness of the rotational solar-panel drive in the previous NASTRAN model. They were

f	 not included in the variable-geometry FORTRAN program. This region is very
i .

	

	 stiff compared with the solar panels, and it assumed to be rigid. All of the
mass in this region was lumped into the rigid portion of the power supply. If

f
E

	

	 mass were assigned to Nodes 202 and 206, low-amplitude high-frequency effects
would have to be dealt with in the direct numerical integration.

4

I2. Beam Fabricated by ABB

The beam fabricated by the ABB is a 1-m deep triangular truss (see Fig. I2).
!	 The truss members are .015 in 2024-T3 aluminum. Beams of various lengths have

been fabricated with the Grumman ABB ground demonstrator and tested. The
f°
f	 overall beam properties are as follows:

r density per unit length, P = 1.843x10
-4

 lb- sec t/in2
modulus of elasticity, E	 = 10.5x10 6 lbs/in2
area moment of inertia, I = 95.0 in4
bay length	 = 59.0551 in (1.5 m)
number of bays between
nodes	 = 14

f	 The beam is assumed to be axially inextensible. Its allowable bending moment is
f - 13,600 in-lbs which includes a factor of safety of 1.4 (see Ref. 11). This moment

was derived from test results.

I-1
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23

Z2

R80.1665.128(T)

Fig. 11 Front View of Solar Panels

TABLE 11 PLATFORM GEOMETRY

NODE NO. GEOMETRY
FORTRAN NASTRAN Z1 Z2 Z3

50 50 1053.27 0.0 488.0
100 100 1260.29 0.0 385.1
200 200 430.61 0.0 616.36

' 201 210.0 0.0 599.0

• 202 210.0 -59.04 595.0
P1 203 210.0 -584.36 599.0

P2 204 210.0 --1109.7 599.0
P3 205 210.0 -1635.0 599.0
• 206 210.0 59.04 599.0
P4 207 210.0 584.36 599.0
P5 208 210.0 1109.7 599.0

P6 209 210.0 1635.0 599.0

*POINT IS RIGIDLY CONNECTED TO CENTRAL MASS OF POWER SUPPLY AND IS NOT A NODE IN THE
FORTRANPROGRAM.

R80-1665-143(T)
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0.16R (3) ITYP)

.015

FLAT PATTERN - 6.361
FULL-SCALE — DIMENSIONS IN INCHES

B. TYPICAL CAP CROSS SECTION

0.63

ITYPI

2.60
(REF)

45° i3rw
FLAT PATTERN = 4.307
FULL-SCALE — DIMENSIONS IN INCHES

C. TYPICAL BATTEN & BRACE CROSS SECTION

Fig. 12 Beam Fabricated by ABS
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I3. Orbiter

The orbiter was idealized as a rigid body. Its mass properties are as follows*:

mass = 530.36lb-sec2/in

111	 = 1. 097x1071b -in-sec2

1 22	 = 7.664x107 lb-in-sec2

1 33	 = 7.988x1071b-in-sec2

I12	 = 3.6x1041b-in-sec2

I13	 = -3.192x106 lb-in-sec2

1 23	 = -2.4x104 lb-in-sec2

The above values include the fixed-mass portion of the ABB . The variable
mass portion initially contains sufficient mass to construct a beam of 199.5 m;
i.e., Xmax = 7854 . 33 in (191.5 m) .

14. Power Module

The power module is shown in Fig. I3. The rigid portion has the following
mass properties:

mass

111

122

I33

The cross pri

= 79.5829 lb-sec 2/in

= 21.Ox106lb -in-sec2

=1.21x1061b- in-sec2

= 2.63x10 6 lb-in-sec2

ducts of inertia are zero.

To simplify the model it is assumed that the solar arrays act as beams even
though the higher-frequency modes would involve membrane motion. The funda-
mental mode, solar array bending at .04 Hz, agrees with the mode calculated using
a more detailed model. The solar-array beam-model density per unit length is
1.97x10 3 lb-sec 2 /in 2 , and, accordingly, the mass assigned to each interior solar
panel node, P 1 , P 29 P 4 , and P 5 (Fig. 2.1) is 1.03490 lb-sec 2 /in. Che pitch
moment of inertia of each of these nodes is 13040. lb-sec 2-in. The mass of each

*The convention for the cross products of inertia is Iii = fx i x^ dm.
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RM1665-130

+X +Y

THERMAL RADIATORS 68M2
1731.6 FTi9

11	 i

PAYLOAD
MOUNTING
INTERFACE

WENT STRUCTURE

HI-GAIN
ANTENNA
2PLACES	 BERTHING STRUCTURE

PAYLOAD/ORBITER
INTERFACES — 5 PLACES

CMGs 43 PLACES)

83AM
2.6 FT)

9.88M
.132A FT.)

SOLAR ARRAY (80 kW)
157.9M2 (1700 FT2)

Fig. 13 Power Module Configuration
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4 _

tip node, P 3 and P6 , is .517450 lb-sec 2 /in, and the pitch moment of inertia of each	 J
of these nodes is 6520. lb-sec2-in. The moduli of elasticity in bending. and shear
are 10 . 0x106 and 4 . 0x106 , respectively. The moment of inertia for fore and aft
bending is 6.023 in4 and the torsional moment of inertia is .7455 in4 . The panels
are assumed to be rigid for in -plane bending and are assumed to be axially
inextensible.

I5. Kinematics of Beam Fabrication

The kinematics data (Fig. 2 . 5) characteristic of beam fabrication by the
Grumman ground-demonstration ABB are as follows:

to = 3.5 sec

t  = 53.0 sec

t  = 3.5 sec

T = 187.5 sec

The 59 . 0051 in ( 1.5 m) bays are fabricated at rates determined by the above times.

I6. Remote Manipulator System

The RMS with its degrees of freedom is shown in Fig. I4. As indicated in
Fig. 2, of the Summary and Introduction, the elbow is straight in this run. The
model has been simplified in that the pitch and yaw rotations in the. wrist both take
place about the sr°ne point, the pitch rotation joint in the wrist (see Fig. 3.2).
The location of the shoulder joint, Node h, is

Z 1 = 697.5

Z 2 = -108.0

Z 3 = 444.8

Figure 15 shows a schematic representation of the RMS. The properties of
each component . re listed in Table I2. The 52 . 6 deg elevation angle and the 19.0'
deg offset angle shown in Fig. 2 are not fundamental data; these values can be
calculated from the manipulator link lengths in Table I2 and the location of the
shoulder joint and the fabricated beam. The values of these angles used in the
NASTRAN input data are:

,)ffset angle, a	 = 19.62.90

elevation angle, 6 = 52.5790

I-6
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T"LE 12 REMOTE MANIPULATOR -SYSTEM PROPERTIES

UNDINO STIFF. TORT. AXIAL

Ell^d O0 (LS-1N'1
LEN

(IN)" (1.841112) (L8)LINK DESCRIPTION (1.8)

1.11 MANIP. ")SIT. MECH. 13.79
139.14

3.72 + 7• 5.94+7 3.63+7 2.76+7

Lit PED. INTERFACE TRANS. 11.00 3.57+8 3.57+8 SJM+8 1.37+8

L29 OUTER YAW SLEEVE 1.85 9.(M + 7 9.94 +7 1 A7 + 9 1.73+8

L23 SHOULDER YAW TRANS. 3.5 70.19 4.67 + 8 9A7 + 8 6"+88 7.80 + 7

L23' SHOULDER PITCH CENT. TOROID 6.65 3A2+8 529+9 3.87+8 3.25+7

L3'4 ISHOULDER PITCH TRANS. 28.5 1.46+8 7.76+8 5.72+8 3.65+7

L34 UPPER ARM BOOM 197AN 305.13 1 Al +9 1 Al + 9 7.11+8 8.73+7

L34' ELBOW TRANS. SECT 25.5 4A9 + B 1.01+9 5. r+ * B 3.98+7

L4'51 INNER TOROID TRAN. SECT 12.5 2.77+8 4M * B 2.77+8 3.34+7

L45 LOWER ARM BOOM 225JM 187.58 9.80+8 9.90+8 4.94+8 4A8 + 7

L45' WRIST PITCH TRANS 39.5 JJ 3.84+8 4.78+8 3.24+8 IA5+7

L5'B WRIST PITCH INNER TOROID 6A 5.13+7 6.16+7 4.24+7 3.06+7

LIM PITCH TO YAW TRANS 6.0
1	

18.95 8.36+7 8.36+7 6.29+7 1.60+7

IN' WRIST YAW INNERTO°OID 6.0 8.58+7 7.23+7 594+7 3A6+7

L67 YAW OUTER TOROID 9966 2.10+8 1.05+8 1.18+8 7.54+6

L67 AFT WRIST ELEC. COMP. 10.14 96A0 1.63+8 1.63+8 1.22+8 1.79+7

L67' WRIST ROLL INNER SLEEVE 9.849 1.10+8 1.10+8 8.27+7 4.33+7

L71S WRIST ROLL OUTER SLEEVE 5.0 1.32+8 1.32+8 IA0+8 5.10+6

L78 END EFFECTOR 16.0 7.21+7 721+7 296+8 2.55+7

KBxx KeYY Kozz SLIP TORQUE (MINI
JOINT FUNCTION (IN-L8/RAD) (IN•1.81RAD) (IN•L8/RAD) (IN-1.8)

2 SHOULDER YAW 1.61+7 9260

3 SHOD :DER PITCH 2.79+7 9280

4 ELBOW PITCH 2.65+7 6340

5 WRIST PITCH 1.57+7 2770

6 WRIST YAW 1.05+7 2770

7 WRIST ROLL 298 + 7 2770

•Ex)onent to the bae ten.

R80-1665-144(7)
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tb = A 0 (d34 ) -77.5 sec

I-10

r

In order to avoid the appearance of high frequency oscillations in the
numerical-integration solution, several stiff members have been idealized as rigid
bodies. The post, consisting of all members between the orbiter and Joint 3
(of Fig. I5) is rigid. As described in Appendix K, the structure between Joints 3
and 4 is rigid in the axial direction, and relative motion cannot occur along a
straight fine between the tip of the end effector (Node q-1) and the elbow (Node q)
of Fig. 3.2.

Since the RMS • is compact and stiff relative to the beam, all of its mass has
been lumped at three points, the tip of the end effector, the elbow, and the
shoulder. The first two of these masses are:

mass at tip of end effector, mq-1 = .5089

mass at elbow, mq	 = .9037

Since the shoulder is rigidly connected to the orbiter, its mass has been included
in the orbiter mass properties.

I7. Body B in Beam Relocation Problem

Figure 3.5 shows the idealization for Body B. The RMS properties are given
in Section I6. The beam is 105 m. As it the Beam-Fabrication Problem, there are
14 bays between nodes. The geometry and mass data for Body B is presented in
Table I3. The coordinates of the nodes are expressed in the Y axis system.

The motion of the shoulder is based on information in the Shuttle Payload
Accommodations Manual. The angular acceleration and deceleration is 8x105
rad /sec 2 and the cruise angular velocity .0062 rad /sec . Then, by using the
formulas for uniformly accelerated motion, the following input-data times were
derived.

A) o 0> 27.5306 deg

to = tc = 77.5 sec



TABLE 13 GEOMETRY AND MASS DATA FOR BODY B

GEOMETRY IN YCOORDINATES 41N)
NODE MASS

I)1 ^2 113 41.6 SEC2/IN)

1 338.329 -23JM 4177.06 .0761870

2 338.329 -23.638 3350.29 .152374

3 338.329 -23.836 2523.52 .152374

4 338.329 -23.836 1696.74 .152374

5 338.329 -23.836 889.072 .152374

6 338.329 -23.836 43.200 .0761870

7 338.329 -23.836 420.182 .5089

8 152.575 0.0 199.409 .0037

R80-1665.145IT)
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B)	 27.5306 deg

o ^ (det^)
to = t 	 4.58366x10-3 sec

t b = 0

In case B above, the RMS never reaches cruise velocity. In 
all 

runs, manipulator
motion starts 1 sec after the run begins ( t 	 1.0) .

I8. Miscellaneous Data

Beam Fabrication Problem:

Constraint length, kc	= '100 in
Damping coefficient, a 	 = .01
Numerical integration step * = . 1 sec (except where indicated)

Beam Relocation Problem:

Damping coefficient, a	 = .01
Numerical integration step* _ . 05 sec

Controls data common to both problems:

Thruster geometry is given in Fig. H1 and Table H1
Thrust, Fj	= 25. lbs
Deadband , eDB = .1 deg

*The numerical integration time step sizes were obtained by running the program
for each problem with different step sizes and determix:ing the largest step size
that still produced accurate results. For the step sizes used, the computer-
generated response curves were overlayed onto response curves obtained with
smaller steps, and no difference in the results was detected.

I-12



Appendix J
EQUATIONS OF MOTION FOR
BEAM-RELOCATION PROBLEM

Figure 3.1 shows the idealization for the boam relocation problem. The notation
for the transformation between coordinate systems is shown in Fig. J1. As indicated,
[E] transforms vectors with components in Y coordinates to Y coordinates, and [D]
transforms vectors from the X to the Y coordinate system. Since {e100) is the rotation
vector of the orbiter, the transformation from Z to X is [ i] - [ r c e100) ] where [ r ( ) ]
is the cross-product matrix defined by (EQ. (see Ref. 2, Vol. 1, Appendix B).
Thus,

[ c 7 = [Dj [ ii — [r!(eooW (J1)

J1. Equations of Motion for Body B

First, the equations of motion will be developed for Body B, taken as a free
body (see Fig. J2). The following notation will be used:

m  is the mass of the portion of the hinge that moves with Body B .

{uh ) is the absolute deformation erector of m h expressed in Z (i.e., in the
Z coordinate system)

Y is a fixed coordinate system in mh and Y rotates at { W )

{ i ) is the relative deformation vector of mi (i = 1, 2, ... , q not including
the hinge) , expressed in Y

1	 {bi ) is the undeformed positon vector of m i in Y

{ W ) is the angular-velocity vector of Y expressed in Y

Newton's law is written in rotating coordinates for a mass point in Body B.

6 +	 +
l	

(J2)

J-1
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(J7)EM661=
m1 ^ 3AO

where the (Y's are expressed in Y and

r• _ ^ it + € b .	 03)
a

is the vector locating m  in Body B.

The center of mass of m  is assumed to be located at the hinge paint. Any

offset portion of the hinge mass can be included as a separate mass in one of the

equations (J2) and can later be constrained to be rigidly connected to mh . The

equations of motion of m  are	

s
1711 € LC h	 — 1 fb	 (J4)

C 	 i- [r(w)j C-r7f t 3 
_	

^)	 (J5)

where [ I h ] is the inertia matrix for mh , {fh } is expressed in Z, and {th) is

expressed in Equations (J2) , (J4) , and 05) are collectively written as

fi+IIows :

M	 MM	 f 1	 1
bb	 A, ' bt	 .,, b r	 trio	 b	 b

N
M	 _
tih
	 uti — f^	 0

N
where

mI is

(J6)

hAf I
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N

^:1 j' (r )
N

m^f(y
f

i
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Imi a Mti l ' 	

caiu

f^

NZ
f ^ =	 (d12)
b	 '

Q1
(J13)b•

0^

where

io1^• (.z Crw)]{t• j ^' t1 tw)]7"f 3	 014)

and

dh
	 L r(wJ^ ` I {,^ W ^

	
015)

'r

J-6



i J2. Lagrangian Form for Body B

As indicated in Appendix D, the procedure used to delete the constraint forces
i	 requires that the equations of motion first be transformed to the Lagrangian, or

symmetric, form; i.e., the loads on the right side must be generalized forces
ti	 corresponding to the coordinates in the sense that

d VV S =	 IT L, ff,	 (J16)

where {f} is the generalized force vector to be determined, and

i
l

t
ti

S Tr } = c5 J 	 (J17)

x	 a 7h

where {nh } is defined by the relation {dam} /dt={dw}. {Trh ) is not an actual coor-
dinate but is a quasi ca-)rdinate (Ref. J1) ; however, this fact does not alter the
constraint procedure developed in Appendix D.

+ To determine {f}, the virtual work of the system will be developed in terms
of {f}, the force vector on the right side of (J6) and { d -ff}. The result will have
the following form

K 	 T CQ ^ 	 018)

By comparing (J16) and (J18) , it is seen that

	

1 1 _ E Q, T^ i	 (J19)
Thus, if the formulation (J6) is multiplied through by [Q] T , the forces on the
right will be the generalized forces corresponding to the coordinates in the
equation. Consequently, the equations will be in the desired Lagrangian form
with a symmetric mass matrix.

The virtual work is obtained by giving each coordinate, in turn, a virtual
displacement while holding the other coordinates fixed, and determining the con-
tribution of the work done by the loads. l: hese contributions are summed, and
the result is

J-7
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7)
6	 b	 b	 h	 i,

6	
^	 ^ J d

where

EN

[E]

	

	 (J20)

E

and

(,	 1 I	 J	 ^ J J
	 (J21)

The expression for d W is placed into the following form:

(•1 y2)
h

Comparison of (J22) with (J18) shows that

E r T
ti	 Z tib

^Q1 =	 13

I3

(J23)
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The formulation 06) is now multiplied through by [!1] T to obtain the desired

Lagrangian form. The result is

M	 M	 M .
1 f D. )	

h 
q

	

OW bb OW bx	 6r YO 	 11 

	

bX	 # Mzr	 2l h _ 
hAt	

(J24)
	T 	 l^ T

	

l^t	 w

	

Mbr N x	 tir n• ►°r	 .r	 " r

where [M bb ] ' [Mbt]' and [Mbr] are defined by (J7), (J9), and (J10), and

	

Lr^z^	 Mb D 3 I	 (J25)

with

M =

	

	 m.

	

b	 .c	 'Vill 	 (J26)

rl c
g-	 z

	

ITh { 	 G m [rC1A . )1	 028)

^6	
_ 1 7b	 b	 (J29)

	

S - 
E ^T	 f  ^ + 2 §
	

030)

	

z	 ^	 ^.cr	
A	 h
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a
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it

(J32)	
All

The three matrix equations embodied in (J24) can be identified as Newton's law
in Y axes for each mass, Newton's law in Z axes for the entire system, and torque
equals rate-of-change of angular momentum for the entire system in the Y axes.

J3. Rigidization Constraints for Body B

In order to delete high-frequency effects from the formulation, thereby
facilitating direct numerical integration of the equations of motion, stiff regions
of the structure are idealized as rigid regions. The equation expressing these
rigidities is

where {w) contains a reduced set of the coordinates in {vb ). The number of
coordinates in {w) is v, so that [R] is a 3q x v matrix. The specific form of
the rigidization matrix [R] is developed in Appendix K. The relationship be-
tween velocities is

^T	 R	 ur

h =	 3	 uh	 (J33)

AOI

OV

W	

L

	 ^3 W

It can be shown that the constraint procedure of Appendix D is also valid when
some or all of the coordinates are quasi coordinates, e.g., when angular velocities,
such as {w ) in the current analysis, appear in the equations. The procedure
is to substitute (J33) into (J24) and to then premultiply the equations by the
transpose of the coefficient matrix in (M). The result is

	

Mbr	

1	 ^^

,r bb ^mr i

Mir N h = hx

,T
M 

,	 w	 h,
A, br	 ,. qtr	 rP

(J34)
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where

l [MMbb] = [R"I' 
T 

D4 12 7 f ^^b

r	 C^rr] _ lNrtl
t

(J35)

[M' = ^R ITC►^b^ ^b^

FR]T IM1 hr	 brI

f

and, using (J29) - (M),

6

E 
T	 L^	 f	 (J36)

J4. Stiffness Matrix for Body B

The right side of (J34) contains the generalized forces associated with the
coordinates {w) and {uh } and the quasi coordinate { 7rh ) corresponding to {w } •

^d	 The portion of these generalized forces due to stiffness is denote d {h(hs) },

J-11
3



(h,(81 1, and {hrs) 1, respectively. If the system is given a differential displace-

ment , the change in the loads due to stiffness is

K K^. K
el

 jwb	 bb "No
!s)	 rd	 _	 K T K K r oC u^	 iM)

rs)	 r	 r
d hr	 Kar K&r Krr	 ^y

Equation (J37) is valid for any differential values of {dw 1, {dur ), and {d?rh). If
{dw) is set to zero, then the loads cannot change due to any arbitrary motion of
the base; i.e., {dh( ) 1 = {dhts) 1 = {dh(s) } = 0 for any values of values of
(du hI and {dirh ). Consequently,

[Kkj - [ K6 j  = [Khj ` [ Kt , ] - [ K,j - 0
Thus,

KbbNb

^s)	 _ 0
N* ti

his) a
r ^-

These loads are incorporated into (J36) , and the result is

^RIT^IFy ffal)—CKeb]{w}
fk , I = [EIT	

F-j +
	

(J38)	 Y

i
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r

where (Fb ) and (Fi ) are the values of {fb ) and UP, respectively; however, the

`

	

	 capital letters have been used to denote that these load vectors do not include

forces due to stiffness. It is seen fro ►n (J37) that [Kbb ] is the stiffness matrix

of Body B cantilevered at the hinge poLit, h.

{	 J5. Body A Taken as a Free Body

(	 The equations for Body A taken as a free body are obtained from the equa-

tions for the Beam Fabrication Problem with the beam terms set to zero. The
i

results of Section 2.5 and Appendix E are used, and the matrix equation of
4	 motion (2.17) reduces to

r	 1
V, VN z	 ^io^	 2le^oo	 ^ FR

ti

l	 V3 Yif	 ®iG0 +	 KA	 ei0o = TR i (J39)

!`PP uP	 ~P	 fP

	

10	 L.	 —	 f	 OW

where [KA ] is the stiffness matrix of the platform considered as an unsupportedi
structure, and

MR

M
s

M

with

MR — ors o 9r1i0 a t 2 0

i	 M= MR 4 ^PR
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(J42)

where [U 4] , [V (
2c) I , [W 2) , and [V4c) I are given by (E15) , (E34), (E37), and

(E38), respectively. The other terms in (J39) are

%ylP

rpz

mPI

rp

[MP91 =
(J43)
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(J45)

S( 	 fFTQ —CvTFs + `-Js IT 2oo +•L

t^

+ 1T/oo i + f T2 00

(J46)

where fF 100 } and {T 100 } are total external loads on the orbiter plus the loads
applied by the RMS at the hinge. The other terms are defined in Appendix E.

J6. Linking of Body A and Body B - Hinge Constraint

{

	

	 Equations (J34) and (J39) are-combined into a single matrix equation.
Equation (J38) is used and the result is

i
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where

b	
ER Tr ( f 3 — fgb 

a_r

(J48)
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As indicated in Fig. 3.2, the X axes are fixed in the portion of the hinge
that moves relative to the orbiter. 	 To rotate the X axes, that are fixed in the
orbiter into the Y axes, the following two rotations are performed (see Fig. J3) :

1.	 Rotate the X axes into the X 1 axes by rotating about the X 3 axes through
a positive angle a (i.e., positive in accordance with the right-hand
rule) .

t
2.	 Rotate the X' axes into the Y axes by rotating about the X 12 	through

an angle of

Thus, a is the offset angle of the manipulator system relative to the orbiter
center- line, and 0 is the RMS rotation angle ( see Fig. 3.3) . 	 The transformation
of vectors expressed in the X axes into the X 1 axes is accomplished by multiplying
by the matrix [C(a)]  where [ C ( ) ] is the transformation for a positive rotation
about the number 3 axis; i.e., 

G6^J. a(	 4o&n ae	 O

[C ('^ )] =	 -

r 0	 0
The transformation from X' axes to Y axes is [B 	 where [B( ) j is the trans-
formation for a positive rotation about the number 2 axis; i.e.,

0	 av,^^

6 - ^^ -	 0	 1	 0	 (J50)

t

The derivative of this matrix will be needed. 	 It is

—,ems+ ,^	 0

1 $ ^^	 0	 0	 0	 (J51)
L.	 r
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R80-1665.135(T)

Fig. J3 Rotations to Develop Transformations from X Axes into Y Axes
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Since [D] is the transformation of vectors expressed in the X axes to the Y axes,

and

(^	 i	 ^^^ i fir= t i')1 (J53)

[D] is used in (J1).

Within linear terms, the angular velocity of the Y axis is

where

feJ
0

0

By differentiating U54),

€U^ — 1.	 1©.	
i- ^^ t 3	 t^pS	 (J56)

The hingn-point deflection can be related to the orbiter coordinates since
the orbiter is rigid. The equation is

where

s

where (ah } is the location of the hinge relative to the orbiter cm (Fig. 3.1) ,
and [ r ( ) ] is the cross-product matrix (see (134)).

In view of (J57) and (J56) ,
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where

Thus, the equations required to transform (J47) are
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(J60)
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(J61)
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(J62)
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where each of the two {0) partitions in the left side of 062) are 3 by 1 vectors.
In accordance with the constraint procedure, (J61) and (J62) tire substituted into
the equations of motion (J47) and the result is premulitplied by the transpose of
the acceleration-vector coefficient matrix on the right side of (M). This pre-
multiplication Wiminates the forces of constraint at the hinge and reduces the
number of equations of motion to the number of independent variables. The
result is

[ /1 ] ^^, r + [KT] 1^ j = {,a-1
	

(J63)

where

i#j =

Wr

Is

 s/N

uia o	 3

B^aG	 3

UP	 /Z

(J64)

[ K,1 -

Kbi	 -

î
	 KA	 iE

I

(J65)
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The mass and right hand side were mulitplied by	 partitions to reduce computer	 E
time, and 035) is used. The mass matrix ha s the following form:

	

rA,b A,, A61,	 1
T

	

^; ur A% ^ ^t 1-	 066)

Abr ^r nrr
A PPI

where

[A bb] = [

[A 6'
I ` 

[ R ]TrMbr)
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and the right side of (J63) is

h

,dFR

K
.dP

with

t {-ab} = 1^bS " [R]T [Mb r^ {r 1

R

f4TR	 [U?j T(jd;t I _ [Mt,j 1_0,})
069)

+ [D 
j T(f d 

r i - [Mrrlfy^l) + f TrI

f -4p 1 = f fp i

where the bars have been deleted from {db }, {dt }, {dr }, {Fr }, and {Tr } to denote
that these terms do not include the forces of constraint at the hinge; i.e. , from
045), U46), and (J46)

s	 t	 ZZ	
6

t FR .. 
€F O + JF,*6 + JFZOO +	

_	 070)

Fp 3
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} fTooS ± fT200 I

Pj . [R] .r ({F.l — i^^
T	 + j F,

Ir (r,.)] O=,, I — 
v; I

(J72)

In 070) and (J71) , IF 100 } and IT 100 } are the external force on the orbiter and
the torque about its cm, not including the hinge force of constraint, and IF h }
and {Th } are the externally applied loads (if any are applied) on the hinge, not
including any hinge constraint loads.

i
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Appendix K

RIOIDIZATION CONSTRAINT MATRIX FOR BODY B
4	 OF THE BEAM RELOCATION PROBLEM

Figure 3.2 shows the node numbering scheme for Body B. The nodes on the beam
are numbered 1, 2, ... , .1 . 2 consecutively down the beam. The grapple point is
Node q-1. For the reasons indicated in Appendix I, there is only one other node on
the RMS , Node q, and it is located at the elbow.

Since the beam is assumed to be axially inextensible, the axial displacement of
each node is set equal to the axial displacement of the grapple point; i.e.,

The elbow is also assumed to be axially inextensible; i.e., from Fig. K1,

!	 Gd'-,B + 11 3 .u^ ,c° = 0
or

3 — r Ŷ ^^	 (K2)
t

	

	 The stiffness -qatrix was examined and it was found that the system is also very
stiff along a line between Nodes q and q - 1. To eliminate high-frequency effects,
relative motion between these points was neglected; i.e., Nodes q and q-1 were
assumed to be rigidly connected. The unit vector from Node q to Node q-1 is

f by . 1 1 — f 4 1
f. fl

The components of {n} are called n i , n2 , and n 3 . Since the motion of Node q-1
relative to Node q is zero in the direction of J:a I, the inner product of {v q-1 } - rvq }
with {n} is zero; i.e.,

Equation (K2) is used to eliminate vq3 from the above relation, and the result is
solved for vq-1,1 yielding,

{
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Fig. K1 Horizontal and Vertical Deformation Component of RMS Elbow
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where

Equations (K1), (K2), and (K4) are expressed in matrix form as follows:
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This equation defines the terms in (J32) . {vB } has already been defined by (J8) ,
and [R] and {w) are the indicated terms in (M).
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Appendix L

LOADS ON RMS AT HINGE (SHOULDER) AND WRIST

t
The acceleration of mi on Body B is

AA• =	 •^ + Z [rool i r̂. + [r(w)i zf r. I - C r(r,.
cLu

i	 r

where {uh ) is given by (J59) .

Figure L1 is helpful in obtaining the internsl loads. The force on Body B at the
hinge in Y axes is

F	 =	 t	 /q	 — F'	 (L2)

The torque on Body B at the hinge, or RMS shoulder, is obtained by summing the
torques of all of the applied and inertia loads as follows:

	

[T* - f	 (*r•	 l	 (L3)
I	 d*=1

where it has been assumed th&I the moment of inertia of the rotating part of the hinge
is negligible. The components of {Th) are expressed in the Y coordinate system.

The torque that the wrist exerts on the beam in the Y coordinate system is obtain-
ed similarly. Its value is

T _ 	 c)

r

a

^-1

{
i	 1
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Fig. L1 Diagrams Used to Compute Interval Losoa
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Appendix M

HINGE CONTROL TORQUE SPECIFIED INSTEAD OF HINGE ANGLE

When the hinge control torque is specified instead of the hinge angle*, an extra
degree of freedom, the hinge angle, appears in the formulation. The equations of
Appendix J, up to (J58) , are useful for this case; however, the equations to link
Body B with Body A must be changed.

Instead of (J59)

	

ez 0 D
	 eoo

where

I	 r 	 f 1 - L b I 8003

The transformation equations replacing (J61) and (J62) are

Ur	
vN

utih 	 V
w	 - e2	D
u,10o

eoo	 3N

l u^	 ^^^	 ( p

C Ell

*A special case is the freewheeling situation where the hinge control torque is
specified as zero.
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ur	 !y
w

P

0

0	 I`/r/jJ	
e

^io^	 (M4)

3

u^
up	^^y

The same constraint procedure is used as in the previous case. Equations (M)

and (M4) are substituted inter (M) , and the result is premultiplied by [S 1] T where

[S 1] is the coefficient matrix indicated in (M3). The result is

C /^ f X} 4-	 11;rl = IzI	 (M5)

where

Ur
N

J;rl

0,
up

'T	 [SolPI = [Sol
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[M'] is the acceleration - vector coefficient matrix in 047),

bb l 	(	 Y
— I— -4 -

[Kr] =	 ( 0	 (M8)

KA 
and

where	
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FR	 0
d

^P	 0

All of the hinge loads of constraint (but not the hinge control torque) have been
deleted by the constraint-reduction procedure, and they are therefore not present
in (M10). The term U ) in (M9) contains the hinge torque T^ on Body B; i.e.,

ti
V

{ f^} =	 T^	 (Mil)
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