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ABSTRACT 

The DiS event of July 29, 1977 was the topic of a coordinated data analy

sis workshop in October 1979. During this workshop the hot plasma observa

tions obtained by several spacecraft (GEOS-I, ATS-6, S3-3 and AE-C) both at 

high and low altitudes were compared. The high altitude data show that the 

magnetopause was compressed to between 6.6 and 7.0 Re near 13 MLT. The plasma 

ion compos~tion measured, at high altitudes outside the plasmasphere, by 

GEOS-I was seen to be primarily 0+. These heavy ions were also observed at 

low altitudes outs~de the plasmasphere. Both GEOS-1 and S3-3 observat~c'ns 

show that at times these ions were found well below the plasma pause inside the 

plasmasphere. Comparisons of the low altitude (S3-3) plasma and DC electric 

f~eld data show that the o~ter limits of the plasmasphere was not always coro

tat~ng at the low L shells (L ~ 3) on this disturbed day. The corotauon 

boundary, the estimated plasoapause boundary and the boundary of the inner 

edge_of plasma sheet ions were usually found to be at the same position. The 

inner edge of the plasma sheet electrons near dawn and dusk, plus the polar 

cap boundaries, were determined from the low altitude data. The inner edge of 

plasma sheet electron:: t ... as observed at higher latitudes (L shells) than the 

plasmasphere boundary during disturbed times. This inner edge of the plasma 

sheet showed a strong dawn to dusk asymmetry. These inner edges of the plasma 

sheet ions and electrons were found to be in relat~vely good agreement wuh 

the predictions of the Rice University Convection Model (Wolf et al., 1981). 

The inner edge of the plasma sheet electrons was found to be in good agreement 

w~th ~nner edge of the> 80 keV ring current ion precipitation. The S3-3 data 

showed that:, lat:e on July 29, the auroral precipitation extended 

above A - 85.7° on the nights~de. At the same time the inner edge of the ring 
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current and plasma sheet also moved to h~gh lat~tudes (A - 72°) reflect~ng an 

apparent inflation of the magnetosphere. 

/ 
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Introductl.on 

July 29, 1977 was chosen by the members of the .International }lagneto

spheric ~tudy (HIS) committee for detailed study for several reasons, the mos t 

important of which were that several substorms occurred on that day and the 

magneto pause boundary was compressed to altitudes of ~ 6.6 - 7.0 Re after the 

arrival of an interplanetary shock at ~ 00:27 UT (Knott et al., 1981). Later 

in the day the interplanetary field turned northward, the magnetosphere 

quieted and the polar cap "collapsed" to a very small area. Auroral precipi

tation was observed as high as A ~ 85 0
• So, the day contained very strong 

activity and very rapid changes of magnetosphere boundaries. These phenomena 

indicate that July 29, 1977 was a very unusual day, being both very disturbed 

and very quiet with a highly compressed and an inflated magnetosphere at 

dl.fferent times of the day. The day was also of interest to the sCl.entl.fic 

community because a very large number of simultaneous ground and satellite 

measurements were available. The nearly complete in situ coverage provides a 

unique opportunity to present a detailed picture of a disturbed period. The 

set of observatl.ons can be used to set boundary conditl.ons for and test the 

many aspects of magnetospherl.c models. 

The purpose of this report is to draw together the inforcation available 

from the various in situ plasma measurements and to try to put them into a 

coherent picture of the state of the magnetosphere. To this end the measure

ments will be used to locate the various plasma "boundaries", such as the 

plasmapause boundary, trapping boundary, inner edge of the plasma sheet and 

ring current, and the polar cap boundary. These boundaries reflect the dyna

mics of the magnetospherl.c processes such as convection and substorms and 

thel.r motions can be used as diagnostics of the magnetosphere on a large 

scale. 
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Observat~ons 

The magnetospnere was undisturbed prior to 0000 UT on July 29, 1977 as 

evidenced by the Kp and provisional Dst shown in Figure 1. The substorm event 

was ~n~t~ated by a strong shock wave in the solar wind as is evidenced by the 

positive excursions in Dst and the midlatitude magnetometer stations at about 

0028 UT on July 29 (Manka et al., 1981). The resulting solar wind density and 

velocity increases were sufficient to push the magnetopause past GEOS-l, which 

was at - 7 Re near local noon, but not past ATS-6 in the post noon reg~on 

(!-lanka et ale, 1981; King et al., 1981; Knott et al., 1981; Wilken et al., 

1978; Wilken et al., 1981). 

The shock wave was followed by a substorm Ynth a slow (few hours) t~me 

scale. The ring current is greatly enhanced as is indicated by Dst min1mizing 

at - -100y in Figure 1. A second substorm occurred near 0600 UT and a third 

near 1200 UTe The third substorm caused a secondary minimum in Dst during the 

recovery from the initial substorm (see Fig. 1). From - 1500 UT on, the low 

and midlatitudes of the magnetosphere returned to relatively quiet conditions 

while the Dst ~ecovery proceeds until about 0200 UT on July 30. In all, four 

distinct substorms were seen with maximum field depressions at 0430, 0630, 

0900 and 1230 UT (~~nka et al., 1981). Each substorm left its own signature 

in the plasma boundaries. 

The evidence for the close approach of the magneto pause is shown in 

Figure 2 as a sudden appearance of relatively intense He++- fluxes at GEOS-1. 

At th1s time GEOS-l was near its apogee on the days1de magnetosphere near 13 

~~T. Figure 2 shows four complete suprathermal (60 eV - 16 keV) ion spectra 

for the period when the magnetopause crossed GEOS-1 follow~ng the solar wind 
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Figure 1. Kp and Provisional Dst Indices for July 28-30, 1977. The periods 
of 83-3 satellite data are shown as bars across the top of the 
figure (from Fennell et al., 1979). 
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Figure 2. Three-Dimensional Mass-Energy Spectra Taken by GEOS-1 in the 
Magnetosheath on July 29,1977 (after Geiss et al., 1978). 
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shock at - 0027 UTe The crossing occurred at 0027:55 UT and was preceded by 

sharp spikes of ion flux at 0026:44 and 0026:56 UTe Analysis of the ion 

energy spectra indicates that the spikes may represent a flow of particles 

consistent with a compression associated flow of ions as the magneto pause 

moves inward (Knott et al., 1981). The GEOS-1 satellite remained in the 

magnetosheath from at least 0027 UT to 0149 UT when data coverage ended (see 

Geiss et al., 1978; Wilken et al., 1978). The figure shows the high !1/Q 

component of the solar wind which extends d~agonally away from the 4He+2 peak 

toward higher mass and energy. The detailed analysis of the data, described 

by Geiss et ale (1978), showed the ex~stence of 3He2+, 0+6 , silicon group ions 

and some iron group ~ons. These ions are all solar wind ions, not iono

spheric. A weak flux of He+ is present from 0032-0033 UT with a few hundred 

eV energy. At - 0136 UT a similar observation is made of 0+ (Knott et al., 

1981). Thus there is a suggestion of magnetospheric plasma with different ion 

makeup and origins from that of the solar wind. 

Careful examination of the AIS-6 plasma data shows that the magnetopause 

d~d not penetrate inside its orbit, i.e., magnetosheath plasma was not en

countered (ref. Figure 3b). ATS-6 is in the post noon sector at this time 

near 15 LT and 3° above the geomagnetic equator. Enhanced low energy fluxes 

of both ions and electrons appeared at 0027 ur (ref. Fig. 3). However, Wilken 

et ale (1978) noted that the> 25 keV protons showed an enhanced and continued 

presence consistent with an adiabatic increase of the particles possibly 

resulting from a field compression caused by the shock, but that ATS-6 

remained in the magnetosphere. Thus, it is most likely that the enhanced low 

energy fluxes represent a boundary layer encounter. 

Later in the day near 0320-0340 UT (- 1800 LT) ATS-6 is passing from the 

plasmasphere to the plasma sheet. The crossing is not smooth but accompanied 
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Figure 3(a). Spectra from AT&-6 Plasma Detector Prior to and After the 
Arrival of Shock at 0027 UT July 29, 1977. Instrt~ent field of 
view is oriented to look north of the orbital plane at ~75°. 
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by mult~ple electron increases as shown in Figure 3b. The satell~te is near 

the long~tude of the College Alaska magnetometer which shows a small negat~ve 

fluctuat~on at this t~me (see ~~nka et al., 1981). Enhanced 60 eV ion fluxes 

(ref. F~g. 3b) are observed in the nominally parallel detector but not in the 

perpend~cular detector. This is an ~ndicat~on of field aligned streaming of 

ionospheric ions at the plasma sheet boundary. 

The other major features seen in the ATS-6 plasma data are the decrease -

increase of electrons and ion fluxes near 0800-0900 and 1130-1200 UT (see 

Figure 3b) in association with large magneuc bays at College Olanka et al., 

1981) • In fact the flux decreases precede the substorm onset and the flux 

recovery occurs at the onset. The effect is greatest on the more energetic 

plasma ions (EI - 5-20 keV). The ion decrease is dispersive, i.e., occurs 

first at the highest energies, whereas the ion recovery shows no dispersion. 

Tne final ion fluxes are not s~gnificantly higher than the initial fluxes. 

There are ~on flux ~ncreases at < 400 eV after the recovery, which rJay be 

l.nd~cative of field aligned fluxes assoc~ated with the substorm (Fennell et 

~., 1981; Kaye et al., 1981). 

One of the magnetospheric boundaries wh~ch is of great interest ~s the 

polar cap boundary. Thl.S boundary defines the region of "open" field lines 

and is used as a reference l.n some substorm models. There are several tech

niques for defining this boundary, such as changes in the angular distribution 

of solar part~cles (Vampola, 1971; McD~armid et al., 1972) and features ~n the 

solar flare protons at high latitudes (Evans and Stone, 1969; Fennell, 

1973). The low latitude liml.t of the "polar rain" fluxes, which are the tail 

lobe fluxes and which can show a cutoff just above the auroral fluxes 

(W1.nningham and Heikkila, 1974; Meng and Kroehl, 1977; ~1izera and Fennell, 

1978), have also been used to define the polar cap. The reversal of the plasma 
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convectl.on from sunwa..:d to antisunward Torbert et al. (1981), and poleward 

tenunation of the low-energy ion and auroral electron precl.pitation, as a 

defl.nitl.on of the poleward extent of the auroral oval which bounds the polar 

cap (Meng, 1979), are other features used to estimate the polar cap 

boundary. These detenunations are easiest to make from low altitude polar 

orbitl.ng satellites such as the S3-3. The reader should refer to the refer

enced papers for a detailed description of the techniques involved. In this 

study we have used only the last three since the other measurements were not 

available. 

Figure 4 shows a spectrogram (Mizera and Fennell, 1977; Fennell et al., 

1979) of the low altitude S3-3 auroral electrons and low energy ion precl.pl.ta

tion for July 28, 1977 near 1700 UTe The poleward terml.natl.on of the auroral 

electrons and l.ons is very obvious at - 61270 sec UT and fI.~ 74.2° on the 

evening side. On the morning sl.de the soft electron fluxes at 1 keV show a 

sharp drop near 59440 sec at fI.- 72 .5° with only "polar rain" observed at 

higher latitudes. Similar data were available from the Lockheed particle 

experiment on S3-3 (Sharp et al., 1979) and were used as an independent deter

mination of the boundary. 

The correspvnding plasma flow data is shown in Figure 4b. This hgure 

shows one example of the plasma flow in the northern hemisphere on 28 July 

1977. The flow vectors were deduced from the measured electrl.c field in the 

spl.n plane of the satellite which is maintained close to the orbital plane 

(for details see Hozer et al., 1979; Mozer and Torbert, 1980). Hence, these 

flow vectors constl.tute only the flow component normal to the satellite tra

Jectory, which runs from near 0340 to about 1800 MLT past the night side of 

the pole. The flow vectors are perpendicular to the trajectory except for a 

sll.gnt rotation whl.ch arises from the projection of the electric fl.eld to a 
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fixed altitude by equipotenual mapping. The flows change from sunward to 

antisunward at A"'74° on the even~ng side and A"'72° on the morning side. (ref. 

Torbert et al., 1981 for description of polar cap boundary determ~nations). 

These are ~n good agreement with the particle boundaries deduced above. 

The electron, ~on and electric field data from the 53-3 experiments were 

used to determ~ne the polar cap boundaries as described. The results are 

shown in Figure 5. The electric field data was available on only about 5010 of 

the auroral traversals. The Aerospace points correspond to the best estimate 

using both electron and ion data. The Lockheed points correspond to electron 

boundaries only. 

The high latitude magnetosphere remains disturbed during the 1500-2400 UT 

recovery per~od. Th~s disturbed condition is reflected in the data as intense 

auroral-like prec~p~tations observed at high latitudes. The retreat of the 

active regions to high latitudes late ~n the day is evidenced in the particle 

prec~pitation by the extremely high latitude reached by the polar cap bounda

ry. Especially note that the solid and open points near 1900 and 2200 UT on 

July 29 indicate that the 53-3 satellite did not attain latitudes high enough 

to penetrate into the polar cap (see also Figure 2 of Fennell et al., 1979). 

The polar cap boundary then recovered to A'" 73-74 0 by 0400 UT on July 30. 

Thus, dur~ng the storm recovery period, the polar cap boundary moved up 

above A == 85 0
, which is very high indeed. A separate paper in this series 

presents all the evidence pertaining to this event (Zanetti et al., 1981). 

Based on the particle data one could argue that the satellite may have 

entered the polar cap for a few minutes near 1910 UT and A~ 77 0 
- 78 0 as shown 

by the dawn side data point (Ref. Zanetti et al., 1981 and Fig. 2 of Fennell 

e t al., 1979). 5im~larly, the electric field data shows mult~ple reversals 
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toward higher latitudes where the particle precipitat1.on 1.S observed. Near 

2200 UT there is no indicat10n 1n the part1cles of an entry into the polar 

cap. In fact, prec~pitat~ng > 1 keV ions are seen up to A ..... 85.7°. Unfortu-

nately there are no electric field measurements for this t1me. There 1S other 

evidence, primarily from ground based data, that shows the strong auroral 

activity had moved to high latitudes (Zanetti et al., 1981). 

As can be seen, during the disturbed times the polar cap boundary moved 

in response to the magnetic activity. The details of the motion are not 

resolvable in the low altitude satellite data although the general trends are 

evident. The highest latitudinal excursions occurred during the recovery 

penod, after 1800 UT on July 29, following the substorms earlier in the 

day. The boundary then moved back to low latitudes in response to the sub

storm starting near 0200 UT on July 30 and again moved poleward during the 

later recovery. The substorms early in the day came too close together, 

compared to the satellite orbital periods, to get a complete picture of the 

polar cap response. 

There are several other plasma boundaries which are important in terms of 

electric and magnetic field models of the magnetosphere. The plasmas phere 

boundary 1S controlled by the convection electric field and its temporal 

variation is an important measure of the variation 1n the magnetospheric 

convection field and the plasma response to the variations. The plasmasphere 

boundary is usually determined by measuring the plasma density to find the L 

shell and/or altitude at which the density falls dramatically from 100 -

1000 cm- 3 
I to the "trough" values of less than one to a few tens of ions 

cm- 3 • This is the principal definition of the plasmasphere boundary used 1n 

this study. 
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TIle measureoents available on July 29 are of several different kinds at 

low alt~tude. First there is the electr~c field measurement wh~ch dist~n-

gu~shes the corotat~on reg~on from the non-corotat~ng reg~on, then there is 

the measurement of an enhanced flux of 90-4000 eV/q ~ons (- 1 to 2 orders of 

magn~tude flu.'C increase above normal levels) at small L shells and finally 

there ~s a measurement of ion density from a retard~ng potent~al analyzer. 

Examples of some of these data and the estimated plasmapause boundary are 

shown in Figures 4 and 6. 

Figure 4a shows the particle data for a dawn-dusk traversal from low 

latitude across the polar cap and back towards the equator. The termination 

of the enhanced low energy ion fluxes (bottom spectrogram panel), ~nd~cat~ve 

of exit from the plasma sheet into the plasmasphere, occurs Just below A = 65° 

near 3.1 1:-ILT and about A= 67° at 18.5 MLT (see arrows). S~nce th~s is a 

relat~vely quiet period (Kp = 1+ to 2-; Dst = -4 to -5) the inner edge of the 

plasma sheet ~ons is not as obvious as in the disturbed data because of the 

lower ion flux levels (for other examples see Fennell et al., 1979). Th~s 

spectrogram ~s derived from the Aerospace particle data. The equatorward edge 

of the enhanced plasma sheet ~ons is also seen in the Lockheed ion data as 

shown ~n Figure 9h. 

The electric f~eld experiment on the S3-3 satellite was used to obta~n 

the EXB flow at low latitudes too. In the plasmasphere the flow is normally 

cons~stent with that expected from the corotation, with the earth's field, of 

the cold plasma past the satellite. As the satellite proceeds poleward 

through the plasmapause the flow changes consistent with the fact that the 

plasma sheet plasma ~s not corotating. This change is used to def~ne the 

corotat~on boundary (see Hazer and Torbert, 1980). In Figure 4b the corota-

t~on boundar~es determined ~n th~s manner are consistent w~th plasma corota-

t~on below A-65° in the dusk and A-64° in the morning sectors. 
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Figure 6 shows a plot of ~on densities from the S3-3 retarding potential 

~on analyzer on July 29, 1977 (for a descript~on of th~s ~nstrument ref. Burke 

et al., 1980; Wildman, 1977). The local morning and evening plasmapause 

crosslngs are indicated. Although the density grad~ents of the plasmaspnere 

boundary are relatively steep dur~ng this time there is already an inter.nedi

ate density "shelf" formed near 700 cm-3 and 250 cm-3 on both the local 

evening and morn~ng sides respectively. Note that the ion density is avail

able only every - 20 sec (once every satellite rotation). 

The plasmapause boundary during this d~sturbed period is often not well 

def~ned even in the ~on density data. The denslty data often show a very slow 

vanation Wlth invanant latitude and have regions of elevated (;::. 100 ions 

cm-3) density extending over 3-6 degrees. Such times are indicated by the 

length of the bars in Figure 7 for the plasmapause boundary. There are also 

obvious differences between these positions on the morning and evening s~de of 

the magnetosphere. The ion retarding potential analyzer also shows that a hot 

enhanced plasma is present outside of and overlapping the plasmasphere boun

dary. This is evidenced by a peak in the measured ion current not only 1n the 

ram d~rect~on but also ln the wake when the instrument f~eld of view is per

pend~cular to B. This is assumed to be an enhanc~d plasma sheet plasma Wh1Ch 

1S d~scussed below. 

The resulting estimates of the low alt~tude plasmapause boundary uS1ng 

the different techn~ques are shown in Figure 7. Generally, the particle and 

electr~c f~eld est1mates are in good agreement (Within - 2°) except near 1330 

UT and 1800-2000 UTe The electric field est~mate near 1830 is an upper 

lim~t. Tne point at 1330 UT would seem to 1nd~cate that the plasma inside the 

boundary of the high dens~ty region (based on ion density) is not corotating 

over a fa~rly large rad~al distance. At thlS same time the plasma denslty 
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data show that an ~ntense low energy ~on flux is observed, when the instrument 

v~efN is perpend~cular to B ~n. the satellite wake, while crossing the plasma

pause and at hi6her lat~tudes. At the saIJe place, the energet~c plasma 

analyzer shows a response to heavy ions (He+, 0+) as described ~n Fennell et 

al. (1979) (see also the d~scussion of Figure 9b below). 

The plasma sheet ion boundaries from the Aerospace and Lockheed instru-

ments are in relatively good agreeIJent. The differences that exist may be 

related to the different energy bounds on the two instruments (0.09 - 4.0 

keV/q for the Aerospace and 0.5-16 keY for the Lockheed measurements). It ~s 

apparent froIJ Figure 7 that the plasma sheet ion boundary is generally on the 

low latitude side of the plasmapause boundary, as est~mated from the ~on 

density data. The agreement between the plasmapause boundary derived from the 

dens~ty measurements and that derived from the energetic ion measurements is 

quHe good after 1200 UT on July 29, 1977. Pr~or to that t~IJe the plasma-

sphere would seem to have an ~ntense 90 eV to 16 keY ~on component present in 

~ts outer reg~ons. 

What is clear from Figure 7, regardless of which boundary estimate is 

used, ~s that the low altitude plasmasphere boundary moved from its normal 

posH~on, near A. 63° - 66° (L - 5 to 6 Re), towards the earth to as low as 

A. -45° - 55° (2 to 3 Re) in response to the substorms. 

The large separat~on between the two solid circle points near 17 UT on 

July 29 (Figure 7) represents the high latitude edge of the continuous 

enhanced plasma region and the low latitude edge of a "detached" enhanced 

plasma reg~on. The "detached" plasma consists of ions with energies below 2-4 

keY. The plasma ~nstruments' response ind~cates there is a dominance of heavy 

ions in the 'detached' fluxes (Fennell et al., 1979). Careful examination of 
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the ~on density data shows that there is an ~ntense flux of low energy «100 

eV) ~ons seen perpend~cular to B in the satellite wake, at least down 

to A'" 550. At A'" 55° the lons measured by the low-energy plas~a experi~ent 

lncrease in energy from a maximum of ,.. 1 keV to 2-3 keV. Thus, they may not 

be observable by the ~on density measurement. Also, at th~s pOlnt the denslty 

is increaslng from several hundred to over 103 cm-3 so that the wake peak lS 

no longer resolvable, since the instrument had automatically sw~tched to a 

less sensitive scale. 

At the equator the GEOS-l satellite data covered the L range'" 5.0-7.75 

Re. No plasmapause crossing was observed on the dayside but one was observed 

near 1700-1800 LT. These data are shown in Figure 8, which shows the electron 

density from the GEOS-1 wave experlment (Etcheto and Bloch, 1978) and the low 

energy electron data from the suprather~al plasma analyzers (Johnson et al., 

1978) • 

As is seen in F~gure 8, the electron density remained h~gh as GEOS-1 

traversed the dayside magnetosphere (0930-1300 UT). This elevated density has 

been interpreted by Etcheto and Bloch (1978) as a re~nant of the plasma from 

past quiet ~agnetic conditions which is dnfting from the dawn side to the 

post noon slde of the magnetosphere in the post sse enhanced electric field. 

On July 29 the electron density data shows that the dusk plasmapause occurs 

near 1846 UT or L,.. 3.4 (A = 57.3°). This is shown in F~gure 9a as ne = 100 

co-3 (based on electrlc double probe data, (Pedersen et al., 1978; Decreau et 

al., 1978). This is in good agreement with the low altitude plasmapause 

position taken near 1930 UT. Similarly at 1600-180U UT on July 28 GEOS-1 

crossed the dusk plas~apause near or below L - 7 (A- 68°). Again ln good 

agreement with the upper limlt of the low altitude boundary (Ref. Fig. 7). 

21 



,., 
E 10 
(,J 

>
f-
1i'i z 
lLJ 
Cl 

Z 
o 
a::: 
f
U 
lLJ 
-l 
lLJ 

29 JULY 1977 

,)\, ?, 
\. / \ ,,~ \ /ELECTRON DENSITY 

'Oq \ \ 
I \ 

\ \b---l__ J-
I --- I 

\ / 
\ I 
I ELECTRON FLUX I 

50~E~500eV I 

90° PITCH ANGLE / 

\ I 
~ I 'w 

I 
I 

I 
I 

f 
I 
f z 

o a::: 
r
u 

Ie 1 ~ 
W 

~--~----~--~----~--~----~--~----~--~--~ 107 

1000 
-2 I 

50 
1150 

1200 
84 
68 

1310 

1400 
176 
77 

1410 

1600 
259 
77 
1520 

1800 UT 
312 ).. 
5 5 L 
1720 LT 

Figure 8. GEOS-l Electron Density Profiles from the Wave Experiment and 
Integrated Electron Flux Profile~ from the Suprathermal Electron 
Detector (after Etchpto and Bloch, 1978 and J. F. E. Johnson et 
a 1., 1978). 

22 



DAY 210 29 JULY 1977 1: Kp = 40-
L MODE 0.9 ~ E/ Q 11: 13.9 keV Ie 

107~~~~~~~~~~~~~~~~~~ 

~ 
106 

en 
en 

N 

E 
U 

""""--C/) 
z 
Q 105 

104 

Ld 
UT 
~d 
LT 

Figure 9(a). 

H+ 

0+ 

t 
He+ 

t "e=50cm-3 

ne=100cm-3 

3 4 5 6 7 
18.53 18.35 18.14 17.45 17.02 16.09 
24.0 29.2 30.8 30.7 29.4 26.6 

19.48 18.40 17.46 16.57 16.05 15.23 

Ion Flux Profiles Near Local Evening from GEOS-1 (after Giess et 
al.,1978). Electron densities ne were supplied by the electric 
field double probe experiment on GEOS-1 (after Pedersen et al. , 
1978). 

23 



lOOt ~ 0630-0645 UT 
50 l! 1830-1844 UT (preliminary values) ('Y'J 

" I 
E 20 
C,.) 

~ 
10 

~ 5.0 
Ll...J 

~ 2·°tH+ 
~ 1.0 

N 

~ O.5

t 
~ ! . &-_-£., 

0.2 H+ ", , 
6"'/' " 

0.1
1 

J:. J:. r/~--l"/ '~ 
I I I I 

2.5 3.0 3.5 4.0 4.5 5.0 
L 

Figure 9(b). Local Evening Ion Density Profiles from the Lockheed Light Ion 
Spectrometer on 83-3. 



The low alt~tude data at - liOO UT, as discussed above, showed that the 

energetic ion component had penetrated ~ns~de the plasmapause as defined by . 
the lon density. At - 1930 UT the enhanced plasma lS seen at the lower edge 

of the estimated plasmapause boundary (Ref. Fig. 7). In Figure 9a we see that 

the energetic H+, He + and 0+ ions exist below the n = 100 cm- 3 boundary down 

to L - 2.9. This is analogous to the deep penetration of the low altitude 

enhanced plasma near 1700 UT (see also Fig. 2 of Fennell et al., 1979). 

As mentioned above, the energetic plasma analyzer on S3-3 responded to an 

enhanced plasma composed of predominantly heavy ions in the subauroral reg~ons 

(Fennell et al., 1979). The existence of the heavy ~ons is demonstrated in 

Figure 9 which shows data taken by GEOS-l (Fig. 9a) late on July 29 and the 

S3-3 ~on composition experlment (Fig. 9b) near the same time and earlier ln 

the day. All three data sets show that oxygen is the dominant ion durlng the 

storm and post storm per~od. 110reover, Figure 9b illustrates the recovery 

phase enrichment of 0+ relat~ve to H+ at L < 4 that may be expected on the 

bas~s of charge exchange lifeumes (Lyons and Evans, 1976; Lundin et al., 

1980) • These data show the energetic 0+ flux and density drop off 

between i\- 52° - 53° near 0600 UT which is ln good agreement wHh the plasma-

pause boundary determlnatlons in Figure 7. Data from the retarding potential 

ion analyzers on S3-3 are consistent with 0+ being the dominant ion outside 

the plasmapause ln the thermal and suprathermal plasma. These same data show 

that, at other times inslde the plasmasphere, H+'lS usually dominant. 

If one assumes similar pitch angle and energy distributions for H+, He+, 

and 0+, then 0+ is the dominant ion below L=5. The existence of 0+ as a prime 

const~tuent in the magnetosphere Just outside the plasmasphere ind~cates an 

ionospheric source. This in turn means the lonospherlc lons are accelerated 

to relatlvely high energles (few keY) during substorms. As a result the inner 
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plasma sheet lS composed predominantly of lonospheric ions at the lower ener-

gles « 10 keV see Fennell et al., 1981; Kaye et al., 1980; Kaye et al., 1981; 

and review by R. G. Johnson, 1979 and references thereln). 

There are two other plasma boundaries which tend to move in unison under 

the control of the variable convection field. These are the lnner edge of the 

energetic ring current ion precipitation and the inner edge of the energetlc 

plasma sheet electrons. The inner edge of the ring current ion precipitation 

was obtalned by examining the energetic proton angular distributions to deter-

mine the point at which the protons change from showing the effects of strong 

pitch angle scattering to a trapped distribution (see Flgure lOa). The 

invariant latitude (or L value) at which this occurs was taken as the position 

of the inner edge. On 53-3 this was determined using > 80 keV proton measure-

ments as shown in Figure lOa. The resultant boundary determlnations are shown 

In Figure lOb. It has previously been shown that this boundary follows the 

positlon of the plasmapause but at about one unlt in L -1 
[A = cos (1/11)] 

hlgher (~lizera, 1974). Examination of Figures 7 and lOb show that the upper 

limlt of the plasmapause boundary is - 1.7 ± 1.1 Re from the inner edge of the 

preclpitating ring current if we throw out the points near 2140-2300 UT. 

Prlor to 1600 UT the least separation is - 1.2 % 0.82 Re. These are in rela-

tlvely good agreement with ~lizera (1974). 

The inner edge of the plasma sheet electrons was observed by both 53-3 

(ref. Figure 4a) and AE-C. This boundary, as determined using three different 

sensors, is plotted in Figure 11. To obtain this plot we took the point at 

which the plasma sheet electron fluxes dropped off as the satellites passed 

from hlgh to low latltudes (Ref. Figure 4 and Fennell et al., 1979). This was 

done independently for the data from 53-3 and AE-C for each instrument. The 

most obvious feature lS the strong unlform dawn-dusk asymmetry in this boun-
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dary. Such asymmetries are predicted by simple convect~on models such as that 

of Kivelson and Southwood (1975). The asymmetry is nearly constant at 

t:,. A ..... 5-10 0 from ..... 08UO UT on July 29 to 0600 UT on July 30. It ~s seen that, 

as with the polar cap boundary, the ~nner edge of the plasma sheet moved 

poleward during the poststorm recovery from 1600-2400 UT and in fact moved 

rather far poleward ~n the dusk sector. 

For comparison we show in Fig. 11 the position of this boundary as pre

dic ted by a time dependent magnetospheric convection model (Wolf et al., 

1981); first at equilibrium (bar po~nts near 0000 UT on July 29) Just at the 

solar wind shock arr~val at ..... 0027 UT on July 29, and at 1 hour intervals up 

to 0830. The pre and poststorm pred~ctions agree relatively well w~th the 

observed position of the inner edge of the plasma sheet electrons. The post 

storm predicted pos~tions show a dawn dusk asymmetry similar to the measured 

data. In fact, it was possible to obta~n a good match w~th the aSYtlmetry of 

the boundary up to 0630 to 0730 UT (see also Wolf et al., 1981). 

The inner edge of the plasma sheet was also observed near the equatorial 

plane by ATS-6 Just before 0400 UT. Its equatorial crossing was thus at 6.6 

Re near dusk local time. Since a dipolar mapping from 62 Q latitude (F~g. lab) 

would place this boundary at 4.5 Re, this indicates the ~ield lines ·,.;ere 

sl.gnl.ficantly stretched near the equator by the presence of the ring cur

rent. This behavior is found in models of the stormUme field (Olsen and 

Pfitzer, 1981) and has been observed in the dawn sector by Moore et ale 

(1980). 
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D~scuss~on 

Pull~ng together all the in-situ plasma observations for th~s per~od, as 

we have done here, allows us to character~ze magnetospheric condit~ons fairly 

well. As was seen in Figure 1 th~s ~s a moderately large magnetic storm ~th 

several substorms (Hanks et al., 1981). The most dramatic effect in the 

magnetospnere's equatorial region the compression of the magnetopause down to 

altitudes below - 7 Re (Ref. Figure 2) on the noon side and possibly close to 

6.6 Re near 15 ~~T. This was shown by the solar w~nd ~on compos~t~on seen by 

GEOS-l from -0027 UT to at least 0149 UT (Geiss et al., 1978). The ATS-6 

synchronous satellite plasma measurements show that boundary layer fluxes were 

observed at the synchronous altitude at the time of the magnetopause compres

s~on. Such fluxes are usually found Just ins~de the magnetopause boundary and 

would indicate that the boundary is relatively close to ATS-6. 

The synchronous altitude observations of the flux ~ncrease-decrease 

events can be understood as resulting from plasma sheet thinn~ng and recovery 

dunng the course of a substorm. In this context a satellite such as ATS-6 

located near late local evening or midn~ght may briefly ex~t from the central 

plasma sheet into the boundary layer or tail lcbes where the energetic parti

cle flux ~s much lower. Dur~ng such an occurrence the satellite may also be 

on auroral field lines at times and observe field aligned ion fluxes accel

erated up the field lines from the ionosphere (Sharp et al., 1979; Gorney et 

al., 1981). 

The composition data (Ref. Figure 9) clearly shows that the dom~nant 

spec~es outs~de, and Just inside at times, the plasmasphere below L - 5 is 0+ 

during the disturbed periods. This was true for the equatorial and low-
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altHude regions. The data also show (Ref. Figures 7, 8 and 9b) that the 

heavy energetic ions penetrated to altitudes below the plasmapause as def~ned 

by the 100 cm- 3 level ~n cold plasma density. In at least one case (Ref. 

Figure 7 near 0630 UT) the Berkeley electric f~eld data places the corotat~on 

boundary well inside the plasmapause boundary as def~ned by the ion dens~ty 

measurement on 83-3. The flows in the outer morningside plasmasphere were 

strongly sunward and'" 2 times the corotation velocity. The ion plasma sheet 

inner edge is in good agreement with the corotativn boundary at this t~me. 

The occur ranee of the energetic ionospheric ions at altitudes below the plas

mapause most probably resulted from convection of these energetic ions very 

deep into the magnetosphere during an increase in the cross-magnetosphere 

electric field (see Cowley and Ashour-Abdalla, 1976; Kivelson et al., 1980 and 

references therein). TIle ions were subsequently left on low dr~ft shells when 

the electr~c field decreased and the plasmasphere started to refonu at h~gher 

altitudes. It is possible that at the time of the measurements the outer 

plasmasphere is not effectively shielded from the cross-magnetospheric elec

tnc field. 

In most of the cases, the inner edge of the low energy C< 30 keY) plasma 

sheet ~ons were found to match well the lower boundary of the plasmapause 

(ref. Figure 7). This may reflect the fact that these ions are expected to 

experience strong losses at the plasmapause itself (Kennel, 1969; Cornwall et 

al., 1970; Cornwall et al., 1971). 

While there are differences between the dawn and dusk plasmapause pos~

tions there is no apparent systematic relationship. The poor temporal resolu

t~on of these measurements may have masked such features, although the inner 

edge of the electron plasma sheet does show the expected systematic local tilile 

d~fferences (see F~g. 11). 
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Companson of the inner edge of the energeuc (> 80 keY) ring current 

proton precipitation (Figure lOa) with the upper limH of the plasmapause 

boundary (Fi3ure 7) gave 600d agreement with previous determinat~ons (tuzera, 

1974). We f~nd that although intense fluxes of ions penetrate down to and 

~nside the plasmapause they are not in strong pitch angle scatter~ng except 

above the latitudes shown in Figure lab. 

All the boundaries are seen to respond to the activity in a sim~lar 

manner. TIle boundar~es decrease in latitude (L shell) in response to the 

shock and substorms early in the day and then increase to relatively high 

values as the magnetosphere quieted late in the day. The most dramat~c 

changes occurred ~n the polar cap and ring current precip~tation boundar~es 

(Figures 5 and lOb). Auroral-l~ke act~vity is seen to latitudes as high 

as A - 85.7° near local midnight. This indicates that the polar cap may have 

receded and become very SIilall ~n area. Such an effect could occur ~f the 

~nterplanetary held turned strongly northward for an extended period and/or 

the plasma pressure on the magnetopause became much reduced, then the magneto

sphere Iilight inflate, reducing the polar cap to a sIilall or negligible area. 

In fact, King et ale (1981) reported that the interplanetary field did turn 

northward, the plasma density dropped and the temperature declined 

after - 1400 UTe We leave further discussions of this high-latitude phenoIile

non to a companion paper in this ~ssue (Zanett~ et al., 1981). 

F~nally, the combined plasma observations for th~s day can be summarized 

as follows. 

1. The magnetopause was observed to cross the orbit of the GEOS-1 spacecraft 

to a d~stance of 6.6 to 7 Re at the time of the arrival of the solar wind 

shock front (- 0027 UT). 
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2. The polar cap, plasma sheet and plasmasphere boundaries moved inward ~n 

response to the substorm activity early on July 29. 

3. The suprathermal plasma ~n the "trough" reg~on of the magnetosphere 

(poleward of the plasmapause) was dominated by oxygen. 

4. The polar cap boundary moved to extremely high latitudes during the 

afternoon recovery period. 

5. The inner edge of the plasma sheet also recovered to higher latitudes 

during the afternoon quiet period. 

6. Comparison of the plasma sheet inner edge at low altitudes ~th a pred~c

tion from a convection model showed they agreed well for the early time on 

July 29. Comparison w~th geosynchronous data showed that the dusk field l~nes 

were sign~ficantly stretched by the ring current. 

7. TIle positl.on of the plasmapause boundary at S3-3 altitudes as defined 

uSl.ng the ion density and energetic ions were found to be in relatively good 

agreement. 

8. The energetic ion component was observed inside the plasmasphere in a few 

cases, in the manner of the 'nose' events of Smith and Hoffman (1974). 

9. The outer plasr.lasphere, in at least one case, had sunward morningside 

flow velocities significantly greater than expected corotation velocitl.es. A 

sl.milar case occurred on the evening side. 

10. The geosynchronous altitudes showed effects related to plasma sheet 

thinning near times of substorms. 
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