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ABSTRACT OF THE DISSERTATION

Harmouic and Anharmonic Properties of Diamond
Structure Crystals with Application to the
Calculation of the Thermal Expansion

of Silicon
by
Keith Herbert Wanser

Doctor of Philosophy in Physics
University of California, Irvine, 1982

Professor Richard F. Wallis, Chairman

Silicon has interesting harmonic ard anharmonic pro-
perties such as the low=-lying transverse acoustic modes at
the X and L points of the Brillouin zone, negative
Criineisen parameters, negative thermal expansion and
anomalous acoustic attenuation. In an attempt to under-
stand these properties, a lattice dynamical model employing
long-range, nonlocal, dipole-dipole interactions has been
develcped. Several interesting features of this interac-
tion are found and discussed. Analytic expressions for the
Grineisen parameters of several modes are presented. These
expressions explain how the negative Griineisen parameters

arise. It is found that short-range anharmonicity is

xiii



inadequate to explain the experimental data for the
Griineisen parameters. Application of this model to the
calculation of the thermal expansion of silicon from 5K
to 1700K is made. Good agreement with experiment is ob-
tained from 17K to the melting point. The thermoelastic
contribution to the acoustic atteauation of silicon is
computed from 1-300K . Strong attenuation anomalies
associated with negative therma! expansion ave found in the
vicinity of 17K and 125K . Liectrostatic multipole in-
teraction energie.s .n a nonlocal dielectric medium and the
Ewald method and its application to dipole sums are dis-

cussed in detail in the appendices.

xiv



INTRODUCTION

The present study was motivated by a desire to undsr-
stand the acoustic attenuation of silicon at low frequency
and low temperature. Professor Joseph Weber roported1 an
interesting narrow dip in the mechanical quality factor or
Q of a large, (~1 meter long) nearly perfect, single cry-
stal of silicon in the vicinity of 12K at 3.4KHz. The
extremely lafze Q of such crystals,2 of the order of

10°

, caused them to be of interest as possiblny gravita-
tional wave detectors or ultrastable clocks.

Existing anharmonic calculations and ﬁeasurements3
at 300~-500 MHz show no peak in the acoustic attenuaticn
of silicon at low temperature. Studies of impurity in-
duced.attenuation4 showed this mechanism to be unlikely,
since the dip in Q was too narrow to be fit by a relaxa-
tion type expression with an zctivated relaxation time.
Furthermore, the boron impurity content of the silicon

14 atoms/'cm3 , a rather low impurity con-

crystal was 8x10
centration.

After considering several possible attenuation mechan-
isms, the author became aware of the negative thermal ex-
pansion of silicon. A calculation of the thermoelastic
contribution to the acoustic attenuation of silicon showed
strong attenuation anomalies near 13K and 17K due to

the change 1in sign of the thermal expansion coefficient.

This calculation, together with earlier studies, suggests



that the anomaly in the Q is an anharmonic effect and
not due to impurities.

Since third order elasticity theory is unable to yield
the negative thermal expansion of silicon,5 it was realized
that elasticity theory could give misleading results for
anharmonic properties of diamond structure crystals. It
was thus desireable to develop a realistic lattice dynamical
model for harmonic and anharmonic properties of silicon.
With this in mind, it was decided to calculate the thermal
expansion of silicon.

Silicon has negative Griineisen par;meters for several
modes and negative thermal expansion as a consequence of
this. The early work of Barron6 pointed out that an fec
crystal with only nearest neighbor Hooke's Law central po-
tential interactiors would have a thermal expanzion that is
negative at all temperatures. Blackman7 considered an
ionic lattice model with the zinc blende structure and
found negative Grineisen parameters in the elastic region.
This work, while interesting, did not show how the negative
mode gammas arise, and no analytic expressions for the mode
gammas where given. Bienenstock8 made a calculation of the
thermal expansion of germanium but the approximations made
were somewhat drastic and the physical mechanism for the
regative mode gammas was not recognized. Also, no analytic
expressions for the mode gammas were presented. Similar

criticisms apply to the calculations of Dolling and Cowley9




and Jex,lo as discussed in detail in Chapter 2.

In Chapter 1 we develop the harmonic lattice dynamical
model, including the investigation of long-range nonlocal
dipole interactions. In Chapter 2 we develop the anhar-
monic model, which is a consistent extension of the har-
monic model. Analytic expressions for the Griineisen para-
meters of several. modes are presented and the model applied
to & calculation of the thermal expansion of silicon. In
Chapter 3 we praesent a calculation of the anomalous ther-
moelastic attenuation in silicon and in Chapter 4 a sum-
mary of conclusions 1is given. Several details pertaining
to the discussion in Chapters 1 and 2 are given in the

appendices.
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Chapter 1

Harmonic Lattice Dynamics of the
Diamond Structure
"0 Lord, how manifold are thy works!

in wisdom hast thou madc them all:
the earth is full of thy riches."”

Psalm 104:24

INTRODUCT ION

In this chapter we develop a model for the harmonic
lattice dynamics of diamond structure crystals. The chap-
ter is divided into four main sections. First we discuss
some elementary properties of the diamond structure. Se-
cond, we develop a model for the short-range contributions
to the dynamical matrix. Third, we develop a model for the
long-range contribution to the dynamical matrix employing
nonlocal dipoles. This is a lengthy section and requires
several side discussions to be found in the appendices.
Fourth, we present analytic expressions for the elastic
constants and for phonon frequencies along symmetry direc-
tions using the model developed in the previous two sec-

tions. We also present fits to experimental data and

phonon dispersion curves for silicon in this section.
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Figure 1. The diamond crystal structure showing the

tetrahedral bond arrangement.
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Figure 2. The rhombohedral primitive cell of the
face-centered cubic lattice. The primiitive translation
vectors 31,;2,;3 connect the lattice point at the origin
with the lattice points at the face centers. Shown are

conventions used in the present work.






DIAMOND STRUCTURE

The purpose of this section is to define some conven-
tions that will be used throughout this thesis, as well as
acquaint the reader with some basic properties of the dia-
mond structure.

The diamond structure is a face-centered cubic space
lattice with two atoms per unit cell.1 (see Fig. 1) It may
be visualized as two interpenetrating fcc lattices with one
shifted relative to the other by one quarter of the body
diagonal of the conventional cube. The lattice position

vectors are given by
Reie) = Re) + Rx) (1.1)

with Bravais lattice vectors

R(L) = £48) + Lydy, + dgdy , (1.2)
and the basis vectors
R(k) = £, +d,+35) for « = 0,1 . (1.3)
Here 11,12,13 are arbitrary integers. The primitive

translation vectors ;i are given in terms of the carte-

sian unit vectors éi by
-> a, 6, ~
a, = §(e1-+ez) (1.4a)
> a, - -~
g a, a Py
a, §(e1~+e3) (1.4¢c)

10
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where a is the conventional cube edge which is 5.4301

2

for silicon at 300K.” (see Fig. 2) Thus we have in terms

of cartesian coordinates

- 2 / a ¢ -~
Reak) = FUC, 445 +%72)8) + (4 +24, +%/2)8,

+ (z2-+13 +K/2)63] . (1.%)
In the following we denote

Reex)eox®) = Rax) - R(e’x”) . (1.6)
The volume of the primitive cell is
- - -»> 33
a, = |aj (ay xaq) | = 5, (1.7)

and the mass density of the perfect crystal 1is

8M
P -3g, (1.8)

where M 1is the manss of the atom.
For the first few neighbors of a given atom we have

the rollowing.

r, = 13%5 = first neighbor distance

4 first neighbors, (1.9a)

a
ro = 72 = 1.6329932 r, = second neighbor distance

12 second neighbors, (1.9b)
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rg = iZ%Li = 1,9148542 r, = third neighbor distance

12 third neighbors, (1.9¢)
r,=a-= 2.3094011 ry, fourth neighbor distance

6 fourth neighbors. (1.9d)

Thua we see that the fourth neighbor distance is the first
to exceed twice the nearest neighbor distance. The tetra-

hedral bond angle is given by (see section on angle bending)

8(®) o cos " (-1/3) = 109.47122° . (1.10)

This is the angle defined by a given atom and any two of

its nearest neighbors, when in the equilibrium positions.
We now discuss the reciprocal lattice. The reciprocal

lattice to the face-centered cubic lattice is the body-

3

centered cubic lattice. The reciprocal lattice vectors

are given by
¢ - m131 + m232 + m333 (1.11)

with ml,mz,m3 arbitrary integers. The primitive trans-
lation vectors 31 of the reciprocal lattice are given in

terms of the cartesian unit vectors éi by
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g 27 " - Py

b, = -‘—(91-6-02-03) (1.12a)

B =23 4. +5.) (1.12b)
2 a 1 2 3 ‘

B =203 -a. +8.) (1.12¢)
3 a 1 2 3’7 ° '

Thus we have in terms of cartesian coordinates

¢ = Bimy -my+m3; + (my +my -mdy

+ (-m1+m2+m3)33] . (1.13)

Just as we have a primitive cell in real space, we also
have a primitive cell in recirvrocal space. This minimum
volume cell is called the first Brillouin zone. It is the
Wigner-Seitz cell in reciprocal space. Figure 3 shows the
first Brillouin zone of the face-centered cubic crystal
lattice.

At this point it is appropriate to make a brief com-
ment on the stability of the diamond structure. Carbon,
silicon, germanium and grey tin crystallize in the diamond
structure. Th. first-order semiconductor to metal transi-
tion occurring in tin at 286K and atmospheric pressure is
accompanied by a change in structure from the diamond cubic
(grey, «a=-Sn) ‘o the body-centered tetragonal (white,
g=-Sn) form.4 This transition has been observed in silicon,
germanium and a number of III-V compounds at high pres-

sures.:J For silicon, a sudden drop in resistivity of over
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five orders of magnitude 1is observed in the vicinity of
120-150 kbar.*
Other crystal forms have also been found. A metasta-
ble, semiconducting, hexagonal diamond ("Wurtzite'") struc-
ture has been observed for carbon and silicone, as well as
a metallic, body-centered cubic structure for silicon.4’5
Electronic structure calculations for silicon7 have shown
that the diamond structure is the lowest in energy for A
number of plausible crystal structures. (see Fig. 4) The
next structure lowest in energy is the hexagonal diamond
and then the B8-tin structure. By way of contrast, above
~=100°C ice Ih , which is the hexagonal diamond struc-
ture for the oxygens, is more stable than ice Ic , which
is the ordinary diamond structure.8 It appears that the
twc structures for ice are very close in energy, as they
are for silicon as shcwn in Fig. 4. The reason for this
is that the tetrahedral coordination is preserved and the
nearest neighbor distance is essentially the same for the
two structures. The second neighbor distances are also

the same, but the orientation of the second neighbor posi-

tion vectors differ between the two structures.



Figure 3. First Brillouin zone of the face-centered

cubic lattice with symmetry points and lines labeled.
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Figure 4. The diamond, hexagonal diamond, B8-tin ,
hep, bee , and fcc structural energies (in units of
Ry/atom) as a function of the atomic volume (normalized to
the measured free velume) for Si . The dash d line is the
common tangent of the energy curves for the diamond ana the

B-tin structures. (Courtesy M.T. Yir, Ref. 7)
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HARMONIC APPROXIMATION AND EQUATIONS OF MOTION

Before constructing the hairmonic model, a few words
concerning the harmonic approximation and equations of

motion are in order. The harmonic hamiltonian is

Ho =T+ & (1.14)

2

where T 1is the kinetic energy and 02 is the contribu-
tion to the crystal potential energy which is quadratic in

the nuclear displacements. Thus we have for the diamond

structure
pﬁ(zx)
T - Z _T—M y (1.15)
Lo
and
1 Pl ' d rd rd
- = K
i, = 35 ;E ¢ g (4 [4°%k du, (4)ug (£7¢7) ,  (1.16)
L°x’B
with
62@ '
Qas(znlz K*) = aua(lKFBuB(z’K’) (1.17)

(o]

Here we have denoted Pa(LK) and ua(LK) as the o«
cartesian component of the momentum and displacement, re-
spectively, of atom (4K) . Note that ua(zK) is mea-
sured from the rest position specified by Eq. (1.1). The
¢aB(LK|z'K') are known as the second order atomic force

constants., ¢ 1is the potential energy of the crystal as a

19
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function of the nuclear displacements and the derivatives
in Eq. (1.17) are to be evaluated with all atoms in the
rest positions. Using the Hamilionian Eq. (1.14), one can
show that the equations of motion are

MG (LK) = - L'Ezsoae(zx[z'w')ua(z'x‘) . (1.18)
This equation holds classically and also quantum mechani-
cally, as can be verified by using the equal time commuta-
tion relations for Pa(LK) and ua(LK) as well as the
Helisenberg equation of motion.

if we now seek normal mode solutions of the form

(€) > >
jm eik'R(l)-iOJt (1.19)

where ﬁ is the waveventor and w 1is the frequency, then

Eq. (1.18) becomes

2 o> P
w wa(x) = B%hnaﬁ(xx ,k)ws(K ), (1.20)

where Das(xx‘lﬁ) is the dynamical matrix defined by

> - >
2 1 reoy =ik [R(L)R(L7)]
’c B e K L)
Dys (XK 1K) = f; ¢ g (2K [T e . (1.21)
Note that in this thesis we will be using the first form
of the dynamical matrix, Eq. (1.21), as opposed to the
second form of the dynamical matrix.9 The two differ by a

E dependent phase factor.
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Using the invariance of the force constants under a

crystal lattice translation h'(m)10 we have

(L+m,x|L° +m,Kk") = L (Le)e’e’) . (1.22)

Q¢m3 B

Letting m = =L in Eq. (1.22) gives

oaa(o,xlz -L,k°) = °aa(““ k) . (1.23)

Thus Eq. (1.21) can be written as

sy o1 oy ey AR [R(L)=R ()]
Dyg (¥ 1K) = g ;2 25 (0,6 [L°=2,6 e .

(1.24)

Neglecting surface effects, we can relabel the sum in Eq.

(1.24) so that

ﬁ("f{(m)

o 1 ’
D, (KK k) = ﬁi °a5(0:“m,’< e (1.25)

From Eq. (1.25) we see that the dynamical matrix is inde-
pendent of the unit cell index £ in Eq. (1.21).

Since the order of partial differentiation is inter-
changeable, we have from Eq. (1.17) the "flip" symmetry

property

°aa(““ K7) = &g (L% [Lx) . (1.26)

B

Using this fact plus translational symmetry, Eq. (1.22),

one has the Hermitian property
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o | * T -
D, g (XK |k) = Dy, (¥ k|k) , (1.27)

where the * denotes complex conjugate. From the defini-

tion Eq. (1.21) we also have

* 1Py o -
D g (KK [k) D.g(Ke"| -K) . (1.28)

Now for the diamoad structure, Dae(KK’IE) is a
6 x6 Hermitian matrix. Thus it will have six real eigen-
values for each value of Kk . The eigenvalues we label
u?(ﬁj) » Where j = 1,2,.+¢,6 denotes the branch index.
Furthermore, to each value of K we can find a complete
orthonormal set of eigenvectors ea(Klfj) that obey the

eigenvolue equation

(k’|Kj) , (1.29)

2 > > o>
w (kj)ea(K[kJ) - B% D, g (KK lk)es

the orthonormality property

»* -> > , .
;L; ea(K,kJ)ea(K[kJ ) aJJ, , (1.30)
and the completeness relation
-> P Ed .
§Jea(xlk3)es(n [k3) = 8,58, (1.31)

Without lcss of generality we also have the following pro-

perties, which correspond to a particular set of phase and

branch labeling conventionslz
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wEi) = w(-kj) , (1.32)
o, (< |E3) = o (x|-K3) . (1.33)

With these preliminaries out of the way, we ca&n de-
rive some properties orf the force constants and dynamical
matrix imposed by inversion symmetry plus translation in-
variance.

Now consider the effect of a crystal symmetry opera-
tion represented by [SIV(S)-kﬁ(m)} . Applied to the posi-
tion vector given by Eq. (1.1), this operation transforms

it as
(SIV(S) +Bm IR (k) = B R(Lx) + V(S) + R(m)
= R(LK) . (1.34)

S is a 3x3 real orthogonal matrix representation of
one of the proper or improper rotations of the puint group
of the space group, 3(8) is a vector smaller than any
primitive translation vector of the crystal, and ﬁ(m) is
one of the translation vectors, Eq. (1.2). For a review
of crystal symmetry operations, we refer the reader to the
article by Maradudin and Vosko13 and the book by Lax.14
Furthermore, the invariance of the potential energy under

the operation ({S|v(S) +R(m)} produces the transformation

law for the second order force constants

ol
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4 rd - K 'K' . 1.
o“u(Lle K*) 5% S, oSup¥ap 4 [£°c”) (1.35)
15
For the inversion operation we have
SO{e - -606 (1.36a)

where éaa is the Kronecker delta symbol,

V(S) = R(1) = a/4(8;+8,+85) , (1.36b)
and
B(m) =~ 0 . (1.36¢)

Thus from Eq. (1.34) the position vector is taken into

N

R(LK) = -B(ik) + R(1) (1.37)

so that in particular
R(L,1) = -R(4,0) + R(1) = B(-2,1) (1.38a)
R(L,0) = -R(4,1) + R(1) = R(~4,0) . (1.38b)

Therefore the effect of the inversion operation is to in-
terchange the sublattice labels « = 0,1 and take K(z)
into - i(z) . This point will be important later in the
section on nonlocal dipoles. Thus for the inversion opera-

tion applied to the force constants, Eq. (1.35) becomes
QQB(LKIL K') = eaa(zxyz K*) (1.39)

or more explicitly using Eq. (1.38)
aaa(z,ojz‘,O) - Qaa(-z,ll-l',l) (1.40a)
@as(z,oyz',1) = Qaa(-z,ll-l’,O) (1.40b)
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caa(z,1[z‘,0) -4, (=4,0]-247,1) (1.40c)

B

(4,1)2°,1) = ' (=2,0]=4°,0) . (1.40d)

e 8

Schematically, we can write the dynamical matrix,

Eq. (1.21), in block form

- (0,1 (k)
[D g (xx*|k)] = . (1.41)
The Hermitlan property, Eq. (1.27), is

> 3 >

Daa(o,o[k) - naa(o,olk) (1.42a)
- L -» .

006(1,1[k) - Dea(l,llk) (1.42b)
> * >

Das(O,llk) - Daa(l,olk) . (1.42c)

Consider

S 8 (4 lll’ l\e-ii:' [-R’(l)-ﬁ(l')]
T af Y 4!

=i

Dg(1,1]k) =
(1.43a)

using Eq. (1.40d) we have

-1k [R(0)-B(L") ]
(1.43hb)

- 1 .
Ddﬁ (lpllk) - 'M- 12‘ Qaﬂ(“,()l"z ,0)6

using latticz translation symmetry, Eq. (1.22), and relabel-

ing the summation variables we obtain

-> * ->
D,g(1,11K) = D g (0,0]K) . (1.44)

Consider next

1 N

s 1k [R(4)-R(4]
M L’

(1,0]K) = % 1/47,0)e” ,
(1.45)

DaB aﬁ(z’
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using Eq. (1.40c) we have

> 1 o gy =ik [R(4)-R(L*) ]
Daa(l,olk) - 3 z aaa(-z,ol-z ,De

L‘
(1.46)

again using lattice translation symmetry plus relabeling

the summation variables we obtain
, -+ L] -
Daekl,olk) - Daa(o,llk) . (1.47)
Combining Eqs. (1.42c) and (1.47) we further cbtain that
- -D\
Daﬁ(o,llk) - Dsa(o,llk/ . (1.48)
In summary, the form of the dynamical matrix is reduced to
D
a

’ - -—B
[DaB(KK (k) ) o
ab

(0,0]%) Inaﬁ(o,ui{)
(0,1|R) [D;B(o,ofﬁ)

s, (1.49)

- 1
with D(0,0|/K) Hermitian and D(0,1|k) symmetric. 6 This
form holds for any lattice with two like atoms per unit

cell that are interchanged by the inversion operation.




CONTRIBUTIONS TO THE DYNAMICAL MATRIX

Since the potential energy can be written as a sum of
contributions frc.a various types of interactions, the force
constants Eq. (1.17) and the dynamical matrix Eq. (1.21)
can also be written as a sum of contributions from the
various interactions. This allows aseparate computation of
the contribution to the dynamical matrix from each type of
interaction, and the total dynamical matrix can then be
ohtained hy summing the different contributions.

For the model considered here, we divide the potential
energy into a short-range part and a long-range dipole-

dipole part so that
&2 - 02' + °2 , (1.50)
and we model the short-range contribution by

o o ° o
QS.R. 1 2 3 4 ée) (1.51)

2 - 92 + 92 + Q? + 02 + &
1° 20 30 4°
Here éz ,92 ,bz and §2 are the harmonic contribu-
tions to the potential energy from first, second, third
and fourth neighbor central potential interactionms, Qée)
is the harmonic contribution from nearest neighbor angle
bending and di is the harmonic part of the long-range,
anonlocal dipole- dipole intesaction energy.
Using the same notation, we label the contributions

to the dynamical matrix

27
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d

a(xn'li) , (1.52)

DaB(KK'lic') - D:B'R(xx‘liz’) + D:
with
D:a'a'(Kh‘.'li:) - D;;.(KK'I'E) + Df;(»cx'li) + D?!;(Km'li:)
+ D:;(KK'IK) + Dég)(KK'lf) . (1.53)

We now proceed to a discussion of the various terms in Eq.

(1.53) and then the dipole-dipole part of Eq. (1.52).



CENTRAL POTENTIAL CONTRIBUTIONS TO THE DYNAMICAL MATRIX

For a two body central potential interaction, the po-
tential only depends on the magnitude of the separation of
the atoms. Denoting the potential for an atom of type K

interacting with an atom of type K° at a distance r

from it by wKK.(r) , we can write the crystai potential

energy due to central potentials as

1 L d - rd rd 4 rd
-3 Ei ;@K,@xm'(lﬂ(‘“" K°) +0(4k[4°6°)[) , (1.54)

where
V(LK [L7K7) = V(LK) =~ U(L°K") . (1.55)

The factor of 1/2 in front of the sum compensates for
the fact that each interaction 1is counted twice in the sum,

the prime on the second sum means exclude terms with
(LK) = (£°k°)

Expanding the potential @KK(r) in powers of the dis~
placements leads to

¢KK,(|§(LK|L'K‘) + UKLk ) = @KK,(lﬁ(zKIL‘K’)I)

K 'K‘ K rd td
*f%“ |27 > (45 ]27% %)

1 4 4 L , L4 4
+ 3 52 ¢as(zx[z K )ua(lez € Yug (ax L7k ")

1 4 4 rd 4 L4 , I d [
+ 3 ;Ev aaaY(zKlz X )ua(zK|L K )uB(LK]L K )uY(lez K*)

+ (higher order in displacements), (1.56)

29




with the expansion coefficients given by 17 :

X
15 B, (r) (1.57a)

oa(znlt'x’) -
T=R (LK ]L°K")

X X
I ‘a ” 1 ] P
¢aB(lK|l K™) = )-;EE @ (F) = O (x) |

on

+ -%E ¢£K,(r)} R
reR(LK]|4°K*) (1.57Db)

307, -(r) 3o, .(r)

w
O -(r) -—=x +

I
$

{=

N

sl - L

»
K
r

°a

x &6, +x_ 86 4x &
<« By B Y of |47 L,
* rQQX Pk (F) =3 Dy - (1)

=R (4K]2%%")

(1.57¢c)
and
-» ~
r=2x6_. (1.57d)
o oo
Here we have denoted the derivatives Ly
2’ (r) = L) (1.58a)
dz
0" (r) = £24) (1.58b)
dr
w d3 r
2”(r) = £248) (1.58¢)
dr

Using Eqs. (1.54) and (1.56) we obtain the harmonic contri-

bution to the crystal potential from central potentials
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1 ’ ., ,., .,
3. == X I o . (ax|a’kdu_(sk|L°x ) u, (£k|Lk”) .
(1.59)

We now proceed to compute this for first, second, third

and fourth neighbors.

s

T R



F IRST NEIGHBOR CONTRIGUT ION

Writing

10 20 30 40
¢ ¢ + °2 + 02 + °2 (1.50)

2c 2

we have upon evaluating the sum in Eq. (1.59) over nearest

neighbors

4
10
4, =12 E,B EI[%B“’0,“’61’1)“0:“’0'"*61'1)“8“’0’”61’1)

+¢aB(1.,1|£+61+4,0)ua(£,1]£+6i+4,0)us(L,1]£+61+4,0)] s

(1.61)
where
31 =0 ,32 = -21,33 - -22 ,'6‘4 = -23 (1.62a)
and
8,48, for 1<i1<4. (1.62b)

The 31 are the translation vectors to the unit cells of

the nearest neighbors from the atom of interest. From the
definition Eq. (1.57b) we have the lattice translation

property

' ’ I = ’ ,
Do (4 +m, K147 +m,k") %B(Mu K°) (1.63)

and the further property that

waB(zKlz'K ) = 9,54 K:]aK) . (1.64)

32
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Thus we have

@aau,olzni,n - °aa(°'°|°1'1) (1.65a)
°aa“’1|"+°1+4’°) - °as(°’1|51+4'°) ; (1.65b)

and further
°ae("'1“*°1+4'°) - °as(°'°|°1'1) . (1.66)

Thus we can write Eq. (1.61) as

4

1° -

8, =2 X Z 9 .(0,0]8,,1)|u (£,0]4+8,,1)u (L,0]L+6, ,1)

2 "% B ier @B o’ i B i
+ua(z,1fl-bi,O)uB(z,llz-bi,O):l . (1.67)

From the definition Eq. (1.57b) we can directly comrute the

four matrices @aB(O,Oléi,l) . We exhibit them explicitly

- a B B - o B =B
@(010'61:1) '(B o S) @(0,0lbz,l) a( 8 o ‘B)

B B «a - -B o
- a =B =B\ a =B B
®(010'6391) “("B o 8)9(030,64,1) -(-B [0 -6
-B B a B =B o

(1.68)

where we have defined the force constants o and 5 as

S 2 ]
o [3 ol(ro) + 3ro ol(ro)J (1.69a)

1 1 .
g = [g ¢1(ro) - 5;; ¢1(ro4 . (1.69b)
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For the sake of being explicit, we have labeled the near-
est neighbor potential function ol(r) . The derivatives
are to be evaluated at the nearest neighbor distance Eq.
(1.9a).

Since Eq. (1.18) can also be written as

0¢
(1] 2 ’
Mua(‘K) - aua Ix R \‘1.70)

if we now substitute the normal vwode solution Eq. (1.19)
into Eq. (1.20) we obtain the relation
‘ 1[ 3, ] SRR () +tat |

B%'DQB(KK [owg (") = (ﬁ (0 |©

’

(1.71)

where it is understood that we have substituted the normal
mode solution after performing the derivative. Direct com-
rutation usiﬁg Eq. (1.67) yields

10

3% 4
2
STr 0y = D, T 045(0,018,,1)u (4,0[4+6,,1) (1.722)
o i=1 B
Q
aQ; 4
du, (1) T 1§1;&¢°‘5(0’0'61’1)‘18”’1“’61’0)
(1.72b)
Using Eqs. (1.71) and (1.72) we obtain
DlQOO!K)-lé 0,0(5.,1 )
QB( ’ ﬁ ¢C!B( P) ' i’ ) ’ (1.73a)

i=1



1° >
Das(o,llk) -
Using the matrices Eq.

1
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L .2,
W Zp%s (0010 e T (1.730)

(1.68), we have more explicitly

o 1 0 O
Bl (0,0(k) = %%(o 1 o) . (1.73¢)

0 0 1

IR it TN
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SECOND NEIGHBOR CONTRIBUTION

Evaluating the sum in Eq. (1.59) over second nearest

neighbors we obtain

2 4

20 1 12
¢ -z T ¢as(4.0ltwi,o)ua(l.ollwi.mua(l,OlHui,O)

+oa5(l,,1ll.+u1+12,1)ua(t,1|z+u1+12,1)us(l.,1|L+ui+12,1)} ,
(1.74)
where
- -> -> -> -»> -»
K1 T 81s¥p T 35,43 T 33,
- ->
By = (AgmRy) , kg = @1-dy) , ig = (Ry-3y) ,
:7 - ‘:1 ’:8 - -32 ::9 - -:3 ’ (10753)
-> -> -> - -> - - -
“'10 %4 ) “11 ‘le ) U'lz "I-LG )
and
Ki,0p = ~wy for 1< 1<12. (1.75b)
The :i are the position vectors to the second near-

est neighbors

the E. for

i
the origin to

Using Egqs. (1

oaB

laf 1=1

from the atom of interest. In this case,
1 <1< 12 are the position vectors from

the twelve nearest face centered sites.

.63), (1.64) and (1.75b) we have

(4,0[4+u4,0) = 0 5(0,0{u;,0) , (1.76a)

36
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°a6“'1“+“1+12'1) - ¢aﬁ(o,o|u1,0) . (1.76b)

So we can write Eq. (1.74) as

12
2° 1 ,
0 -3 z2a:a 12_:1%3 (O,OIui,O)[uau,Olt+u1,0)ua(t,0|t+u1,0)

+ua(l:,1,£-u.i,1)ua(t,l'l;-ui,l)] . (1.77)

Noting that

-

Hi,g =By »1<ic6 (1.78)

we obtain

(0,0]p,

o i+6:0) = ¢a5(0,0|ui,0) ,1<1<6 . (1.79)

ab

Therefore we only need compute six matrices. Using Eq.

(1.57b) one obtains

(0,0[uy,0) = jp v 0 3(0,0]»2,0) = /A 0 O
(i) (h
0 0 0 v u
@(0,0,H3,O) =/ 0 WV @(O)O’“‘4:O) =(w=v O
(O A 0) éu e O)
v 0 u 0O 0 A

(0,0[ug,0) = (A 0 0) (0,0]ug,0) =/u 0 =¥
0O u -v ( 0O X O
0 -v 4 -v 0 u

(1.80)

Here we have defined the force constants u,V and X as
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Palr,)
L o= %(oé(rz) +—2;2—2-) (1.81a)
alr,)
VY = %(@;(rz)— 2!'22 ) (1.81b)
oa(r,)
\ = (p=v) = 2r 2 (1.81c)
2

Again, for the sake of being explicit, we have labeled the
second neighbor potential function wz(r) . The gerivatives
are to be evaluated at the second nearest neighbor distance
Eq. (1.9b). Direct computation using Eq. (1.77) yields

90

3¢, 12
L0y - 2, D 9q€0,00u;,00us(4,0[L4,,0) (1.82a)
a i=1 B
[*]
203 12
du_T%L, = ;?1 E;@ae(O,OluiO)us(t,llz-ui,l), (1.82b)

Using Eqs. (1.71) and (1.32) we obtain
2° -
Daa(o,llk) =0 (1.83a)

0 6
2 > 2 > -
D (0,0[K) = § i§1¢aﬁ(0,0]pi,0)[1-cos(k*ui)] . (1.83b)

The first equation expresses the fact that the second
neighbor interaction produces no coupling between the
K=0 and K =1 fcc sublattices. 1In obtaining the second

equation we have also used Eqs. (1.78) and (1.79).



THIRD NEIGHBOR CONTRIBUTION

Evaluating the sum in Eq. (1.59) over third nearest

neighbors we obtain

whe

and

The

o
.3

2

re

12
1
-7 ;;:e El{%a“'o“”ﬂ““a“”o"'”i'”“s“”0“”1'1)

+%48 (l,llt+1’i+12,0)ua(t,1|t+'r 1+12'°)“s“'1“”1+12’°’]

(1.84)
- - - -+ - -> - -
= (a3 -24), 7Ty = (a5-a,-a,),7; = (a5-8,) ,
-> -> - - - - - - -
= (ay-a4),7; = (ag-a3),75 = (35 ~-2, -2a3) ,
- - - -> > > > -> -
- (:a.l-a.z-a:z),f8 - (al-az),rg - ("l'a’S) ’
o ~=Ey+ay) Ty = m@ +Ey) T, - =@ +Ey)
(1.85a)
- -3
Fiagg = T, for 1<1g12. (1.85b)

? are the translation vectors to the unit cells of

i

the third nearest neighbors from the atom of interest.

Using Egqs. (1.63), (1.64) and (1.85b) we have

eaa(z,ofz+fi,1) - QaB(O,OfTi,l) (1.86a)

°’as("1“'+"1+12’°) - °aa(°'°”1'1) . (1.86b)
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So we can write Eq. (1.84) as

12
3° _1
2 1 JEB El"as(°'°'*1'1)[“¢,“n°|4+?1.1)ua(t,olzwi,l)

+ua(z,1|z-¢1,0)usu,1|z-fi,0)] . (1.87)

From the definition Eq. (1.57b) we compute the twelve

matrices ¢as(0,ol1i,1) and exhibic them explicitly

6‘(0,0171,1) I AT A a(o,o|12,1) L' =8 v’

$(0,0]14,1) $(0,0]7,,1)

(0,05, 1% = /2" 6" =8"
<6 .o’
\-60 V‘ u'
TR VRGN 3(0,0[78,1)
Vo LL' -6'

3(0,0|7g,1) = /u’ 8" -y
5’ X’ —6’

[
’ ]
o o >
A Y - LY
] ]
< L = o
. - A Y
[}
A s < o
- A Y -
[}
“1 ]
o < p =
LY -
[
o | & <
A Y L )
]
> o o
- - -

2(0,0[7,1)

[]
1 ]

< o v
LY - A )

1

o > o
» - A Y

]

h = o <
A Y - A Y

$(0,0]1,,1)

[ ]

On >~

A Y -

A S o

. ~ .
] 1

< o

- A Y A3
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3(0,0]?11,1) Y L 20, 0'712’ ) = fu’ 6% v’
b‘ “' U' 6' x’ 6'
8 v’ ow’ v: 8" u’

(1.88)

Here we have defined the force constants L’ ,v°,48°,\° as

b= f&[og(r3)~+%9 95(ry)] (1.89a)
3
. 1 v 1 .
v’ = TT[°3(r3) -;; o3(r3)] (1.89b)
4 = 3y’ = —-a—[w"(r )--l-¢'(r )] (1.89¢c)
11*%3*°3 r3 373 ’
L 4 rd 9 N 2 4
A= (W 48y ) = [Tf ®3(r3)+m— ¢3(r3)] . (1.89d)
3

Again, to be explicit, we have labeled the third neithbor
potential function ¢3(r) . The derivatives are to be
evaluated at the third neighbor distance Eq. (1.9c).

Direct computation using Eq. (1.87) yields

36
e z
W, (3,0~ (01§ 260,017, Dug (£,0[4+7,,1)  (1.90a)
2¢3 12 |
5 4T " ;%1 %:¢as(0’0"1’1)“5("1?“*1:0)' (1.90b)

Using Egqs. (1.71) and (1.90) we obtain

3° > 1
Das(o,o[k)

¥ Z: ? 8 (O o| (1.91a)
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-’
12 ik
3° ) = « L i
Dog(0,11k) % 1§1 B4 (0,017, e . (1.91b) -

-
T

Addition of the matrices Eq. (1.88) yives more explicitly

o . eyl 0 O
B5° (0,0k) - LBetdt)( o) : (1.91c)
0 0 1




FOURTH NEIGHBOR CONTRIBUTION

Evaluating the sum in Eq. (1.59) over fourth nearest

neighbors we obtain
© 1 &
o o1 zfs 12_:1[%3(;,01z+x1,0)ua(z,o|z+xi,0)u5 (£,0]4+x ,0)

1
+¢aa(z,1lz+x 1)ua(z,1|z+xi+6,1)us(z,1|z+xi+6,1>J

i+6’
(1.92)
where
g = = a X = a
Xl ae, ,kz ae, , Ag ae3
> > > > T .7
> -> .
Ny, = ~hy for 1< 1<6 . (1.93b)

The fi are the position vectors to the fourth nearest
neighbors from the atom of interest. In this case, the

-

A; for 1 < i< 6 are “he position vectors from the

origin to the six nearest simple cubic lattice sites.

Noting that
¢aﬁ(z,olz+xi,o) = ¢aa(o,o|xi,) (1.94a)

¢aﬁ(z,1]z+xi+6,1) = ¢aﬁ(0,0!xi,0) (1.94b)

we can write Eq. (1.92) as

43



44
ALl p 2 (0,0]x,,0)|u_(2,0]L+\,,0)u,(2,0]L+r,,0)
OO Sl R et Sl I bl 107 4g L0 1’

+uau,1|z-x1,1)us(z,1|z-xi,1)] . (1.95)

Since from Eqs. (1.93a), (1.63) and (1.64)

(0,0]x 0) = %a(o,olxi,O) ,1 <1< 3 (1.96)

® B 1+3°

we only need compute three matrices. Using Eq. (1.57b)

one obtains

(0,0[x;,0) = /A" 0 © 9(0,0[1,,0) = /u“ 0 0
o w0 0o v o0
0 0 u.” 0 0 uf

3(o,o!x3,0) - /u’ 0 0

o o0 \/J . (1.97)

Here we have defined the force constants u” and \’ as

, ¢;(a)
LYo (1.98a)
a
A = @j;(a) . (1.98b)

The fourth neighbcr »otential function we have i~beled
¢4(r) and the derivatives are to be evaluated at the
fourth neighbor distance, which is the conventional cube

edge. (see Fig. 2)
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One comment is appropriate at this point. Our nota-

tion for the force constants, Eqs. (1.69, 1.81, 1.89, 1.98),

has been chosen to agree with the paper by Herman.18

Direct computation using Eq. (1.95) yields

4°
aez g}:Z
m b °a6(0,0')\1’0)“8(‘.0,‘+)‘1’0)

a ‘ i=1 B
T ,
EEZTTTTT = 215 @aB(O,OIXi,O)uB(l,l,b-Xi,l).

Using Eqs. (1.71) and (1.98) we obtain

4° >
Dae(o,lfk) 0
o¥ (0,0/%) = 2 > (0,0[%,,0)(1 -cos kX, )
ap "’ Mo Pap ‘" i’ co i
Letting
K = k.8 K, 8 K., &
T %181 * X8 + Kze€3 ,

we obtain the more explicit form

4° > 4° >
DaB(O,OIk) Daa(O,O[k)baB s
with
k,a koa k,a
40 > 4 " 2 1 7] 2 2 " 2 3
D11(O,O|k) = ﬁ[} sin (—5-)+u'sin (—7—)+u sin (—5—

1

(1.

1

(1

(1

(1

)

(

.99a)

99b)

.100a)

.100b)

.101)

.102)

.103a)
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o N k,a k,a k,a\]
Dy, (0,0[%) = %[p”sinz(—%—)+x”sin2(—%-)+u'sinz(—%—)

(1.103b)
o k,a k,a k.a )
033(0,0“:) - %[u”sinz(—]é—)ﬂ”sinz —g—- +X'sin2(—3—)-
(1.103b)

Eq. (1.100a) expresses the fact that the fourth neighbor
interaction produces no coupling between the K = 0 and

K = 1 sublattices. In obtaining Eq. (1.100b) we have also
used Eqs. (1.93a) and (1.96).



ANGLE BENDING CONTRIBUTION

The angle bending contribution to the potential energy
ie a three body force. The reason for this is that three
points are necessary to define an angle. Because of this
feature, the angle bending contribution to the dynamical
matrix requires much more computational effort to obtain
than the central potential contributions. For reference
purposes we include a more complete discussion of angle
bending in Appendix A. In this section we only outline the
results found there.

We consider '"'pure" angle bending of the form

—

2
cr =
0

0 "1?‘5: A82(1,0{1+51,1{L+62,1)+A82(£,01£+61,1|£+63,1)

+A62(L,O[L+61,1ft+64,1)+A82(1,0!£+62,1(L+6 1)

3’

+A82(£,0)1+62,1I£+64,1)+A62(£,0'L+63,1]L+6 1)

4’

2

2
+18 (z,1|z+65,olz+56,0)+ae <z,1[1+65,o;z+67,0)

+A62(L,1[£+65,0’£+68,0)+A82(L,1{L+66,0|L+67,0)

2 2
:Ae (z,1gz+66,ofz+68,0)+Ae (L,IIL+67,OII+68,OL

(1.104)

The 61 are given by Eqs. (1.62). Here we have defined
06 (4K|2°x“|4°x”) as the change in angle between the atoms
(4¢) , (L°¢°) and (4°%”) , having (ix) at the vertex,
produced by the respective lattice displacements. (see Fig.

5) The form of Eq. (1.104) is appropriate to '"nearest
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Figure 5. The angle
three atoms in the crystal.

of the angle.
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6(4x|2°x"[4"%") between any
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is at the vertex
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neighbor'" angle bending. There are six tetrahedral angles
per acom and two atoms per unit cell, thus twelve terms per
unit cell.

At this point we would like to make a few comments.
There is some confusion in the literature concerning what
is meant by nearest neighbor noncentral force. As we will
see, our ''nearest neighbor" angle bending potential will
couple atoms that are first neighbors as well as atoms that
are second neighbors, so in this sense it is not a purely
nearest neighbor interaction. This point was noted by
Herman.19 However there is a difference between central
potentials and what are termed central forces. We may see
this by considering the force on an atom of type K = 0
produced by a wvariational displacement of its nearest
neighbor in the same unit cell, all other displacements

being zero. We have from zq. (1.72a)

10

o ¢

1 2

Fa (£,0) -"aua 707 - §}¢a5(0,0|0,1)us(£,1) . (1.105)

The line joining the center of the two atoms is
R(1) = %(é1-+é2-+é3) , (1.106)
and a displacement parallel to the line of centers is

U(L,1) = u | (eg +8,+8;) . (1.107)

This displacement produces the force
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[}
F1(1,0) =~ (@+28)u (&, +8, +8,) (1.108a)
nT1 2 3
or
1° ¥'a “~ ~ A
Foo(4,0) = pi(rgdu (8, +8,+8,) , (1.108b)
where we have used Eqs. (1.68) and (1.69).
A displacement perpendicular to the line of centers
is
- ~ "~
u(L,1) = ul(ez-es) , (1.109)
as can be easily seen since
u, (8, -8 R(1) =0 . (1.110)
For this displacement we obtain
1° - "
Fr (4,0) = (a=B)u (8, ~85) , (1.111a)
or
10 @]'.(ro) - ~
Fo(4,0) —-;;-—uJ_(eg-eB) , (1.111b)

where again we have used Eqs. (1.68) and (1.69). For a
"central'" force, a displacement perpendicular to the line
of centers of two atoms must produce no force. For the
central potential to be a '"central" force, we see from
Eq. (1.11la) that this requires o = 8 . This agrees with

the form of the matrices Eq. (1.68) exhibited by Herma.n20

e e s Lok AR LS
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for the case of central forces. If ¢i(ro) ¥ 0 we Bee
from Eq. (1.111b) that the central potential can produce a
noncentral force. If only nearest neighbor central po-
tential interactions were present, the condition of mini-
mum potential energy would require ¢i(ro) = 0, but in
this case the lattice is unstable, as we will see later.

If in addition second neighbor central potential interac-
tions are present, the condition of minimum potential
energy does not require @i(ro) = 0 . Provided @i(ro) is
not zero, we have an example of a first neighbor nonceutral
force. The somewhat misleading statement has been made by
Keating21 that, '""there are no noncentral purely first-
neighbor interactions present in any nonmetallic crystal."
Concerning this Ludwig22 has commented, ''this is obviously
not correct." We also note at this point that tiie non-~
central force used by Keating is not '"'pure' angle bending.
His noncentral coefficient 3 enters into the expression
for the bulk modulus, whereas ''pure' angle bending does

not contribute to the bulk modulus. This is so because an
isotropic iiomogeneous deformation leaves 211 angles in the
crystal unchanged, and therefore any potential energy which
only involves changes in angles will be zero under this
type of deformation. The potential used here, Eq. (1.104),

is an example of "pure' angle bending.

Now to be more precise
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08 (LK |47k L k" Ym0 (axja x| k") -e(°)(zx|z’x'|z’n’) ,

(1.112)
where
cos B (LK|L°K"|L k") = HUITMISIE(VLITA S ’
X (oK [0 )X (LKL c") ]
(1.113)
and
X(AK|L°K*) = X(4K) = X(L°K") (1.114a)
x(Lx) = R(aK) + d(LK) . (1.114b)
Here |x| denotes the magnitude of the vector X . The

equilibrium angles are given by Eq. (1.113) when all atoms
are in the rest positions
cos 80 (ax]atk |4 %) = R(acletet) B(ae]see”)

IBCak]ese’) [ |Rean|a’c”y|
(1.115)

Note the symmetry property which follows from Eq. (1.113)
cos 8(4K|4 k7|4 k") = cos B(4x|L K" |L°%") . (1.116)

From Eqs. (1.112-1.115) it is clear that in general

A6 (LK |4°k"]2"k") 1is a nonlinear function of the displace-
ments ua(lK) . Thus our potential Eq. (1.104) contains
anaharmonic terms. Provided that [U(tk|[2°«”| + [R(4k|L"%”)]

is small compared to one, we can obtain an expression for
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the change in angle, correct to first order in the dis-

placements
A8 (LKL K |2 k") = L n (4k]L k|4 "¢ )u (LK [L°K")
a ¢ o

+§na(u<|£ K" 4K )ua(uclz k"),
(1.117)

where we have defined

- -

na(LKIL»K'lLuKn) - cot e(o)(lﬂ‘(l"K"L”K”)Ra(‘K‘l'K')

lﬁ(tﬁ{t'm‘)]z

csc e(°)(zx]z'x'lz”x”)na(lez”x”)

i IRCak |76y | |RC4k |27 c") |

(1.118)

From the form of Eq. (1.117) we see that the angle change
depends on the difference of displacements of atoms from
the vertex atom.

Direct computation using Eq. (1.115) gives

cos 6(9 = - 1,2 (1.119a)
with

89 = 509 (4 0/s+8,,1[8+86,,1) = 109.47122° .
(1.119b)

This angle is the tetrahedral angle and is the same for each

of the twelve terms in Eq. (1.104). As an example, using
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Eq. (1.117) we find

Ae(t,0|l+61,llt+62,1)- 1_ 2 [(-6 =8 +25 .)u (L4,9[2+8,,)
e al a2 " ad’ T« 1
6r°¢x

+(8 +°a2+2°a3)“a“"°“+°2’1’]

al
(1.120)
so that
orz

a [o] 2 P 3 . -
(L0 - Eae (L°,004°+8,,1]4"+6,,1)

g

?%: a[ 81 ¢s2+2583)u5u,ou+61,1)
+ “m“’az*“as)“a”’0’“52'”} . (1.121)

This term only couples nearest neighbors. The first six
terms in Eq. (1.1.04) are of this type. However the second
six terms in Eq. (1.104) are different when differentiated

as above. Consider

A6(£,1U+6 OH+Z %r—oi [( -6 1" a2+26a3)ua(l,1]6+65,0)
+ (8 a1t ba2t2 a3)ua(z,1iz+16,0)],
(1.122)

which gives upon differentiation



E 1)

d cro: 2
mT"AG (l.,l'l+6s,0“v+ 6’1)' -

a

-
(=85 =859+3833)05 (4,0 1=04,1)

C4681+662+26a3)ue(1-65+66,0|t-65,1)
o ™~
; g§(6a1+6a2+26a3) (bBI+652+2653)“B(""0l”-66'1)
L+(-651-662+2663)u8(1-66+65,0[l-66,1)

(1.123)

This type of tarm couples atoms that are second neighbors
as well as atoms that are first neighbors, (i.e., the atom

at i(z-a +65,0) is a second neighbor to the atom at

6
K(E,O) , and similarly for ﬁ(z-*5+66,0).) Therefore we
see explicitly how the ''nearest neighbor' angle bending
potential couples atoms that are first neighbors as well as
atoms that are second neighbors.

By successive evaluation of each term in Eq. (1.104)
using Eqs. (1.117-1.118) and than differentiation of each
term, applying Eq. (1.71) we can ohbtain the angle bending
contribution to the dynamical matrix. This is a tedious

exercise so we present the results here for reference pur-

poses.
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] > 280 g > 40 .
D{l)(0,0Ik) = | 3% ~ 3u °°° k'zz + 73 o8 k°35
[o] -> _2' -b' -
- 3 C°8 k-t4 - 3 co8 k (32 33)
40 e - T (2 -
L+ M cos k (32 34) 3% COS k (33 34)_
(1.124a)
(8) A -2 o SN S g
Dy 5’ (0,0]k) - 2% cos k 3, + 35 cos k (3-8
2i0 4 - 210 Z, -
- 557 sin k-(32-€3)+ 52 sin k (32 34)
2ig 2, 210 2,
L- 30 sin k 33 + W sin k 34 )
(1.124b)
0$8) (0,0[) = - & cos B13, + =% cos & (Zp-5y) )
13 ' 3M 4 T 3M 2773
2ic Z, _ 2i¢ >,
-+ T sin k 32 W sin k 33
2i0 2, _ _ 2ic , -
L+-?ﬁr sin k (33 34) 555 sin k (32 34)_
(1.124c)
8) > ()"
Doy (0,0|k) = Dyq (0,0]k) (1.1244d)
(8) > _[280 _ o 27 .2 >, ]
Dy (0,0]k) 3% - 33 o8 K 32 335 cos k 33
40 B 4 8% cos B (Bm
+ N cos k054 + 3 cos k (32 33)
0 - —)' - - -2- -)9 -
_- N cos k (32 34) 3N cos k (33 34)_

(1.124¢)



(9)(0 o|k) = |- f% cos E'ZS + é% cos k-(?2-34)
- %ﬁ% sin E-(Ez-té) - %ﬁ% sin k' (% -3
210 .’Q - -2-!'—0- .
_+-Tsink'€2 2 sin k- %, |
(1.124f)
pi¥)(0,0/%) - D](_g) (0,0]%) (1.124g)
pi3’(0,0]%) - Dég) (0,0]%) (1.124h)
(6)(0 olk) = %%% + 2% cos Kozz - é% cos §'33
g K - K -
- 3y cos k 34 3M €°S k (32 33)
_- é% cos fe(g 3 59 cos k- (3 -3 |
(1.1241)

Eqs. (1.124d,g,h) were computed explicitly as a check on
the algebra. They are also a consequence of the Hermitian
property of the dynamical matrix Eq. (1.42a), which must be
obeyed for each contribution to the dynamical matrix.

Similarly we have

ik.8, ik-3, k%
p{30(0,1[K) = - B8a+e  Zise 4 b,
(1.125a)
ik-3 ik % 1k 3
p{80,11K) = Fa+e 2-¢ P H

(1.125b)



D{g)(o,lli) - m(l -e‘ut..g2 -911':-'&’3 +eﬁ:.24)
(1.125¢)
(e)(o 1]%) - n{g><0.11i> (1.125d)
sy’ (0,11%) = p{¥ (0,11 (1.1256)
p$%) (0,1[%) - g%(1-eiK'32-+ei§.zs-eik'z4) (1.125%)
pi%) (0,1]%) = pf3)(0,1[K) (1.125¢)
pi5)(0,11%) = p{d)(0,1%) (1.125h)
D32 0,1[K) = b3 ¢0,1(K) . (1.1251)

Again, Egqs. (1.125d,g,h) were computed explicitly as a
clieck on the algebra, they are also a consequence of Eq.
(1.48), which must be satisfied for each contribution to
the dynamical matrix. The 31 in Eqs. (1.125-1.126) are
give: by Eq. (1.62a). Note also that our parameter o 1is

6Q in the notation of Herman.23



LONG-RANGE CONTRIBUTION TO THE DYNAMICAL MATRIX

The possibility of comparatively long-range forces in
diumond struéture crystals has an interesting history. The
first lattice dynamical investigation of the diamond struc-
ture was by Max Bcrn.z4 He considered the most general
nearest neighbor interactions consistent with symmetry.

The results for the elastic constants and Raman frequency

in this model are

o - (2B-a)
€11 " 3 Ci2 Y
2
C44 - iﬂ:%;ﬁﬁl “gA - %% . (1.126)

Here o and £ are the two nearest neighbor force con-
stants. Since there are only two parameters in this model,
this leads to a relation between the elastic constants

known as the Born identity

4C. . (C,4-C,,)
S Y (1.127)
(C11+Cy9)
and also the Raman frequency
8aC11 3
Wpa = ( W ) . 71.128)
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When the first measurements of the elastic constants

25 evaluated the left-

for diamond become available, Born
hand side of Eq. (1.127) and obtained the value 1.10 in-
stead of 1. This seemed rather good agreement, yet the

ten per cent discrepancy caused Born to question whether
second neighbor forces could improve matters. As it turned
out, the value of 1.10 was fortuitous since later more

careful mensurements26

showed the early value of C12 to
be more than a factor of three too large, the values of

C11 and C44 also had large errors. Using the experi-
mental values27 for diamond, silicon and germanium, we
evaluate Eqs. (1.127) and (1.128) and compare to experiment

in Table 1.



TABLE 1.

Comparison of Zorn identity Eq.

frequency Eq.

(1.128) with experiment.

61

(1.127) and Raman

Frequencies in

radians/sec.
1Cy1(C117C4y) ( 8aC, )é
Crystal (Cq1+Cq0) M “RA (expt. )
Diamond 1.49 3.92x10'% 2.51x1014
Silicon 1.09 1.24x10'? 9. 79x1013
Germanium  0.995 6.95x1013 5.66x1013
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A8 can be seen from Table 1, the agreement with experiment
is the worst for diamond and the best for germanium. This
shows the 1nidequncy of the nearest neighbor model to
account for even the lorg wavelength vibrations of the
crystal, though the agreement for silicon and germanium is
respectable considering the simplicity of the model.

Helen Smith,28 collaborating with Born, worked out the
theory for the case of first and second neighbor interac-
tions. Her second neighbor force constant matrices are not
the most general allowed by symmetry29 and neglect the
antisymmetric second neighbor force constant. Using a
three parameter version of the model developed by Smith,
Hsieh30 fit the three elastic constants of silicon and
germanium and computed the specific heat of these crystals.
Hsieh found that the calculated specific heat values were
well below the experimental values, even at temperatures
as low as 60K , the discrepancy increasing with increas-
ing temperature. This was an indication that the normal
mode frequencies in the rest of the Brillouin zone were
considerably smaller than those expected from the first
and second neighbor model.

When phonon dispersion curves became available from
neutron scattering studies, detailed comparison between
lattice model predictions and experiment was possible for
short wavelength modes. Herman31 presented an analysis of

diamond structure crystals using general forces between
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first through sixth neighbors. He showed that it was
necessary to include interactions to at least fifth neigh-
bors in order to fit the three elastic constants, the Raman
frequency and the LA and TA frequencies at the [111]
zone boundary of germanium.

In attempts to reduce the number of parameters re-
quired to fit the phonon dispersion curve data, several
lattice dynamical models have been introduced. Lax32 in-
cluded displacement induced quadrupole~quadrupole inter-
actions between atoms. This was an attempt to include long
range interactions within the adiabatic approximation. The

33

shell model also includes long-range electrostatic in-

teractions, but introduces electron coordinates which are
then 2liminated adiabatically. The bond-charge model34 is
similar to the shell model but employs point charges be-
tween the ions that are allowed to move adiabatically.
Finally there are the valence force models35 which describe
the forces petween atoms in terms of bond stretching, bond
angle bending and combinations of the two.

In each of the above models i* was found necessary to
include interactions of some type to at least fifth neigh-
bors in order to fit the phonon dispersion curves and the
elastic constants. Each of the models has attendant
strengths and weaknesses. Since the author wanted a har-

monic model to use for computing anharmonic properties,

none of the above models were considered satisfactory for
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this purpose. Therefore we have investigated a model sug-

36

gested by the work cf Lax, but with very different con-

sequences than his quadrupole model.



NONLOCAL DIPOLE MODEL

The presence of a lattice displacement can distort the
electron charge density in the vicinbity o1 a displaced ion.
This induced charge density can then interact electro-
statically with a charge distortion produced by another
displaced atom, giving rise to long-range interactions.
How important this effect is should intuitively depend on
how big a charge distortion is induced by a given lattice
displacement, and how effectively this charge distortion
is screened.

To put this concept on a firmer foundation, in Figure
6 is plotted the valence charge density of diamond and
silicon, as computed ab initio from the electronic theory

of solids.37

This is for the lattice with all atoms in the
rest positions. In Figure 7 is the induced charge density
for silicon due to the presence of a [100] transverse zone
boundary phonon. The induced charge density is the dif-
ference in charge densities between the distorted and un-
distorted lattices. Note that there is a striking dipole
contribution to the induced charge density, as well as con-
tributions from higher multipoles. Since we only want to
model the longest range contribution to the forces, we will
examine the dipole contribution to the induced charge den-
sity in detail.
We begin by writing the dipole moment induced ahout

atom (LK) due to lattice displacements as

65
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Figure 6. Valence charge density for diamond and

silicon. Units are (e/Qo) . (Courtesy M.T. Yin, Ref. 37)
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Figure 7. (110] plane charge density induced in sili-
con by the presence of a TAX phonon. Units are (e/ﬂo)
Amplitude of the phonon is .0772 . Atoms not matched cor-
responds to taking the difference in charge densities with
and without the phcnon using the same origin of coordinates.
Atoms matched corresponds to taking the difference in
charge densities with the origin of coordinates for the
phonon present charge density shifted so that the atoms
shown are in the original undistorted positions. (Courtesy

M.T. Yin, Ref. 37)
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(b) TA(X)

(@) TA(X)

(Atoms matched)

(Atoms not matched)
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pa(LK) - z‘%’ap“ﬁ(““ K )ua(z K°) . (1.129)

38

This form has been mentioned by Lax to justify his

quadrupole model. Although the form of Eq. (1.129) is
similar to the work of Minnick,39 our interaction energy is
not the same as his and leads to rather different conse-
quences. Since Eq. (1.129) had not been applied to the
diamond structure in the manner that we appiy it, it was
rot known what effect it ould have on the phonon spectrum.
Therefore we have not considered polarizability effects,
which in our approach requires considerable additional

effort to include.

The total dipole moment of the crystal may be written

as
P, - EK Py (4 (1.130)
so that
v rd P .
pp =2 I p.(Ak[Lk)u (LK) . (1.131)
@ gk 4ok’ OP P
Defining
Maa(z K’) = E,( paB(LKIL K’ , (1.132)
we have
p = T Maa(z K )uB(L K°) . (1.133)

[0 L’K’s
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The transformacion property of the total electric moment
under the operation {Si?(s)-#ﬁ(m)} (see Eq. (1.34)) leads

to40

MW(LK) - ZDB suasstaB“'K) . (1.134)

The special case of a pure lattice translation by K(m)

gives

M, (L+m, ) = M (4,K) = M, (0,€) , (1.135)

so that MHV(LK) does not depend on the unit cell index.
Since an arbitrary uniform translation of the crystal as a
whole must not change the total dipole moment, we obtain

the requirement that

M L°xk’) = 0 . 1.136
(D Mg (2760 (1.136)

Using Eqs. (1.135) and (1.136) we also have

0,K) = . .1
This is the statement that the primitive unit cell is
neutral if Maa(O,K) is thought of as some type of effec-

tive charge. Applying the inversion operation Eqg. (1.36)

yieliis

My (£,0) = Mg (=£,1) . (1.138)
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With the addition of lattice translation invariance, Eq.
(1.135), we obtain

M g(0,0) = M g(0,1) , (1.139)

so that Eq. (1.137) becomes

M,g(0,0) =0, (1.140a)

or

Myg (£,K) = 0 . (1.140b)

Eq. (1.140b) expresses the fact that no linear term in the
total electric moment exsists in diamond structure crystals,
This has the consequence that the infrared absorption
spectrum must be explained by two and higher phonon pro-
cesses,41 although the presence of impurities and surfaces
can break the translation invariance and allow a first
order moment to exsist.

From Eqs. (1.140) and (1.132) we obtain for diamond
structure tie requirement that

T p . (4x[L°K’) =0 . ©(1.141)
L @b

Note that Eg. (1.141) does not require that pa(LK) be
zero in the bulk crystal. This would only result if we

had used a strictly local form for (Lx|2°k’) , as used

in the work of Trullinger.42

paB
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The transformation property of the dipole moment

pa(zK) under the operation [Sl?(S)-rﬁ(m)) leads to3

p , (LK[L°K") = 2 S, Svspaﬁ\lKll k) . (1.142)

The special case of a pure lattice translation by ﬁ(m)

gives

paB(L+m,K|L'+m,K') - pas(lKll'K') s (1.143)

so that in particular

paB(LKll K*) = paB(o,K]z =L,k°) = pyg(4=i ,4]0,k7%)
(1.144)

Thus we see that the iuoment coeflicients transforem in che
same manner as the second order force constants Eq. (1.35).

However, the moment coefficients (4 |2°«°) need not

Pas
obey the '"flip" symmetry property Eq. (1.26) that is obeyed
by the second order force constants.

Consider now the moment coefficients appropriate to
the casc of neares. neighbor nonlocality. This is the

simplest type of nonlocality and is the model we will in-

vestigate. Applyines 73. (1.129) to this case we have

pa(z,O) = E pas(z,OIL,O)uB(L,O)

+2 2 pB(L,Ol£+61,1)u

(£+61,1) (1.145a)
i=1

B
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p,(4,1) = % paB(L,llz,l)ua(L,l)

8
+§ 12.34 paB(L,1|£+61,0)u8(£+61,0) , (1.145b)

where the 61 are given by Eqs. (1.62). Translation in-

variance plus inversion symmetry zanalogous to Eqs. (1.40)

yields
Pggy(4,014,0) = p,g(0,0/0,0) = p o(4,1]4,1) (1.146a)
and
pas(£,1u+6i,0) - paB(O,Ol-bi,l) . (1.146b)
Using Eqs. (1.146) and (1.62b) we obtain
P, (%,0) = % paB(O,OIO,O)uB(L,O)

4
+§ 51 pas(o,olbi,l)us(£+bi,1) (1.1472)

p, (41 = % Pog (050]0,0)ug(£,1)
Z f: (0,0]6,,1)u, (4=5,,0)
+ P 0,0)8,,1)u, (£4-6.,0) . (1.147b)

Applying the requirement Eq. (1.141) and inversion sym-

metry analogous to Eq. (1.40c) yields
4
paB(O,OlO,O) - - El paﬁ(o,oyéi,l) , (1.148)

sO0 that

o G B Aok o
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4
Po(4,0) = §;£§; Paa‘°'°'°1'1"“s(‘+°1'1"“e“'°’>
(1.149a)

4
pa(t,l) - %;;?1 paB(O,OI61,1)(UB(L-61,0)-UB(t,l))
(1.149b)

Using Eqs. (1.142) and (1.68), we can immediately write

down the four matrices

$(0,0[6,,1) = /p; P, Py  P(0,0[85,1) = /P Py =Py

P, P; Py P2 P1 ~P3
P, Dy Py Py Py F,
P(0,0[85,1) = /Py =Py =Py £(0,C18,,1) = [p; =Py Py,
-p, P; Py “Pz P1 7P
-P, Py Py Py =Py P/
(1.150)

Here Py and p, are parameters to be determined and
have the dimensions of charge. The matrices Eq. (1.150)
agree with those of Lax.44 Using the explicit form of the
matrices we obtain

4
Z p

Z o (0:016,,1) = 4pss o, (1.151a)

so that Eq. (1.148) becomes

(0,0(0,0) = - 4p,5 (1.151b)

Pag of
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At this point we note that Eqs. (1.149) satisfy in-
finitesimal translation invariance explicitly, though this
condition was Lot imposed on pa(zK) in our derivation.
Only the total moment Eq. (1.130) was required to be trans-
lation invariant since we are dealing with a neutral cry-
stal. Lattice translation invariance plus inversion sym-
metry then gave Eq. (1.141), which is not the same condi-
tion obtained by :mposing infinitesimal translation
invariance on the moments pa(LK) . In fact, the defini-
tion of pa(LK) requires a volume tc be associated with
each atom (4x) . If this volume is neutral, then the
dipole moment is independent of the origin of coordinates
and is translation invariant. If the volume is not neutral,
then the dipole moment does depend on the origin of coordi-
nates and is not translation invariant. The fact that
Egqs. (1.49) are translation invariant without imposing this
condition is a reflection of the fact that the first neigh-
bor moment coefficients are symmetric and this togetiner

with the inversion symmetry shows that

Pyg (o,o[ci,l) = psa(bi,llo,O) . (1,152)

Thus we see that for first neighbors, the '"flip" symmetry
condition Eq. (1.26) is obeyed by the moment coefficients.
For second neighbors this condition need not be true. WQen
the "flip" symmetry property is obeyed, Eq. (1.141) is then

the same condition obtained by imposing infinitesimal
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translation invariance on the moments pa(lK) .

One can explicitly verify that the total dipole moment
due to Eqs. (1.149) is always zero, as we have seen it must
be from Eqs. (1.133) and (1.140b). Although the total
dipole moment is zero the array of dipoles can have a total
quadrupole moment as shown explicitly in Appendix C.

Having determined the form of the moment coefficients,
we now proceed to calculate the dipole contribution to the
second order force constants. In Appendix B it is shown
that for silicon we can write the interaction energy for a

pair of dipoles as

1

WLk |4°¢’) = < ;?8 Qas(lez K )pa(tK)pﬁ(i © %)
(1.153)
with
o (|1 = ?gﬁ, _Efgflez K )aﬁ(znlz K*)
a -» P P 5
@ [R(ek|47% %) | [R(e |2 |
(1.154)

Here ¢ 1is the static dielectric constant. In writing
Eq. (1.153) we have neglected short-range terms discussed
in Appendix B. These terms are compensated for by the
short-range contributions to the dynamical matrix.

The total dipole-dipole interaction energy is

LU Y D R T T IV 38

5 , (1.155)
Lk 4°xk°
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where the prime on the sum means exclude terms with

(k) = (L°x°) . Using Eq. (1.17) we have

2

3 T T ”2}“%’: ]
ou K Ug (t

L3%3 L4y 1 22’ )

(1.156)

dd .
QaB(‘lKlllsz)

where the derivatives are evaluated with all atoms in the
rest positions. Using Eqs. (1.149, 1.153 and 1.154) it is
a straightforward excercise to evaluate the derivatives in

Eq. (1.156). We obtain the results

ad 16"? .
’aa“1'°“2’°) - — ‘as“l’ouz'o)“"étl,zz’
, 4
+3 z P, (o,o|61,1)pav(o,o|sj,1) X
i,3=1 u,v
X 0, (448, ,1]8+6,,1) (10, 3
ks & ' byvbys kot

4
-2z Z 5,,(0,0]8,1)p,,(0,0[¢,,1) x
i,j=1 ,,v

[ L (81,0] 25+ J,1)+nwuz,o]zl+ai,1)] , (1.157a)

and
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2
dd 16p, L
05 (£1:0045,1) = —=0 5 (4;,0]4p,1)

mlH

4
+ z Ep (o o|61,1)pav(o o|c1,1)n “1*51'1“2 J,)

i,3=1 u,v

1p
et §
- = 2 Ep . €0 o|51,1)n (£y+8,,9145,0)(1=8, _, )

ey 1*84, 42
4p, 4
S § = '
- 1§1: pau(O,OI61,1)ﬂua(l:1+61,0|12,0)\1 6‘1+6 ,'2) .
(1.157b)

The Kronecker delta symbols in Egs. (1.157) mean omit terms

when the Kronecker delta is one. Defining

d -1k R(2)

Dggm'lii -.;.%e (4,610, )e (1.158)

16p -).-b
p99(0,0[E) = —2 = 0, (4,0[0,0)e” "R (3¢
o € L,0

1 > x> -1k R (L)
+ 2 Z F_ (k)F (k)nw(z,olo,O)e (1-6"0)

- —ZE FB @Hn, (z,o|0,1)e'“"§(“

(z,o[o,1>e+1k'§(“ (1.159a)

L

4p
-l Fr @n
eM ) o ub

and



18p2

dd e | -1k R (1)
Dyp (0511%) ‘e'ﬂ‘f“as“'"""”’

1 >
+mZZ}F (k)F

Ly 4 QW Bv
»

4p1 > -1k B(4)
- = PuJ % Fy, (®)0,5(4,0[0,0)e (1-8

4p1

_ > -1k R(2)
Xz rm(k)nw(z,olo,me (1=8

eM )

where we have defined

-> 4 *l
k) = = paﬁ(0,0[61,1)eik [

F
ad {=1
-
Decomposing Faﬁ(k) as

Fg (k) = [pls(k) 6aa +PgS 5 (K) ]

we have
. k8, ks, 1K3,
S(k) = (1+e +e +e )
and
-
S§k) = /o S1a Sq3
S;2 0 Sg4
S13 S3 0

with

> -1k R(2)
)a ,(1,1]0,0)e

1,0’

0 ¢
a1

(1

(1

1

a

80

.159b)

.160)

.161)

.162)

.163)



81

S, = (1+e 2.6 30 Y (1.164a)
1% 8, 12'33 xivt4

813 - (l-e -0 +e ) (1.164b)
1K~32 1K-33 1§-34

823 = (l-e +e -@ ) . (1.164c)

The dipole contribution to the dynamical matrix can be

written in a more compact form as follows

2
47p; 31 > 47PyP, A2

a(O Olk) - Em; 'I'aa (k) + —e-m-— dﬁ(k)

4mp 22 3 -
Tﬁﬁ‘ ag(k) (1.165a)

2
47p 4mp.p

dd > 1 1 172 2.2
Dyp (0,1 1K) = g~ - v1 (k) + —r— - v1 (%)

4np
- V22(k) . (1.165b)

The dimensionless matrices T and V are defined as

(

ﬂ» -> -> - -"
1®) =4 [16+s*(k)S(k)]§‘ Qg (4,0(0,0)e i)

aﬁ

1K R(L)

— N

®x > -
- 48 (k)>foaﬁu,010,1>e

+R)

P
\- 4s(k) foaﬁ(z,om,l)e

(1.166a)

NP
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T2 - - E(f)Es;“(i:’)f'a“au.olo,on'ﬁ‘ﬁ(“ l
V%

s - -> . -fk’nﬁ(j)
+ S (k)fsw(k)§ QuB(L,OIO,O)e

. o -1k R (4
4.’5sau(k)§nmu,c|o,1)e )

. > +1KR (4
4Zsau(k)§0usu,o|o,1)e (4)

L J
(1.166b)
122@) - 22 T s &)s; (&) T’ -ikeR (1)
o LS, )SBV(k)‘ 2, (4,0]0,0)e
(1.166¢)
M i) - oolera -1k R (1) ]
- - - ‘as(L,OIO,l)e
> -
+ 2@ Za_; (1,1]0,0)e” KR (4)
I} (o3
- ss<k)21'n°‘fs (1,00,0)e~tK'E (1)
(1.167a)
Q
2., > - ol > > -ike -
Vis(k) = S(k)fsau(k)zl:ﬂua(z,l]o,o)e 18R 2)

+SE)ZTs. @)Ta (1,1]0,0)e KR ()
y e 1 ug "7 ’

- 42 e ’ - 'i{(l)
us"‘“(k)?z: nus(z,o]o,O)e

-4 2y 5 -1k’ (1)
- Esa“(k)zz: A, (4:0/0,0)e |
(1.167b)
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2 »
vﬁa(k) -

2™

- -> -ﬁoﬁ([)
fvsau“"ssv“"’f“w<"1'° 0)e .
(1.167¢)

In Eqe. (1.166) and (1.167) there are three long-

range sums to perforu, two of which are related, namely

9] -
(1) & o oy -1% R(4)
Qg (k) HZ‘D QQE(L,OIO,O)G (1.168a)

0

QP - 22 Qm_’u’o’o'l)e-ik'ﬁ(t) (1.168b)
1

Q2" (@) -ng Ry, (4,110,067 R 168¢e)
7y

These sums are slowly convergent for numerical work. In
Appendix D we discuss the Ewald method of transforming
these sums to rapidly convergent form. The Ewald method
also hes the advantage of allowing explicit separation of
the nonanalytic behaviour of Eqs. (1.168) which enables one
to show that the dipole contribution to the dynamical mat-
rix is analytic at k=0 , even though the separate con-

tributions to it are not.

T T P 7

v et



PHONON FREQUENCIES ALONG SYMMETRY DIRECTIONS

In this zection we present expressions for the dynami-
cal matrix and for phonon frequenciesz along the [100],
[110] and [111] directions. We also give expressions for
the elastic constants using the model developed in tle

previous sections.

[100] Direction

Along the [100] direction the wavevector kK is

kK = k&, . (1.169)

Direct computation using the model developed in previous

sections allows one to write the dynamical matrix along

[100] as
[DaE(KK [k)I= A, 0 0 Ay 0 0O
0 A, O O A, A
O 0 A, O A, A,
*
A; 0 0 A 0 0 (1.170)
0 AY A o A, o
4 %5 2
0 Axr A o o a
5 A4 2
where A1 and A2 are real and we have defined
A, = Ao + 0p3%0,0(x) (1.171a)
1 11 (0, '
A, = B + p39(0,0/x) (1.171b)
2 220, .

84
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Ay = C + D11(0 1]k) (1.171¢)
Ay = D + D33(9,1]x) (1.1714d)
As = E + D39(0,1]k) (1.171e)
and
A= %lda+16u sin®ER L8y ran+a “s1n? &2 4120 - 4% cos K2
(1.172a)
B = %(;a+8(u+k)sin2%;448u +4) ") +4pu sinz%f
+ Egg + 20 cos %; (1.172b)
c - - %L}20+4u +28%) (140 1ka/2)+zx'(eik“/2+é*k“%<1.172c)
D~ - %-(2a+2k +189) (14671K8/2) 1,0 (140 KR/2,
-+ g-1ka/2 -ika, (1.172d)
E- 3 }-2s+46’-+%§)(1-e'1ka/2)+2v‘(eika/z-e'ikaﬂ .

(1.172e)

We now proceed to find the eigenvalues of Eq. (1.170)
using the eigenvectors of Lax.45 It is important to note
that his eigenvectors correspond to the second form of the

dynamical matrix ~ich uses displacements of the form

u (LK) = Vo (O LA R (L) -tat (1.173)
o N
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and differs by a phase factor from Eq. (1.19). Thus we

have

W () = Va(x)eﬁ'i(” , (1.174)
where Wa(K) is defined by Eg. (1.19). The VQ(K) are
given by Lax fnr the [100], {110] and [111] directions.

Consider first the longitudinal modes. Noting that
along [100]

-
Sk R(1) _ ika/4

(1.175)
we have for the longitudinal acoustic (LA) &, mode
Wa(O) - bbal (1.176a)
W (1) = S TIPS (1.176b)

Substituting Eqs. (1.176) into Eq. (1.20) and using Eq.

(1.170) we obtain

Wb = (A1+A3eika/4)b (1.177a)

Wb = (A1+A;e"“‘a/4)b . (1.177b)

For this to be a4 solution we must have that

A etka/d _ purely real. (1.178)

3
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This is in fact the case so that
1ka/4

Afloar some algebra we obtain

2 _ (Ba+16u°+649/3) . 2 ka
“al100] M sin- <3
(16.+80/3) _, 2 ka _ 8\’ _. 2 3ka
+ M sin 3 + N sin 5
4 _ 2ka P H ika/4 11
+ =5 sin = + :W[Tll(k)+Re(e l(k))]
(1.180)
and we have used the facts that
12 22 2 2
260 = 12200 - M2 - ia =0 .181)
along [100] and
11
T 1(k) = purely real. (1.182)

We can obtain an expression for the elastic constant C11

from Eq. (1.180) by using the fact that for ka<<1

11 2)+.(higher order)

| o
“‘I.A[1oo] ( k 0 xa (1.183)

so that

aCyy = (a+40 +8u +2u" +90" «8L") . (1.184)
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Note that the dipole terms are absent from Eq. (1.184).
This is an important point and is a consequence of the non-
local nature of the dipoles. In order to see this, we only

need show that along [100]

ﬁ-[rﬁ(k) +ne(e““/“Vﬁ(k))] -0 (1.185a)
k=0
and
22 [L11 1ka/4y11
2y T11 (k) +Re (e 11(k))] LR (1.185b)

This is in fact the case as shown in Appeidix E.

Consider next the longitudinal optic (LO) Aé mode.

for this mode

Wa(O) - bba (1.186a)

1

ika., 4
e

Wa(l) - - bbal . (1.186b)

Substituting Eqs. (1.186) into Eq. (1.20) and using Eq.
(1.170) we obtain

eika/4

2
Wh = (Al--A3 )b (1.187a)
wZb = (AI-A;e'ik‘/“)b (1.187b)

using Eq. (1.178) we have
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“"zz.o[mo] - [A1"‘°(°1k'/4A3)1 - (1.188)

After some algebra we obtain

2 . (4a+8u°+320/3) ka, 16 2 ka
“Lo(100] i (1 +cos ) +5f-sin” T
4\ 3ka, 4\ 2 ka . 40 ka
+ T(l +cos T) +—M— sin T+§_M'(1 °°°ST)
2
4rp; 11 ika/4 11
+ o O[Tll(k)-Re(e vip k)] . (1.189)

->
At k= 0O “LO[IOOJ becomes the Raman frequency, denoted

Woa o so that

mﬁA - (8o +640/3 +16u° +8X°)/M . (i.190)

In obtaining Eq. (1.190) we have made use of the fact that
11 1
Tll(k-O) = Re Vil(k-O) = 0 , (1.191)

Note that the dipoles do not contribute to the Raman fre-
quency, which is again a consequence of the nonlocal nature

of the dipoles. This is in marked contrast to the local
46

quadrupoles '1sed by Lax which do contribute to both C11
and Wpa -
Furthermore, at the X point of the Brillouin zone

boundaryy k = %} , so that we find from Eqs. (1.180) and

(1.189)
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2 2 1 .
w ox = Wax - i(hﬂ00/3+16u+89 +4) )
"91 1
—ﬂﬁ' 11 X) (1.1922)
where
T;;(X) - 5.51804915 . (1.192b)

In obtaining Eq. (1.192a) we have used the fact that
1
3 =0
Now we proceed to the transverse modes. These modes
are labeled As and are doubly degenerate. One eigen-

vector is

Wa(O) - a(6a2'-6 ) (1.193a)

a3

1ka/4, g (1.193b)

wa(l) - e a2-6as) *

Substituting Eqs. (1.193) into Eq. (1.20) and using Eq.

(1.170) we obtain the secular equation for the transverse

modes
*_ =ka/4q1 '
ika/4 5)e ka/ ]g . |
(1.194)

wT[lOO]t = A, = [(Ag=Ag)e (A,=A

We can rewrite Eq. (1.194) as

g ey e
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“¢{1oo]¢ B + D33(0,0k)

ika/4

[Re (De )+Re(eik'/4D (o, llk))]

ika/4

+[ Im(Ee y+Im(e %2/ 4534 (0,1(x)) ) (1.195)

where we note that

pelka/4 . _ %[}4a+4u'+4k'+320/3)cos %% + 4.’ cos Q%g]
(1.196a)
geika/4 . %[(160/346'-46)5111 ke sin‘”;“]
(1.196b)
and
p3d(0,1 k) 2% = Re( (e**2/4p39 0,1 [x)) (1.197a)

ika/4

p3d(0,1]K)e - 11m(e¥*®/4pdd(0,1]K)) . (1.197b)

To obtain an expression for the elastic constant C44

we use the fact that for ka<<1

(C44 2) higher order)
k™ |+ 1.198
“%A[1oo] in ka ( )

so that
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1044 -aq + %? + 4 + 4\ +2° + 100" + 8y

’ o\ 2
40/3=-8+2% “+3y
AR - (1.189)

In obtaining Eq. (1.199) we have used the fact that the
lower sign in Eq. (1.195) corresponds to the acoustic
branch. Note again that the dipole terms do not contri-
bute to C44 .

At the X point of the Brillouin zone boundary we

find from Eq. (1.195) that

u%Ax - %(4a-4e+8u+sx+8u'+4x'-4u'+ea'+12c)

2
dm(py1-Py)" 14 11
+ eMCo (Tzz(x)+v23\x)) (1.200)
and
2 1 » rd 4 »
Wpox ™ E(4a+4ﬁ+8u+8X+8u +4)\ ‘+4V ‘~808 "+40/3)
2
41r(P1“'P2) 11 11
where
11
Tzz(X) - ~2,75902458 (1.202a)
V;;(X) - -13.5224054 . (1.202b)

In obtaining Eqs. (1.200) and (1.201) we have used the

relations



1
23 (X)
1
23 (X)

12
Tzz(X)

2
v;_., (X)

Va2 (X)
T35 (X)

1
--'zvziﬁ,3 (X)

1
- 2T (X) .

The dipoles strongly affect the zone boundary modes.

push the transverse optic

frequency of the transverse acoustic

[110] Direction

Along the [110] direction the wavevector k is
> k ~ -~
k = Jf(e1-+e2)
where k = |kK| . Direct computation using the model

(TO)

(1.203a)

(1.203b)

(1.203¢c)

(1.203d)

They

mode up and lower the

(TA)

mode.

(1.204)

developed in previous sections allows one to write the

dynamical matrix along (110] as

[DaB(KK k)] =

W W W w w

R0 X RW N [aad

w w w w w w
EVER B EE R NSRRI R )

93

@ W m w W w
W #3 &3 ¥h W W

W W W w w w
W N O H g9 ™™ W

W W W o W w
WHW B =

-J

(1.205)
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where 81,82 and 84 are real, 83 is purely imaginary

and we have defined

B, = A + D{$(0,0]k) (1.206a)
B. = B + D%9(0,0/x) (1.206b)
< 12 (0, .
By = C + D{$(0,0[k) (1.206c)
- dd, 1.206d
By =D + D33.0,O!k) (1.206d)
B = E + D{%(0,1]k) (1.206e)
dd
Bg = F + DJ5(0,1]k) (1.206¢)
B, = G + D{3(0,1[k) (1.206g)
Bg = H + Dgg(o,1|k) (1.206h)
and
1 2 ka 2 ka , .
A= 'ﬁr4a+8(p,+)\)81n 4~r2-+4u sin 2.2 + 8u’ + 4\ ]
" P k ka
+ 4(p ) )s:Ln2 ?‘5 ~ 90 + 2¢ cos '2':/7'2-‘
X
|~ 0/3 cos ﬁa J(1.207a)
1 2 ka
B = (4 +20/3)sin” 3 75 (1.207b)
i 4c ka 20 ka
. 140 , K& 20 1.207
C M(B sinzﬁ 3 sin 2) (1.207¢c)



1r 16 4 2 ka 4 st 2 ka .
D = 3 4a + 16y sin :75 + sin 57!
320

. . p 2 ka
+ 8u" + 4\ + 8y sin 575 + =

?%gcoukj‘;-%g-con—kz;—!’ 1

E - - % (q+80/3) (1+20~ K8/ 2/2  ~1kal/Z,

+ b (2+2e

-1ka/J?+eika/2J§+e-31ka/2J§)

-1ka/2J§+2e-ika/J§+e1ka/2J§+e-31ka/2J§j

98

(1,207d)

l

+ A (l+e _
(1.207e)

F = % Q-6+4c/3)(1+e-1ka/Jz-2e-1ka/zJ2)

L 26 ° (1+e-ika/ﬁ_eika/2./7_e-3 1ka/2/2,

: V,(l_ze-ika/&/ﬂ;e-ika/ﬂ) ] (1.207f)
G - % (_B+4c/3)(l_e“ika/J§)+6»(eika/ZJf_e—3ika/2J7)

.’ (1+eika/2.,/7 e -1ka/ﬁ_e-3 ua/Zﬂ)

N (1.207g)
H o= - % (@) *+80/3) (1o~ 1¥a/VZ o -1ka/2/2,

2 (Lee-tka/VE 1ka/2/2 Bika/2/2y | () 509y

Now consider the modes whose eigenvectors are deter~-

mined by symmetry alone. Noting that along [110]
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>
JE R | ika/2/Z (1.208)

we have for the 24 mode which is TA _

Wa(O) - )(bal-baz) (1.209a)

o aika/2/2 . 4 n
W (1) = e LICWEL (1.208b)

a2’

Here TAu denotes that the 24 mode is transverse
acoustic and polarized perpendicular to the 2z axis as
well as to the direction of propagation. Substituting Egs.

(1.209) into Eq. (1.20) and using Eq. (1.205) we obtain

«2b = [81-82+e1ka/2J§(Bs-86)]b (1.210a)

-ika/2/2Z _»

«2b = (B, ~By+e (Bg-Bg) b . (1.210b)

For this to be a solution we mist have that

eika/zvz(as-ss) - purely real. (1.211)
This is in fact the case so that

wgz - DBy + Re[eika/z‘/z

) (Bg=Bg) ] (1.212)

After some algebra we obtain
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ka
w%:‘ - %(4“-494-8;4-8“8“ ‘=qu ‘+4) "+8% ’+120)sin2 :ﬁ-

+ l(4u-4v+4u'+4x'—86'+4u'+4k')31n2 X2
M 2.2

Ddg(o,olk)-Dgg(O,O|k)+Re(eika/zJ§ 4d0,1/x))
- Re(elk8/2/2, pgd(o,1]x)) . (1.213)

Note that ngg(o,olk) and °1z(° Olk) are purely real
along [110]. We can obtain an expression for the elastic

constant C12 by using the fact that the Za mode 1is the

47

"slow" TA mode in the elastic region so that for

ka <<1

(Cy4=C,,) higher order
11 127 2 ( ) (1.214)

2
w - g k™ +
Zﬁ p in ka

Using Eq. (1.213) and the expression for C11 , Eq. (1.184),

w» find that

aCy, = (28-a=20+8V=4u=4\=-10u "+2v "=} "+128 "=8u. )

(1.215)

From the expression for the bulk modulus B

1
B = §(C11+2C (1.216)

12’

we obtain using Eqs. (1.184) and (1.215) that



B - g%[}a-a+16v-sx-1su’+4u‘+7x’+24a'+sx'-16u']

1,

Note that the dipole terms do not contribute to C12

28

217)

and

that the bulk modulus is independent of the angle bending

interaction. We can see in a simple way why the dipoles

do not affect C12 . Since the dipoles do not affect

if they do not affect the bulk modulus, then by Eq. (1.

C

11 °
216)

we see that they will not affect C12 . The reason that

the dipoles do not contribute to the bulk modulus follows

from the fact that a homogeneous isotropic deformation

in-

duces no dipole moments and thus no dipole-dipole inter-

action energy for this type of deformation.
Next consider the 22 mode which is TO _ . For

mode

-8

(1

Wa(O) - b(édl

a2)

ika 2,2 oy a

1) =
Wa( e a2

b(--éa1

Substituting Eqs. (1.218) into Eq. (1.20) and using Eq.

(1.205) we obtain

2
Wb = [31-82+e

tka 22 (5 _B.) )b (1

2

w’b = [B,-B o~ ika 2.2

*-Bo) b 1
o + (86-85 o NN (

Using Eq. (1.211) we have

this

.218a)

.218b)

.219a)

.219b)
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2
w_ = By-B, + ne[eu“/m(ae-as)] . (1.220)
2

After some algebra we obtain

2 1 " . . .
%E ol (6a+10u "+2V “+4) “+340/3)

2
+ (20+4u " +46 +2)\"+100)cos éﬁ%

+ (2u°+20 =20 °-48")cos 7z

2 Kka . . 2 _ka
+ (48 +8u+8))sin :73 + (4u=-4V+4u  +4)\ " )sin 573

+ ogg(o,oyk)-ngg(o,o|k)+ne(e1ka/2J§bgg(o,1|k))

- Re(e'*a/2/253d (o 1)) :

-

{1.221)

Now we examine the modes that are two dimensional re-~

presentations. The modes are mixed modes and are not pure-

ly longitudinal or purely transverse. First consider the

Za modes which are a mixture of LA + TO, , where TO,

denotes transverse optic polarized in the 2z direction.
For these modes
WQ(O) - b(6a1+6a2) + cba3 (1.222a)
ika/2/2
wa(l) e [(501+6a2)-c6a3] (1.222b)

Substituting Eqs. (1.222) into Eq. (1.20) and using Eq.
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(1.205) we obtain the secular equation

2

w -
&
Zy

%%B +B,+B ,+Re (Bs+86+Bsﬂ{

ika/2/2
17P2%°4 e

8

» -
{ ika/2/2 2|»
lBI+Bz'B4+R° [e (854-864-88)]{

+ S[Im(Ba-eika/2J§B7)]2

b

(1.223)

In obtaining Eq. (1.223) we have used the facts that

ika/2.,/2 ika/2/2 ika/2,2
81,82,84.Bse ,Bse
ly real and that 83 and B7e

The upper sign in Eq. (1.223) is the optical branch and the

, and B,e

8
ika/zJﬁ are purely imaginary.

are pure-

lower sign the acoustic branch.
Similarly. the Z% modes are a mixture of LO + TA,

For these modes
WQ(O) - b(6a1+602) + c603 (1.224a)

ika/2/2
W.o(1) = e [-b(631+6a2)+c6a (1.224b)

3]

In a similar fashion to Eq. (1.223) we obtain the secular

equation

ika/2J/2 N
2+B4-Re[e (BS+BG Beﬂ‘

ika/2/2 |2] =
%BI+BZ-B4-Re[e (BS+BG+BS)}‘
. 8[1m(33+87e1k3/2J§)]2
(1.225)
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The upper sign in Eq. (1.225) is the optical branch and the
lower sign the acoustic branch.

At this point we would like to note two additional
facts. The Brillouin zone boundary along the [110] direc-
tion is the K point and is located at K = %}(3/4,3/4,0).
If we continue past the zone boundary to the point
%}(1,1,0) , this point is equivalent by symmetry to the X
point. The reason for this can be seen by using the pro-

perties48

wk +8,3) = w(ky) (1.226)

L EEH = LED (1.227)
together with the reciprocal lattice vector

g - %}(-1,-1,0) (1.228)
and the rotation about the x2 axis

S§=/0 0 -1

o1 o]. (1.229)
1 0 o
The & vector takes %}(1,1,0) into 27/a(0,0,1) . The

rotation about the x, axis takes %}(0,0,1) into

27(1,0,0) which is the X point.



[111] DIRECTION

Along the [111] directi
k
=» — ™
k - ﬁ(el

Direct computation using the
sections allows one to write

(111] as

[DaB(KK (k)] =

(@} @} O (@] (@] )
o # b W oRN N =

where C1 and C2 are real

C, = A +

(@]
[ ]
@]
+

@]
]
o
+

and

A= % 4a+8p “+4) “+100

+(Bu+4r+8u “+4) 1

on the wavevector i: is
+ez+03) . (1.230)

model developed in previous

the dynamical matrix along

Ca Cp G €4 C

¢, ¢ € & ¢,

Co G C4 €4 G

= L 3

Cq C4 €1 Cp €y

¢t ¢t ¢, c, c

3 4 2 1 2

L *®

C, €3 C, C, Cy (1.231)
and we have defined

dd
D11(O,O|k) (1.232a)
dd
Dy5(0,0/k) (1.232b)
dd ,
D11(0,1lk) (1.232¢)
dd
D12(0,1lk) (1.232d)}

2 ka 2c ka

)sin —"2\/-:-3- +—3-c0575 (1.233a)
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1 2 ka
B - E(Qv+2c/3)lin 575 (1.233b)

C = -'a[(a+80/3)(1+3e-1k‘/J5)

|+ 25200 *) (24 1E8AT g -21ka VT (1.233¢)

D = % (~B+40/3) (10~ 1K8/¥3) a2, 24y *)o~1EB/V3

_(26,+U,)e-21ka,‘./§ .

(1.233d)

Consider first the Al modes which are longitudinal.

Noting that along [111]

LARE@) | VI tkas4

(1.234)
we have
Wa(O) - b(6a1+6a2+6a3) (1.235a)
V3 Lt ka/4
wa(l) - e c(8 1+6,9%0 3) - (}.235b)

Substituting Egs. (1.235)‘1nto Eq. (1.20) and using Eq.

(1.231) we obtain the secular equation

M

At the L point of the Brillouin zone boundary

K = %}(Q,é,é) and C; and C, become purely real. We

3
then have

W ox o= (C+C,) & [(c;+2c;)(c3+2c4)]é : (1.236)

i
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‘.{AL - 3‘-‘ Ba=48 +8u+8V+4) +4u *+2) “+ *-85°
+ Bu"+4)"+640/3

2
and
2 1 P [ o Py
“iOL - M 20+48 +8u+8V+4\+12u "+6) -4V +8%
+ 8u'+4)’
2
+ ———Emn;-—- (Tll(L)-vfl(L)) (1.237b)
where
22
Tll(L) = 2.,30147423 (1.238a)
Vif(L) = ~4,45445881 . (1,238b)

Note that the dipoles push the LA mode down and the LO mode

up.

Now we proceed to the transverse modes. These modes

are labeled A3 and are doubly degenerate. One eigen-

vector is

Wa(O) = a(b ) (1.239a)

a1-6a2

J3 1ka/4 -
W 1) = e b(s 4=8.0> - (1.239b)
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Substituting Eqs. (1.239) into Eq. (1.20) and using Eq.

(1.231) we obtain the secular equation

WP &= (Cy=Cp & [(C3C ¢ 1F . (1.240)

“3
At the L point we have

“%AL - % 2a=28+8u~4v+4)+12, " +6) “+20°

=45 +8u "+4) “+60

4n (PI'PZ

- (Vll(L)—ri;(L)) (1.241a)
and

1

“&OL 6a+28 +8u-4v+4\+4u “+2)\ =2V ‘+48°
+8u"+4)\ “+34¢/3
- 2 P2 +viE ) (1.241b)
eM oo
where
11
Ty (L) = -3.15523204 (1.242a)
Vi;(L) - -6.53319856 . (1.242b)

From Eqs. (1.241) we see that the dipoles push the TA mode

down and the TO mode up.



CONDITION OF MINIMUM POTENTIAL ENERGY

Since we have expanded the potential energy ahout its
minimum value, we must insure that this condition holds.

The static potential energy lo can be written as

b = F(2N) (40, (ry) + 120,(ry) + 1205 (ry) + 60, (a))
(1.243)

where N is the number of unit cells in the crystal. In
writing Eq. (1.243) we have noted that the dipole terms
give no contribution to the static potential energy, and
neither do the angle bending terms. The condition of mini-

mum potential energy requires

&
3;2 -0 . (1.244)

(o]

Using Eqs. (1.9),(1.69), (1.81), (1.89) and (1.98) we

obtain
a=f + 8u=-8v + 11,.°=11y” + 8." = 0 , (1.245a)
or

ol (r.) 8el(r.,) 1l (r,) 8¢’(a)
i'0 "2 2 33, 4 -0 . (1.245b)
ro rz r3 a

Eqs. (1.245) give a relation between the force constant
parameters that must be satisfied for our model. Note that
this condition is trivially satisfied if all first order

potential derivatives are zero.
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PHONON DISPERSION CURVES AND FITS TO EXPERIMENTAL DATA FOR
SILICON

In this sectin we present two basic models. First
we examine a four varameter model that illustrates the
effect of the dipoles on the phonon dispersion curve ;.
Second we present a fit to experimental data using a ten

parameter model.

FOUR PARAMETER MODEL

This was the first model used when investigating the
effect of the dipoles on the phonon dispersion curves. In
this model we take as parameters o = f ,u =V, 0 and Py »
with all other parameters zero. This corresponds to purely
central force first and second neighbor interactions, angle
bending and what we will call diagonal nonlocal dipoles,
since the matrices Eq. (1.150) are diagonal for this case.

49
fit are C11, C12, “oa and Wrax
The parameters determined in this manner are given in

The experimental data

Table 2. An interesting feature of this model is that the
short-range force constants are completely determined by
Cll’ C12 and Wpp - The single dipole parameter is de~-
termined by “TAX . Since the dipole interaction does ncot
affect C11’ C12' C44 and Wy 0 @ comparison of this

model to one using the same short-range force constants

but no dipoles can be made.
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Table 2 - Four Parameter Dipole Model. The experimental
values of Cu, Cm, Wpa and Wrax have been used to de-~
termine the parameters. p; = z40 where e is the magni-

tude of the electron charge in C.G.S. units.

a -8 =3.672 xlo‘dyno/cm
vV - 3.080x103dyne/cm

) =
[ ]

7.163 x 103dyne/cm

Q
’

zy 0.8518

@{(ro) = 1,102 x 105dyne/cm
Qé(rz) - 6.161 x 103dyne/cm

Calculated value of C44

C = 7.476 x lol'ldyne/cm2

44

Experimental value of C44

C = 7,963 < londyne/cm2

44

A A5 5 £t it s e st
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In Fig. 8 we have plotted the phonon dispersion curves
along symmetry directions for the four parameter dipole
model. Also plotted for comparison are the dispersion
curves for the same short-range force constants but no di-
poles. Note the dramatic lowering of the TA modes near
the zone boundaries along the [100] and [110] directions
due to the dipoles. The TA [111] modes are also lowered,
but not nearly as much as the [100]) mcdes. The major fea-
ture of the dipole model is that it allows lowering of the
TA modes while maintaining a high value of 044 . (Note
that the calculated value of C44 in this model is within
6% of the experimental value.)

Although the dipoles improve agreement with experi-
ment, the basic shortcoming of them is that the TAX modes
are lowered much more than the TAL modes. This is a pro-
blem with the angular variation of the dipoles which is not
remedied by addition of the nondiagonal parameter Py
since the quantity (pl-pz) enters into both Eq. (1.200)
and Eq. (1.241a). It is possible that extending the dipole
model to second neighbor nonlocality could remedy this de-~
ficiency.

From the expressions given by Lax50 we see that his
quadrupoles tend to restore the balance between the TAX
and TAL 1lowering. However the quadrupoles also affect
the elastic constants and Raman frequency. It is the opin-

ion of this author that including dipole-quadrupole and
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quadrupole-quadrupole interactions would remedy the short-
coming of the angular variation of the dipoles. This could
be done with the addition of only one more parameter for
the quadrupoles, as in the work of Lax. The dipole-
quadrupole interaction should be interesting since it is a
mixture of no.local dipoles with local quadrupoles. The
difficulty with this approach is application of the Ewald

method twice more for the long-range sums.
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Figure 8. Four parameter dipole model as described
in the text (solid lines). Circles are experimental data
(Ref. 49). The dashed lines are the same short-range force

constants but with no dipoles.
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TEN PARAMETER MODEL

In an attempt to improve the four parameter dipole
model of the previous section, we have included third and
fourth neighbor central potential interactions and the non-
diagonal dipole parameter Py - The first derivatives of
the potentials are also allowed to be nonzero, subject only
to the condition Eq. (1.245b). The ten independent para-
meters are ¢,(r,) ,8,(ry) , @5(ry) , 0,(a) ,0.(ry), 85(ry),
oé(rs) y0,py and p, . (@i(a) is determined by Eq.
(1.245b)). The parameters were determined in the follow-

2

ing manner. Using the analytic expressions for M“hA s

aCyy » 3645 M‘”iAX ’ M“"?‘AX ’ M“""xz*ox ’ M""’?’AL ’ M"‘{AL ’ M“‘12.01, ’
M“%OL , and aC44 we performed a nine parameter, weighted,
nonlinear least square fit to the experimental values of
these quantities for a given assumed ratio of p2/p1 . The
ratio p2/p1 was then varied to obtain bast agreement with
the Z; mode near the K point consistent with the smal-
lest value of least squares of the above quantities.

The method of solution of the set of nonlinear equa-
tions is the Newton Raphson iteration with the zero-order
parameter values determined from a linear least square fit
to all the preceding experimental quantities except C44
A typical nonlinear fit converges to an accuracy of ten
decimals in ten iterations, the value of C44 changing by

almost a factor of two from the value computed using the

zero-order parameters.

113



114

The entire fitting procedure is made somewhat sub-
Jective by the weighting factors which are necessary to ob-
tain a reasonable fit to the data. These weights had tu be
input by hand using the trial and error method and the
criterion that the percent errors in the frequencies be
nearly the same. Obtaining such fits to the data is ted-
ious and time consuming at best.

In spite of the above mentioned difficulties, we have
obtained a reasonably accurate fit to the neutron scatter-
ing data plus elastic constants. The parameters for this
fit are given in Table 3. 1In Table 4 we list the potential
derivatives for this fit. Note the rapid fall off of the
potential derivatives by the fourth neighbor distance. The
dispersion curves for the model with these parameter values
are plotted in Yig. 9. The model reproduces the low-lying
acoustic modes rather well and the elastic constants are
within 13% of the experimental values. Though this is not
stunning, it is a marked improvement over models employing
only first thru fifth neighbor interactions of the type
used in this thesis. The parameters in Table 3 should not
be taken as the best fit possible with the ten parameter
model since the author has not exhausted all the regions of
parameter space in combination with all possible weights in

the fitting procedure.
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Table 3 - Ten Parameter Dipole Model. Py = z;¢ and
Py = zge where e 18 the magnitude of the electron charge

in C.G.S. units,.

a - 4.7008><104dyne/cm

- 3.0364 x10%

L = 5.4455 x10°

v = 4.7303 x10°

A\ = (u=v) = 7.1520 x 10°

o = 4.3265x10°

L’ = =2.2679 x 10°

V' = -8,0545 x10

A = (L°+8V°) = =2.9122 x 10°

8 = 3’ = -2.4164 x 102

A’ = 9,9978 x 10

b’ = = 2(a=B +8u-8y +11u"-11v") = 2.1180 x 10°

0.804905 = =0.201226 22/21 = -0.25

22

Elastic Constants

Calculated Experimental‘
C;;  1.4352x10'%dyne/em®  1.6578 x10'2
Cpp  7.2011x 102 6.3937 x 1011
Cqe  7.0152x10M% 7.9625 x 1011

* (McSkimin, ref. 49)
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Table 4 - Potential Derivatives for the Ten Parameter
Dipole Model.

91(ry) = (a+28) = 1.0774 x 10°dyne/cm
0. (r,)
L1_0° . (4-8) - 1.6644 x10¢

To
05(ry) = () = 1,0176 x10*
0o(rs)
22 ., -7.1520x10°

To
04(ry) = (u'+10v*) = -3.073 x 103
. (r,)
S_3 . (L-v’) = -2.1873 x10°

T3
04(a) = 1" = 9.9978 x 10

¢4(a)
a

= " = 2.1190 x 102
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Figure 9. Ten parameter dipole model as described in
the text (solid lines). Circles are experimentel data

(Ref. 49).
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Chapter 2
Thermal Expansion of the Diamond Structure

"For what is a man profited, if he
shall gain the whole world, and
lose his own soul? or what shall
2 man give in exchange for his
soul?"

Matthew 16:26

INTRODUCTION

In this chapter we focus on aspects of the anharmonic
lattice dynamics of the diamond structure that are neces-
sary to calculate the thermal expansion. Tirst we review
some relevant thermodynamic formulas and then develop the
statistical mechanics treatment of thermal expansion to
lowest order in the anharmonicity. Next we present an
anharmonic model which is a consistent extension of the
harmonic model of Chapter 1. In the process of developing
this model we found analytic expressions that explain in a
simple way how the negative Griineisen parameters arise.
Analytic expressions for the mode Griineisen parameters for
several modes are presented. A fit to t.ue experimental
data available for silicon is made and dispersion curves
for the mode gammas along symmetry directions are presented
The model is then used to calculate the volume thermal ex-
pansion coefficient of silicon between 5 and 1700K. Also
calculated are the thermal strain, zero-point strain and

zero=-point phonon pressure.
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THERMODYNAMICS REVIEW

The purpcose of this section is to define some thermo-
dynamic quantities and derive some formulas that are useful
in connection with thermal expansion. We begin with the

Helmholtz free energy for the crylta.l1

F(T,V) = E=TS , (2.1)

where T is the temperature, V the volume, E the in-
ternal energy and S the entropy of the crystal, Taking

the total derivative of Eq. (2.1) we find

hem + |

lsing the fact that for a reversible proce552

3%

dF = (

2%

) dV ~ dE - TdS - SdT . (2.2)
1

TdS = dE + P4V , (2.3)

where P 1is the pressure, we obtain from Eq. (2.2) that

dF
P= = (——) , (2.4a)
oV T
and
oF .
S = - (—) . (2.4b)
Ty

Equation (2.4a) is the equation of state since it relates
the pressure to the temperature and volume. Note that if

the pressure is zero, then the .rystal volume is determined
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from Eq. (2.4a) by setting to zero the derivative of the

Helmholtz free energy with respect to volume.

The volume expansion coefficient is defined ll3

. L(av
V('ST),, . (2.5)

Since

(), - - (). (&), - 2.9

we have upon using Eqs. (2.4a) and (2.6) that

1/3V 9 (dF
.- 33 (48] - 2.7
\%

Using the definition of the isothermal bulk modulus®

oP
B = - V(-—) , (2.8)
aVv T

we obtain using Eq. (2.4a) that

2
a2F

B-v( ) . (2.9)
2y T

Furchermore, since

-1
aP Vv
(W)T - (‘a‘ﬁ) , (2 10)
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we have that

(‘?“Y)T - - g » (2.11)

so that Eq. (2.7) becomes

1[a(ap) ]
o = - L{2(8E , (2.12)
BlaT \av TJ

v

Note that the order of differentiation is interchangeable
in Eq. (2.12). Equations (2.4a), (2.9) and (2.12) clearly

show the central role of the Helmholtz free energy.



STATISTICAL MECHANICS TREATMENT
The Helmholtz free energy is given in terms of the

partition function 2 by6

F = - kBT n Z (2.13)

where7

Z» Tr e PH | (2.14)

The trace in Eq. (2.14) is over a complete set of states,
kB is Boltzmann's constant, f = 1/kBT and H 1is the
Hamiltonian of the system. For our purpose here, we con-

sider the Hamiltonian
H=T+ & , (2.,15)

with T the kinetic energy given by Eq. (1.15) and & the
potential =2nergy as a function of nuclear displacements.
Expanding about the configuration of minimum potential

energy we have

(L°k%)

1 ‘o
¢ =8 (V) + 35 23 b (K [27¢ DU (46)ug
L°k’B

1 ’ L4 " & .’ ’ ” "

+ & L%oz %ey(““ 71276 yu (4K )ug (47K Ju, (47¢")
z‘K'B
‘”K”Y
+ LI

(2.16)

126



127

Here vo denotes the volume of the configuration of mini-

mum potential energy, OO(V6) the static potential energy

of this configuration, the second order force constants are
defined by Eq. (1.17) and the third order force constants

are defined by

4
aua(zx)aus(z K')auy(l'K') o

L4 [ 4 [ J ”
baaY(szz k14" %")

(2.17)

In Eq. (2.16) we have only kept cubic anharmonic terms.
This is sufficient for calculation of the thermal expansion
to lowest order in the anharmonicity.

In what follows, we will term the ''bare'" crystal as
the crystal oscillating about the configuration of minimum
potential energy, characterized by the position vectors
Eq. (1.5). As we shall see, this is not the physical cry-
stal since the presence of aanuarmonicity causes a finite
strain even at the absolute zero of temperature.

Now consider an isotropic homogeneous deformation of
the crystal. We define new dynamic displacements va(zK)

by the equation

ua(LK) - eRa(LK) + va(ZK) , (2.18)

where ¢ 1is the deformation parameter or strain. The new

position vectors of the deformed lattice are
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iK) = 4K .
ﬁ&( ) (1+e)Ra( ) , (2.19)
so that the volume of the deformed crystal is
3
V= (1+4¢) Vo . (2.20)

Substituting Eq. (2.18) into Eq. (2.16) we obtain for the

potential energy

=, +F 4T, 4 33 , (2.21)
with
€2 o, 0 o, 0
Ty = (V) + 55 %3 b g (LK ] 87K JR (LK)Rg (47K ")
LAKAE
63 Z .0 LAV LI " u
+ == Z °aay(‘K" K°14%k )R (LK)Rg (47K )R (L7k%)

zaKoa
L”K”'Y

(2.22a)

8 =€ Z éaﬁ(lez'x')aa(zx)va(L'K‘)

Ko
L’K‘a
62 z ¥ u v
+ A K kv K
- oy 88y (4 47" |2 x DR, (LK)Rg (476" v (476 7),
I3
L7k y (2.22b)
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1 4 rd r 4
h-3 CZ °as(“" KTV, (K)vg (47%7)
’asy(‘”" KL x )Ra(‘K)Vs(‘ K )vy(L K*) ,
(2.22c)

and

-)
]
o ]

j% ¥ gy (4K TL7K Lk v, (LK)vg (4% v (4"k ")
a

L'K la
L%y (2.22d)

We further define the perturbations to the static lattice

energy and force constants as

(2) - l L4 » o, ’
¥, 5 E: °as(‘K“ <OIR, (4K)Rg (£7¢7) (2.23a)
"K’S
(3) 1 o VA LAV "o
8,7 =% ;E °aBY(LK|‘ A DR (LK)Rg (47X )Ry(l 7y,
L"’\"ﬁ
LK"Y (2.23b)
(1) . . .
T (ak) = X b (LKL KR, (LK) (2.23¢)
(o3 "K’B CYB B
(2) - 1 , 4 /A 4 4 '} 4
8,7 = 3 L,Etséaay(lez K[ DRy (LK R, (LK),
Lk"y (2.23d)

e M axjerery = T

K ’K' "o M u . )
aB ot ORI LR (477) L (2.23e)

Qaﬁ
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Since the deformation is isotropic, the perturbations to
the force constants will have the bBame symmetry properties
as the respective force constants of the same order. This

being the case, we have for the diamond structure that

oV k) = 0 (2.24a)
and
Qéz)(u) -0, (2.24b)
so that
§F, =-o0. (2.24c)

Equations (2.24) are shown in Appendix F. Thus we can re=-

write the potential energy as

8 = F  + % z (¢ (zK[z'n')+e§(1)(zx[L'K')]va(zk)v (L°k")

0 o ab af g

L°x’B
lv o 0 VW L4 "o
+ 5 z?; QaaY(zx[z K [4%x IV KV (7K v (476 ")

Z;K;B
L'c"y (2.25)

Writing the Hamiltonian as

H=H, + H (2.26)

0 1’
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with

1 ] » ’ 4
Hy =T + 8,(V) + 35 E ‘ae“"l" K v, (W)vg (L7K7)
L°k°B (2.27a)

and

1)

2,(2) 3,03) (
bo +e" % b

0 -+% PR

(L |8’k )v_(Lxiv (L7 °)
LK o B
K'

Hl =
4 f

1
+5 I

L4 ’ ” 4 4 ’ L L4
z L fete el v, (4€)vg (476 Iv (47¢%)

$

c af
L°K'B
47Ky (2.27b)
we see that HO is the Hamiltonian of the bare harmonic
crystal in terms of the displacements va(zK) , and H1
contains the anharmonic effects. Note that all the strain
dependence is contained in the Hl term. To lowest order

in Hl the Helmholtz free energy is given by8

F = Fo + (H1>0 ’ (2.28)
where for any operator M
-BH
Mg = Tr(e OM), (2.29)
0
F = -2z (2.30)
0] 8 0o’ iy

and
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-BHO
Z0 - Tre . (2.31)
Using Eq. (2.27b) we obtain
2 (2) 3,(3) € 1) .0
(H)y 0,0+ ey + ‘E 'ae (Lx|L’x”) x
Qa
1°x’B
% (va(tK)ve(l K ))0 ’ (2.32)
where we have used the fact thatg
(va(tx)vs(z K')VY(L K'))o =0 , (2.33)

Consider next the normal coordinate transformation10

# >
v, () = Z ——'——— e (K]kj)ei ‘R(4)

iJ 2NMw(kj)

A (2.34)

kj
where Aﬁj is the phonon field operator given in terms of
the usual creation and destruction operators by

Ay, = bﬁj + b >, . (2.35)

The BZ on top of the sum in Eq. (2.34) is a reminder that
the sum is restricted to the first Brillouin zone and N
is the number of unit cells in the crystal. We also have

the expectation value11

<A§JA§'JA>O - éi”-ﬁ»éjjﬁ(zn'k"j+1) ’ (2.36)

where
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afj - (eahw(kd)-l)-l . (2.37)

Using Eqs. (2.34) and (2.36) we obtain

o0 BZ o] » > P
(v, (4K)ve (L76%)) g = L ————e—g_(k |Kj)e, (x°jRI) x
a 8 g 2Nmo(Ey) © B
« olE' (h’u‘)-iun(za_’ M) .
kj
(2.38)
Substituting Eq. (2.38) into Eq. (2.32) yields
<H1)O - ezééz) + €3§53)
BZ (202 ,+1)
+SL Tz B (c |K3)eg (¢” [K3) x
Ky Ae @)
L°k°B
< 40 (1] 27x e R RuH-R)) . (2.39)
Now we note that
(1) .oy ik (R(1)-R(L)) A),. . .
5,&&3 (LK |4°K " )e =NM D5 (kx°[K) ,
(2.40)

where we have defined the perturbation to the dynamical

matrix in analogy with Eq. (1.25),

(L), o2y o 15 ,(1) sy 1K R(m)
D g’ (K« k) M’ﬁ ¢ 5 (oK |mK“)e . (2.41)
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Thus Eq. (2.39) becomes

(Hy)g = 62‘52) + ealés)

BZ (25 +1)
+%ﬁ zr —7‘4_;7——- e‘(KIﬁj)D(;)(xK'l'ﬁ)eB(K'lﬁj) .
> ka wkj) @ a
k) 5
(2.42)
Defining
L& = T el (xlED) (ke [Breg (<7 (K, (2.43)

Ko
K B

we have in more compact form

2
o BZ (kj)
o 25(2) 3,(3) _ &h “4 -
(Hyd g = €%8,%" + €7y z

(2.44)

Since Ho does not depend on the strain, to lowest order

in H; we have from Eq. (2.28) that
3(H,)
%—E-—-éﬂz—-q , (2.45)
so that
dF (2) 2.(3)  hn B2 “’i(ﬁj) -
E-2es{® 1 3H3 4§ z ——:—-—(nizj +%) . (2.46)
ﬁj w(kj)

To proceed to volume derivatives we use Eq. (2.20) so that
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oF 1 oF
- . (2.47)
9 3Vy(1+e) 3

Using Eq. (2.4a) we obtain
1 (2).,.2,(3) , y 2 “‘f( )
P=-- 2ed " +3e%0, +-§ L ——— uk.1 +§] .
3Vy(1+e)“ L gy «(kJ)
(2.48)

From Eq. (2.9) the bulk modulus of the bare crystal in the

harmonic approximation is given by

9p(2)

BO 'Tga— , (2.49)

so that to lowest order in ¢ the equation of state is

kj +3) . (2.50)

Defining the mode Griineisen parameter by

(k3) L &) (2.51)
vy (kJ - - § Y ’ .
6w (kj)
we have
P = - 3Bye + 1 ZJ w(kJ)Y(kJ)(n +é) . (2.52)
0 KJ

From Eq. (2.52) we see that even at the absolute zero of

temperature and zero pressure there is a zero-point strain
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given by

1 3% hu’f

e -
0 3B,V
o0 id

y(k3) . (2.53)

This can be thought of in terms of the pressure¢ required

to make the strain zero at T = 0 ,

-
P -—1— w(k

0"V v(k3) . (2.54)

' M8

Po is thus a zero-point phonon pressure.

Proceeding now to the thermal expansion coefficient,

we have from Eqs. (2.12) and (2.47) that

1 3 (aF) ]
a - - ey | o » (2.55)
38V0(1+e)2[aT 8¢ /]

€

or using Eq. (2.46)

BZ _
a = - 3 z =(n>, +2) . (2.56)
68V0(1+€) ﬁj

Now
2

Relig, o) - Mg,zgu[mgm]{ L s
4k
B

Defining the Einstein specific heat function as

C.(«) = k (Shw)z‘sinh[ﬁhuMZ] -2 (2.58)
E B\"2 /| - {2 ’
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Eq. (2.56) becomes with the aid of Eq. (2.51) to lowest

order in ¢

BZ .
a - 5%; Z v(E&cgwEs)) . (2.59)
kJ

¥

Eq. (2.59) is the sane as the result of the ''quasi-harmonid'
upproximntion,12 at least to lowest order in ¢ . This
approximation is useful to find the meaning of the mode
Griineisen parameters. In the quasi-harmonic approximation,

the phonon frequencies are given to lowest order in ¢ by

S2(®y) - P@Ey) + el &) + 1ee (2.60)

with uﬁ(ﬁj) defined by Eq. (2.43). To make connection

with experiment, one defines the mode gamma by

~ -
v(Ky) = - Lou(il) (2.60)
or
V@y) - - 9B D) (2.61)
22 &y 9V
Using Eqs. (2.20) and (2.60) we obtain
v(ky) = - 30 2@y (2.62)
6w (kj)

s0 that to lowest order in ¢
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of ()

Y(kY) = - —g—— . (2.63)
6w® (k1)

Equation (2.63) agrees with the definition Eq. (2.51). To
proceed one step further, experiments measure the pressure
dependence of phonon frequencies for some modes and thus
one can obtain experimental information about the mode



ANHARMONIC MODEL

In order to calculate the thermal expansion using Eq.
(2.59), it is necessary to have a model for the mode gammas.
The earliest model of Grﬁneisen13 was to assume that Y(fj)
was a constant, the same for each mode, and thus the ther-
mal expansion would have essentially the same temperature
dependence as the specific heat. Th's is known as
Griineisen's rule. It 18 a reasonable approximation for
some materials, but since the specific heat and bulk modu-
lus are always positive, it is completely inadequate to
describe materials with negative thermal expansion that
have a change in sign of the expansion coefficient.

It is interesting to note that a linear monatomic chaix
of atoms with nearest neighbor interactions gives a mode
gamma that is the same for each mode.14 Thus we have one
example where Griineisen's rule is rigorously justified.
However, the inclusion of second neighbor interactions in-
troduces dispersion so that the mode gammas become wave-
length dependent even in this simple, one-dimensional
model.15

Several discussions of negative thermal expansion have
appeared in the literature. Experimentally, negative ther-
mal expansion has been observed in the tetrahedrally bonded
solids'® C, si, Ge, GaAs, GaSb, CdSe, CdS, CdTe, Agl,
InSb, CuC4, CuF, Cul, HgTe, ZnO, ZnSe, ZnS, ZnTe, hexagonal

ice and CuInTe2 . Negativz thermal expansion has also

139
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been observed in the tetrahedral glasses Sio2 R Geo2 ’
BeF, and Si0, + xfNa,0 for x less than 0.2 . Nega-
tive thermal expansion also occurs in other crystal struc-
tures (fcc RbBr and RbLI , for example) but 18 relative-
ly rare in comparison with the tetrahedral solids.

On the theoretical side, the occurence of negative
thermal expansion may be understood from Eq. (2.59) if the
mode Griineisen parameters are negative for enough modes
that contribute a large weight to the sum in Eq. (2.59).
Although several discussions of negative Griineisen para-
meters have appeared in the literature, none of them have
been very realistic or explicit in explaining how the ne=~-
gative mode gammas arise. For this reason we v<se a model
with sufficient generality to explain the origin of the
negative Griineis«u parameters and present analytic expres-
sions for them for several modes.

The anharmonic model we use is a consistent extension
of the harmonic model developed in Chapter 1. The reason
for mentioning this is because previous calculations for
siliconl? have used a shell model for the harmonic proper-
ties and a rigid ion model for the anharmonic properties,
with no relation between the two. In fact, the first and
second order potential derivatives which enter the harmonic
model also strongly affect the anharmonic model, as we

shall see.
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In order to compute the mode Grilneisen parameters,
once we have the harmonic and anharmonic models, we only
need compute the perturbation to the dynamical matrix Egs.
(2.41) and (2.23e). Since the perturbations to the force
constnants have the same symmetry properties as the second
order force constants, once we have obtained the form of
the dynamical matrix for the harmonic model, the form of
the perturbation to the dynamical matrix can be written
down immediately. The actual values of the perturbations

must be calculated from physical considerations.




R

ONTRIBUT IONS

For two body central potential interactions we can

write the cubic anharmonic contribution to the potential

energy as
1 <« ., 0 0.0
bao =73 & oo . (kL% )u (4k]Lx’) x
3C 12 % 4ok’ oy OBV *
x ug (k[ £7k u (ax] 2%y (2.64)

This follows from Eqs. (1.54) and (1.56) and the coeffici~
ents oaeY(LK]L'K') _are defined by Eq. (1.57c). By per-
forming an isotropic, homogeneous deformation Eq. (2.18),
one can show that the perturbations to the force constants

@aB(LKIL'K') defined by Eq. (1.57b) are

1 R .. P .
5’(1»\)1 <*) = T 05, (464K IR (2K[£°K"). (2.65)

v

o ¢
a

FIRST NEIGHBOR CONTRIBUTION

By direct computation using Eq. (2.65), we have in

complete analogy with Eq. (1.68) that

s M 0,008,,1) = [T @) p@)
5(1) 0(1) S(1)

8(1) s(1) a(l)
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3(1)(o,o|62,1) -f @) Q) @)
g (1) ) @)
51 @ @)
50 (0,008,,1) =f oM pM) 5D
LM @ @
s g @

3(1)(0,0164,1) - [ V) g1 @)
51 ) _g@)
gt ) ) (2.66)

where we have defined

« 1) - L%lwl (r)) +20] (r) -%Qir(o%)'] (2.67a)
g (1) - %2@1 (r)) =52] (r.) +3—11,-;-¢{ (ro)] . (2.67b)
Note also that
(s @Dy - w{(ro)-ﬁ:riJ . (2.98)
o

Using Eq. (2.41) and the analogy with Eg. (1.25) we can
write down the first neighbor, central potential perturba-

tion to the dynamical matrix



o 4
pM 0,118 = -} T 93 (0,0]8,,10

£ M oy of
and
1 0 O
- o 1)
511 (0,0(%) - 420
o 0 1

The 31 are defined by Eq. (1.62).

->

1%+ 8

i

s
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(2.6%9a)

(2.69b)




SECOND NEIGHBOR CONTRIBUTION

The matrices analogous to Eq. (1.80) are

3(1)(0,0|u1.0) w1 v o
L) @)
(1)

0 0 A

\() o 0
(0 u(l) V(l))
0 y @)@
;(1)(0,0“3’0) - (uu) o U(l))
0 k(l) 0
,(1) g L (1)

7D 0,00u,,0 = [ @) o )
LM @
(1)
;(1)(0’0|u5’0) - (?(1) 0 0
o LD LM
6 L@ @

0 Ao
LM g L@
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;(1) (ovoluzoo)

'
(]
o
>

(2.70)



Here we have defined

b (1)

L (1)

VD o @

Thus we find that

1)2°

>
p{g’? (0,11%) = o (2.
and
(1)2° > zg 1) .
D.g (0,0]k) = M i=1 %8 (0,0lpi,O)[I‘-cos(k'ui)]
(2.
The Ii are defined by Eq. (1.75).

- F(rgeh(ry) +05(ry) =05 (rg)/ry) 2.
- %(r2¢g(r2)'-oé(rz)-+oé(r2)/r2) (2.

vy - egry) —esrp)iry) L (2.
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71a)

71b)

71c)

72a)

72b)



THIRD NEIGHBOR CONTRIBUTION

The matrices analogous to Eq.

71 0,0[7,,1)

1) 0,0]75,1)

uo(l)
@
6'(1)
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(1.88) are
L) )
L) )
_pe (D) ()
e e
L (1) _ge (1)
Ly (D) o)
) @)
L) @
_vo(l) uo(l)
_v’(l) _6'(1)
u'(1) 60(1)
6’(1) x’(l)
Ler @) - (1)
y ¢ (L) 5 (1)
6'(1) u'(l)
_6'(1) _6'(1)
u.(1) vo(l)
U'(l) u‘(l)



a(l)(o’olT7,1) - u‘(1)
vo(l)

_pe (D)

;(1)(0’0,78’1) - X‘(l)
6o(l)

_6‘(1)

;(1)(030'79:1) - u'(l)
6‘(1)

Yey

u,(1)
V'(l)
6'(1)

0,007, 0,1)

X'(l)
6.(1)
6'(1)

71 0,0]1,,,1) =

11’

uo(l)
6'(1)
v,(l)

71 0,07,,,1) =

12’

P s T

Here we have defined

Lo (D)
L@
_e (D)

5o (1)
@
yey

6'(1)
X'(l)

Yy

vo(l)

-(1
" 1)
6'(1)

6'(1)
u‘(1)
L (1)

5o (1)
X'(l)
6'(1)

ey
-6’(1)

o (D)

)
-6‘(1)

xo(l)

- (1)
“0(1)

- (1)
"

6'(1)
g'(l)
x,(l)

<

6'(1)
- (1)
u.(l)

-(1)
6'(1)
u,(l)

.v
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(2.73)



5D o dpr0f(ry)+100] (r3)=100; (r3) /T3] (2.
[ 1 1 W l rd
v D) o L0l (rg)=03(ry)+e; (ry) /] (2.
s (1) | g1 ‘{3T[1‘3°g("3)'°:;(’3)+°:;(rs)/rs]
(2.
)\'(1) - (u'(l)_‘_sv’(l)) -
0. (r,)
9 w 2 w 2 3 3
~ |§1r3%3T3) *11 %373 "1T T r, (2
Thus we find that
12 1k 7T
(1)3°, > __1 5 1
Dda (0,1ik) M i‘:l WQB (0,0,!1‘1,1)9
(2
and
- o R .(1) ,.-(1),/1 0 O
5(13° o o[y - Bul et )(0 S 0) .
O 0 1,

The ‘v’i are defined by Eq. (1.85).
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74b)

74c)

.74d)

.75a)

76b)



FOURTH NE IGHBOR CONTRIBUTION

The matrices analogous to Eq. (1.97) are

71 0,00,,0 = 1" 0

0 u'(l)

0 0

30 0,0035,0 = fur™®) o

0 y (1)

0 0

F M 0,0r5,0 = (1) 0

0 u'.(1)
0 0
Here we have defined
AR ag, (a)
AT [wi(a)-% pa()] .

- Thus we find that

1)4°

. (0,1]k) = 0,

p¢
o

and
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(2.76)

(2.77a)

(2.77b)

(2.78)
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DS)‘O(O,OIf) - ng)‘o(o,oli)oaa , (2.79)
with
D{})4O(O,O|§) - %[}'(l)ninz(fé:)+u'(1)51n2(5§:)+
+ u'(l)sinz(-l:%:)] (2.80a)
D§;)4°(0,0|f) "%[u'(1)51n2(5%1)+x'(l)sinz(kza)+
+ '(l)sinz(l-(%:)] (2.80b)
D;g“o(o,om) ) a_[u.(l)sinz(_‘%f)ﬂ.(1)sin2(f_§f_)+
+ x”(l)sinz(l-‘-g:)}. (2.80c)

Here k1 ,kz ,k3 are the cartesian components of the wave-

vector defined by Eq. (1.101),.



ANGLE BEND ING CONTRIBUTION

As was mentioned in Chapter 1, the angle bending
potential energy Eq. (1.104) contains anharmonic terms
when expressed in terms of the displacements K(LK) . In
order to calculate the perturbation to the dynamical matrix,
Eq. (2.41), caused by the angle bending anharmonicity, it is
only necessary to obtain the dynamical matrix with the de-
formation Eq. (2.18) present, and then separaie out the
term linear in ¢ . This approach is chosen since the
angle bending contribution to the dynamical matrix has al-
readr been obtained in the strict harmonic approximation.

Using Eqs. (1.114) and (2.18) we have
XOLK[2°6°) = (Q+e)B(LK]L°K") + V(4K [L°K") . (2.81)

Since the deformation is isotropic, it is clear from Eus.
(1.113) and (1.115) that the angles when all the V(4K)

are zero are the same as the equilibrium angles. By using
Eq. (2.81) and carrying out an expansion similar to the one
leading to Eq. (1.117), we obtain the change in angle cor-
rect to first order in the displacements v(tx) and all

orders in €

e, y, ” ; 1 LAV L o,
80 (4K L k7L k") = W‘E”a(““ A )va(ucfz K*)

1 s 0 e, ’,
+ m%ﬂa(lc’(ll K ll K )VQ(ZK'L K")

(2.82)
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Here tae n_(4x[2°x"|2°k”) are defined by Eq. (1.118) in
termsd of the undeformed or "bare' position vectors K(zn) .

Equation (2.82) differs from Eq. (1.117) by the factor
(1+¢)~! and the fact that we are using the displacements
V(tK) . Since we square the angle changes in Eq. (1.104),
the only difference vetween the angle bending potential
energy which is quadratic in the displacements G(LK) and
that which is quadratic in the displacements V(LK) is
that a factor of (1+€)-2 appears in front of the latter.
Thus the angle bending contribution to t he dynamical matrix
with the s°rain present is the same as without the strrin,
Eqs. (1.124) and (3.125), but with the fcrce constant o
replaced by o where

g
-7 - (2.83)
(1+¢)

a
]

The contribution to first ordey in ¢ 1is

C = o + eo(l) 4+ e (2.84)

where from Eq. (2.83) we have

o) = _ 25 . (2.85)

Thus the angle bending perturbation to the dynamical

ap
(1.125) with o rerlaced by c(l) everywhere. Rather

matrix D

than reproduce the iengthy expressions which are obtained
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trivially from Egqs. (1.124) and (1.125), we give ar example
for one element
(1)(8) > 40‘1)( k.3, 1k-§, 1k4; 12'34)
Dy2 (0,1]k) = —w—\1te -e -e -e
(2.86)

Eq. (2.86) is tke analog of Eq. (1.125b). The §  are
given by Eq. (1.62a).

The result Eq. (2.85) is rather interesting because
it predicts that the angle bending force constant pertur-
bation is given in terms of the parameter ¢ that is de-
termined by the harmonic model. Thus this type of anhar-
monicity requires no additional parameters that cannot be
determined from the harmonic model. This is in contrast
to the central potential anharmonicity which requires the
third derivatives of the potential as additional parameters
that are not determined by the harmonic model. To our
kncwledge, the result Eq. (2.85) has not been obtained

previously.



NONLOCAL DIPOLE CONTRIBUTION

In order tqQ compute the . . -le contribution to the
anharmonicity, we must generalize Eq. (1.129) to include

terms quadratic in the displacements so that

p, (LK) = E pas(lK,L K )u (L°x°)

+éz'§'sp°“”(““ k7147 ug (476 Du (k7).
"K'Y
(2.87)
Here we have defined
.. apa(tK)
de(‘K,z K ) - m ’ (2.88&)
o
and
o .0 I 2P J azp (‘K)
pdSY(ZK(‘ k7|27 = au‘Tl ’7au (27<™)
o
(2.88b)

The total dipoie moment of the crystal Eq. (1.130) can then

be written as

s

>z z P,

Leate’ (e’ Lk’ "k
Lk 2°x"8 4"x"y oy 47 | s A

R
N

(2.89)

where we have taken account of the fact that the term

linear in the displacements was sbown to vanish in Chapter

155
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1 (Eg. (1.140)). Definiug

LIV 4 LAV LAV 4 AV 4
Mgy (47K [2°¢*) fi paay(LKlL k“|4%x®) , (2.90)

1 rd p P
P = z T M . (Lk14°k)u, (LK)u, (L°K”)

@ 2 gep gty oBY | B Y
(2.91)

Eq. (2.91) leads to the two-phonon infra-red spectrum of
diamond structure crystals.18

I1f we substitute Eq. (2.87) into the dipole-dipole
interaction energy, Eqs. (1.153) and (1.155) the resulting
expression will contain cubic and quartic anharmonic terms
in addition to the harmonic term treated in Chapter 1. The
perturbation to the dynamical matrix can be determined by
computing the dynamical matrix with the strain present and
then separating out the term linear in ¢

Substituting Eq. (2.18) into Eq. (2.87) we obtain

pa(zK) = epél)(zK) + ezpéz)(zK) +

+ &

(26|47 v
"K'B

Pag B(z KL) <

(1) PR ...
+e¢ Z pl@ak]ak)vo (4°k7) +
L°k’8 ab | B
1 P y_ o0 “ 4
+ 3 L;S'desY(lez k"] e"x )va(z K )vY(E k),
4 Y

K
a K 4
(2.92)
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where we have defined

(1) 4 [ » F)
pitl(ak) = T p (AK[L°KIR (LK) , (2.93a)
o “K’B as B

péz)(LK) -% Z p (“ll'K'll'K')RB(l'K')RY(t'K") ,

(2.93b)

and
(1) K s, ” - LI u,n n " 2'93
Pg (4 [£°¢7) Lﬂ%ﬂypaBYuxlz kK] x )R, (L7¢"). ( c)

At this point we impose infinitesimal translation in-
variance on the moments pa(tK) . Note that the results
of Chapter 1, Eqs. (1.149), satisfy infinitesimal transla-
tion invariance without ever imposing this c¢ondition on
the moments pa(LK) . Imposing this requirement on Eq.
(2.87) we obtain the conditions

Z L’k’) = .
z’m‘p“ﬁu [4’k") = 0, (2.94a)

and

R ’ ’ I H L ’ " 4
2 L P P ;'Zx'pdﬁ*(““ kK“]e k") = 0 .

”
LK

(2.94b)

Infinitesimal translation invariance of the total dipole
moment Eq. (1.130) only yields the less restrictive condi-

tions that
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Z Zop B(uu‘x') -0, (2.952)
TN 3
and
Z T poac(ax|e’x’ s’k )= Z p . (£x|L'x’|L"x") = 0 .
1% 25%e PaBy 1 Lk BY

(2.95b)

Using Eqs. (2.94), (1.142) and the transformation pro-

perty under the space group operation {S|3(8)+§(m)] that

’ ' d 4 N 4 [ 4 I’ "
paﬁY(LK,L K°[LK") = ngsaussvsyxpuuk(tK|z RE AL
(2.96)

it is easy to show that p;l)(LK) and piz)(LK) transform
in the same manner as the first order atomic force con-

stants. Thus by the same arguments as presented in Appen-

(2)

)
dix F, pil’(tK) and P, (Lx) are both zero in the dia-

mond structure. Similarly, one can show using Egqs. (2.94b)

1
P.g

same symmetry properties as the pae(lez'x') . Thus we

and (2.96) that the coefficients )(LKII'K') have the

can use Eq. (1.150) to write
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51 (0,0(8,,1)

51 (0,0185,1)

3(1)(o,o|63,1)

=(1),
p (0,0]64,1)

[ ]
' b 1 —
T U U
N AN A~ M~
O
N’ N e’
] [
©“ v o
NAFANA
(PR
A g N -
[ ]
b« B - R« |
HANANA
(PO
N’ N’ \ -4

(1) (1) (1) . (2.97)

We also have for the case of nearest neighbor nonlocality

that

(1 (0,010,0) = - ap{Ps_

Pus (2.98)

B

Here p{l) and pél)

are parameters to be determined and
have the units of charge. From the preceding remarks and

Eqs. (2.92), (2.97), (2.98) and (1.49) we can write
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p,(£,0) = P E p a<0.0|61.1)(v5(t+61.1)-v5(t.0))

B 1i=1
1 4 I ” ” L4 L4 N ”
+IL§'deey(z,ou K|« vg (476 ")y (47k7)
L'ky (2.99a)
4

p (4,1) = z 1§1p B(o 0|6 1)(va(£-61,0)-vs(l,1))

1
+7‘E‘pwy

L’y (2.99b)

(z,llz'K'|L'K”)VB(L'K')VY(L'K') )

where we have defined

Sae(txlz'x') - pae(zxfz'x') + € pé;)(lxll‘x') .

(2.100)

In order to compute the dipole contribution to the
dynamical matrix with the deformation present, it is only
neccessary to keep the terms linear in the displacemenuts
va(zK) in Eqs. (2.99). This is so since the quadratic
terms give rise to terms in the potential energy that are
cubic and quartic in the va(ZK) . Thus we see that it is
only necessary to replace Py and Py in Eqs. (1.165) by

their renormalized counterparts Sl and 52 where

~ 1
Py = Py + ep{ ) , (2.101a)

~ . (1)
Py = Py + €py 7 . (2.101b)
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€¢ we obtain the per-

Separating off the terms linear in
turbation to the dipole contribution to the dynamical mat-

rix
(1)
87p,p
11 11(f) +

s O

1 1
+ e M TaB(k)
8 o
(1)
87p,P
22 1223, (2.102a)

+ —-_—-__—TGB
esMQo

(1)
plg 9% 0,11%) - ﬁ—-sz:h}il Ve () +
4v(p1pél)+p29{1))
+ esMﬂo
Swpzpél)

22 >
+ ESMEO vaﬁ(k)

2 >
Vos &)

(2.102b)

- - - > 1
The matrices Tié(k). Tig(k). Tig(k), Vi;(k), Vdg(k) and

Vgg(f) are defined by Eqs. (1.166) and (1.167). In Egs.
(2.102) fg is the static dielectric constant, not to be
confused with the strain parameter <« . Note the interest-

ing way in which the harmonic and anharmonic parameters

both play a role in Eqs. (2.102).
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GRUNEISEN PARAMETERS

In order to compute the Grilneisen parameters, there
are two alternative but equivalent methods. One method is
to simply use Eqs. (2.43) and (2.51) and directly compute.
This method is well suited for numerical work at an arbi-
trary f point oncc¢ we have obtained the eigenvectors.
The other method is to compute the quasibarmonic frequency

~

w(fj) defined by the eigenvalue equation
& (&3)8 (x|Ky) = gaﬁae(nx'fi)ss(x'lﬁj) ,  (2.103)
K

with

(1)

e (Ke71K) L (2.100)

B g (kk[K) = D g (kk*[K) + eD

It is easy to show using first-crder perturbation theory

that
a2 (k 2 > S o 12D (1T R
'"7&?11 . - o5 (k) = 2 e, (¢ |k3)D 5" (k" [k)eg (x“[ky) .

a
K’B (2.105)

Using Eq. (2.51) we can write

- ~2
YD) = - —5 [a“’ae(kj)] : (2.106)

6w (k) c=0

Thus we see that if we have an analytic expression for the

quasiharmonic frequency of a given mode, one can
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differentiate analytically and use Eq. (2.106) to obtain
the mode ganmua.

The quasiharmonic expressions for the frequencies can
be easily obtained from the harmonic ones by simply re~
placing the harmonic model force constants by the quasi-

harmonic force constants according to the prescription

Ire P - P (1) ., 0
.ae(““ K7) = & g (ek]L7x") + el g (Lx|L°c’) .
(2.107)

Since we have already obtained expressions for the harmonic
frequencies of several modes in Chapter 1, we will adopt
this second method to obtain analytic expressions for the
mode gammas. Note that both methods give identical re-

sults but are different computational schemes.



[100] DIRECTION

In this section we list some results that can be

easily obtained from Chapter 1. As an example, consider

first the Raman mode. Using Eq. (1.190) we can write

~2 64

woa = §(83?+-5- c+161" +857) ,
where
5= a+ cal) ,
a'o - uo + Eu’(l) ,
)\~o - k’ + €)\v(1)
Thus
o
5 " %(8 (1) +—5‘1 oM 16 @) 4 D)y

and using Eq. (2.106) we obtain

(1) , 64

3 c(l) +16u'(1) +8X'(1))

- - —Lp-(8a

GM“"R.A

YRA

(2.108)

(2.109%)

(2.109b)

(2.109¢)

(2.110)

(2.111)

This can be written in terms of the potential derivatives

as

164
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4r o, (r )
__ 1 [ . 8 ., ,_8°%",
YRA 3 !(—3_ 9y (ry) +3 9,(ry) =3 =%

(o]

Ros(r.,)
w ’ 3'°3 64
+4r303(r3)+803(r3) - 5 -3 c) ,
(2.112)

where we have used Eqs. (2.67a), (2.74) and (2.85).

At the zone boundary w. obtain from Eq. (1.192)

. (1) (1

1
YLox YLAX "T 20 +4LL + 2\

My

(1) +_2T00(1) +8u(1)

4wp1p{1)

11
e, Ta® ’
(2.113)

or

2 ro " 2 [ 2 ®i(r0)
Yoax = - 3—1—“[-3- ?1(%o) +3 01 (Fg) =3 5

"W

2¢.(r,)
2'%o
+2r2Q2 ———————

(r2)+2@2(r2)- rz
" " 203'(1'3)
r3e3(rg) +204(ry Tr,
(1)
20 27p;P1 " 11
?T'C + e T11(X)
8 O

(2.114)

From Eq. (1.200) we obtain
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Yeax = - ___%r_.30(1>_,a(1)+4“<1)+‘x(1)+4“.<1)+2k.(fﬂ

3Maipax
- 2’ (1) - (1) g (1)
4n (1) (1), 11 . 1
(2.115)
or in terms of potential derivatives
¢, (r ) -

- 2 [~ 1'%0 w ”
Merax °

3¢,(r,)
- 22 +% ry04(rs) +-H- 04(rs)

27 (1)_ (1), p11 1
* T (p1mPp) (B P )(T22(X)+V;3(X)L ,

(2.116)

wnere from Eq. (1.202) we have
11 1
Ty (X) + V;3(X) - -16.28143 . (2.117)

Similarly from Eq. (1.201) we obtain

Mirox

+2v° (D) -46’(1)-+§ (1)

(2.118)

+ ;‘:%;(pﬁpz)(p{l)wél))(Tg(x)-vg(x)) .

g
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In terms of the potential derivatives

o o (r.) -
-2 |2 ~ 1. 171" o
Yrox I E r?1(ry) +3 04(r,) =3 T
Muirox
30,(r,)
w P 272
+ r2”2"'2’*3"2“'2)""1-2
v 279 (r,)
6 w 27 P 3'°3
+ 37 r303(r3) +97 ¢3(rgy)- I
- 22 2 (py4p,) (D 4pSy (il ()
S O
- V33 (X)) .
(2.119)
where from Eq. (1.202) we have
11 1 )
Ty (X) - vgs(x) - 10.76338 . (2.120)
In the elastic region we have
o)
(el) 1 [ 11} \
Y I e e s (2.121)
LA[100] 6C11L %€ |.=0
where from En. (1.184)
aEil = (Q+40+80+20°+98 +8%") , (2.122)
and in addition to Eqs. (2.84) and (2.109)
T o=+ ® (2.123a)

£ w a4 ex” @) (2.123b)



Using Eqs. (2.12.) and (2.122) we obtain

(el) 1 (1), (1) 0 (1), +(1) o (1) o «(1)
YLA[IOO] - g;a;;(a +40 +8u +2u +9\ +8) )
(2.124)
and in terms of potential derivatives
(el) 1 m u 2 oi(rO)
YLA[100] ~ ~ ®aC;; L ojr,) +3 01(x) -3 T,
w " 4@5(1‘2)
+ 4r2¢2(r2)+4¢2(r2) --——;;——
o (r,)
+13r 3 04(ry) +31 05 (ry) - 3—81"_3 33
L Ba@4(a) - 8¢ _
(2.125)
Similarly
1o}
(el) i [ 44]
y 1 |4 (2.126)
TA[100] ~ T BC,, | o cm0
where from Eq. (1.199)
a.€44 '&'+-§- O+ 4u+48+N ‘+100 "+80"
(g S-F+28 430" )2
- — (2.127)

(&‘+-§l 54207 +%7)

and

o

= \ + €X<1)
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(2.128a,

’
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T RNPEAL S (2.128b)
F =g+ e (2.128¢)
5 -8 4 et D) (2.128d)
5 av 4+ o) (2.128¢)

Differentiating Eq. (2.127) we obtain
Ym(':ﬂoo] - - 3;%-4—; a1 42 oM gy D igy D gy« D iq0, - D)
et LB @ 8 ), ,
(2.129)

where we have defined

A = (F o-B+26743V°) (2.130a)
B = (a+3 o42u'#) (2.130b)
a1 o G WM pr Mgy ) (2.130c)
B = (@ 48 oM M@y (2.1300)

One can rewrite Eq. (2.129) in terms of potential deriva-

tives as
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P ] P -—
o (e )
(el) - 1 [fo  u 2 _2"10o
Yra[100) T " BaC[3 0y(ry) +3 94(r,) -3 .
w » &é(rz)
29.(r,)
19 w I 3 3
* 1T T3P3(F3)+2e3(ry) = ———
8¢ ;(a)
A, (1) _A (1)
- §(2A =B ]
(2.131)
with
o:(r ) 9. (r,)
4 1 " 1 [o] 9 " 3 3
A= (zo0-50;(r,) +—§?+ﬁ 24(rg) -—i__lrs )
(2.132a)
20.(r) 2¢.(r,)
B = (5 ¢f(r,) +—ge—2= + 05(r3) +-—————f.3 2,20,
o]
(2.132h)
’ |
(1) = r r—o_ w l " -¢1(ro) .-g- W i
A -3 #1(Ty) +3 9, (r) 3T, ‘1T ra93(rs)
9. (r,)
9 " 3 3 - .8_
[' %t T3¢ :
(2.132¢)
oo (r)
(1) - ro w, g " __2_ 1“0 "
3 [T 2,(ry) +3 01(r,) -3 T +Tr305(rs)
20.(r,)
’ 3{r3) 16
i - S

(2.1324d)
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At this point it is appropriate to make a few com-
mentz. The origin of the negative mode gammas can be under-
stocd from EQa. (2.116) and (2.119). Note that the nearest
neighbor third derivative of the potential is not present
in Eq. (2.116) but is ir . (2.119). Since ¢j(r ) is
of opposite sign to o{(ro) for any potential that gets
"gofter" with increasing distance, the cancellation of

mw

ol(ro) in the TAX mode makes this mode gamma extremely
likely to be negative. The cancellation of af(ro) is a
direct consequence of the fact that the diamond structure
has a nearest neighbor central force instability and the
TAX mode is unstable in this case. As we shall see, the
modes where cancellation of @I(ro) occurs are the modes
that exhibit negative mode gammas. Although the C44
"mode' also has a nearest neighbor central force instabi-
1ity, complete carcellation of @{(ro) does not occur in
the mode gamma Eq. (2.131) as it does in the unstable modes
whose eigenvectoi's are determined by symmetry.

The important point of the preceeding discussion is
to note that crystal structures possessing nearest neighbor
central force instabilities should be extremely likely to
nave negative mode gammas and thus are good candidates for
the occurence of negative thermal expansion. Whether or
not negative thermal sxpansion actually occurs will depend

on the harmonic phonon spectrum as well as on how many modes

exhibit negative mode gammas.
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From these considerations we note that several struc-
tures can have nearest neighbor central force instabili-
ties. In three dimensions, the simple cubic lattice, the
body ceniered cubic lattice, the hexagonal diamond struc-
ture and the graphite structure all have this feature. In
two dimensions, the square lattice and triangular coordin-
ation or two dimensional 'graphite' both exhibit nearest
neighbor central force instability. It is also possible
to obtain an instability in one dimensional chains of atoms

that are¢ allowed to have transverse degrees of freedom.




[110] DIRFCTION

As noted in Chapter 1, the Z% mode is the "slow"
TA mode in the clastic region. Using Eqs. (1.213) and

(1.214) we obtain in the elastic region that

WD o L (1) g, (D) gy (1) gy )
4 11 "12

2 D W D3, |
(2.133)

or in terms of potential derivatives

B o (r)
el) 1 w [e) 1;

Y - - - ¢q(r,.) =—————+Tr,e,(r,)
4 3aZC11 CléY 1'%0o ry 2¥2'" 2

a(ry) 32,

”
+ Teg(ry) - T, +3T T303(r3)

89 . g9 $3(r3) w
<+ it 03(r3) -3IT ——;;——~+4a¢4(3)
s
(2.134)

"

Note the cancellation of °1(ro) in the above expression.
This doesa not occur for any other modes along symmetry
directions in the elastic region. It is also interesting
to note that experimentally, the slow TA(110] mode is

the only mode along a high symmetry direction that exhibits
a8 negative mode gamma in the elastic region for the diamond

structure.19
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In the course of this work it was necessary to have an
analytic expression for the mode gamma of the Zg mode at
the K point. Although the expression is somewhat lengthy,
it was found very useful in obtaining a reasonable fit to

the available experimental data. Thus we have

y - - ——1-2—[A(1)-(A2+802)-é(/\/\(1)+8DD(1))]

ng 12w

(2.135)

where
W2 = (3o -2(nZechHE (2.136)

and the definitions

= —
Mo = 8a-(24\/§)6+(-‘s§8-+~/5)c+(14+6¢'§)u
+ W+ (6+2./2)\+24u “+(46+5./2)Ww "
e ]
4wp;
+ 6u 4207 + — (=14.706683)
S O
2
4wp1p2 4wp2
- (40.512545) + —== (-18.532303)
(SR Y € ¢
S O S O
- _) (2.137)



Ma(1) o

S O

-
(4=-2./2)a=(2+/2)B+(12 - £’.‘afi;)c-(zﬂuz./'ﬁ)u

+ U+ (2+2/2)0+(4-6/2)p "+(14=112)0°

4wp2

272-1-(-17 .790778)
S O

- 2u"+207 +

2
+ —ezu’!—o-—(a6.584681) +—€T(-12.350976)

S O

r o (r.) n
(6= M ’:f_s-/ . - 170
—f@rool(ro) +L8A0) (o r =)
B ) ¢.;,(r2)
+ (843/2)r,0,(r,y)+(12+5/2) (9 5 (ry) - el
e (r,)

$70+§ZZZ w (194-5./2) ,_ « 2'°2

+ 11 r3¢3(r3)+——ﬂ-&(¢3(r3)- TS )
60 - (a)

+ 200/ (a)+60 § (a) - 4. (lg§+zﬁ)c

87 (1) (1)
- m[(14.706683)p1p1. +(18.532303)p,p, ]

47 (1) (1)
|+ m—(40.512545)(plp2 +PoPy ) J ,
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(2.138)

(2.139)



uAl) o

woD .

- - L (r ) 7
(2/3-/Brr g5 (r) + 292 v (p y 1o,

+

20 ;(a)
+ 2-.0”'(:)-% (8) +——a— : +(3+452-24)c
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(o]
6 (r )

T2

0. (r,)
S 18-1 7:[2 2 " (26-49. M 3'"3
11 raes(ry) + ""H‘ﬂl“:s("s) - =)

3

JZ ra0q(ry)+/Z o (rz)-Jf

8w

[ (17.790778)py p{1)+(12.350976) p,ypst) ]
8 O

(1) (1)
.0 o(26 584681)(91 +PgPq ) ,

(2.140)

J2 s.+2£l§§121 g + (J2=-8)"’

47 p% 4 pl P

(-5.6453821) +-——1-—-(8 5753239)
*s ‘o €s*o

4wp2

2—72(-5.1730388)
s‘o

(2.140)

5 wl(r )

/-— " 0
15( owl(r )-e (r ) + T )

0. (r.)
228D (r 0¥ (ry)=05 (ry) + 220 - 4(1453.2)

r3%3(T;

(o}
rs

Sw (1)

[(5.6453821)p, pi 1) +(5.1730388)p,p ") |

m
m'4
(o]

(8.5753239) (pyps1 ) +p,p{ 1)) d.
S O
(2.142)
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Note that there is noc obvious cancellation of @;(ro) in
Cgs. (2.135-2.142). However for silicon we do find a
strong reduction of the nearest neighbor third derivative
contribution to the mode gammes relative to the nearest

neighbor first and second derivative contributions.




[111] DIRECTION

At the L point we find from Eq.

P
- ;——5—— 30128 (1) g, D)
My AL

+4v(

+ 2V

+ vE2w)
L. 4

(1.237a)

ooy (1), .(1)
+

F(1)_gpe (1) g 0 (1) gy # (1) +¥ (D)

4n (1) (1)
+ E:n:(apl-sz)(Sp -2p )(T I(L) +

3 (1)

-
(2.143)
or in terms of potential derivatives
1 Fr " 8 " 8 ¢]‘.(r())
YeaL © T 3 5 01(r ) +3 0;,(r ) -3 "'_""ro
“’LAH e
w )
4r292(r2)»2¢ (rz) -- T,
r o'(r )
3 " 32 d
+ 17 @3¢ 3)*—1' 03(ry) -1 5
¢ . (a)
+ 200/ (a)+4e(a)-4 4 -%‘1 o
. —T-<3p1-2p2)(3p1(1’ ot (122w o+
2
+ 22wy .
(2.144)

Similarly from Eq. (1.237b)
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(1428 (1) 10y (3 0 Dy Mgy (V) g3 - ]

cav e (D) g (D) g # (1) g, # (D)

2

-

47 (1) (1) 2 2
+ T (r2ey) By 20 ) (122 (1)-vig (L)) |,

(2.145)

C w . 204(ry)
rool(r°)+4r2¢2(r2)+2¢2(r2) - —

o (r.,)
43 "w 36 ” 36 3 3
+ 37 3°3(F3) *11 °3(F3) 1T ~1,

40 4(n)
a

+ 2;04(3)-»4o4(n) -

(1)

- -
(2.146)

For the TA mode we obtain using Eq. (1.241a) that

1
Y --T
TAL 3Muray,

g

S5 (1) 4 (1) _p, (1) 5y (1) g » (1)

voan Wy M) gpe ) g 7 (D) 5y« (D) 3, (1)

4 (1)_ (1), M 1
- T tmop) ()7 -p ) (V3 (L)=T; 3 (L))

|

(2.14;)

or in terms of potential derivatives

+ T (py+2p) (g s2pst) (2w - v22 )|

’
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P'( ) ¢ (r ) (r,)
Y - - g, (r ) - --+r¢r+5¢(r)
TAL 2 1'%0 2272 2
3Maipyy, °
o.(r,)
-5 -2—;3-+%g- r3¢3(r3)+n- ¢3(r3)

0. (r,)
- 17.11. _Q.x_'.i. + 2.¢:(g) + 4¢;(a)

0 “(a)

-4-l - 60

P (1) (1)

e

(2.148)

For the TO mode w« obtain using Eq. (1.241b) that

-
Yroo T T —LQ—J 30 g (D)4, (M) gy (1) 19, (1) 5, - (1)
3Muipgy,
. x'(""-u’”)+2e'(1)+4u”(1)+2x”(1’ +_1§7_c(1)h

——7—(3pl+p2)(39(1)+p2 Dy 22wy |,

- -
(2.149)

or in terms of potential derivatives



Yeor

3oL,
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+ rzoz(r2)+5¢2(r2)-5

m

17 _«

L4

]
+ 23¢Z(a)+4o;(a)-4

_ 27 , (1)
. Z;n;\3pl+P2)(3P1

—

+p

g rooi'(ro) +g' oi(ro) -g'
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oi(ro)

Oé(rz)
To

17 ¢3(r3)

) -
3’711 T,

(a)

34 (1)
a 3 °¢

(1)

22 2
o 2wy

(2.150)

At this point it is interesting to note that o;(ro)

is absent from the TAL mode gomma. Experimentally,

mode also has a negative mode gamma.
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ANHARMONIC FIT TO EXPERIMENTAL DATA FOR SILICCN

In this section the method used to determine the an-
harmonic pur#ueters for silicon is described. Using these
parameters we then present dispersion curves for the
Gritneisen parameters along symmetry directions.

Before proceeding to the anharmonic model used in the
present work, we want to discuss two previous anharmonic
models used for silicon. The pioneering work of Dolling
and Cowley20 modeled the anharmonic potential energy by a
two=-body central potential interaction between nearest-
neighbors. It was then assumed that two independent para-~
meters could describe the anharmonic interaction and these
two parameters were adjusted to give a reasonable fit to
the experimentally measured thermal expansion. However,
the expression used to compute the mode gammas, Eq. (4.5)
of their paper, is incorrect. Their model is also incon-
sistent in using a shell model for the harmonic properties
and a rigid ion model for the anharmonic properties with
no connection between the two. Furthermore, it can be
shown that nearest-neighbor anharmonicity of any type is in
major disagreement with the experimentally measured mode
gammas.

The work of Jex21 was along similar lines to that of
Dolling and Cowley but Jex utilized first aind second neigh-

bor central potential anharmonicity. Unfortunately, Jex

made the approximation of neglecting the first and second

182

e ermsaaier o aeae .

M B e ATt ARt



183

derivatives of the potential. This approximation has
severe consequences for the mode gammas as can be seen
from Egqs. (2.116), (2.134) and (2.148). One of the con-
sequences is that og(rz) is required to be positive in
order to obtain negative mode gammas. Another consequence
is that several mode gnmmas disagree with experiment by
more than a factor of two. Jex concluded that og(rz)

was more than a thousand times smaller in magnitude than
m;(ro) , thus seemingly justifying his assumption of only
first and second neighbor anharmonicity. However, using
our analytic expressions with the approximation of Jex, it

is easy to show tha: the values of the mode gammas obtain-

w

ed by Jex are inconsistent withh his small value of @2(r2).

Based on the above considerations, we seriously question
the l.newidth calculation of Jex as well. Furthermore,

one can show that more general second neighbor anharmoni-
city is unable to give reasonable agreement with the ex-
perimantally measured mode gammas.

In the present calculation, we have used the ten para-

meter harmonic model of Chapter 1 together with six inde~
pendent parameters for the anharmonic model. The six in-

i w "

dependent parameters are ¢:(r°) »89(ry) , 05(ry) , 8,(a),

(1) (1)
Py 2

and p These parameters were obtained by per-

forming a weighted, linear, least square fit to the fol-

lowing experimental data

(el) (el)
Ya[100] » YTA[100] » YTk AP¢ Y

YRA * YTAXx ’ YTOXx » YTAL ’ YTOL ’
el)

4

The experimental

T
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values of these mode gammas are listed in Table 5. 1In
Table 6 we list the values of the anharmonic parameters
datermined from this fitting procedure. Note the rapid
fall off of the third order potential derivatives by the
fourth neighbor distance, though not as rapid as the fall
off of the second order potential derivatives in Table 4.
In Fig. 10 we have plotted the mode gammas along symmetry
directions for this model. These curves are a marked im-
provement over those of Jex. Though the agreement with
experiment is at worst 35$, most of the modes are much
better and considering the large uncertainties in the
experimental data this is not too bad. Note that the mode
gammas reflect the same difficulty found in the harmonic
dispersion curves, namely, tie dipole model produces con-
siderably more lowering of the mode gamma at the X point
than at the L point. This causes the mode gamma at L
to be less negative than experiment and the mode gamma at

X to be more negative than experiment.
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Experimantal values of mode Griineisen parameters for

-ilicon.zz

dependence

(el) -
YrA[100]

(el)
YTA[100)

v el) _

Elastic mode gammas determined from the pressure

of the elastic constants.

.98 = .06

-1.4 2 .3

1.5 .1

-1.3 £ .3

1.3z .2

-1.0 * 03

-3z .1

1.11

325
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TABLE 6

Anharmonic parameters for silicon determined by the

p(1) (1) v __ Q)
1 2

method described in the text. =2;"'e and p -z '@

where e 1is the magnitude of the electron charge in C.G.S.

units.

13

04(r,) = - 4.5272x10"dyne/cn?

" 12

w 1 1
?5(ry) 6.8387x10

o4(a) = - 4.94u8x10™1

1)

(1) (
24 = - 0.405426 zq = 0,.608139

c(l) = - 20
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Figure 10. Mode gammas for silicon along symmetry
directions using the model described in the text (solid

lines). Circies are experimental data.
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CALCULATION OF THERMAL EXPANSION FOR SILICON

Having obtained the model parameters, we can use Eq.
(2.59) to calculate the thermal expansion coefficient.
The sum over the first Brillouin zone of the crystal is
the major difficulty in carrying out this procedure. Sev-
eral numerical methods have been developed to evaluate such
lums.23 In the interest of maximum computing efficiency,
we have chosen the special K point method of Chadi and

Cohen.24 Briefly, this method evaluates sums over the

Brillouin zone by

ZEE =N ZafE), (2.151)
Kk i=1
with
n
Za, =1. (2.152)
=1

Here f(f) is a smoothly varying function of wavevector,

N is the number of unit cells of the crystal, Ei are

the special k points, ay the associated weighting fac-
tors and n 1is the number of special k points used. As
the number of special k points increases, the approxima-
tion, Eq. (2.151), improves. In the present study we have
investigated the case of 10 special E points and 60 spec~-
ial K points. These special points are all in the irreduci-

ble 1/48th sector of the Brillouin zone and are equivalent

to 256 points and 2048 points respectively in the full zone.
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The 60 special K points and associated weights for the
fcc lattice were obtained from D.J. Chudi25 and are listed
in Table 7 for reference purposes.

A computer program was written to compute the fre-
quencies and mode gammas for a general ik point. The ther-

mal expansion was calculated as well as the thermal strain

€ given by
h 3.“? Py & (A, +I) )
€ = pe———— w(ki)y(k3)(n_ + . (2.153
SBOV° kg fj 2

The results of these calculations for 10 special k points
are presented in Table 8 and for 60 special Kk points in
Table 9. The thermsl expansion coefticient is plotted in
Figs. 11 aﬁd 12 for the caiculation using 60 K points.

As can be seen from Figs. 11 and 12, the agreement
with experiment is good from 17K to 700K . The devia-
tions below 17K are attributed to two sources. First,
the experimental points at low temperatures are subject to
large uncertainties due to the fact that the thermal ex-~
pansion coefficient is getting extremely small. Second, we
suspect that the inclusion of more than 60 s;ecial K
points will raise the theoretical curve below 17K . We
suspect this because the calculation with 10 k points was
raised considerably below 17K by going to 60 K points.
The deviation from experiment near 70K 1is attributed to
the fact that our fit to the TAL mode gamma is not nega-

tive enough. As can be seen, theory and experiment are in
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good agreement to 700K , at which point the two depart.

Note that the Debye temperature for silicon is 645K 28 and

the melting point i« 1687!(.29 However, even at 1600K ,
the difference between theory and experiment is only 12%,
Considering the approximate fit of our mode gammas we con-
sider this good agreement.

In our calcula’ .ons to this point, the bulk modulus
was taken as temperature independent. A softening of the
bulk modulus with increasing temperature would raise the
theoretical curve and improve agreement with experiment.

We can estimate this effect by using the quasihaimonic bulk

modulus given by

§~B+ el (2.154)

with

B(D - Llap D oaWiger @ gy (D ogg, D)

+ 1320 D) gy n (1) g, (1)

(2.155)

and B given by Eq. (1.217). The dashed curve in Fig. 12
is obtained by multiplying the solid curve by the correc-
tion factor B(300K)/B(T) . Note the improved agreement
that results from taking this temperature dependence of
the bulk modulus into account so that now the theory and

experiment are within 5% at 1600K . However, it is not
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unreasonable to suggest that at these high temperatures
higher crder anharmonic effects ‘could be playing a role or
even other contributions to the free energy, such as the
thermal creation of imperfections. It appears that these
effects nre quite amall for silicon.

As a final remark, we can combine Eqs. (2.53) and

(2.54) to obtain

- nJ
Po 3B°€o R (2.156)

where Bo is the bare bulk modulus, €o the zero-point

strain and Po the zero-point phonon pressure. Usiny €6

from Table 9 and from Table 3

11

B, = 9.5847x10 dyne/cm2 , (2.157)

we obtain
Po = 4,433 kbar . (2.158)

As mentioned ~arlier, Po is the pressure required
to make the strain zero at T = 0 ., It is a purely quan-
tum mechanical effect and is a vesult of allowing the atoms
to move in an anharmonic potential. This should be taken
into account i calculations of the phase transition pres-
sure of silicon from the diamond structure to the £-tin
structure. Such calculations are performed with the atoms
motionless. Although zero-point corrections to the total

energy are made, to the author's knowledge, this is the
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first calculation of the size of the zero-point contribu-
tion to the pressure. Note that the calculations of Yin

and Cohon3°

gave a phase transition pressure of 99kbar
and the experimental value is 125kbar. The zero-point
pressure of 4.4kbar is interesting in light of this
difference. It is an additional pressure that ‘s required
to be applied in order to have the same volume for a given
pressure as if the atoma were all at rest, thus tending to
raise the calculated transition pressure. However, to be

conclusive, one should also cslculate the zero-point phonon

pressure for milicon in the £-tin structure as well.



TABLE 7

60 special ﬁ points for the

*

o ()3
(1, 1,1)
(11, 1,1)
( 7, 3,1)
(5, 5,1)
(15, 5,1)
18 7,1)
(3, 3,3)
(13, 3,3)
(11, 5,3)
(11, 7,3)
(7, 5,5)
(9, 7,5)

Associated weights

(Courtesy D.J. Chadi)

( 3,
(13,
(9,
(7,
(7,
(9,
(5,
(15,

1,1)
1,1)
3,1)
5,1)
7,1)
9,1)
3,3)
3,3)
5,3)
7,3)
5,5)
7,5)

(x,x,x)

(x,7,y)

(x,y,2)

» 35,
,» (15,
, (11,
» (9,
, (9,
, (11,
, (7,
» €9,
, (15,
» (9,
, (11,

» 7,

points
points

points

1,1)
1,1)
3,1)
5,1)
7,1)
9,1)
3,3)
5,3)
5,3)
9,3)
5,5)
7,7)

o
o

o4

H

1

2

?

fce

(7,
(3,
(13,
(11,
(11,
(13,
(9,
(7,
(7,
(11,
13,
(9,

1/256
3/256
6/256
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lattice in units

1,1),
3,1),
3,1),
5,1),
7,1),
9,1),
3,3),
5,3),
7,3),
9,3),
5,5),
7,7),

(9,
35,
(15,
Qas,
(13,

1,1)
3,1)

5,1)
7,1)

(11,11,1)

(11,
(

(
(

,

0 ~3 »n 0
-

-

3,3)
5,3)
7,3)
5,5)
7,5)
9,5)

’

»

3,1) ,

L

)

’

’
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TABLE 8
Volume thermal expansion coefficient and thermal strain

for silicon using 10 special k points

T a €
{K) 1) «10%)

0 0 1.54173

5 -1.81734x10"13 "

6 -1.94981x10~12 "

7 -1.01301x10"11 "

8 -3.37142x10" 11 "

9 -8.40683x10" 11 "

10 -1.73045x10"1° "

11 -3.13907x10"10 "

12 -5.25860x10"1° "

13 -8.40982x10"1° "

14 -1.31147x10™2 "

15 -2.01518x10" 2 "

16 -3.05801x10"2 "

17 -4.57273x10"2 .

18 ~6.71433x10"° 1.54172

19 -9.6528 x10™2 "

20 -1.35649x10"5 "

21 -1.86243x10™8 1.54171

22 -2.49942x10"8 1.54171

23 -3.28196x10~8 1.54170

24 -4.22219x10 1.54168



TABLE 8 (cont.)

T a_q
(K)_ (K ™)
28 -5.32952x10"8
30 -1.34971x10™7
35 -2,56732x10™ "
40 -4.05310x10" 7
45 -5.64063x10" 7
50 -7.17923x10™7
55 ~8.55092x10"7
60 -9.67052x10" "
65 -1.04804x107°
70 ~1,09450x10"°
75 -1.10464x10~°
80 -1.07810x10"%
85 ~1.01569x10"6
90 -9.1910510""
95 -7.90721x<10"7
100 -6.33396x10" "
110 ~2.44648x10" '
120 2.21055x10™’
130 7.38850%10" '
140 1.28710x10™°
150 1,84817x10°°
160 2.40845x10"08
170 2.95791x10~°

(ae’)

1.54167
1,54152
1,54120
1,54065
1.53984
1.53877
1,53745
1,53593
1,.53425
1,53246
1.53062
1,52880
1,52706
1,.52543
1.52400
1,52281
1,52132
1,52126
1.52285
1.52622
1.53145
1.53854
1.54749
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TABLE 8 (cont.)

T
X

180
190
200
210
220
230
240
250
260
270
280
. 290
300
350
400
450
500
550
600
650
700
750

800

[o 4
« 1

3.48954x10
3.99872x10°
4.48268x10
4.94002x10"
5.37036x10
5,77401x10
6.15176x10
6.50470x10
6.83412x10
7.14139x10
7.42792x10
7.69511x10
7.94432x10
8.96355x10
9.69659x10
1.02353x10
1.06401x10
1.09505x10
1.11932x10
1.13860x10
1.15415x10
1.16687x10

1.17739x10

6
6
6
6
6
6
6
6
6
6
6
6

6
6
6
S
5
S
S
5
5
S
S

€3

(<107)

1.55824
1.57073
1,58487
1.6005%
1.61778
1,63636
1,65624
1.67734
1,69958
1,72288
1,74717
1,77238
1.79845
1.93983
2.09565
2.26197
2.43609
2.61612
2.80073
2.98895
3.18006
3.37351
3.56889
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TABLE 8 (cont.)

T
K

850

900

950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700

= §
x1

1.18619x10
1.19361x10
1.,19994x10
1.20537x10
1.21006x10

5
5
5
5
5

1.21414x10°°

1.21772x10
1.22087x10
1.22365x10
1.22613x10
1.22834x10
1.23032x%10
1.23210x%10
1.23371x10
1.23517x10
1.23650x10
1.23770x10
1.23881x10

S
5
5
5
5
)
5
5
5
5
5
S

(x107)

-3

~

.76588
. 96421
.16369
.36414
.56544
.76746
.97012
.17334
.37706
.58121
. 78375
.99064
.19585
.40133
.60708
.81305
.01924
.22561

198



T R =L SN

199

TABLE 9
Volume thermal expansion coefficient and thermal strain
for silicon using 60 special i points.

T

(K «l (xi0%)
0 0 1.54184
5 1.41794x10" 17 "

6 4.28023x10"11 "
7 9.65599x10™ 11 "
8 1.86983x10" 10 "
9 3.28359x10"10 "
10 5.31819x10" 10 "
11 7.97764x10~10 "
12 1.10894x10~2 "
13 1.424472x1072 "
14 1.67673x10" 2 "
15 1.76651x10"2 "
16 1.56576x10™2 "
17 9.19612x10~19 "
18 -3.47348x1071° "
19 -2.42303x102 "
20 ~5.49874x10™° "
21 -9.76004x10™° "
22 -1.53785x10™° "
23 -2.25047x10~3 1.54183
-8

24 -3.12632x10 1.54182




TABLE 9 (cont.)
T

(K)
25

30
35
40
45
50
55
60
65
70
75
80
85
90
95
1GO
110
115
120
130
140
150
160

o
1t )

-4.17490%10
-1.21275%10
-2.41884x10
-3.89885x10
-5.48352x10
-7.02070x10
-8.39167x10
-9.51091x10
~1.03206%10
~1.07851x10
-1.08864x10
-1.06211x10
-9.99695x10
-9,03106x10
-7.74721x10
-6.17395%x10
-2,28646%x10
-3.79891x10

2.37060x10

7.54856x10

1.30311x10

1.86418x10

2.42446x10

-8
-7
-7
-7
-7
-7
-7
-7
-6
-6
-6
-6
-7
-7
-7
-7
-7
-9

-7

-7
-6
-6
-6

3

€
(x107)

1.54181
1.54168
1.54138
1.54086
1.54008
1.53903
1.,53778
1.53625
1.53459
1.53283
1.53102
1,52922
1.52750
1.52591
1.52450
1,52334
1,.52191
1.52171
1.52190
1.52354
1.52697
1,.53224
1,53939
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TABLE 9 (cont,)

®
170
180
190
200
210
220
230
240
250
260
270
280
290
300
350
400
450
500
550
600
650
700

x
"1

2.97393x10"
3.50556x10"
4.01473x10°
4.49869x10"
4.95604x10
5.38638x10"
5.79003x10"
6.16777x10"
6.52071x10"
6.85013x10"
7.15740x<i0”
7.44393x10°
7.71112x10°
7.96033x10°
8.97955x10"
9.71260x10"
1.02513x10°
1.06561x10"
1.09665x10"
1.12092x10"
1.14020x10"

1.15575x10"

6
6
6
6

6
6
6

6
6
6
6
6

6
6

6
6
S
5
5
S

5
5

gxiosz
1,54840
1.55920
1.57174
1.58594

1.60170

(oY

.61895

[

.63758

[y

.65752
1.67867
1.70096
1.72432
1.74866
1.77392
1.80004
1.94169
2.09778
2.26437
2.43875
.61905

2
2.80393
2,99241
3

.18379
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TABLE 9 (cont.)

T o4
__(K) &)

750 1.16847x10™°
800 1,17899x10™°
850 1.18779x10™°
900 1.19521x107°
950 1,20154x10™°
1000 1,20697x10™°
1050 1.21166x107°
1100 1.21574x10™°
1150 1.21932x10"°
1200 1.22247x10™°
1250 1.22525x10"°
1300 1.22773x10™°
1350 1.22994x107°
1400 1.23192x10™°
1450 1.23370x10"°
1500 1.23531x10"°
1550 1.23677x10"°
1600 1.23809x10™°
1650 1.23930x10"°
1700 1.24041x10"°
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Figure 11. Volume thermal exypansion coefficient for
silicon calculated using 60 special Kk roints (solid

line). Circles are experimental data (Ref. 26).
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Figure 12, Volume thermal expansion coefficient for
silicon calculated using 60 special K points (solid
line). Circles are experimental data (Ref. 27). The dash-
ed line is calculated by applying a quasiharmonic correc-
tion to the bulk modulus. The Debye temperature for sili-

con i8 643K and the melting point is 1687K
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Chapter 3
Anomalous Thermoelastic Effect in Silicon

"For God so loved the world,
that he gave his only
begotten Son, that whosoever
believeth in him should
not perish, but have ever-
las'ing life."

John 3:16

In this chapter the equations of visco and thermo-
elasticity are discussed and the dispersion relation for a
cubic material presented. The thermoelastic contribution
to the acoustic attenuation in silicon is computed from
1-300K . Strong attenuation anomalies associated with
negative thermal expansion are found in the vicinity of
17K and 123K . Comparison with experimental results is
discussed. It is suggested that anharmonic effects are re-
sponsible for the anomalies seen in low frequency measure-
ments and that several materials should exhibit similar
behaviour.

Various studies of acoustic attenuation in silicon
have been carried out in the past several years. Measure-
ment3 of acoustic attenuation at relatively high frequencies
have been made by Mason and Batemanl, who studied silicon
and germanium at 300 - 500 MHz and found that the attenua-
tion went smoothly to very low values at low temperatures.

A quantity which affects the acoustic attenuatiop is the
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viscosity tensor, whose elements have been determined by
Helme and Kinuz for silicon at 1 GHz -and 300K . On the
other hand, measurements at low frequencies indicate
attenuation anomalies. McGuigan et 51.3 measured the
mechanical Q of a large single crystal of silicon at 20
KHz and observed attenuation anomalies at 13K and 115K .
Davis4 has also observed a dip in Q near 13K at 3.4
KHz 1in a large single crystal of silicon. McGuigan et al.
attribute the anomalies to impuritics and mechanical imper-
fections of the crystal. However, no conclusive evidence
is presented for this mechanism, and it is possible that
the effect is an intrinsic property. It is the purpose of
this investigation to show that anharmonic attenuation can
very rapidly in a narrow range of temperature and exhibits
anamalies near 13K and 125K 1in silicon.

Consider the combined thermoelastic and viscoelastic

*

effects in a cubic crystal. The equations of motion are5
2 2
ke o Be 2y e ey BE
P2 ax * 11t 302
t x
azu
+ (Caq*+ g 37) a'zi

2 'y
+ (Cya+M12 357+ CqqtN4e T)(axey +35e

(3.1a)
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12,
P"‘i“ = Bo 3 a'r + €3+ ‘8"—'!'* (Coq*Ngq 30 X

2 2
du ou :
3 3
X ——}ax +—-¥az (C3a*+MN12 3t +C44 * N4q 3¢) %
1
azux azu L
i
azuz T a azu |
PoT - "By T (Cy1 + M1 3¢ “‘2‘*‘%4*"44 at)“
azuz azu
X —6;2'*“—2' HCPELIPE SCWELIWE O
azux azuy
X azax'+azay (3.1c)

while the heat equation 156

-~ (C "C ) n
c, 5% + —R—Y_ L(v+d) = kv . (3.2)

Here p 1is the mass density, CiJ and nij are the elas-
tic moduli and viscosity tensor elements respectively, B
is the isothermal bulk modulus, o 1is the coefficient of
volume thermal expansion, T is the temperature, Cp and
Cv are the heat capacity per unit volume at constant pres-~-
sure and volume respectively, K is the thermal conducti-

vity, and the u are the cartesian components of the

i
elastic displacement.
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We seek plane wave solutions to Egqs. (3.1) aud (3.2)
of the form

> >
eik'x-iun

1o (3.3)

1K x-iwt
T = To + T1 e (3.4)
where Kk 1s the wavevector and w is the frequency. For
simplicity, we specialize to a longitudinal wave propaga-
ting in the [111] direction. Substituting Eqs. (3.3) and
(3.4) into Eqs. (3.1) and (3.2) we find that the disper-

sion relation is

2 _ a c
I AL & m

{ 2 4iab |*
* l[(l iyt i+ ] " T-1a)|

(3.5)
where we have defined |k| = k and
2 wC 2 2
a = Jt!.’ b = 75; , C = 5_2_5& (3.6)
2vO 2pKvo
o o (C11r%124C44) 2 3.7)
o 3p *
Nqq+2M4 o+4N
. (Cu+ Tz C44) 3.8)
11 12 44
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The lower sign in Eq. (3.5) corresponds to the elastic
mode while the upper sign corresponds to the thermal mode.
Note that Eq. (3.5) is valid for any purely longitudinal
wave, provided we use the appropriate velocity Vo and
viscous relaxation time T for the direction of propaga-
tion. Also note that T here is not the thermal relaxa-
tion time.

Various cases of Eq. (3.5) are of interest. For a

pure viscoelastic effect we have

2 a?

k™ = —yp———— (3.9)
vo(l-iuﬁ)

This can be obtained from Eq. (3.5) by putting o equal to

zero. Letting

k = k1 + ik2 (3.10)
we obtain for wr<<1
w
k1 v (3.11)
o
2
w'r
k2 Ev—o- . (3.12)

Note that wr<<1l 1is satisfied in silicon at room tempera-
ture even at 1 GHz
For the pure thermoelastic effect T = 0 . This dis-

persion relation has been obtained previously,7 and in the
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case that b>>a,c we have

KBzaszz

2pv°Cv

k -

2 (3.13)

and k; 1is given by Eq. (3.11). Equation (3.13) is the
usual result,1 and applies to silicon at 20 KHz from
1-300K .

For combined thermo and viscoelastic effects, one may
show by expanding the dispersion relation (3.5) that in
the case b>>a,c and wr<l1 ,k1 is given by Eq. (3.11)

and

2 2 2. 2
o 2pv°Cv

The usual situation is that the second term of Eq. (3.14)
is only a few percent of the first term.

Since the temperature dependence of the viscosity ten-
sor elements has not been measured at low frequency over a
range of temperature and has not been calculated using a
realistic phonon model for silicon, we focus on the ther-
moelastic contribution to the attenuation. Using data
found in the literature,s'lo we have evaluated Eq. (3.13)
for silicon in the range of 1-300K at 20 KHz . These
results are presented in Table 10. Figure 13 is a plot of

these results. Figure 14 is an expanded version of the
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reglon from 1-50K . Note that the plots are normalized
to be independent of frequency in the range of validity of
BEq. (3.13).

The attenuation shows rather marked features. The
maximum at 14K is associated with the thermal expansion
coefficient passing through a maximum near 14K . The dip
near 17K 1is associated with the thermal expansion coeffi-
cient going through zero and changing sign. The broad peak
from 35 -60K is due to the combined factors of the
thermal conductivity passing through its maximum and de-~-
creasing, while the magnitude of the expansion coefficient
increases. The slight shoulder in the curve from 70 -80K
is due to the thermal expansion coefficient passing through
its minimum negative value. The dip in attenuation near
125K 1is due to the thermal expansion coefficient changing
sign from negative to positive in this region. Note that
the maximum thermoelastic attenuation occurs in the vici-
nity of 40-45X and not at room temperature. In fact,
the thermoelastic attenuation at 40K 1s more than a
factor of 3 times greater than it is at room temperature.
In this region we expect the thermoelastic effect to be
more than a few percent of the total attenuation for longi-
tudinal waves. Careful measurements of the viscosity ten-
sor elements at low frequency are necessary to substantiate
this conclusion.

The existence of thermoelastic attenuation anomalies

k%

A3
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near the temperatures at which McGuigan et 31.3 and pavis?
observed anomalies in the mechanical Q suggests that an-
harmonic effects are the cause of the latter anomalies and
not impurities or mechanical imperfections in the crystal.
Indeed, the sample of McGuigan et al. was boron doped with

15 boron atoms/cm> , while the

14

a concentration of 3 x 10
sample of Davis had a boron concentration of 8 x 10
atoms/cm3 , both of which are rather low impurity concen-
trations. In order to settle the question, it is necessary
to perform experiments on extremely pure samples and see

if the anomalies persist. If they do, one would have very
strong evidence in favor of the anharmonicity mechanism.
Furthermore, since several semiconductors such as Ge,
GaAs , ZnS, ZnSe and CdTe exhibit negative thermal expan-

11

sion, one may expect that they also will have anomalous

acoustic attenuation 1f, in fact, the effect is intrinsic.




TAELE 10

Values of k2 "for silicon at 20 KHz along the

(111] direction using Eq. (3.13).

Units of kz are

1022 /nater.

T(K) kK, T kg  T(K) K,
1 .01164 20 47.87 135 17.58
2 .1644 22 181.1 140 31.42
3 .7736 25 510.3 150 62.62
4 2.324 30 1049 160 104.3
5 5.408 35 1365 170 147.2
6 10.38 40 1467 180 188.2
7 17.24 45 14€7 190 223.6
8 26.13 50 1387 200 251.8
o 36.78 60 1141 210 288.4
10 48 .48 70 5585.7 220 319.6
11 60.17 80 507.9 230 344.0
12 72.17 90 266.4 240 364.0
13 87.42 100 113.7 250 378.4
14 94.11 105 65.46 260 398.0
15 62.08 110 35.83 270 414.6
16 30.64 115 12.29 280 429.3
17 . 06894 120 1.883 290 438.0
18 .8661 125 . 4296 300 448 .1
19 16.99 130 6.347
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Figure 13. Thermoelastic attenuation for silicon

along (111] direction from Eq. (3.13).



ot '

o o
B -
b ~

p— -

l

!

- -

- ~

I~ —

o v N Y 9 T @ N~ @9 O
Vo) O < " ” ~N - - o o

[(xl)zx/u)zx O'9017

120 80 240 300

TEMPERATURE (K)

60

219




a20

Figure 14. Thermoelastic attenuation for silicon

along ([111] direction from Eq. (3.13).
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Chapter 4

Conclusions

"And this is the record,
that God hath given to us
eternal life, and this life
is in his Son. He that
hath the Son hath life; and
he that hath not the Son of
God hath not 1life."

I John 5:11,12

In this final chapter we summarize the main features
of the work presented in the previous chapters and offer
some suggestions for future research.

It has been found that long~range, nonlocal dipole-
dipole interactions are able to provide lowering of the
frequencies of the TA modes in diamond structure crystals.
The dipoles also have the feature of not affecting the
elastic constants or Raman frequency. It was necessary to
include central potential interactions to fourth neighbors
in order to fine tune the agreement with experiment. A
reasonable fit to the experimental data has been obtained
that exhibits a rapid fall off of the first and second order
potential derivatives with increasing distance.

It is believed that further investigation of long-
range electrostatic interactions in diamond structure

crystals will be profitable. Specifically, one might
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examine the effect of including the local quadrupoles of
le,l in addition to the nonlocal dipoles, in an effort to
obtain agreement with experiment using a smaller number of
parameters. The resulting dipole-quadrupole and quadrupole-
quadrupole interactions should improve the problem of the
angular variation of the dipolar interaction energy. In
addition, one might also examine the effect of the short-
range corrections to the dipole~dipole interaction energy
as discussed in Appendix B. These short-range corrections
have a different angular variation than the usual dipole-
dipole interaction energy.

An anharmonic model has been developed that is a con-
sistent extension of the harmonic model. Using this model
we have obtained analytic expressions for the mode Griineisen
parameters that explain in a simple way the origin of the
negative mode gammas. The relation of negative mode gammas
to nearest neighbor central force instability is illustrat-
ed by these analytic expressions. It has been found that
the approximation of neglecting first and second order po-
tential derivatives in comparison with third order potent-
ial derivatives is particularly severe in the diamond |
structure. It has nlso been found that long-range anhar-
monicity is necessary to explain the experimental mode
gammas in silicon and that the short-range anharmonicity
calculations of Dolling and Cowley2 and Jex3 are inadequate

to obtain even moderate agreement with experiment. Using
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the model developed in the present work, a reasonable fit
to the experimental mode gammas for silicon has been ob-
tained that éxhibits a rapid fall off of the third order
potential derivatives with increasing distance.

The volume thermal expansion coefficient of silicon
has been calculated from 85K to 1700K using the above
lattice dynamical model. Surprisingly good agreement with
experiment from 17K to the melting point of 1687K has
been obtained. This shows that higher order anharmonic
contributions to the thermal expansion for silicon are very
small, even at temperatures near the melting point. To fur-
ther improve agreement with experiment below 17K , it is
suggested that more than 60 special '3 points be used in
evaluating the sum over the Brillouin zone. It is also
believed that a better fit to the experimental mode gamma
at the L point would improve agreement with experiment
in the region of 75K , where the thermal expansion be-
comes the most negative.

Associated with the negative thermal expansion, it
was found that silicon has an anomalous thermoelastic
effect. It has beeii shown that this contribution to the
acoustic attenuation exhibits strong attenuation anomalies
in the vicinity of 17K and 125K . This investigation
is preliminary in nature and demonstrates that anharmonic
attenuation can vary rapidly in a narrow range of temper-

ature. It is the present author's conviction that a
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calculation of the viscosity tensor for silicon as a func-
tion of temperature will exhibit anomalies as well. How-
ever, exslisting expression.4 for the viscosity tensor of
a solid can be objected to on fundamental grounds, and be-
fore a proper calculation can be made, a new theory of the
viscosity tensor must be developed. The present author has
investigated such a theory but since the results are not

yet complete, they will not be reported on here.
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Appendix A

ANGLE BENDING CONTRIBUTION TO THE
POTENTIAL ENERGY

In this appendix we derive an expression for the
change in angle between any three atoms in a crystal cor-
rect to first order in the atomic displacements, The dis-
cussion is similar to that given by Trullinger1 and is in-
cluded here for the sake of completveness.

From the geometry of Fig. 5 and the definition of the

dot product we have

cos B(LK“’K',L”K”) - -J:(LKLI’K’EX-(’_‘KLL”K”) , (A=1)
[x(Lc | 0" ) (e ]|4"c") |

where
X(4K]L°K°) = X(4K) = X(L°¢") (A-2)
and
X(4K) = R(4K) + u(4x) . (A=3)
Now

X(2K 27K ) o x (k|4 k") = [Reak |4k ") B(ak|[2c”) +
+ R(LKk |47k ) u(ak]L"c”)
+ ROAKL 6" ) TR ] LK"Y +

+ ALK LK) q(RKR ]2 k™) -
(A-4)
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where
TRk £y = Reex) - Ra’x”) (A-5)
and
UK LK) = W(LK) = V(LK) (A-6)

We also have

x i 2R eli’x’ 'a(LKel e’ '1‘§
|R(ak|27k") | = |R(ar]e k)| |1+ 2RLEEL ) P u( £ k*)
[R(4K|2°¢%) |

Ju(ek]L’k’) 2
lﬁ(zn!z'x’)%f

(A=7)
Using the expansion

21 - ly 3,200 (A-R)

we have to first order in the displacements that

Ix(ek]2°c*y "L - {ﬁ(bcft'vc'){'l[l -iz’(zm'»c’)-ﬁ'(u#‘x‘)
{ﬁ(szz‘K‘)[

——

(A-9)

Combining Eqs. (A-1), (A-4) and (A-9) we obtain to first

order in the displacements that

cos 6(K[£°k"[4°k") = cos 6 00 (ak]L |1 k")
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- cos 869 (ax a7 e k) [Rax 2’k ) Bk (27K )]
IR(ax|2’k’)|

- cos 6(0)(zx(z’x'|z'x') R(Lx]ax") e q(ax z’x’)T

LA R] |
Rean e x’) qar]e k") L Bar]atc) Wk |a®c”)
IBax]a x )| |RCex ] ey |Reax| x| [Reax |27k )|
(A-10)

where we have defined the equilibrium angles by

Roex L w’)Rax]Lx”)
|RCex |2 ¢y |R(ax]Lx") |
(A-11)

cos G(O)UKH'K'H'K') -

Defining the change in angle from the equilibrium angle by

88 (ak] L 2%k = sax|ee ek’ - O uxlatkt ey

(A-12)
we can use the fact that
cos © = co(9(0)+Ae) = coSs 6(0)003 AR - 81in e(o)sin aQ ,
(A-13)
so that to first order in A6
cos(e(o) +048) = cos e(O) - 48 sin e(o) , (A-14)

or
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40 = (cot p(0) _ _cos @ ) i (A-15)
sin @

Using Eq. (A-15) together with Eq. (A-10) we obtain

B8 (LK|L K] k") =

Reax|4°k’) Q(akle’c’)

(0) o, ’,
= cot 8 T (4k]L°x"|2¢”)
L Rk |2

[ -+ ]
+ cot 88O Canla ey Rk Ia x ) dax(s”c”)
1R(ax]2k") |2

r \
- cmc 8900 (ak ]k k) Bear]a k) Bk ]4"K")
_l‘n’uxu‘x’)!lﬁ(u[z”x')[J

FE;LKIL’Kf)'ﬁ(LK]z’K’)
IRk [a ey [ [Reax 276"y ] |,

- csc 6(0)(LK|A'K'|L'K’)

(A-16)
Defining
ﬁ(lK,zoKa'Lqu) -
- cot 80 (axl kg k| Rle]LTC )
IR(2k)4°¢")]
- csc 9(0)(zn}z’x’|;'x') K(LK!L:K’) ’
IRCar 4% ) | 1R(Le |2 k") |

(A-17)

Eq. (A-16) can be rewritten as

BO(LK[L°K |2 k") =  A(LK]L K[ LK"Y UK [L°K ")

-+ LK LﬂKl L'K' '* y_ n
+ (LK | | Yru(ek e« )s (a-18)
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or in component form
88 (2K |2k [£7%%) = T m (2k{a k" [4"k")u_(4x[L°K")
o
+ 2 n (427" |47 )u (k] L7c")
[« §
(A-19)

Note that Eq. (A-18) depends explicitly on differences of
displacements so that it satisfies infinitesimal transla-
tion invariance. Using Eq. (A-18) it is easy to show in-
finitesimal rotation invariance. Consider the infinitesi-

mal rotation

dear) = ox Fo-R) | (A-20)

where |W| 1is the infinitesimal rotation angle and ﬁo

is the origin of the rotation. Then we have
U(LK[L°6°) = xR(ak[L7x7%) . (A~21)

Substituting Eq. (A-21) into Eq. (A-18) and using the

vector identity that
X BS) =~ -B Ax) , (A-22)

we obtain
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88 (2K |27k |4%x") = =@ [TN(ar |2k |4 k") xR(ax]2°x*)
+MCAK| LK |4k ) xR(ax] L %)) .
(A~23)

From Eq. (A-17) we see that

N4 [17") x R(ax|a’x’) =

Reax ek )xBax[L°k?)
[Rcax e x| |Reax]e"cy| '
(A-24)

- csc 9(0)(LK|z’n'|z'x')

and similarly

E(ZK’L’K”'L'K') % ﬁ(LK!L”K') -

- csc e(o)(lx[g'x',‘~K') ﬁ(lKJt‘K')xﬁszLz”x') '
IRCax | 26"y | R(ax ] 2"y
(A-25)

In obtaining Eq. (A-25) we have made use of the property

that
B(AK|A ]2 k") = 8 (UK [L K" [4°k") . (A-26)
Adding Eqes. (A-24) and (A~25) we obtain
O (LKL K L") = 0 , (A=27)

under the infinitesimal rotation Eq. (A-20). Thus the

change in angle Eq. (A-18) satisfies infinitesimal rotation

invariance.
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Appendix B

ELECTROSTATIC INTERACTION ENERGIES IN
A NONLOCAL DIELECTRIC MEDIUM.

In this appendix we discuss the interaction energy of
twe charge distributions in a particular type of linear,
nonlocal dielectric medium. Results for the interaction
oenergies of the first few cartesian multipoles are pre-
sented. Further application to the case of isotropic non-
locality is made. The specizl case appropriate to semi-
conductors is examined.

Consider the interaction energy of two charge distri-

butions in a linear dielectric medium. We have1

Wiy = g={ &x (@ By+Ey B (B-1)
where
V-Bl = 4mp, v-ﬁz = 4rp, , (3=2a)
D - 31-+32 E - fl-+§2 . (B=2b)

Introducing the Fourier transfcrms

> >
£(x) = [a3x o' *s (&) (B-3a)

- -
£(K) = J3x "X (%), B=3b)

(21)3
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we suppose for the medium of interest that
B(k) = e@E®) . (B-3b)

This corresponds to examining the diagonal part of the
dielectric matrix, or neglect of umklapp terms for a cry-
stal.2 These terms have been shown to be small for silicon
and germanium as anticipated by Penn.3 After some algeb.a

and use of Eqa. (Bl-B4) we obtain

. 1.3 . , , ‘
Wep = ﬁjd xj‘d3x g (X=X )p1(§)92(§ ) ¢oLw)
with
Tl -+ -
ikex =1ik'x
1 3, (e7" “+e )
g(x) = — g [dk : (B-5b)
(27) izé(f)
Note also that
g(;) - g(-;) . (B=5¢)

All the nonlocal behaviour resides in the function g(;) .
Now consider the first few terms of a cartesian multi-

pole expansion about the poiat X’ . We have

-> L A ) a - >,
p(x) = Q6(x=x") -Epa W 6 (x=-x")
1 3 > >,
+ 5 LU Q. e B(x=x")
2 a, 8 fo]<) Bxaaxs

+ (higher multipoles) , (B=6)

TR

T

R
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whero b(;) is the Dirac delta function. Direct integra-

tion of Eq. (B-6) gives

Q = ‘dsxp(i) (B~7a)
'

Py ™ Iy a3x xap(;) (B=7b)
vl

Qae - -r .dsx xaxap(;) ) (B=7c)

\4

where V° is the volume to which the charge density is
localized. Eq. (B-6) can be obtained by application of
Poisson's equation to determine the charge densities
responsible for monopole, dipole and quadrupole potentials.

Utilizing Eq. (B=-6} in Eq. (B~5a) we obtain

, , > .
Wy, = [dx[dx g G-X )[le(x-;l)-ipa(l)-a-%;b (X-%y)

1 d > - -, >
+ Eazﬁ Qaﬁ (l)mé (x-xl)] X [Qzé(x -x2)

2
d -»>, - 1 3] >, >

-2 pu(2)-a—£ré(x -x2)+-§ = Q“V(Z)Wé(x -xz)] .

" " TR Mha”

(B-8)

Multiplying out the various terms yields

- WML oM | WMQ dd L 4dQ L QQ

Wy2 12 ¥ W12 + VW15 12 12 12

+ (higher multipoles) , (B=9)

e ot ks A
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wvhere

ng = fd3xfd3x'8(;-;')Qleb(;-;l)b(f'-;z) (B~10a)

"ikzl - '.rdsxfd3x'g(;-;')[le(;--fl)Epa(Z)T%:a(;'_;z)

2. 2 9 > > _

+ Qpb (x 'xz)fpa(”axa“""&)] (B-10b)

2 -
Wi’g %J’dsx‘rdax ‘g (x-x") [Q16 (;—;1) EBQO!B (2)%_,‘_?_5_,55_6 (x,_;z)

a, a

dd

12

2
>, > d -> >
+ Q5 (x -xz)mZﬁme3 (1)-6-:%_6?8'6("-"1)] (B=-10c)
-> >
- 98 (x-x%,)
z J‘dsxfdsx'g(;-X')P (1)PB (2)[--rx—l- X
a,b @ a
36 (X" -X,)
X (B-10d)
B
- >
36 (x=%,)
1 < fdsx dsx' - > 1
-3 g(x-x)|p, (1) X
2 o, b,V J. « axa
226 (%" =%,) 36 (X"=%,)
X qu(z) ax’ax; + pa(z) —-—a-;;— X
aza(i’-i’l)
X Qu.V (1) ——a;:rxu— (B=10e)
i 3 3 . > >,
v aﬁuqaa (1)QW(2)J‘d «fdx’g(x-x") x
225 (G-, )\ 526 o=y |
1 2 (B-10%)
X\ ox_ox 0x ox [J
a B WV
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The terms in Eqs. (B-9) and (B-10) correspond to monopole~-
monopole interaction, monopole~dipole, monopole-quadrupole,
dipole-dipolé, dipole-quadrupole and quadrupole~quadrupole
interactions, respectively. We now proceed to evaluate the
various integrals in Eqs. (B-10).

For the monopole-monopole term Eq. (B-10a) yields

immediately
Wiy = QuQp8 (Ry-%p) . (B-11)

Thus wve See that g(z) is essentially the modified
Coulomb's law for the nonlocal medium.

Consider next the monopole-dipole term. We can
immediately perform one integration, the remaining integra-

tion to be done by parts so that Eq. (B-10b) becomes

3g (X4 =Xo) 3g (Xy =Xo)
d-Z[Qp(Z) 12" 4 qup, () 12}
12 a 1%y ax2a 2% axla

(B-12)

Two partial integrations give for the monopole-quadrupole

term
2 > - 2
078 (Xq=Xq) 37 g (X4=X,)
MO 1 [ . 17X2 17%2
Wyg = Z (QQ ,(2) + Q,Q o (1) ]
12 2 o, B 1%qp axhax28 2B axlaax18
(B-13)

and for the dipole~-dipole term
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2
dd 0 -> -
wie - 2 g (X4=%X,)|p (1)p.(2) . (B=-14)
12 a’s[axlanzs 1 "2 ] o g

Three integrations by parts give for the dipole=quadrupole

term

3 +» »
) g(xl-xz)

aQ _ 1
le 3 z [pa a )qu

(2)
a,m,V v axlaaxzuaxZV

(B~15)

3_ > 2
37g (x4 =%,) ]

3\
+ pa(z)qu(l’axzaaxluaxZV

Finally, the quadrupole-quadrupole term is obtainec¢ by

four partial integrations yvielding

4 -» >
0 g (Xq=X,)
Q 1 [ 1772 ]
WS = T Q . (1)Q . (2) . (B-16)
12 4 of axlaaxlaaxzuaxzv af v
Wy

Having obtained these general results, we now examine

the case when

>

s(k) = e(k) where k = |K| . (B-17)

Using the definition Eq. (B=-5b) and integrating over angles

we obktain

>
g(x) = £(x]) (B-18a)

E{

where
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[ ]
t(r) = 2 J‘odk o (B~18b)

Using the form of Eq. (B-18a) and differentiating gives

2 -» =

- [naeulz)fu;l-'izl)

axlaaxzB
> > o, 4> >
- Qaa(1|2)|x1-x2|f (|xq=%x41)
(xq =X, ) (2%q~X,.)
1 2 1 2 > 2
- _lo 2o 18 2 f'(lxl-le)] ,
,xl'le
(B=19a)
with
5 3(xy =X, ) (Xg=Xpg)
0 )2) = | - doBa 2P B | (p-19p)
X1=X5 | %y %5 |
P -» > d2f r)
£0(|xy=x,]) = —33 L. , (B-19c)
r=|x;=x, |
. > 2> dzf r
£ (|Xy=Rp]) = gL . (B-19d)
dr b d -
r=|xy-x, |
Defining

Jaﬁ (1'2) = —a;;;-ax— ’ (B=20)
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the dipole-dipole interaction Eq. (B-14) can be written

wig = Z 35 128,02y (2) (B-21)
Eq. (B=19a) is the dipole-dipole interaction law in the
nonlocal medium. Note that it contains term8 in addition
to the usual free space term, which is obtained by setting
f equal to one. The extra terms are a consequence of the
nonlocal nature of the medium.

Now we want to.examine a special form for e(ﬁ)
appropriate to a semiconductor. Walter and Cohen4 aave
shown that the effects of anisotropy are Yery small for
several semiconductors, thus justifying the use of an
isotropic form for e(X) . For this case, one can define

a spatial dielectric function &(r) by the relation

vir) = =—2— | (B-22)
e(r)r

where v(r) 1is the screened Coulomb potential of a point

charge Ze . In fact, one can show that

1
f(r) = = -23
(r) =)’ (B )

with f(r) given by Eq. (B-~18b).

5

Using the Penn model, Srinivasan6

has shown for

silicon that ¢€(r) essentially reaches its value at
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infinity by the nearest-neighbor distance. This somewhat
surprising conclusion can be made plausible as follows.
With four valence electrons per atom and two atoms per
primitive cell, the valence electron concentration rnf the

diamond structure is
32
. n - - » (8-24)
\' ?5'; :5

so that the Fermi wavenumber is

- 2 \1/3 _ 27(12)1/3 -
ke (37 nv) 1;(:;) 5 (B=25a)
or
27
kp = (1'5631853)77 . (B=25b)

For silicon one finds

[o]
2 = 0.5529 4 , (B-26)
F

which is rather short indeed. One expecté screening on
this length scale.
To be more quantitative, the results of Walter and

Cohen7 can be fit rather closely by the functional form

2
(k) = [1 + l%llg—], (B-27)

k +u

where ¢ 1is the static, bulk dielectric constant. The
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measured value of ¢ is 11,7 for silicon.8 U.ing Eq.

(B=27) and performing the integral in Eq. (B-18b) yields

(B=-28)

1 1)e'~/€. ur]

f(r) = [E + Q-3

From the work of Walter and Cohen we find for silicon that

b x(-zi‘l) with ) = 0.45 , (B~-29)
so that
p/E = (1.54)%1 , (B-30)
or a screening length of
1 o
= = 0,56 a . (B=31)

ua/

Note the close agreement of Egqs. (B=26) and (B-31). Dif-

ferentiation of Eq. (B-28) gives

£°(r) = - J¢ u(l-%)e'“/g wr (B-32a)
£(r) = euz(l-%)eﬂJZ WL (B=32b)

In Table Bl f and its first two derivatives are evaluated

for silicon at the distances of the first few neighbors.

As can be seen from the Table, { 1is within one percent

of its value at infinity by the second neighbor distance.
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From Eq. (B-19a) we see that the first derivative term has
the same angular variation as the term with no derivative.
However, the'term with the second derivative has a dif-
ferent angular variation than the other two terms. This
could give a sizeable contribution to the dipole~dipole
interaction energy out to about third nearest neighbors.
Thus we see that we can write the dipole-dipole interaction
in the form

=13
€

(1[2)p (1)p, (2) (B=33)
a’a a ]

Qaﬁ

+ (exponential terms) ,

where the exponential terms are very short ranged.



TABLE Bl

Eqs.

(B=28) and (B-32) evaluated for the first few

aeighhors of silicon.

r f(r)

r, 9.932x10"

r,  8.645x1072

ry  8.577x1072

r, 1.553x10"2
2

8.547x10"

rf’(r)

-5.804x10"
-6.682x10™3
-2.405x1073
-5.554x10"4

0

rzf'(r)

2.432x10°

4.572x10"2

1.930x10™2

5.374x10"°3

0]
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Appendix C
QUADRUPOLE MOMENT DUE TO AN ARRAY OF DIPOLES

We begin with the charge density p(;) due to an

array of dipoles 3(1&) located at sites R(LK) .

p(X) = - f: P(LK)evb (X=-R(LK)) . (C-1)
K

Defining the total quadrupole moment as

3 -
Qs = Jd x x xp(X) (c-2)

we find after integration by parts that for the array of

dipoles

Qs - E{[Ha(u{)pﬁ(lK)+RB(LK)Pa(£K)} . (C-3)

Now consider the special case of the Raman mode in
the diamond structure. For this mode ua(z,O) - -ua(z,l) -

ua . Using Eqs. (1.149) and (1.151la) we find that

Pa(l,o) - - 8plua (C-4a)
pa(l,l) - 4+ 8p1ua . (C=4b)

Clearly there is no total dipole moment due to this mode,
since the dipole moments in each unit cell are equal and

opposite and thus add to zero. Using Eq. (C-=3) and the

248
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positicn vectors Eq. (1.1) we have

Qg - 8p122 [aau)uemau)ua] . (C=S)

Performing the sum on £ and using Eq. (1.5) we obtain

Qaﬁ - 2|p1N {(6a1+6a2+ba3)u8 +

+ (6a1+662+653)“a} ’ (C~6)

where N 18 the number of unit cells of the crystal. Thus
we see that the Raman mode has a macroscopic quadrupole
moment associated with it, where by macroscopic we mean
proportional to the number of unit cells. Note also that
only the Py term of Eq. (1.150) contributes to the quad-

rupole moment of this mode.




Appendix D

THE EWALD METHOD AND ITS APPLICATION
TO DIPOLE SUMS.

In this appendix we discuss the Ewald method for
transforming lattice sums to rapidly convergent form. The
method is applied to dipole sums in the diamond structure.

We want to evaluate the sums Egqs. (1.168)

0 > >
1)y, o 05" -ik'R(4) _
Qs () ???3 Q5 (4,0]0,0)e (D-1)
and
Q o>
(2) 2, _ .0 -ik R (4)
Q5 (k) %-22 OaE(Z,OIO,l)e (D-2)
with
, .0 s 1
6 (ki) - aqé 1_3595(““'( )ns(zwlzx )
) N PN
o IR(ax|27x")] IR(ax|a’x*)| |
(D=3)
First we define
2 ik R(4)
A (KX = - =2 e : (D-4)
ab %a%%p |2 |R(2)-%|

Differeatiating we obtain

250
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5, 3(R_(2)=x_) Ry (L)=x_)7 &R
A g (K,%) -z:[—-—& -t x B P ]eik- N
af LB )-%] IR(2)-x|
' (D-5)
Now
2 5 3x x
3 1 _ _[Ces _ )
5%_9%; 13 —5 —-5-5@] , (D-6)
a B x| Ix| | x
so that

2
- > i) 1
[AaB (k,x) + ox_ox > ] =

a B |x|
5 5a£ ) 3(5g£1.)-fg)(§ﬁ?i1)—xj) efﬁ'ﬁ(“ ,
1 | [R)-%]° 1B (4)-X]|

(D-7)

where the prime on the sum indicates omit the 4 = 0 term.

Thus we have

2 > =
> 3 1 . -1k R(4)
im[A . (~K,X) + Ll =Za ,(4,0]0,0)e
ponfigs (R0 vl | - B0
(D=-8)
so that
Q 2
1) 2y - .0 32 )
Qe () = 22 ;le.i.ﬁ[AaB( K5 + 55 5 ’;'] . (0-9)

Similarly from Eqs. (D-2) and (D-5) we have

A
o

-
o -E, R = Z 0 (1,0]0,1)e" K R (D-10)
. ob
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80 thurt
AP (x) « "o A . (-k,RQ)) (D-11)
af 47 “aB ’ y

From Eqs. (D-9) and (D-':: we see that it is sufficient to

find an expression for Aaﬂ(ﬁ,;) . Next consider the sum

. SAK R ()
H(k,x) = Z —o—— (D~12)
L |R(L)-x|

using the integral representation

2 - - 2. -»2
Torg] "Bt RO e

we have

- > 2 = - 2 2 2 >
HEX) = = [ dp[Ze p” [R(1)-%|% 1K K‘“:! (D-14a)
0o Ly

or
> > 2 \* jj:.? - 2 ﬁ ) ->,2 il?' H(z)_-b)
H(k,x)-T-fdpe A[Eepl ()-xle ( x].
ks 0 )
(D=14b)
Defining
2 > 2 > -> >
F(Z) =5 oP [R()-%[ 1K R(0)-3) (D-15)
4
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we note that F(X) = F(;-+§(m)) where R(m) 1is a lattice
translation vector. Thus F(x) is periodic with the
periodicity of the direct lattice and we can expand it in

a fourier lerienl

F(x) =Z F eia"‘ (D-16a)

g G ’
with Fourier coefficients

3 -6 x

F_ == " a°x F(X)e (D-16b)

The sum in Eq. (D-16a) is over all reciprocal lattice
vectors and the integral in Eq. (E-16b) is over the primi-
tive unit cell.

Substituting Eq. (D-15) into Eq. (D-16b) we have

1
F o

¢ 0,7

0

-> 2, > >,2 > = -
S g3y e 1Gex -p° |R(4)-% | ° 1K+ (R(1)-%)
4 o]

(D=17)
letting
y = x=-R(4) (D-18)

Eq. (D=17) becomes

2 2 = w2 > >
pals d3y e PV o ib-(R\E)ﬂ')e ik.y
y

Y
-4

1
F - —
g %

(D-19)
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where the integral is over the volume of the unit cell at
eiE-iu)

the position -ﬁ(t) . Since = 1 we have an

identical integral for each unit cell so that
2 2 - -
F,=a-J d®y P om1 )1y (D-20)
6 oV
where the integral is now over the volume of the entire
crystal. We now pass to the limit of a very large crystal
so that the integral in Eq. (D-20) can be taken over all

space. Evaluating the integral in Eq. (D-éO) in rectangu-

lar coordinates we obtain

7372 e-lf+al2/4p2

F, = (D=-21)
G Oop
so that Eq. (D-15) may be written as
3/2 > 2 2 >
-|E+G|%/4p° 18 % (D-22)

F(X) ~Z—Z e
. ﬂop G

Returning to Eq. (D-14b) we break the integral into
two parts and substitute the Fourier series Eq. (D=22) into
the first integra. to obtain
e-lﬁ+3l2/4p2

3

P

> > K --> n
HE.D) - %lz o1 (K+8) 1% dp
0

> > L] 2 >2
KiR(De"gp o= IRO-X]" | (p_gg)

2 i
+ﬁ§e n

The first integral can be evaluated with the substitution



255

> 2
x - _[3132_]_ (D=-24)

4p
so that
n o ~k+G]%/ap 2 222/ 4n2
- /4n .
dp — - — e . (D=-28)
IO ) 82

Using the definition of the complimentary error function

2 .~ 2
== -t
erfc(x) = 7= fxdt e , (D~26)
the second integral in Eq. (D=23) 1is
- 2
2 o  =|R)-x]|%2 >
=2 e p° . erte(n|R(4)-x|) (D=27)
v n ,K(t)-x[
Using Eqs. (D-25) and (D-27) we have from Eq. (D-23)
1(k+3)~x > 2 2
H(K,X) = 4—3 o~ [K+G1%/an
+ 3 erfc(n]R()=x]) ﬂc"-R)(L) (D-28)

L [R(L)-x]|

In Eq. (D-28) rapid convergence of both sums can be ob-
tained by a proper choice of the separation parameter n .

Using Eqs. (D-4) and (D~12) we perform the differentiation
on Eq. (D~28) to obtain
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(k_+G ) (k_ +G,)

o | k+G |

2 « 1keR(2)s" 2 4
+ ﬁ% e j'ndp[Zp by 4P (Ra(“-xa) X

-|Re)-x 202

X (Ra(l)—xs)]e (D=-29)

using the integral representation

1 20, RRRN2
- - dp e (D=30)
ERRA

we find upon differentiation that

2 2 = -|x
3 1 __ =0 2 _an~d
axaaxs ,;, N odp(Zp 6&5 49 xcsz Je

Using Eqs. (D-29) and (D-31) Eq. (D-9) becomes

(G -k )(G.-k_ )

=»>,2 2
QP @) - Z —u—-g—i-la_m oG-k |%/4an

9! -> -» [ ) 2 2
., =ik 'R(4 2 4 -|R(4
+ ;;3%2% e ( ).I’ndp[zp S,8=% R (LR (L) ]e [RC£) %

+ —-3-72Q° lim f.dp[szé -4p%x x ]e-,;lzpz
27 x>0 n af a’p

[ _J
_ 2, _,.4 -|x|p _
“f'odp[Zp 8,54 xaxs]e . (D=32)

Taking the limit in the last term of Eq. (D-32) we obtain
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k k 212 /402 (G_-k _)(Gg=k_) >12 2
1) 2 o -'k' /4n s A B -'a_k' /4n
Q (k) = —% e + — e
*® K| 18-k |
+ 3/3 ‘e Yn af a g 7"
27 4
Qon3
-—3738 . (D-33)
31r3 2 o

Where we have explicitly separated out the nonanalytic
3 = 0 term from the sum on 6 .2 Note also that the sum
on 4 omits the L = 0 term.

Similarly, using Eqs. (D-11) and (D-29) we obtain

k k > = >, 2 2
Q§§>(§) -2 o~ 1K R(1) _-|E[%/4n
k]
. Oamk) Cgkg) 5 @i Ry - 18-K|2/4n”
ik
G > >
-ik: 2 4
+ ;173‘275§e RO Tdpl20%0 o=4p" (R ()-R (1)) (Rg (4)-Rg (1))]
2 2
y e-lﬁ(z)-§(1)| pe . (D-34)

Eqs. (D-33) and (D-34) can be rewritten as
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k k 2 (G _~k_){(G.-k_) 2

2 > 2
1) ,=» -|k|*/4n . - 18-k |°/4n
Q- (k) = _g_g e + ._JL_Jlfti}_JL_ e

of H AT

3
1 . =18 (L), (1) o" _
+ 3= % e IaB L,n) - ;—"-372 6aB (D=35)
and
k k > =>,2 2
o @ - g SRR

(G, =k, ) (Gg=kg)

. 1@-K) B(1) -8R |%/an°
+.§-————ﬁéﬁfﬁ%—£—-e e

=
1y kR0 (@)
)

+ 5= Is (4,n) (D=36)

where we have defined

(1) o . 2 4 ﬁtu)lzpz
1g (4 = 7 J‘ndp {Zp 5.8 = 4P na(z)ns(z)]e
(D=37a)
and
Q. ®
(2) .0 2, _,.4
s (4,m) = o= j‘ndp[zp by =" (R ()4R_ (1)) x
2 2
X (Rg (£)+Rg (1))]('3(”*3(1)' e (D-37b)

Using the integrals
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2 2 = 2t2 p.4 -azxz 1
= [ at t%™® -|——ge + erfc (ax)
Tty NC ;;5
(D=-38)
o 2.2 3 2.2
73 I dt t4e-a t 3x g+ x;;z e-a X )
T "x 2/7 a JT o«
3
+ erfc (ax) (D=39)
4>
we can rewrite Eqs. (D=37) as
13 (4,n) = o2 0 (2,0]0,0)erte IR
af PRl -2' ab ’ ’ n

9 né -
o[ " o _Ra(‘)aﬁ(‘i( 3n .+2n3)]e-n2]R(1)12

+
RO R0 (Ewm 2
(D=-40a)
(2) Oo
15 (4,m) = 2 Oaa(z,1lo,O)erfc(nlﬁ(z)+§(1)j)
0 r
+._g' né 2,_(“a“)ffg(l)"“s(f;+“s(1’)
JT IR(L)+R Q) | IR(L)+R(1) |

. . 2n3ﬂe-n2l§(t)+§(1)lz .
[R(4)+R(1) | |
(D=40b)

Eqs. (D-35), (D=-36) and (D-40) can now be used to compute
the sums Eqs. (D-1); and (D=-2). All that remains is to

choose an appropriate value for the separation parameter
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n . We have found that n = 3%2 gives near optimum con-

vergence for the diamond structure.
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Appendix E

SOME PROPERTIES OF THE DIPOLE CONTRIBUTION
TO THE DYNAMICAL MATRIX

In this appendix we examine some properties of certain
dipole sums. We begin by considering the dipoles induced

by the homogeneous deformation

u (LK) = ‘BE. eaans“” +d (), (E=1)

where €aé are the deformation parameters and da(K) are
the inner dilplncementa.1 Substituting Eq. (E-1) {into

Eqs. (1.149) and using Eqs. (1.62), (1.4) and (1.5) we

obtain
r % | [ ]
p . (4,0) = p.-(0,0[6, ,1)[d,(1)=d_ (0)
o 8 i=1 a8 i 8 8
z 5 |
+ € p o.(0,0]8,,1)R (58.,1) , (E=2)
8y By i=1 al i vy i
and
Pe(4,1) = =p_ (£,0) . (E-3)

Note at this point that tho dipoles induced by the homo-
geneous deformation are independent of the unit cell index

80 we canh write

p,(£,0) = p_ . (E-4)
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For the important special case of an isotropic homo-

geneous deformation where

€ab - ¢ b , (E-S)

and

it is easy to verify using Eqs. (1.150) that P, is ze:
for this deformation. Thus an isotropic deformation does
not induce any dipoles and no attendan: interaction energy.
This being the case, it is easy to see why the dipole in-
teraction does not affect the bulk modulus of the crystal.
Returning to the more general case and subsiituting
Eqs. (E-3) and (E-4) into Eqs. (1.153-1,155), we obtain for
the dipole-dipole interaction energy due to the deformation,

Eq. (E-1), that

dd 1 4 ¢ . ’,
§ i QZS P.Pg zf"“aa“”" ,0) Qas”'o" , 1] .
(E-7)
In obtaining Eq. (E-7) we have used the fact that
IE'QGB(L,OH ,1) = lf'nae“'l" ,0) , (E-8)

which follows from relabeling the sum indices and the pro-

perty

naﬁ(1x|t k) = 07K [2k) . (e
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Detining
(1) L4 ' -
o~ = 5' naa(z,ou ,0) (E-10)
(2) _ . -
Gog 5, naa(z,ou ,1) (E-11)

we only need show that
finite crystal to show
Eq. (E-1 , produces no
This being the case it

not contribute to any o

proceed to show that G

finite crystal. First

allows a relabeling of

(1)
Gdﬁ

(2)
GQ(B =

Next consider the sum

Lyg (K

The diagonal terms are

Eq. (1.154)

these terms are zero for an in-

that the homogeneous deformation,
dipole~dipole interaction energy.
then follows that the dipoles do
f the elastic constants. We now

1) (2)
ap and Gaﬁ

are zero for an in-
note that translation invariarnce

the sums so that

E: Qg (4,0[0,0) (E~12)
f’ Qaa(z,llo,O) . (E-13)
4

- % Q4 (2¢]0,0) . (E-14)

easily siiown to be zerc since using

DR S
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, [R3a0)+R3 (4x)+R2 (4x)-3R2 (40) ]

Ly (k) =Z =
11 ) l'ﬁ(u)l?’

(E-15)
Using the position vectors Eq. (1.5) and relabeling sum

indicea we note that

2 2 2.,
pr 2 e B B g
L |R(ax) | L |R(ax) | L Ry

so that we have
Lig(x) = 0. (E=17)
Similar reasoning applies to show that
L22(K) = L33(K) =0 . (E-18)

Now con_ider the off-diagonal term

3RI(LK)R251K)
y |2

Lyg(¥) = >z - (E-19)

) |R(4x

To show that thiz sum is zero, we can use a parity argu-
ment. Noting that we can relabel the summation variables

by the transformation
Ry (4K) Ry (L7K) (E-208)
Ro(£K) = =Ry, (LK) (E-20b)

\ = - ‘ ‘Ew
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we have the new variables

Ly = Ly (E-21a)
‘é = ~(4y+hy+lq+K) (E-21b)
1.5 - 4 (E-21c)

Noting that
IR(ee)| = |Re’0) ] (E-22)

we have that

3R, (LK)R, (LK)
Lyp(x) =Z° + =1 2, (E-23)
P IR (1) |
40 that

Lyg(K) = =Lin(k) = 0 . (E-24)

Similar arguments apply to the other off-diagonal elements

so that
Lg(®) =0 . (E-20)
Since
1) _ -
G % L g (0) (E-21)
o(2)

B = % L), (E-22)
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we have that

(1) _ (2) _ oy
¢lg) =ag) = 0. (E-23)

Thus we find that under the homogeneous deformation, Eq.

(E-l) ’

dd

Since the homogeneous deformation produces no dipole con~-
tribution to the potential energy, one can conclude that
the elastic constants are novt affected by the nonlocal
dipole-dipole interaction. This is so since a homogeneous
deformation is sufficient to determine the elastic con-
stants.2

It is now easy to show that the Raman frequency is

also unaffected by the nonlocal dipoles. From Egqs. (1.159)

and (1.161-1,164) we obtain at kK = 0 that

2
32p
dd > 1 s
Das(o,olk-O) - "E;M‘? Qg (4,0[0,0
32p2
TV = Qas(l,llo,o) ’ (E-24)
s y
and
dd > dd >
DdB(O,OIk-O) - -Dde(o,llk=0) . (E-25)

Using Eqs. (E-14) and (E-20) we have
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dd o>
D g (KX |k=0) = ? . (E=26)

Thus we see that the dipoles do not contribute to the Raman
frequency.

Similar types of symmetry arguments can be used to
show the properties stated in Chapter 1, though the details

are too lengthy .o present here.
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Appendix F

PROCF THAT aé”ux) AND léz)(l.n) ARE ZERO
IN THE DIAMOND STRUCTURE

We begin by showing that 021)(LK) has the same trans-
formation properties as the first order atomic force con-
stants. This is obviously true since an isotropic homogen-
eous deformation does not change the symmetry of the cry-
stal.

Using the definition Eq. (2.23c)

Dy = T @ (LK|L'K*)R_(L'K") , (F=1)
o o0, of B
LK B
we aprply the transformation law Eq. (1.35) for the second

order force constants under the symmetry operation Eq.

(1.34) to obtain

(1) - .
87 (LK) L’E'a E‘aussv L (22767 X
x[% Sg Ry (476 )+vg (8)+Ry (m)] , (F-2)
or
(1) - . s
¢, 7 (LK) %6 50 S S8u580 0 L (e[ 2% )n (L% ")
+ Z s , (ax e« )[v (E)+Rg (m) ] .

L’K'B Ly du SV
(F=3)
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Using the infinitesimal translation invariance condition1
Z ¥ (Ux|L’xk") =0, (F-4)
Lok o

Eq. (F=3) becomes

(1) - L4 ’ ’ ’
¢."7 (LK) z;x’a jcsaussvsso'uv(“"' K IR_(L7k") .

(F=5)
Now we note that since § is a real orthogonal matrix
(¥=6)

-1
svﬁsﬁc 6uo ’

therefore

L) 1) = ; . .
¢ 7 (LK) z:ZK' ufcs"“ vo°uu(““ K IR_(4°¢)
(F=T7)
or
eV k) =T s S & (UK[LKTIR (L7K7)
o " {08 L'K‘V " 1%
(F=8)
By the definition Eq. (F-1)
¢t (46) = T & (4x[L°KDR (L7K%) (F=9)
" By v '

LKy

so that
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1) (1)

- . =10
8,77 (LK) Eswiu (LK) (F-10)
Eq. (F-10) is the same transformation law obeyed by the
first order atomic force constants.z Similar reascning
can be used to show that Qéz)(zx) as defined by Eq.
(2.23d) transforms as

'(2)

Bk - swaiz’(u) . (F-11)
"

Now that we have established the transformation law,
we apply the inversion operation Eqs. (1.36) and (1.37)

to obtain

eV, - - e B0 . (F-12)

a
Lattice translation invariance gives

¢ (1) (44m,x) = le)(z,x) , (F-13)

so that the coefficients are independent of the unit cell

index
¢ D) (k) = e o,k . (F-14)
o4 a

combining Eqs. (F-12) and (F-14) we have

(1) o 8 (®) N6 B ¢ O
¢ 7,0 ¥, 7(0,0) 8 ,77(0,1) ¢, (e,1)

(F=-15)
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The simple two-fold rotation element3 °2x

1 0 o
§, =jo -1 o}, (F=16)
2«
0 o0 -1
gives
e{V 0,0y = - 250,00 = 0, (F-17a)
and
22 0,00 = ~ 951 (0,00 = 0 . (F-17b)
The further operation 62y
«1 0 0
§, ={o1 o], (F=18)
2y
\0 0 -1
gives
-
210,00 = - 91 (0,0) = 0 . (F-19)

Eqs. (F-17) and (F-19) together with Eq. (F-15) show that

eﬁl’(zx) -0 . (F- )
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Since 022)(1K) obeys the same transformation law,
it follows that it also is zero in .he diamond structure.
Note that the proof only applies to an infinite crystal,

since surfaces break the translation invariance condition

Eq. (F-13).
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