NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
DEsert RESEARCH INSTITUTE
UNIVERSITY OF NEVADA SYSTEM

FINAL REPORT
PREPARED FOR
NASA AMES RESEARCH CENTER

GRANT NO: NAG 2-114
TITLE OF GRANT: Stratospheric CCN Sampling Program
RESEARCH INSTITUTION: Desert Research Institute
Atmospheric Sciences Center
University of Nevada System
P.O. Box 60220
Reno, NV 89506

PRINCIPAL INVESTIGATOR: C. Fred Rogers
REPORT FOR THE PERIOD: April 1, 1981 - January 22, 1982

DATE OF THIS REPORT: January 22, 1982
INTRODUCTION
A. Scope of Report
B. Work Prior to Inception of Grant
C. Work Following Inception of Grant
D. Publications

II. STRATOSPHERIC AEROSOL SAMPLING METHOD
A. One-liter Containers
B. Sampling Procedure
C. Corrections to Data and Estimates of Errors
D. Problems with Spurious Particle Production in Sampling Containers

III. RESULTS TO DATE
A. Flights of June and December, 1980 and May, 1981
B. Flights of July, 1981
C. Aerosol Size Distribution Information Inferred from CCN Spectra
D. Concluding Remarks

IV. CONCLUSIONS AND RECOMMENDATIONS

V. REFERENCES

APPENDICES
A: Science Publication
B: Letter to Dr. Ackerman
C: CCN Spectrometer Description
D: Letter to Dr. McCormick
I. INTRODUCTION

A. Scope of Report

This Final Report will cover activities which began about the time of the major May 18, 1980 eruption of Mt. St. Helens, although NASA Grant funding did not begin until April, 1981. Work prior to the inception of the Grant will be discussed because it included important preparation for the funded work, as well as three sampling missions. Work following the inception of the grant included participation in another three sampling missions, planning for an improved sampling apparatus, and recommendations for the ACE Program. Funding nominally terminated on December 31, 1981, but was no-cost extended to March 31, 1982. This report concludes with activities through January 22, 1981, at which time Grant funding was exhausted. Recommendations for improved sampling apparatus will be summarized in Section IV.

B. Work Prior to Inception of Grant

The Desert Research Institute has had a history of involvement in cloud condensation nuclei (CCN) measurements which began in the mid-1960's. In the period from about 1971 to the present, a series of state-of-the-art instruments for the measurement and characterization of CCN have been built at the Atmospheric Sciences Center of DRI. When Mt. St. Helens produced several major eruptions in the late spring of 1980, there was a strong interest at DRI in the characterization of the CCN activity of the material that was injected into the troposphere and stratosphere. The scientific value of CCN measurements is two-fold: first, CCN counts may be directly applied to calculations of the interaction of the aerosol (enlargement) at atmospherically-realistic
relative humidities or supersaturations. Such enlargement may be important in calculations of the scattering of solar radiation by the stratospheric aerosol. If the aerosol is actually transported across the tropopause into the troposphere, then of course CCN measurements are also of value in considerations of the modification of cloud microstructure (several references relevant to these points are cited in Appendix A). A second application of CCN measurements is that, if the chemical constituency of the aerosol can be assumed, the number-versus-critical supersaturation spectrum may be converted into a dry aerosol size spectrum covering a size region not readily measured by other methods.

Telephone inquiries in the days following the important May 18, 1980 eruption led to the initial contact with Mr. Bill Page of NASA Ames Research Center, who encouraged us to discuss our interests with the Ames research team headed by E.C.Y. Inn and J.F. Vedder. These investigators offered to share one-liter grab samples of stratospheric air collected when their own trace gas sampling experiment was flown on the U-2 aircraft. The one-liter containers presented various problems when adapted to CCN sampling; these will be discussed below. On the other hand, the offer represented a unique opportunity since there were previously no measurements of stratospheric CCN per se. Four samples were thus obtained in June of 1980, and two in December of 1980. Results will be discussed below.

A letter proposal for further CCN sampling utilizing the existing one-liter grab samples was sent to NASA Headquarters on September 22, 1980 and, with revised budgetary estimates, was resubmitted on November 20, 1980.

C. Work Following Inception of Grant

Following the award of Grant NAS 2-114 on April 22, 1981, plans were immediately implemented to locate a DRI instrument trailer at NASA Ames as the base of operations. The trailer remained there while two samples were provided by a U-2 flight on May 12, 1981 and four samples were provided by two flights on July 13 and 14, 1981. Following the two July flights, the one-liter sample bottles were taken back to DRI-ASC for repeated flight simulation experiments.

F. Rogers and J. Hudson attended the ACE Workshop of May 27-28, 1981; at that time, Dr. Tom Ackerman of the ACE Program had solicited inputs concerning desirable activities of ACE as the program grows to include tropospheric as well as stratospheric aerosol studies. A letter from DRI to Dr. Ackerman was prepared and is included as Appendix 3 of this report.

The ACE Workshop of December 3-4, 1981 was also attended, and J. Hudson and F. Rogers summarized measurements to date as well as recommendations for future CCN measurements in the ACE Gas and Aerosol Composition Subcommittee (Neil Farlow, Chairman). A discussion of the application of CCN spectral measurements to aerosol sizing was of particular interest; the essential points are reiterated below in Section III C.

There was considerable discussion of polar stratospheric clouds at the December, 1981 ACE Workshop; in Appendix D we include a copy of a
letter sent to Dr. P. McCormick, NASA Langley, including suggestions for relevant measurements should these clouds become a subject for aerosol measurements.

D. Publications

One publication and one conference presentation have thus far resulted from the work described herein:

II. STRATOSPHERIC AEROSOL SAMPLING METHOD

A. One-liter Containers

The grab sample containers available on the cryogenic trace gas sampling U-2 pallet of Inn and Vedder are modifications of an "off-the-shelf" Whitey one-liter stainless steel sample cylinder having a length of 20 cm, radius of 5 cm, and a wall thickness of 0.47 cm; part number 304-HDF4-7J00. A Varian "mini-confict" vacuum flange has been welded onto one end of each cylinder, and a Cajon vacuum fitting for 1/4 inch tubing has been welded to the other end. The Varian fitting connects directly to a Varian vacuum valve via a solid copper gasket; the Cajon fitting similarly utilizes a solid nickel gasket. In the design
application of trace gas sampling, a pilot-actuated motor opens and closes the Varian valve, admitting samples to the previously evacuated cylinders from a supply duct through which stratospheric air flows under ram pressure. Two such cylinders may be flown on each mission.

We slightly modified these containers after the June, 1980 flights and before the December 1980 U-2 flights. Small stainless steel valves were welded to a matching Cajon fitting and outfitted with 1/8 inch stainless steel tube probes. The lengths of the probes were calculated to allow their inlet ends to be located at the geometric center of each container when the matching Cajon fittings were joined. Later withdrawal of the stratospheric samples was thereby facilitated; the aerosol could then be withdrawn with (in theory) the least effect of depletion of particles by diffusion to the inside walls of the containers.

For the purposes of the June 1980 flights, time had not allowed pre-flight attachment of a probe system for withdrawing the samples and, in a very difficult and risky operation, probes were inserted into the sample bottles after each flight.

Four different one-liter container and valve sets have been utilized to date. These are labelled "4 FWD", "4 AFT", "9 RT", and "9 LFT"; Table 1 summarizes the U-2 missions and ground simulations to date and which container was used in each case.

B. Sampling Procedure

The objectives vary from one U-2 mission to another but, in all cases, we have been carefully advised by responsible parties at NASA Ames as to the flight plan, the stratospheric wind conditions, and the expected stratospheric aerosol vertical and horizontal distribution (as
<table>
<thead>
<tr>
<th>Date</th>
<th>Container No.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 JUN 80</td>
<td>4 AFT</td>
<td>High count, 45 K ft.</td>
</tr>
<tr>
<td></td>
<td>4 FWD</td>
<td>Low count, 61.5 K ft.</td>
</tr>
<tr>
<td>16-17 JUN 80</td>
<td>9 RT</td>
<td>Simulation: Checked dilution,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>decay factors</td>
</tr>
<tr>
<td>17 JUN 80</td>
<td>4 AFT</td>
<td>Low count, 62 K ft.</td>
</tr>
<tr>
<td></td>
<td>4 FWD</td>
<td>Low count, 49 K ft.</td>
</tr>
<tr>
<td>19 NOV 80 - 1 DEC 80</td>
<td>9 RT</td>
<td>Simulation: Revised decay factor</td>
</tr>
<tr>
<td>5 DEC 80</td>
<td>9 LFT</td>
<td>High count, 52 K ft.</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>Low count, 46 K ft.</td>
</tr>
<tr>
<td>12 MAY 81</td>
<td>9 LFT</td>
<td>High count, 60 K ft.</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>Low count, 50 K ft.</td>
</tr>
<tr>
<td>13 JUL 81</td>
<td>9 LFT</td>
<td>High count, 55 K ft.</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>Failed to open</td>
</tr>
<tr>
<td>14 JUL 81</td>
<td>9 LFT</td>
<td>High count, 42 K ft.</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>Very low count, 57.5 K ft.</td>
</tr>
<tr>
<td>15 JUL 81</td>
<td>9 LFT</td>
<td>Simulation: First noticed spurious</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>CCN production</td>
</tr>
<tr>
<td>16-28 SEP 81</td>
<td>9 LFT</td>
<td>Simulation: Study of spurious</td>
</tr>
<tr>
<td>14-15 JAN 82</td>
<td>9 RT</td>
<td>particle production</td>
</tr>
</tbody>
</table>
well as that can be specified) before each mission. Table 2 summarizes the broad objectives of the U-2 missions in which we have been involved. Our preferences for the vertical and horizontal coordinates of the two grab samples of each flight have then been given to Dr. Vedder, who then incorporates the required pilot action (actuating the motor on the Varian valve) into the cryo pallet pilot log sheet. Preceding each sample, air flow through the cryo pallet sample supply duct must be established if not already done.

Prior to each flight, the sample containers are evacuated by the vacuum system used for the cryo pallet to a pressure of about 40 millitorr. This pressure is maintained while the containers are heated with a heat gun, and the vacuum gauge is monitored for evidence of outgassing. The procedure no doubt could be refined but, to date, there has been no evidence of outgassing; on a few occasions, leaks have been detected but were easily repaired.

The one-liter samples have been taken off the U-2 aircraft as quickly as possible at the end of each mission to minimize losses of CCN through Brownian diffusion to the walls of the containers. Typically, about three hours elapse between the time the sample bottles are filled and the time the CCN samples are analyzed on the ground.

The sample containers are quickly taken to the DRI instrument trailer, where the contents must be brought from stratospheric pressure to ambient pressure with particle-free air. This "backfill" air has also passed through a bed of fresh activated charcoal and, on certain occasions, through an oxalic acid trap to remove ambient ammonia. These latter two traps are always placed upstream from the particle filter,
<table>
<thead>
<tr>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 JUN 1980</td>
<td>Intercept plume of St. Helens 13 June eruption</td>
</tr>
<tr>
<td>17 JUN 1980</td>
<td>Intercept plume of 18 May eruption</td>
</tr>
<tr>
<td>5 DEC 1980</td>
<td>Study St. Helens aerosols several months after major eruptions</td>
</tr>
<tr>
<td>12 MAY 1981</td>
<td>Look for plume of Alaid volcano</td>
</tr>
<tr>
<td>13 JUL 1981</td>
<td>Study remaining volcanic aerosol north of jet stream</td>
</tr>
<tr>
<td>14 JUL 1981</td>
<td>Rendezvous with University of Wyoming balloon</td>
</tr>
</tbody>
</table>
and are repeatedly checked to be sure they do not in themselves generate spurious CCN. The backfilling with particle-free air continues as the aerosol content of the sample containers is drawn into a CCN spectrometer built at DRI, through the previously-described sample probe at a flow rate of order one cm\(^3\)sec\(^{-1}\). Table 3 is a copy of a checklist used when the sample containers are backfilled and connected to the CCN spectrometer. A description of the CCN spectrometer can be found in Appendix C.

The CCN count is then taken as the cumulative number of particles active at supersaturations over the approximate range 0.1% to 1.0% (i.e., 100.1 to 101% R.H.). Results to date will be shown in Section III.

C. Corrections to Date and Estimates of Error

The end result of these measurements is a number density of CCN active at supersaturations in the range 0.1% to 1.0%. Several major factors affect the measurement:

1. Depletion of the stored aerosol by Brownian diffusion to the walls reduces the concentration by 25\% \pm 5\% per hour, when the contents are at 850 mb pressure and laboratory temperature, as determined by experiments utilizing the actual flight bottles. An early measurement of this loss rate, with a mock container, yielded a higher value, 35\% \pm 5\%, but we believe this figure to have been an overestimate.

We have not yet experimentally checked the CCN diffusion loss rate under the actual temperature and pressure conditions.
Preparation of Grab Sample Containers for Connection to CCN Spectrometer

1. Flush backfill air line with particle-free air
2. Tape thermistor to container to record temperature
3. Attach backfill air line connection flange (Varian "mini conflat") to container
4. Flush connection flange with particle-free air
5. Shut off pressurized flush air, make connection of backfill air line to container
6. Valve off backfill line
7. Open Varian valve to connect container to Magnehelic pressure gauge
8. Slowly open valve on backfill line, allow particle-free air to dilute contents of container
9. Open valve between internal container sample probe and sample inlet to CCN spectrometer.
found in U-2 missions, and this remains an important task yet to be done. To a first approximation, however, the diffusion coefficient, D, of submicron particles in air is proportional to the ratio of kT to the viscous retarding force, or

$$D \propto \frac{kT}{6\pi nr},$$

where n is the viscosity of air (independent of density) and r is the radius of an aerosol particle. Since n is independent of density, but proportional to (air temperature) $T_\frac{1}{2}$,

$$D \propto T^{\frac{1}{2}}.$$

If the grab sample containers were as cold as ambient air, T would be about 223 K (minimum) and D would be reduced by 13% over the value at ordinary conditions. The diffusion loss rate would be reduced in proportion. The sample containers are, however, quite massive, and it seems unlikely that they ever cool to actual stratospheric values. One attempt was made to measure both the temperature of a container and to detect temperature gradients between top and bottom on one of the sampling missions, but examination of the data revealed a problem with the calibrations of the thermocouples used which renders the results inconclusive.

A typical total value, then, of the fraction of aerosol lost over 3 hours at 25% ± 5% per hour is 58% ± 9%, implying a decay factor of 2.5 ± .5. Table 4 summarizes the decay factors applied to the samples of all flights to date.
<table>
<thead>
<tr>
<th>Flight of</th>
<th>Container No.</th>
<th>Aerosol Decay Factor</th>
<th>Dilution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 JUN 80</td>
<td>4 AFT</td>
<td>2.9</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td>4 FWD</td>
<td>3.2</td>
<td>8.10</td>
</tr>
<tr>
<td>17 JUN 80</td>
<td>4 AFT</td>
<td>4.7</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>4 FWD</td>
<td>1.5</td>
<td>4.73</td>
</tr>
<tr>
<td>5 DEC 80</td>
<td>9 LFT</td>
<td>1.8</td>
<td>7.65</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>2.4</td>
<td>6.07</td>
</tr>
<tr>
<td>12 MAY 80</td>
<td>9 LFT</td>
<td>1.6</td>
<td>9.67</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>2.0</td>
<td>6.61</td>
</tr>
<tr>
<td>13 JUL 81</td>
<td>9 LFT</td>
<td>2.7</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>Accidental Blank</td>
<td></td>
</tr>
<tr>
<td>14 JUL 81</td>
<td>9 LFT</td>
<td>4.2</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>9 RT</td>
<td>4.4</td>
<td>9.09</td>
</tr>
</tbody>
</table>
The backfilling process effectively dilutes the contents of each sample container. The amount of this dilution may, however, be calculated if the internal pressure of each container is measured before the dilution is accomplished. We estimate that we perform this measurement (including taking account of the particle-free air in the connecting line to the vacuum gauge) to about ±5% accuracy, or typically ±5 mb to ±10 mb. Table 4 summarizes the dilution factors applied to the samples of all flights to date; these are typically in the range of about 5 to 10 in magnitude.

The CCN spectrometer is not perfectly leak-free. Since it is designed to operate at an internal pressure slightly below ambient pressure (by about 20 mb), drawing the CCN sample in through a metering capillary tube, there is usually a finite "background" count. The typical background for these experiments has been of order 1 CCN cm$^{-3}$ in the "raw" count (before decay and dilution factors are applied). The background count is measured at the time of each U-2 mission by shutting off the sample inlet to the CCN spectrometer, and is subtracted from the raw data to generate the final results as presented in Section III.

The statistical counting error applicable to CCN counts at any given setting of the CCN spectrometer is proportional to
the square root of the magnitude of the count. Typically at least 50 cm\(^3\) of the diluted sample air are passed through the CCN spectrometer to obtain the CCN counts, and a minimum count would be of order 2 CCN cm\(^{-3}\). Therefore, statistical counting error accounts for a maximum error bar of about \(\pm 10\%\) in these results. (Usually, the error bars due to the uncertainty in the diffusional decay factor completely dominate statistical counting errors, as well as uncertainty in the dilution factor).

D. Problem with Spurious Particle Production in Sample Containers

Simulations of the stratospheric sampling procedure with actual flight versions of the one-liter containers have been carried out on five occasions, as shown in Table 1. Generally, there has been a protocol of leaving these containers at NASA Ames should they be needed for the cryogenic gas sampling experiment, and it has been necessary to conduct the simulations while visiting the Ames facility. Following the July 1981 flights, however, it was arranged to bring containers 9 RT and 9 LFT back to DRI for more extended tests.

The simulations of 16-17 June 1980 utilized container 9 RT. Of particular interest to this discussion is one type of simulation performed, wherein the container was flushed with room air, then evacuated with a vacuum pump to typical stratospheric pressures. The bottle was then backfilled in the usual manner, and connected to the CCN spectrometer to see if the resulting count was the proper fraction of the original, room CCN count. Several tests of this type showed that the
dilution was indeed as would be calculated on the basis of the initial and final pressures in the sample container. No evidence of spurious particle production due to these operations was seen.

On July 15, 1981, a different sample container, 9 LFT, was being similarly tested in the DRI instrument trailer at Ames Research Center. This time, however, a spurious CCN count of order 300 CCN cm\(^{-3}\) was found to be generated when this container was evacuated, then backfilled with particle-free air. Container 9 RT was tested again and found to exhibit a very small spurious count (more than a factor of ten less than 9 LFT). Time did not allow further experiments, except to check and confirm that the spurious count in the containers did decrease with time, as though the particles were all generated during the backfill operation.

Containers 9 LFT and 9 RT were taken back to the DRI laboratory in Reno, where simulation experiments were resumed on September 16, 1981. In these tests, a "total" or condensation nucleus (CN) counter was being used as the detector of spurious particle production. This device, a standard Nolan-Pollak counter, applies a supersaturation of 160%, and hence detects small nuclei which would not register in the CCN spectrometer. The results are, therefore, probably overestimates of the numbers of spurious CCN produced. Laboratory simulations to determine the cause of the spurious counts have produced the following conclusions:

1. Production of spurious CN when backfilling with particle-free room air generates concentrations of 200 to 300 cm\(^{-3}\) in container 9 LFT, and 20 to 60 cm\(^{-3}\) in container 9 RT; there is a consistent and reproducible difference between the two containers;
(2) The spurious particle concentration decreases with time following the backfilling operation; there is no indication of ongoing particle production in either container;

(3) The spurious particle concentration is unaffected by movement of the mechanisms of either of the two valves on each container; this shows, for example, that the spurious CCN are not generated by rubbing of the valve bodies against the valve seats, or by flexing of the stainless steel bellows in the Varian vacuum valve;

(4) Simply blowing particle-free air through a sample container with opened valves does not produce spurious CCN;

(5) If the backfill air used in tests on container 9 LFT is replaced with tank nitrogen which is passed through an activated carbon filter, the spurious CN production seems to be reduced by a factor of two to three.

(6) The spurious production mechanism seems to be largely a function of the Varian inlet valve, rather than the total system of valves plus container; when, for example, the valve from container 9 LFT is mounted on container 9 RT, the higher spurious count is associated with 9 RT rather than 9 LFT. Upon inspection, a copper insert on the original 9 LFT valve face appears much more tarnished than the one on 9 RT.

(7) Tests, thus far incomplete, indicate the magnitude of the spurious count may be proportional to how rapidly the Varian valve is opened, in the process of admitting particle-free air into the evacuated container; a similar result has been
found by one of us (J. Hudson) in the case of different, stainless steel ball valves (Whitey SS 43M4-S4) mounted on a different set of one-liter containers. Presently, it seems possible to eliminate spurious production significantly by appropriately reducing the rate at which sample air passes through the inlet valve.

Again, we note that container 9 RT provided an unintentional "blank" in the flight of July 13, 1981, when it properly showed a zero count on the CCN spectrometer.

Further tests should address two basic hypotheses:

(1) Spurious particle production is a function of contamination in the valves and/or containers; for example, container 9 LFT was opened in a region of high SO_2 concentration in the December 5, 1980 flights and may have been exposed to significant amounts of H_2SO_4 aerosols; contrary to this explanation is the pre-flight preparation procedure wherein each container is heated while being evacuated and while a vacuum gauge is being monitored for evidence of outgassing;

(2) Spurious particle production is a function of the expansion of particle-free gases into the containers during the backfilling operation, with some gas-to-particle conversion process responsible for at least part of the observed count.

A test of hypothesis (1), for example, would involve baking container 9 LFT while continuously evacuating it; it is desired, however, to identify the source of the spurious particles before destroying the
generating mechanism or circumstances. A test of hypothesis (2) would involve an attempt to collect a sufficient deposit of the spurious particles for elemental analysis in the University of Nevada Physics Department proton-induced X-ray (PIXE) apparatus. Presently, the latter course of action seems the most productive, although laborious.

To conclude this section, several broad statements can be made. First, this kind of spurious particle production was quite unexpected in containers which are almost entirely fabricated from stainless steel (there is a copper insert on the sealing face of the Varian vacuum valve, a copper gasket where the Varian flanges seal, and a nickel gasket at the opposite end of each container where the Cajon fitting seals). Even an expansion from one atmosphere into moderate vacuum was not expected to produce long-lived particles as large as CCN (of order 10^{-6} to 10^{-5} cm) when clean gases are the expanding medium. Second, if spurious particle production is often present, there may be significant mass conversion from the gaseous to the solid phase. It would seem likely that the trace gas investigators who originally designed the sample containers would have noticed such a perturbation in their measurements. Third, until we have positively identified the sources of the spurious particle production, it seems unreasonable to reject previous data collected before July of 1981. Fourth, we believe it may be possible to eliminate spurious production altogether by cleaning all valve components and reducing the sample air flow rate in the inlet valve.

Containers 4 AFT and 4 FWD should be tested as soon as practicable, but it should be noted that, in the results of June 17, 1980,
both of these containers gave a low count. It would appear that, at least, spurious CCN were not generated in significant numbers during the post-flight, particle-free air backfilling operation.

III. FLIGHTS TO DATE

A copy of the data and discussion to follow has been sent to Dr. M. Kritz for inclusion in the ACE Program data file.

A. Flights of June and December, 1980 and May, 1981

The results of the measurements in the CCN spectrometer is a "raw" count of CCN active at a given supersaturation. To obtain a number density, the count must be divided by the volume of air sampled by the instrument; that number must then be multiplied by the decay and dilution factors as shown in Table 4. Figures 1 and 2 display data from the flights of June 14, 1980, December 5, 1980, and May 5, 1981. The discussion to follow will include the data of June 17, 1980 but, for reasons to be given, the graphs of these data are not included in the main series of Figures 1 and 2; the reader will find the June 17, 1980 data graphed in the Science paper in Appendix A. Figures 3 and 4 display the data from the most recent flights of July 13, 1981 and July 14, 1981.

The samples over the period June 14, 1980 to May 5, 1981 were taken at altitudes ranging from 13.6 km to 18.6 km. The data are shown roughly segregated into two groups: four samples taken between 13.6 km and 15.8 km and two samples taken at the higher altitudes of 18.2 km and 18.6 km.
Figure 1 shows the lower altitude data set, with measurements from June 14, 1980 (over western Montana), December 5, 1980 (both over northern California), and May 5, 1981 (over northern California). The error bars represent the uncertainty in the measurement of the aerosol decay rate in the sample containers; as mentioned above, the statistical counting error is much smaller.

The June 14, 1980 sample was taken at the northern edge of the June 12 eruption plume, in freshly-injected debris. Simultaneous SO$_2$ measurements were not particularly elevated (Inn et al., 1981a); thus these CCN may be largely composed of material which originated in the volcano itself, rather than H$_2$SO$_4$ generated by gas-to-particle conversion.

We do not show results taken out-of-plume over central California at the same altitude of 13.6 km. The CCN counts were comparable to the 13.9 km sample of December 5, 1980 (Figure 1), and indicate the concentration that can be expected from the unperturbed lower stratosphere.

The next two CCN spectra in Figure 1 were taken on December 5, 1980 at 15.8 km and 14.0 km. The 15.8 km results (upper curve) are comparable in concentration to the 13.6 km results of June 14, 1980, which is surprising in view of the relative dormancy of Mt. St. Helens in the fall of 1980. This result does, however, correspond with an observation of enhanced SO$_2$ (Inn et al., 1981b) and suggests that gas-to-particle conversion was still a significant producer of aerosol mass at 15.8 km in December.
The lower altitude (14 km) result of December 5, 1980 may be an indication of the normal background CCN concentration at that level as the Mt. St. Helens perturbation was dying away.

Finally, in Figure 1, we show results at 15.1 km taken on May 12, 1981 during a flight intended to intercept the then recent plume of the volcano Alaid (51°N, 155°E, on Atlasova in the Kurile chain). The CCN spectrum is similar in both concentrations and slope to the 13.9 km December 5, 1980 result, further supporting the suggestion that this approximate magnitude of concentration is the normal background in the 14-15 km regions.

Figure 2 shows two CCN spectra taken between 18 km and 19 km on June 14, 1980 (over central California) and on May 12, 1981 (over northern California). The June 14, 1980 sample was intended to intercept debris of the May 18, 1980 Mt. St. Helens eruption after it had passed once around the world, but we are unable to confirm (e.g., by trajectory analyses) that this is the case. The counts observed are low enough to make us question whether or not the sample was actually taken in-plume. The number density of CCN observed in this sample is similar in magnitude to the condensation nuclei (CN) count observed at the same altitude and time by Rosen and Hofmann (1980a).

The flight of May 12, 1981 was, again, intended to intercept the plume of the volcano Atlasova. Figure 2 shows a very elevated count for this sample, which almost certainly cannot be attributed to Mt. St. Helens. In Section IV we discuss a problem with sample container 9 LFT which was used for this measurement; spurious particle production in
this container was first observed on July 15, 1981 in simulation experiments, and may have been present on May 12.

Not shown in Figure 2 are results from a sample taken at 18.8 km over central Colorado, within the May 18, 1980 Mt. St. Helens eruption plume on its second pass around the world. Since this sample was 5.3 hours old when analyzed, the longest elapsed time of any of our samples, the loss rate correction was uncomfortably large. The dilution factor was also quite large, and the total multiplication to convert raw data into final values was a factor of 48. The counts from this sample after this large correction are comparable to the 18.6 km results of June 14, 1980.

Before leaving Figures 1 and 2, it should be noted that the results of June 14, 1980 were previously reported in Science (see Appendix A) as computed from the then-estimated aerosol decay rate of 35% ± 5% per hour. Figures 1 and 2 show that data as recomputed on the basis of the more accurate decay rate of 25% ± 5% per hour.

The data shown in Figure 1 and 2 were also presented at the Symposium on the Role of Volcanic Emissions in Atmospheric Chemistry, IAMAP General Assembly, August 21-22, 1981, Hamburg, Germany.

B. Flights of July, 1981

The U-2 sampling missions of July 13 and 14, 1981 had the important goals of looking at the remaining Mt. St. Helens aerosol north of the jet stream, and a rendezvous with a balloon launch from the University of Wyoming. Figures 3 and 4 show our results from both of these flights.
The data from July 13 show a high count at 12.7 km; we presently question this result, as it was obtained with container 9 LFT. This container may have been subject to spurious CCN production as discussed in Section II D of this report, and first observed on July 15.

We also intended to open the remaining sample container, 9 RT, at 19.7 km, but this run provided an unintended blank sample when the motor-driven Varian valve failed to open. When later connected to the CCN spectrometer, this sample showed only the expected background count.

The flight of July 14 gave very similar results in the sense that on that day the 12.7 km sample, again from container 9 LFT, showed several hundred CCN cm\(^{-3}\) active at 1% supersaturation. The count in container 9 RT, from 17.4 km, was much lower, indicating only about 52 CCN cm\(^{-3}\) active at 1% supersaturation. Note in Table 4 that both these samples had large aerosol decay factors, due to the distance at which the rendezvous with the University of Wyoming balloon had to be accomplished. The 17.4 km sample is noteworthy because of agreement with the nearest-to-contemporaneous condensation nuclei (CN) count from the University of Wyoming balloon on its flight of July 19; the CCN number density from July 14 and the CN number density from the 19th at the same altitude are in excellent agreement. There is evidence that the 17-18 km aerosol layer was not experiencing any large changes during the period (Rosen, 1981).

C. Aerosol Size Distribution Information Inferred from CCN Spectra

CCN spectral measurements take on added utility if one can assume the CCN to be mostly or entirely composed of a pure soluble salt. Through the use of the standard Kohler relationship between the critical
supersaturation \((S_c) \) and the dry aerosol radius (number of moles of solute), a CCN spectrum may be transformed into a cumulative size distribution. For example, consider CCN of dry radius \(r_d \) composed of ammonium sulfate; the Kohler relationship indicates (Twomey, 1977),

\[
r_d = 1.45 \times 10^{-6} S_c^{-2/3}.
\]

The resolution of the present CCN spectrometer in measuring \(S_c \) is about ±0.02%. Applying the Kohler relationship, then, the resolution in size measurement is about ±0.001 \(\mu m \) in the \(r_d \) range of 10^{-2} \(\mu m \) to 10^{-1} \(\mu m \). Even if there is substantial uncertainty in knowledge of the composition of the aerosol, for example, such that either \(H_2SO_4 \) or \(NH_4)_2SO_4 \) must be considered, the sizing resolution by this method is still about ±0.004 \(\mu m \).

In contrast, consider the state-of-the-art in inversion techniques for aerosol sizing by diffusion batteries (Twomey and Zalabsky, 1981). This example is relevant, because stratospheric aerosol size distributions have been made, and are proposed, using condensation nuclei counters as the detector of aerosols passed through diffusion batteries. Twomey and Zalabsky show through numerical examples that the resolution of such systems in the .01 \(\mu m \) to 0.1 \(\mu m \) radius interval is ±0.02 \(\mu m \) to ±0.04 \(\mu m \), or an order of magnitude less precise than sizing information obtained from CCN spectra.

In Figure 5, we display two size spectra inferred from the stratospheric CCN spectra obtained on two occasions in the course of this measurement program. It was assumed that the nuclei were composed
of pure ammonium sulfate, but the curves would be shifted slightly along the size axis if it were assumed that sulfuric acid were the major constituent. These size spectra provide information at smaller radii than either the quartz crystal microbalance cascade impactor of Chuan et al. (1981) or the wire collectors of Farlow et al. (1981). As summarized by Pollack (1981), the data are of value in providing an improved measure of the in-situ formation of very small sulfuric acid droplets in the stratosphere following a volcanic eruption.

A final point concerning the conversion of CCN spectra resulting from the measurements described earlier into size distributions is that in all cases, our data would indicate a number density peak at .01 μm radius or smaller. A similar feature may be indicated by the 17 June 1980 data of Chuan et al. (1981, Figure 2C), but not by other data from the same instrument at later dates. In some cases, the discrepancy may be due to the previously-described lack of overlap between the two sizing methods.

D. Concluding Remarks

It is noteworthy that the CCN concentrations we have observed, both in fresh plumes and long after eruption events, have generally been comparable in magnitude or larger than condensation nuclei (CN) counts obtained by Rosen and Hofmann at the University of Wyoming (e.g. Rosen and Hofmann, 1980). In general, CCN counts are a subset of CN counts, but if all aerosol particles being sampled are mostly soluble and exceed the size needed to register in the CCN counter (critical supersaturation less than about 1%), then the two types of counters should yield equal concentration values. In measurements made soon after the major erup-
tions of Mt. St. Helens, it did indeed seem to be the case that aerosol sizes met this criterion (Chuan et al., 1981). It may be that spurious CCN production in the sample containers (Section II D) can account for some of this difference in the most recent measurements, but it would be instructive at some point in the future to compare our CCN instrument to the CN counter used by Rosen and Hofmann, when both are sampling monodisperse aerosols which should register the same number in both devices. Such comparisons were made with numerous other particle measuring devices from around the world at the recent Third International CCN Workshop held at DRI, October 6-17, 1980.

On the other hand, we can identify two reasons for our counts to be underestimates of the true CCN concentration:

1. We believe our value for aerosol decay rates in the one-liter sample bottles is more likely to be an underestimate rather than an overestimate. (It has been difficult to perfectly simulate the actual experimental situation in every respect, including stratospheric temperatures).

2. We expect that CCN composed mostly of sulfuric acid would evaporate as they are brought from stratospheric temperatures to surface ambient temperatures.

IV. CONCLUSIONS AND RECOMMENDATIONS

In the 19 months since June 1980, two one-liter grab samples of stratospheric aerosol have been returned from each of six U-2 sampling missions. CCN spectra from each sample have been obtained by instrumentation taken to and set up at NASA Ames Research Center.
The measured concentrations of CCN have varied from about 800 cm\(^{-3}\) (December 5, 1980, 15.8 km, coincident with enhanced SO\(_2\)) to about 38 cm\(^{-3}\) (December 5, 1980, 14 km, over northern California) active at 1.0% supersaturation. If these CCN were composed of sulfuric acid, their radii would be in the range of about 1.2\(\times\)10\(^{-6}\) cm to 6\(\times\)10\(^{-6}\) cm, and observations of them would be relevant to comparisons with models of gas-to-particle conversion in the stratosphere.

The CCN concentrations deduced from these measurements are often as large as, or even exceed, the CN measurements performed by the balloon-borne CN counter of Rosen and Hofmann. They are also significant with respect to tropospheric measurements, as for example quoted by Twomey and Wojciechowski (1969) who found a value of about 100 CCN cm\(^{-3}\) active at 1% for maritime air below cloud base. Uncertainties in the CCN measurement are due to aerosol decay in the sample containers, dilution necessary to bring the samples from stratospheric to surface pressure, CCN spectrometer background count, and statistical counting error, but each of these factors have been accounted for, based upon the best information available. Overestimation of the aerosol decay rate and evaporation of sulfuric acid particles as the grab samples are warmed upon their return to the surface would cause these results to be an underestimate of the true stratospheric CCN count.

In July 1981, spurious particle generation was found to be a serious problem in container 9 LFT and a much smaller problem in container 9 RT. The spurious count seems to be generated at the time particle-free air enters an evacuated container; valve contamination and
gas-to-particle conversion should be further investigated in the laboratory as possible generation mechanisms. We believe it is possible that spurious particle generation can be completely excluded from the present sample containers, by applying improved cleaning procedures coupled with a reduction in the rate of sample air flow in the Varian inlet valve.

Initial studies of an option for improved sample containers and valves have now been completed. Available as off-the-shelf commercial products, two 12.7 cm radius stainless steel spheres (capacity 8.5 L) could replace the present one-liter spheres on the cryo pallett. Aerosol plumbing modifications which have been discussed with the cryo pallett investigators and with W.H. Ferguson of Lockheed Company would allow flow-through flushing of the new containers; inlet and exit valves would simultaneously open to allow ten or more container volumes of stratospheric sample to flush through the system before sealing. There are, then, two advantages to be gained: first, expansion of sample air into a previously-evacuated container is avoided, with the concomitant high-speed jet through the Varian valve; second, the larger 8.5 L spheres provide more sample for measurements purposes, and an aerosol decay factor which should be reduced roughly in proportion to the ratio of the radii of the new and old containers, giving a factor of about two improvement. Preliminary approval of the design for these modifications has been given by both the cryo pallett investigators and the Lockheed representative.

In addition in the context of a separate program, we are designing and building a new CCN spectrometer which will be able to operate at an
internal pressure of 300 mb. Typically, then, stratospheric samples
would have to be diluted only enough to bring their pressures up from
100 mb or 150 mb to 300 mb, greatly reducing the aerosol dilution factor.

V. REFERENCES

aerosols from eruptions of Mt. St. Helens. Science, 211, 830-832.
Farlow, N.H., V.R. Oberbeck, K.G. Snetsinger, G.V. Ferry, G. Polkowsk,
D.M. Hayes, 1981: Size distributions and mineralogy of ash parti-
cles in the stratosphere from eruptions of Mount St. Helens. Sci-
ence, 211, 832-834.
constituents in the plume from eruptions of Mt. St. Helens, Science,-
211, 821-823.
Aerosol Climatic Effects Workshop (Gas and Aerosol Composition Sub-
Pollack, J.B., 1981: Measurements of the volcanic plumes of Mount St.
Helens in the stratosphere and troposphere: Introduction. Science,-
211, 815-816.
Research Center, Moffett Field, CA, 3 Dec 1981.
Helens Volcano, NASA Ames Research Center, Moffett Field, CA, 11
July 1980.

29

FIGURE 3. FLIGHT OF 13 JULY 1981
FIGURE 4, FLIGHT OF 14 JULY 1981
FIGURE 5. CONCENTRATION OF DRY AEROSOL OF RADIUS ≤ GIVEN VALUE
APPENDIX A

ARTICLE BY ROGERS, ET AL., FROM

SCIENCE, 211, 824-825, 1981
MEASUREMENTS OF CLOUD CONDENSATION NUCLEI IN THE STRATOSPHERE AROUND THE PLUME OF MOUNT ST. HELENS

Abstract. Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

The eruptions of Mount St. Helens in May and June 1980 injected significant amounts of gases and particles into the stratosphere. We measured cloud condensation nuclei (CCN), the part of the aerosol capable of nucleating water vapor condensation at supersaturations of the order of 1 percent (relative humidity of 101 percent).

Rather elaborate projections of the effects of volcanic aerosol on the earth's climate have been made in recent years, such as that of Pollack et al. (1). Whether stratospheric CCN are important in the total picture of global weather depends on (i) the numbers of CCN available in the stratosphere, (ii) the rate at which they enter the troposphere, and (iii) the way in which they affect weather systems in the troposphere. Our measurements relate to the first of these three aspects. The second may involve any of eight mechanisms described by Shapiro (2). Once in the troposphere, CCN of stratospheric origin could modify cloud microstructure, leading to two possible effects upon climate: alteration of precipitation processes and alteration of the scattering and absorption of solar radiation by clouds (3).

To the best of our knowledge, our CCN data are the first reported from altitudes above the local tropopause. An indication of the CCN count, however, can be gained from the measurements of Rosen and Hofmann (4) taken between 10 and 20 percent supersaturation before June 1980, and more recently at 200 percent supersaturation, in numerous balloon ascents over Laramie, Wyoming. These investigators reported evidence of both anthropogenic and volcanic increases in stratospheric sulfates (5). Our measurements are taken as a function of two to three supersaturations within the range of those found in actual clouds; if compared to tropospheric counts, they should help to resolve questions of whether or not the stratosphere can ever be a significant source of CCN.

We analyzed four 1-liter samples of stratospheric aerosol collected by a NASA U-2 aircraft. These samples, although well suited for their original purpose of trace gas analysis, presented a serious concern with respect to our CCN measurements. It was expected that losses due to Brownian diffusion to the walls might cause unacceptably rapid depletion of the CCN present in the small sample containers, which were stainless steel cylinders with rounded ends (radius, 5 cm; length, 20 cm). Laboratory simulations of the experiment with similar containers showed that the loss of CCN active at 1 percent supersaturation was a rather consistent: 35 ± 5 percent per hour. (No attempt was made to establish stable thermal stratification of the container contents.)

The 1-liter sample containers were cleaned and evacuated before each flight and were opened by pilot activation of motor-driven valves at the specified horizontal and vertical coordinates. All samples were obtained from a sample entry system designed for gas analysis. Diffusion losses of CCN were probably neg-
likely, but bends and restrictions in the sample entry plumbing may have allowed impaction losses of some of the largest CCN. Both kinds of losses would cause our final results to be under-estimates of the actual stratospheric concentrations of CCN. A range of 1.2 to 5.3 hours elapsed between the time the sample bottles were filled and their CCN counts were measured.

Sample 1 (Fig. 1A) was taken over western central Montana (46°18'N, 112°25'W) at an altitude of 13.6 km. Although trajectory analyses show this sample slightly outside the northern boundary of the plume from the 13 June eruption, it is difficult to attribute the very high CCN count of this sample to a source other than the volcano. We suggest that the boundary of the plume injected by this eruption may be diffuse enough so that our sample 1 was actually volcanic material. Samples 2 (Fig. 1A; 38°00'N, 120°30'W) and 3 (Fig. 1B; 39°00'N, 106°30'W) were both taken between 18 and 19 km, over central California and central Colorado, respectively. Sample 2 was apparently taken within the widely scattered debris of the 13 May eruption, but trajectory analyses and other data are unable to confirm this. The coordinates of sample 2 were chosen to intercept the 18 May plume after it had passed once around the world. Sample 3 was taken within a portion of the 18 May plume, as judged by supporting lidar and aerosol data. Sample 4 (Fig. 1B; 37°50'N, 120°35'W), which was taken at an altitude of 13.6 km over central California, provides a CCN background count near, but above, the tropopause, volcanic aerosol was not involved.

A continuous-flow diffusion chamber (7) was used as the detection apparatus in all experiments. Sample containers were unloaded as soon as possible after each U-2 flight, and were immediately connected to the diffusion chamber. Precautions, including test runs on blank and mock-up samples, were taken to avoid contami-nating the samples with room air. Each sample container was backfilled with particle-free air to bring its internal pressure up to the ambient value required for operation by the continuous-flow diffusion chamber. Backfilling continued as each sample was withdrawn from its container through a stainless steel probe at the container's geometric center, at a flow rate of 1 cm

3 sec1. By varying the operating settings of the diffusion chamber, spectra of CCN active at various supersaturations were taken for each sample.

For the CCN spectra obtained from these four samples (Fig. 1), the primary source of error is the uncertainty in the aerosol depletion rate. The background count of the diffusion chamber and residual amounts of room air in the very short lengths of connecting tubing contributed a basic sensitivity level, or background count, conservatively estimated to be 20 to 30 ccN cm-3 or less. This background has been subtracted from the results shown in Fig. 1.

The results from samples 1 and 4, both taken at 13.6 km, suggest that volcanic eruptions may temporarily cause the CCN count near, but above, the tropopause to be in the range of 100 to 1000 ccN cm-3 active at 1 percent supersaturation, a higher value than that measured in samples from below the tropopause (8). Samples 2 and 3, taken above the tropopause at 18.6 and 18.8 km, respectively, appear to be consistent with data of Rosen and Hofmann (9). The results of samples 2 and 3 differ qualitatively from those of sample 1 because they were taken in volcanic plumes whose aerosols have had a chance to age, and perhaps to coagulate. The CCN counts of samples 2 and 3 are about one order of magnitude above the counts obtained by Rosen and Hofmann (9) after the eruption of Volcan de Fuego in Guatemala in 1974. Our measurements are, however, about equal in magnitude to the tropospheric CCN counts thought typical of maritime conditions below cloud level by Twomey and Woockowichski (10). Sample 4 represents what may be the background count at altitudes much lower than those of samples 2 and 3.

More measurements are needed to establish the normal CCN background count at these altitudes and the spatial and temporal dependence of the volcanically caused CCN count. Aerosol losses in the sample entry lines are only one mechanism that would cause our results to be an underestimate of true stratospheric CCN counts; further under-estimation would result if some of the stratospheric CCN are sulfuric acid particles, which partially evaporate when the sample bottles are warmed as they are brought to the laboratory. Our results, higher by an order of magnitude than anticipated, suggest that volcanoes may be an important source of CCN in the lower stratosphere, both by direct injection of CCN and by contributing precursors for homogeneous nucleation of CCN.

References and Notes
6 F F DanieUson, ibid. 211, 819 (1980).
11 We thank W Page, D L Yost, J J Velders, D O Hara and F London for providing laboratory space and considerable assistance at NASA Ames Research Center, and for dedicating the four samples to our experiment. We thank F T DanieUson for his early analyses of the Hawaii series of the 18 May and 12 June plumes.

September 1980; revised 16 December 1980.
APPENDIX B

DRI LETTER TO DR. T. ACKERMAN
NASA Ames Research Center
May 20, 1981

Dr. Tom Ackerman
Atmospheric Experiments Branch
Building 245
NASA-Ames Research Center
Moffett Field, CA 94035

Dear Dr. Ackerman:

We are writing you in connection with the Aerosol Climatic Effects (ACE) program in which we are involved. For a number of years, our group at the Desert Research Institute (DRI) has been engaged in condensation nuclei studies in the troposphere, and last year we were fortunate to obtain a few grab samples through the efforts of Ed Inn and Jim Vedder for such studies at stratospheric levels. At the suggestion of Dr. Pollack, we'd like to forward a suggestion relative to the discussions scheduled for the next ACE Workshop (May 27 and 28) on possible tropospheric directions for the program. (At least one of the undersigned will attend the Workshop, should you wish further information).

Our work here, specifically, has included over a decade of design and development of instrumentation which can detect, characterize, and count cloud condensation nuclei (CCN), i.e., nuclei active at supersaturations of order 1% and below, typical of natural clouds. Our feeling that good, reliable chambers have evolved was reinforced last year when DRI hosted an International Workshop on CCN detection instruments; absolute accuracies have now improved to the less-than-10%-error range; precision of order 1% has been demonstrated on many occasions.

The idea that ACE would devote some attention to the troposphere is especially interesting to us since most of our work has been in the lower atmosphere where CCN are an important component of the atmospheric aerosol. You are probably familiar with some of the arguments in favor of CCN measurements; we generally view CCN data as having a triple relevance in models of climate change. The most obvious consideration is, of course, that the CCN distribution often determines the initial cloud droplet size spectrum, a direct input to precipitation processes.

Next, we consider the cloud droplet size distribution (or "cloud microstructure") to be a determining factor in calculating the cloud albedo. And finally, another contribution to calculations of the
earth's radiation balance comes from the aerosol in cloudless situations, when knowledge of the CCN activity spectrum gives an estimate of how the aerosol absorbs water and enlarges, even in subsaturated conditions. In the paragraphs to follow, we discuss these three effects in sequence.

Cloud droplet number-versus-size distributions result from an interaction between the initial CCN distribution and air motions (updraft, entrainment, etc.). The precise effect of the resulting droplet size distribution on precipitation efficiency is still the subject of research (at our laboratory and many others). However, some aspects of the problem seem to remain clearly in focus, such as the views that high CCN concentrations lead to high cloud droplet concentrations which can then inhibit precipitation formation, and that the observed wide variations in cloud droplet concentrations, both high and low, can largely be accounted for by corresponding variations in CCN concentrations as suggested some time ago by Squires (1958). Thus, CCN are of special relevance because of the wide variations in their concentration (two orders of magnitude).

The relationship between cloud microstructure and cloud albedo has been considered by Twomey (1974, 1977) and Charlock and Sellers (1980). Cloud albedo is, of course, a very important component - perhaps 70% to 90% - of the planetary albedo, and the latest-cited authors concluded that the total influence of all aerosols on the radiation budget is divided roughly equally between the CCN contribution (which influences cloud microstructure which, in turn, determines cloud reflectivity) and all the rest of the non-cloud-forming aerosol.

Finally, we reiterate that analysis of a given aerosol in terms of its CCN activity, gives a measure of the deliquescence (enlargement) of that aerosol as the ambient relative humidity approaches 100%; for pure soluble salts, characterization of the critical supersaturation is totally sufficient, and only slight corrections are needed for mixed soluble/insoluble particles. Deluisi, et al. (1976) and others have recognized that liquid water condensed on aerosols in subsaturated conditions should be taken into account in radiation balance calculations (this may be more important at higher altitudes where humidities may be elevated though not high enough to produce clouds). CCN measurements are, by definition, taken at standard and well-characterized humidities, allowing the modeler to separate those optical effects due to variations in concentration of the aerosol in subsaturated conditions from those effects due to enlargement of that same aerosol as relative humidities change, again at subsaturations.
Dr. Tom Ackerman
May 20, 1981
Page Three

In conclusion, then, we are suggesting that the ACE Program consider CCN measurements as part of a tropospheric aerosol measurement program. Chambers for the characterization of CCN (number active at a given applied supersaturation, or critical supersaturation spectrum) have reached the engineering state where it is feasible either to fly them on research aircraft or to install them at field stations on the earth's surface. (Most of our own field experience over the past seven years has been in surface measurements, which are economical and sometimes can be related to measurements aloft, but we are presently constructing for NASA an airborne version of an instantaneous CCN spectrometer.) We suggest that both surface and airborne measurements could be useful in a program concerned with climate change; a similar recommendation was already reached by NOAA's Global Monitoring for Climatic Change Program (Bodhaine, 1979).

Thank you for considering this input; we'd be glad to expand upon it if you'd like. We are looking forward to your presentation on May 28.

Sincerely,

C. Fred Rogers
Assistant Research Professor

James G. Hudson
Assistant Research Professor

xC: W. Kocmond
J. Pollack
References

APPENDIX C

DESCRIPTION OF INSTANTANEOUS SPECTROMETER
INSTANTANEOUS SPECTROMETER

A. Equipment Description

This instrument was built along the same lines as the DRI continuous flow diffusion (CFD) chamber (Hudson and Squires, 1976). The most important feature of this instrument is that it uses the sizes of the drops detected by the optical counter to deduce the critical supersaturations of the nuclei. Since several size thresholds can be used, this allows the possibility of simultaneously determining the number, \(N \), vs. critical supersaturation \(S_c \), for several \(S_c \)'s. This is difficult in a conventional CFD where the drops usually achieve a nearly monodisperse size distribution regardless of the range of \(S_c \)'s in the sample aerosol (Hudson, 1976).

B. Theory of Operation

The instantaneous spectrometer, however, contains three supersaturation steps which disperse the drop spectrum over a wider size range. This range is further widened since the sample is exposed to these supersaturations in ascending order. The device, which is shown in Figure 1, is a series of three CFD's inside one chamber. It contains a sequence of three pairs of temperature controlled plates so that a sample aerosol can be exposed to three separate supersaturations \((S_1, S_2, S_3) \). This means that in the first zone only the largest nuclei become activated drops. That is, only those nuclei with \(S_c \)'s below \(S_1 \) grow into droplets while the remaining nuclei remain as unactivated haze drops. After being exposed to this constant supersaturation, these drops approach a monodisperse distribution.
In the next zone nuclei with $S_1 < S_c < S_2$ become activated and grow into cloud droplets with similar sizes. In the meantime the drops which were already activated in the first zone grow even larger in the second zone. In fact, their growth rate is speeded up due to the higher driving supersaturation in zone two. Thus, the nuclei with $S_c < S_1$ grow even larger and somewhat more monodisperse and at the end of the second zone a bimodal drop distribution should result. Finally, the third zone activates the smallest nuclei (largest S_c) with $S_2 < S_c < S_3$ and a trimodal distribution should result.

The most significant result is not the trimodal distribution but the fact that the drop size spectrum has a wider spread than it has in a CFD. In the spectrometer the drop concentration is less sensitive to drop size and it is easier to discriminate nucleus S_c's based on drop sizes. Therefore, a small change in the drop size thresholds results in a smaller change in apparent concentration than would be the case with the monodisperse distribution in a CFD. Thus it is much more feasible to relate drop sizes to S_c and to establish size thresholds which correspond to certain S_c's. If there were no other factors than S_c affecting drop size, then a trimodal drop distribution with clear separations between modes would always result. In that case, size discrimination could be made between the modes and a definite N vs. S_c spectrum could be made which would correspond to the three supersaturations used in the chamber. In such a case, a cumulative distribution would have three plateaus where the number concentration would be constant over a range of sizes. In the CFD there is one drop size plateau which ensures that
all nuclei are activated but that none fall to the floor so that a direct determination of \(N \) vs. \(S_C \) can be made with \(S_C \) being the applied supersaturation in the chamber. There are some situations when the instantaneous spectrometer has three drop size plateaus which then allow direct determinations of \(N \) vs. \(S_C \) for the three \(S_C \)'s. However, in most situations the modes are not completely separated (Fig. 2) and instead of plateaus in the cumulative distribution, we find decreases in the slope of \(N \) vs. \(r \) (Fig. 3). Although this is a much better situation than in the CFO, the lack of a plateau limits the accuracy of direct measurements of \(N \) vs. \(S_C \). Accuracy can be increased by setting the voltage thresholds so that the number concentration in the spectrometer matches that in a CFO monitoring the same sample at a specific supersaturation.

Although this can also be done with two CFO's (Hudson, 1976) (where one of the CFO's takes the role of the spectrometer and the other one is used to calibrate the first CFO), the process works much better with the instantaneous spectrometer where there is nearly a constant concentration over some parts of the size range. This considerably reduces the requirement for stability of the various operating parameters. With the instantaneous spectrometer it has been possible to keep the operating parameters constant enough that voltage settings can be used for many days or weeks with continued good accuracy.

C. Description

Figure 1 shows most of the dimensions of the instantaneous spectrometer. The plates are separated by 1.6 cm while the plate width is 29
cm. This chamber was also operated with the plates vertical and sample moving horizontally. The main flow through the chamber was 50 cm3 sec$^{-1}$ throughout the Workshop. This resulted in a particle velocity of $v = 1.62$ cm sec$^{-1}$ so that the sample spent about 31 sec in the chamber; 18.6 sec at S_1, 7.4 sec at S_2, and 5 sec at S_3.

As with the DRI CFO, a Royco 225 optical particle counter is used as the detecting device for the instantaneous spectrometer. In addition a 512 channel analyzer (MCA) (Northern Scientific, Inc.) is also interfaced to the Royco to increase particle size resolution so that greater detail in the concentration vs. size spectrum can be displayed.

The plate temperatures were roughly the same for the entire Workshop so that the supersaturations were nearly constant at $S_1 = 0.30\%$, $S_2 = 0.55\%$, and $S_3 = 0.90\%$. The droplet size thresholds were set by matching the number concentrations in the instantaneous spectrometer with the concentrations measured with the CFO set at the three different plate temperatures in the instantaneous device. The largest drops corresponded with the lowest supersaturations, etc. All of the drops which could be detected down to the smallest sizes (~0.2 µm radius water drops corresponded to the number of CCN active at the highest supersaturation in the spectrometer.

Channel 2 was set for about 1.42 µm radius water drops while Channel 3 was set for 1.75 µm radius water drops. A slight number vs. drop size plateau was observed here and the concentration of CCN in the CFO at 0.55% supersaturation (which was S_2 in the spectrometer) was found to be always less than the number of drops in Channel 2 but more
than that found in Channel 3 of the instantaneous spectrometer. This meant that nuclei with S_C of 0.55% produced drops within the size range of 1.42 μm and 1.75 μm radius in that particular configuration of the instantaneous spectrometer. Thus, the average of Channels 2 and 3 were used to deduce the number of CCN active at 0.55% in the spectrometer. Channel 4 was set at 2.77 μm radius water drops and Channel 5 was set for 3.0 μm water drops. In a similar fashion, these corresponded to 0.30% S_C. It was found necessary to make a small adjustment in the size thresholds only once during the Workshop.

The sample flow rate was usually the same as the CFD, 0.60 cm3sec$^{-1}$, although it was at times as low as 0.1 cm3sec$^{-1}$. The plates were also controlled by the same regulator baths and the same types of thermisters were embedded in the plates. This chamber differed from the CFD in three other respects: (1) There were no flows of particle-free air around the backside of the plates. Instead, a diffuser screen was used to eliminate any turbulence; (2) A metal mesh screen was used instead of filter paper for the moist plate surfaces; and (3) Instead of dripping water onto the plates as in the CFD's, water was fed to the metal screens by capillary action from a reservoir of distilled water.

D. Operation

Several tests can be performed to check the performance of the instantaneous spectrometer. When the upstream lowest supersaturation, S_1, is increased, the larger sized droplet peak increases and becomes larger as it should. When the higher downstream supersaturation, S_3, is increased, the magnitude of the smaller sized peak is increased and
there is an increase in its size. Under these conditions, the larger sized peak is only shifted to a slightly larger size. These observations are all in keeping with the operating principles. Thus, sizes which allow separations between the peaks can be chosen. Moreover, the Royco voltage thresholds can be set so that certain size channels can be used to monitor the concentration at specific supersaturations. The size channels can be adjusted so that an individual drop size plateau can be obtained for each supersaturation (see Hudson and Squires, 1976).

This assures that all drops which should have been activated at a certain supersaturation were activated and counted. Changes in the downstream supersaturation, S_3, do not affect the detected concentration active for instance at S_1 or S_2.

The spectrum of three supersaturations was available simultaneously as soon as the OPC counted and printed out the numbers. Agreement with the DRI CFD was very good and consistent throughout the Workshop as shown by the results.

E. References

Figure 1. Schematic of the instantaneous CCN spectrometer.

Legend:

- $L_1 = 48$ cm; $L_2 = 8.4$ cm; $L_3 = 10.4$ cm; $L_4 = 38.4$ cm
- $L_5 = 12$ cm

Supersaturation: $S_1 < S_2 < S_3$
Plate Temp: $T_1 < T_2 < T_3 < T_4 < T_5 < T_6$

(1) Carrier flow entrance; (2) Diffuser screen; (3) Sample injection tube; (4) Cold plate wicking surface; (5) Warm plate wicking surface; (6) First warm section, T_4; (7) First cold section, T_3; (8) Second warm section, T_5; (9) Second cold section, T_2; (10) Third warm section, T_6; (11) Third cold section, T_1; (12) Temperature bath at T_4; (13) Temperature bath at T_3; (14) Temperature bath at T_5; (15) Temperature bath at T_2; (16) Temperature bath at T_6; (17) Temperature bath at T_1; (18) Exhaust to OPC.
Figure 2. Relative number of drops vs. relative sizes (voltages) for the instantaneous spectrometer. Note that this is a differential and not a cumulative plot.
Figure 3. Relative cumulative number of drops vs. size in the instantaneous spectrometer. Applied supersaturations were 1%, 0.4% and 0.15%.

POLYDISPERSE NaCl

NOMALIZED CONCENTRATION

r(µm)
APPENDIX D

DRI LETTER TO DR. P. MCCORMICK
NASA LANGLEY RESEARCH CENTER
Dear Pat:

Please excuse my tardiness in responding to your request for material on cloud condensation nuclei (CCN). I am enclosing a few reprints of relevant material. The paper, "An Improved Continuous Flow Diffusion Cloud Chamber", presents our basic instrument for CCN counting, while the CCN spectrometer paper discusses our more recent instrument developments. The workshop paper discusses the current state-of-the-art in CCN counting.

The paper by Twomey and Squires and the introduction to the paper, "Relationship Between Fog Condensation Nuclei and Fog Microstructure", provides some basic material on CCN. The rest of this paper may be largely irrelevant to you except for the matter of the separation of activated and unactivated drops. A similar question is also very important to polar stratospheric clouds (PSC). This would be crucial because, if PSC's contain unactivated particles, then the nucleus concentration would be of utmost importance for their presence. If they are supersaturated, then their presence will probably be less dependent on the nucleus concentration, as long as some nuclei are present. However, as in the troposphere, the microstructure of the clouds would probably still be related to the available nucleus spectrum. In the troposphere, the concentration and size of cloud droplets shows considerable variability largely because the CCN spectrum displays wide ranges of concentration and shape, depending on time and place. The very limited stratospheric measurements of CCN also display variability (see enclosed paper on stratospheric measurements); thus it is likely that there is the same type of relationship between nuclei and cloud microstructure in the stratosphere. If this is the case, then a knowledge of the CCN spectrum would be useful for understanding and perhaps predicting cloud microstructure.

The spectrum provided by CCN measurements would be especially useful in determining which nuclei are being utilized by these clouds. We might find that a particular supersaturation range is important for PSC's. It is the critical supersaturation (S_c) which is the important parameter since this takes into account both size and chemistry (the relevant chemical property is the solubility).
Of course at the very low temperatures of the polar stratosphere, the situation is complicated by the ice phase. Ice nucleus (IN) measurements in the troposphere always indicate that these particles are in much less abundance than CCN. Discrimination between IN and CCN in the stratosphere would be irrelevant because of the much lower temperatures. Although supercooled water drops can exist only to temperatures of 233°K, supercooled solution drops may exist down to about 190°K (Hallett and Lewis, 1967; enclosed). These authors treated the example of sulfuric acid which is a likely component of the stratosphere. Although such particles may eventually freeze, their behavior while in the liquid state is a very important factor even after freezing occurs. Moreover, the relative likelihood of nucleation is probably largely independent of temperature.

The paper on stratospheric measurements demonstrates our ability to make CCN measurements at such high altitudes from a U-2 aircraft. In making these measurements in the Ace program, we had not considered the specific relevance of CCN to the stratosphere. Our interest in stratospheric CCN was directed toward transport to the troposphere where they could represent an important input for tropospheric clouds. Another product of our measurements is also an indirect measurement of the particle size distribution which can have direct relevance to the stratosphere.

The role of CCN in clouds can be ascertained in two ways. The classical method has been to compare the nucleus spectrum just below the cloud with the drop spectrum near cloud base. This procedure was done in the enclosed fog paper and in some of the papers referred to in the introduction to that paper.

We have recently been developing an alternative procedure which entails a comparison of CCN measurements inside and outside of cloud. This would get around some of the assumptions which have to be applied to the first procedure. If the CCN sampling inside the cloud is done so that drops are not collected, then this will yield the spectrum of nuclei which do not get incorporated into the droplets. Thus the comparison with the out-of-cloud nucleus measurement would reveal the population of nuclei activated in the cloud. This would be an especially illuminating procedure for these clouds of which so little is known. This would probably allow us to determine whether these clouds are supersaturated and whether the supersaturation is similar to that of tropospheric clouds. This second procedure would probably be the more useful one to employ in the stratosphere where little is known about updraft velocities such as in the troposphere.

As we had discussed at the Ace meeting, we could gather samples in grab bottles from the U-2 which would fly in the stratosphere and into these clouds. It would also be useful to make direct CCN measurements nearby at lower altitudes in the other airplane which you are considering for the project. Our new airborne instantaneous CCN spectrometer would be ready before the next winter season.
We would be happy to participate in this project and will lend any help you may need in developing this program. Please feel free to call on Fred Rogers or myself to discuss any cloud physics matters related to the project. By way of information, I will probably be making a trip your way in May to present a paper at the Symposium of the Composition of the Non-urban Troposphere.

We look forward to discussions about the PSC project and active participation in the measurements.

Sincerely,

James G. Hudson
Assoc. Research Professor
Atmospheric Sciences Center

JGH/swr
xc: F. Rogers