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n	 SECTION 1

INTRODUCTION

The present report includes work performed during the third year

of a NASA-Lewis grant to study the energy absorption mechanisms during

crack propagation in metal matrix composites.

The report of the first-year work (1] contains a literature review

covering the general area of micromechanics analyses of unidirectional

composites, as related to the present study. During the first year,

an existing elastoplastic, generalized plane strain, finite element

micromechanics analysis (2-4) was modified to include crack propagation,

f011OVing the general procedure developed earlier by Adams (5-81. Both

long'&tudinal and transverse cross section models were used to study the

influence of a broken fiber on inelastic stress distributions.

During the second-year study reported in Reference [9], the generalized

plane strain crack propagation procedure was refined, and detailed results

obtained. The analysis was also reformulated for an axisymmetri.c model.

This alternate two-dimensional analysis retained all of the general

featcree of the generalized plane strain version. Its intended primary

application was to permit the study of a simple model composite consisting

of a single broken fiber in a circular cylindrical sheath of matrix material.

The boundary condition selected during a crack propagation increment was

constant applied stress. While a realistic condition, it resulted in a

crack propagatii,g catastropically once it initiated.

During the present third-year study, this boundary condition has been

altered so that a constant boundary displacement can be maintained during

x`
C

i
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an increment of propagation. Thu g , the applied stress reduces as the

crack pro?agates, resulting in crack arrestment. This boundary condition

is representative of what can be readily simulated in a laboratory

environment, using a testing machine in its displacement-control mode.

Having the ability to simulate the propagation of a stable crack,

the present report focuses on the energy dissipation and fracture response

of a single broken boron fiber in a sheath of aluminum matrix material, as a

composite model which could be readily correlated with experimental data.
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SECTION 2

AXISYMMETRIC FINITE ELEMENT MODEL

One purpose of the axisymmetric model as described in Reference [9j

was to provide supp,,)rting correlations with the two-dimensional, generalized

plane strain longitudinal and traverse cross section models. However, an

even more important purpose ' s to provide analytical results for comparison

with proposed experiments under similar conditions, i.e., a single broken

boron fiber surrounded by a uniform annular sheath of aluminum matrix, as

shown In Figure 1. The formulation of the required ax{symmetric element

and no corresponding computer program are presented in Reference [9]. The

finite element and the computer program were fully developed and some pre-

11w. 4 nary results were presented. However, it was noted that the ,vitiation

of a crack in the single fiber axisymmetric model led almost immediately ro

a catastropic failure of the composite. Thus, the results were not useful

from an experimental correlation point of view, which requires the deter-

mination of measurable quantitios such as crack opening displacements and

surface strains during the process of crack extension. For experimental

verification purposes, a constant boundary displacement crack propagation:

scheme has been implemented in the program during the present study, which

ensures stable crack propagation.

It was also felt that the number of elements used in the previous

study [9] was inadequate to represent the high stress gradients which occur

near broken fiber ends. A refined model was evolved, shown in Figure 2,

having 840 elemenLa, nearly 400 of which are concentrated near the broken

fiber end. An automated triangular element mesh generaticn routine [10]

has been implemented for more accurate and efficient grid data generation.

6
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Figure 1. Axisymmetric Analysis Model of a Single Broken Fiber in a
Sheath of Matrix Material



tiliZea

s

i

r

r



b

A special double node concept has been used at the junction of the

broken fiber and and the surrounding Matrix, as shown in Figure 3, to more

accurately represent actual physical conditions. A routine h"s been

implemented in the main program which automatically regenerates the mesh

data accounting for the double nodes.

2.1 Constant Displacement Loading Scheme

The catastropic failures observed in the previous model r9j were

attributed to the fast that the crack initiated by the first failure of

an element led to failure of additional elements during the process of

transferring the reaction loads of the failed element to the adjacent

elements. Further failure of a very large number of elements was observed

during the process of reaction load transf rer of the fLiled elements,

growing the crack r)pidly to the edge of the model at the same applied

load which initiated the fBret failure.

A simple scheme was developed during the present study which prevents

such rarid growth of the crack. In this new scheme the loaded boundary of

the specimen is constrained from further movement during the ensuing crack

propagation after initiation. The boundary is held at constant displacement

until a state of equilibrium is attained, i.e., a stress state at which the

ruction loads of failed elements applied to adjacent elements do not 'lend

to any further failure of elements. The applied loads are automatically

continuously reduced during crack propagation to maintain eq.ilibrium.

The procedure adopted in the computer program for the constant

..isplacement condition is as follows. After assembling the stiffnesses of

each of the individual elements into a banded global stiffness matrix of

the form [2]
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where (F] is the load vector, {u} ir, the displacement vector, and (K) is

the global dtiffness matrix.

The maintenance of a condition of uniform axial displazement of both

fiber and matrix at the loading boundary necessitates the use of the Branca

boundary condition technique [11]. This technique as adapted to the

micromechanics analysis has been explained in detail in References 11. 2, 91.

In this technique, the equations representing the axial displacements of all

loaded boundary nodes are added to the equatiun corresponding to the axial

displacement at the corner of the region of interest (i.e., to the axial

displacement equation representing the extreme right loading edge boundary

node, which is t,umbered last for cinvenience in identifying it).

The constant boundary displacement condition is easily applied by

setting the value of the stiffness in the last equation, which corresponds

to the displacement of the entire loading boundary, to a very large number

after the initiation of the crack. A value of 10
30
 psi has been used in

the present analysis.

The value of the load reduction which results whan the displacement i:=

constrained is obtained by multiplying the displacem?nt 'vector with the

stiffness coefficients corresponding to the last boundary node axial

displacement, i.e.,

(2)
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2.2 Boundary C^nditions

The constant lateral displacement boundary conditions applied in the

original version of the axi.symnetric model (91 have been removed as they

do not adequately represent physical, conditions. The outer surface of the

matrix is now free to deform in any direction.

During the present analysis, it was found that the common node point

for both fiber and matrix at the outer radius of the broken fiber, on the plane

of the fiber break, led to very high stress concentrations in the fiber

material. The reason for the presence of these largo stress concentrations

was found to be due to the modeled continuity of the supposedly completely

broken fiber at the common node. In order to represent the actual conditions

of total discontinuity of the fiber at the break while retaining the

c)ntinui.ty of the matrix material at the same point, a doubl, node approach

has been incorporated. Two :separate node number; are assigned at tl ►e same

point (Figure 2), one being considered to be asso-iate>d -'th rile fiber

material and the other with the matrix material. The boundary conditions

are applied such that tier~ node point In the fiber is :allowed to have both

axial and radial displacements (i.(-., it Is free to move in aot'h the axial

and radial directions) while tine node point. in the matrix Is constrained

by the symmetry conditions to have only a radial displacement. Actually, both

of these nodes (Nodo-4 8 and 9 in figure 2) should also be constrained to

have the same radial displacement. However, this would lead 1'o the task of

implementing a constraia..ed equation ca pability in the program. By experimenting

with the program it was found that the affect of the absence of this constrained

displacement condition on the results was not significant and could be neglected.

In practice, the element in the matrix at the br , ,.an fiber end typically fails

early in the loading process, making this node ineffective as the element itself

will not be effect.ve any lonrer.



	
_	 YYM1.. wnr	 •-

{A

F

p.

10
4

2.3 Failure Criteria

i

	 The failure of interest in the present study is that of the matrix

material, which is exhibited as a matrix crack initiation at the tip of

the pre-existing crack or fiber break. This crack: then propagates with

increasing applied load, corresponding to successive failures of finite

elements in the vicinity of the crack t

The matrix is typically an isotropic material (although the analysis

is not restricted to this assumption). There are a considerable number

of failure criteria available,many of which have been used in connection

with composite material analyses.

In the prior version of the present axisymmetric model analysis [1, 91,

an octahedral shear stress failure criterion was used. In the present

study, it was found that this failure criterion did not always lead ;.o

realistic results. Thus, the analysis and related computes program was

`	 modified to permit the selection of any one of six different failure

criteria, at the user's option. These six criteria are presented in Table 1.

Example results and additional discussion will be presented later, in

Section 5 of this report.

The use of the axisymmetric model., with all of these modi^_ications

incorporated, is demonstrated by a series of numerical examples in the

following sections. In the next section, Section 3, the properties of the

boron fiber and aluminum matrix utilized are presented. These are the same

as those used in the two prior reports [1,9]. Thus, direct comparisons can

be made for all results presented here.

	

_	 The axisymmetric finite element model is first applied to a solid aluminum

rodrod contain°Ing a central penny-shaped crack, in Section 4.1. The results are

r!	 compared with those obtained using other (closed form) methods, thus esta-

blishing the performance of the finite element model. Then, in Section 4.2,
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detailed results are presented for various boron/aluminum composite

models, Finally, in Section 4.3, energy absorption associated with crack

propagation is discussed.

L _ _
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Ew SECTION 3

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have

been treated as brittle, linearly elastic materials with isotropic

strength and stiffness properties. The aluminum matrix has also been

considered to be isotropic, but is modeled as an elastoplastic material.

To accomplish this, the actual stress- strain curve of the aluminum alloy

selected is input to the analysis by curve fitting via a Richard-Blacklock

two-parameter equation [21], as discussed in Appendix A-5 of Reference [1].

Thus, at any load level the tangent modulus for any given element can be

computed. This makes possible an accurate representation of the plastic

deformation of the matrix.

Although the nonlinear material properties of any matrix material,

e.g., another aluminum alloy, can readily be incorporated in the analysis,

a 6061-T6 aluminum alloy at 75°F was used in obtaining the present results.

The material properties shown in Table 1 were obtained from Reference [22];

the full range stress-strain curve for determining the curve-fit parameters

used is shown in Figure 4.

Table 2

6061-T6 Aluminum Alloy Matrix Material Piiperties [22]

Young's Modulus E = 10.0 x 10( psi
Poisson's Ratio v = 0.33
Tensile Yield Strength Fty = 36000 psi
Tensile Ultimate Strength Ftu = 4,5000 psi
Coefficient of Thermal Expansion a = 13.0 x 10-6/°F
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The boron fiber properties indicated in Table 3 were obtained from

Reference [23].

Table 3

Boron Fiber Material Properties [23]

Young's Modulus
Poisson's Ratio
Tensile Ultimate Strength
Ultimate Strain

Coefficient of Thermal Expansion

E	 - 60.5 x 1.06 psi
v	 - 0.13
Ftu - FtY - 500,000 psi
,tu - Ftu - 8.264 x 10-3 in./in.

E
a - 9.0 x 106/°F

Strain, E (in./in.)

Figure 4. Typical Full Range Stress-Strain Curve for 6061-T6 Aluminum
Alloy at Room Temperature [22].
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SECTION 4

NUMERICAL RESULTS

4.1 Evaluation of the Axisymmetrie Finite Element Model for Crack Problems
in General

According to linear elastic fracture mechanics (LEFM) theories, a ;rack

will begin to propagate when the amplitude of the stress field in the

immediate vicinity of the crack tip (the stress Intensity factor) reaches

a critical value. Thus, the prediction of stress intensity factors for

different geometric conditions assumes major importance in LEFM theories.

Even though the present finite element model and related computer

progrxim are not limited by linear elasticity assumptions, it was decided

to first evaluate the performance of the model under this most severe case

of singular stresses near the crack tip.

4.1.1 Application of Conventional Elements

A considerablL: amount of work has been done in the area of finite

element applicati3ns to LEFM problems, and a number of two-dimensional and

three-dimensional elements with embedded singularities are now available.

However, conventional elements, even though they do not adequately represent

the singular state of stress, can be used for rather accurate estimations of

stress intensity factors by proper interpretation of the results.

There are two different techniques for calculating stress intensity

factors from conventional element solutions. The first technique requires a

very fine grid near the crack tip to obtain a very accurate description of

the displacement field. These displacements are then substituted into the

classical continuum solution to obtain the stress intensity factors. In

the second technique, the strain energy of the system with a crack 1;
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calculated for two slightly different crack lengths. The strain energy

release rate during the crack extension gives the stress intensity factors

directly.

4.1.2 Axiuvmmetric Crack Problems

The two types of axisymmetric cracks in an axisymmetric body that can

be analyzed using the axisymmetric finite element method are a central

penny-shaped crack and a circumferuatial crack. In the present verification

example, only a central penny-shaped crack in an aluminum rod subjected to

axial tension will be utilized.

The basic equations of linear fracture mechanics tare [11,241

K
0  - ---- I cos( +/2) [l - sin( /2)sin(30/2) 1

(2p)

K
az - 

(2P) 

cos012)[1 + sin(Q/2)sin(30/2)1

K

Trz -
	

1 
sin (Q/2)cos(0/2)cos(3Q/2)	 (3)

(2P)`

K (2p)	

(5aar	 I((2 [(5 - 8v)cos(Q/2)-cos(3^/2)] + 211 (1-\ , )( • os ^ +	 .

K (2P1^
aPVul - I(2	 ((7-8v)sin(0/2)-sin M/2)1 -2G sin p +

where

KI - stress intensity factor

P, ^ - polar coord.nates, as shown in Figure 5

G - shear modulus, v - Poisson's ratio

a - coefficient of second term in the asymptotic expansion [251

orr' ort' T
rz - radial, axial and shear stresses

ur , u  - radial and axial displacement components
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Figure 5. Coordinate System used in Equation (3) and Description of
Geometric Parameters used in Equation (4)
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The stress intensity factor K  is calculated from the expressions for

u  and u  by substituting corresponding val.ies of u  and u  obtained from

the finite element volution.

For the above case of a central penny-shaped crack in an isotropic

thick cylinder subjected to Mode I type loading, there is also a closed

form solution available for stress intensity factor, as follows [26-28]:

2	 3
K	 o^ 

Abc 
2 [1 + a - 5a I + 0.268 C	 (4)

I	 1-(a/b)2 
	 n	 2b	 8b2 J	 b3 -

where a, b and c are geometric parameters, as shown in Figure 5.

4.1.3 Stress latensity Factors

Penny-shaped cracks of three different radii were analyzed. The

overall finite element grid geometry was maintained; the radius of the

crack was varied by changing only the boundary conditions. No effort was

made to concentrate more elements near the crack tip as the purpose of

this linear elastic fracture mechanics example was not so much to

accurately determine the stress intensity factor, but rather to evaluate

the finite element model to be subsequently used for studying composite

behavior. Even better estimates of stress intensity factors would have

been possible if that had been the primary purpose.

The estimated stress intensity factors calculated using the present

finite element model, and the corresponding values obtained using the

closed form solution of Eq. (4),are presented in Table 4.



ra/rb
(see Fig. 5)

0.25

0.46

0.84

1.9

Table 4

Stress Intensity Factors

KI/v
present fin to	 closed form solut
element ana ysis	 (Ea. 4)

	

0.531	 1	 0.819

	

0.809	 1	 1.112

	

1.647	 1	 1.698

Since the stress intensity factor y are calculated using the displace-

ment cccnpon;ents obtained from the finite element solution, they are very

sensitive to the accuracy of the displacement field. Since the constant

strain triangular element only allows linear variations of displacements

within each element, a better representation of the displacement field

can be achieved by having a larger number of smaller elements near the

crack tip.

4.1.4 Inelastic Crack Propagation in an Aluminum Bar

Having verified the accuracy of the axisymmetric finite element analysis

and related computer program in predicting the high localized stress concen-

trations at the crack tip of a homogeneous, linearly elastic material, Rs

presented in Section 4.1.3, the capability of the analysis to model inelastic

material response and crack propagation was exercised. All of the modifi-

cations described in Section 2 were incorporated.

The example of the penny-shaped crack in an aluminum bar of circular

cross section, used in Sections 4.1.1 through 4.1.3, was extended by

increasing the applied axial stress to cause inelastic material response

and then crack propagation to failure. The stress-strain response predicted

is presented in Figure 6. It should be noted that the stress plotted is the

axial stress applied at a large distance from the crack site, i.e., the total
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applied load divided by the gross cross-sectional area. The first abrupt

drop in applied axial stream corresponds to the initiation of crack growth,

which becomes at-reuted as the applied stress drops during the constant

boundary displacement crack grrwth increment. The applied stress to then

subsequently increased as additional axial loading increments are applied,

leading to additional increments of crack growth, until the crack props-

slaters completely outward across the entire cross section.

4.2 Crack propagation in a Borou'Aluminum Model Composite

The constituent material properties presented in Section 3 were utilized.

The single broken fiber model is shown in Figure 1, and the finite element

grid utilized is presented in Figures 2 and 3.

The variable studied was the thickness of the aluminum sheath surrounding

the broken boron fiber. This has been defined, as in the previous report [91j,

as the ratio of the radius of the fiber to the radius of the matrix sheath,

I.e., rf/ran. Three arbitrary radius ratios were analyzed, viz, rf/rm . 0.25,

0.46, and 0.84, which correspond to fiber volume contents of 6.15, 21.2,

and 70.6 percent, respectively.

As in the prior work, no attempt was made to model thermal stress

effects due tc. fabrication processes, although the analysis has this

capability. The mr.xi.mum normal stress failure criterton was used as governing

the crack propagation process (see Table 1).

Results are presented in Figure 7. AF can be seen, there is a considerable

amount of stable crack propagation, as indicated by the many abrupt drops in

the applied axial stress. This increased with increasing thickness of the

aluminum matrix sheath, as would be expected. Since the area under the

stress-strp "a curve is proportional to the energy absorption capacity of the

composite, this stable crack growth is obviously beneficial.

r

ar
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AVERAGE AXIAL STRAIN, i'(10-3)
Figure 7. Stress-Strain Response of a Boron/Aluminum Composite with

Broken Fiber Under an Axial Applied Stress
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Pictnr ial representations of the crack propagation patterns for

each of this . f /rm ratios of Figure 7 are shown in Figure 8. The failed

elements are shown shaded. The two values of applied axial stress (in

units of psi) given under each diagram indicate the stress level. (from

111

	

	

Figure 7) at which that increment of crack propagation initiated, and

arrested. As can be seen, the cracks tended to grow radially outward, with

a slight tendency to also grow along the fiber-matrix interface.

The predicted ultimate axial st-ength for each of the r f /rm ratios

can also be obtained from Figure 7. These three values are plotted in

Figure 9. The value for r f /rm = 0 represents the ultimate strength of

the aluminum matrix (Figure 4 and Table 2), viz, 45 ksi. The value for

rf/rm = 1.0 of zero corresponds to the trivial case of a broken fiber

and no aluminum matrix.

While a l impar relation between ultimate strength and rf/rm is not

necessary foL phis nonlinear material response example, the data of

Figure 9 do indicate a relatively linear relation.

An important, longer term objective of the present study is to provide

numerical results which can be used to correlate with experimental work as

it becomes available. Crack opening displacement would be one such

experimental measurement (using X-ray or some similar technique for Lhe

present case of the optically opaque aluminum matrix). Figure 10 is a

plot of crack opening displacement (defined here as the distance between

the two ends of the fiber at the break), for all three r f /rm ratios. As can

be seen, Lhe predicted displacement values are large enough (in thousandths

of an inch) to be readily measured experimentally.

z
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Figure 8. Crack Propagation in a Boron/Aluminum Composite Model as Predicted
By the Maximum Normal Stress Theory (stresses in psi)
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Figure 8 (continued)
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ar and matrix, for the case rf/rm - 0.46, on cross sections
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It would be simpler, of course, to measure the surface displacement

(strain) of the broken-fiber model at the plane of the fiber break. This

measurement could be made directly, by using a strain gage or extensometer.

Predict&d axial strains, e z , on the surface of the aluminum matrix at the

plane of the fiber break, are plotted in Figure 11 for all three rf/rm

ratios. The corresponding circumferential strains, e e , are presented in

Figure 12. The straight lines corresponding to the strain response of

a solid aluminum rod are also given, for comparison purposes.

As can be seen in Figures 11 and 12, the measurement of surface

strains is not a very sensitive method of determining the extent of crack

propagation.

A practical consideration in attempting correlations with experimental

data is how long the numerical model must be to avoid influences of end

effects. It is usually desireable to minimize the length of the model,

in order to reduce the number of finite elements required, and thus to

reduce computing time. The length of the model required can be determined

by selecting a length, and then observing how rapidly the stresses return

to their undisturbed values away from the discontinuity (the fiber break

in the present case). The models used in the present examples were all

4.1 composite model diameters long.

In the case of a single broken fiber in a matrix sheath, the normal

stress in the axial direction on a transverse cross section of the fiber

remote from the discontinuity will be uniform, as will the normal stress

in the matrix sheath. The shear stress will be zero, including the shear

stress at the fiber-matrix interface.

Figure 13 is a plot of the axial normal stress distribution across
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rat increasing distances from the fiber break. The applied axial stress is

4 kst. well within the elastic range of material response. Right at the

{Mane of the break, the axial normal stress in the fiber is zero, by

definition of r ► free surface. However, the stress concentration in the

matrix adjacent to the fibar break is severe, an axial normal stress of

28 ksi being indicated in Figure 13. However, at a distance of about

only one and one-half fiber diameters, the stress distribution in both fiber

and matrix is almost uniform again.

Figure 14 is a plot of the shear stress along the fiber-matrix

interface, plotted as a function of distance in fiber diameters from the

fiber break. It is this shear stress which transfers the applied loading

across the fiber break, via the matrix sheath. As can be seen, the shear

stress builds up very rapidly near the break, but also decays rapidly

with increasing distance from the break. At three fiber diameters, the

shear stress is negligibly small.

The critical fiber length for complete load transfer, as predicted

by the simple mechanics of materials models, is

	

9 c 	 1 °f

	

d	 2 T

	

f	 m

where i f is the fiber axial strength and T  is the matrix shear strength;

as discussed by Chamis [29]. For the present boron/aluminum composite,

	

Of . 500 ksl, 	 Tm = 26 ksi, d  . 0.0056 in. Thus, using Eq. (5), R c /d f	7.6,

corresponding to a distance of 4.8 fiber diameters from the fiber break in

Figures 13 and 14. This is in reasonable agreement with the results obtained

in a more rigorous manner in the present study.

The reR ,.:its presented in Figures 13 and 14 do not differ significantly

for other r f /rm ratios. For example, Figures 15 and 16 are contour plots

(5)
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of three different stress components throughout the aluminum matrix,

for rf/rm ratios of 0.25 and 0.84, respectively, for an applied axial

stress of 4 ksi. These are computer-generated contour plots; the

numerical values of the contours, and the identifying symbols, listed in

the legend beneath each plot, are useful in identifying closely spaced

contours.

The octahedral shear stress plots of Figures 15a and 16a are

significant in that this stress is used to define yield in the present

analysis. The contour values have been normalized by dividing by the

yield value of the octahedral shear stress, viz, 16.97 ksi, as indicated

in the caption. As can be seen in both Figures 15a and 16a, the octahedral

shear stresses, although still in the elastic range (the highest normalized

values are less than one), are highly localized at the fiber break. It is

obvious that first yield will occur at this location.

The maximum principal stress is plotted in Figures 15b and 16b. In

the present examples, the maximum normal (i.e., principal) stress failure

criterion (see Table 1) was used, as previously noted. The high axial

normal stress in the aluminum matrix immediately adjacent to the fiber break

(previously indicated in Figure 13 for rf/rm M 0.46) is obvious, as is

the rapid decrease in stress away from this location.

Shear stress contours in the matrix are shown in Figures 15c and 16c.

Again, the stress concentration at the fiber break can be readily observed,

consistent with the plot for rf/rm - 0.46 presented in Figure 14.

The stress contour plots of Figures 15 and 16 were for an i,.ppl.ied axial

stress of only 4 ksi, well within the elastic range of the aluminum matrix

material response (see Figure 4). Figure 17 represents a series of normalized

octahedral shear stress plots for r f/rm . 0.46, for increasing levels of

applied axial stress, well into the range of inelastic material response and

e _
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crack propagation. The normalized values of the octahedral shear stress

contours are generally less than one only Lecaube these plots represent

the state of stress immediately following an increment of crack growth
i

(during which the stresses decrease, as indicated in Figure 7).

Beyond the loading state represented by Figure 17d, the applied

stress continuer, to decrease with continued crack propagation (see Figure 7).

It will be nnrod in Figure 17 that a high stress concentration persists

In the region of the propagating crack, as would be expected.

All of the preceeding numerical results were generated using the

maximum normal stress failure criterion. The applied axial stress at

which the crack initiates, and the ultimate applied stress, are sensitive

to the failure criterion utilized. Six different failure criteria have been

included in the present analysis, as presented in Table 1 of Section 2.3.

Results using each of these theories, for the boron/aluminum composite

model with rf/rm m 0.46, are presented in Table 5.

Much more study will be required to understand the full significance

of the different results obtained. It is obvious, however, that the

considerable differences exhibited in Table 5 indicate that which failure

criterion selected is important, and that it slould be relatively straight-

forward to select the appropriate one, or ones, by correlation with

experiment.

In addition to the variation in predicted stress levels, the

appropriate failure criterion will also be governed by the correlation

between predicted and exper'mentally observed crack propagation patterns.

For example, the maximum normal stress theory :ind the octahedral shear

stress theory, which predict axial tensile ultimate strengths of 21.7 and

24.2 ksi, respectively (Table 5), both indicate a Mode I (opening) failure
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T`ble 5

Influence of Assumed Failure Theory on Crack Propagation

in a Boron /Aluminum Composite, r f/r. - 0.46

Failure Theory
Crack Initiation

Stress
(psi)

__ ^.-

Ultimate Strength
si

1.	 Maximum Normal Stress 5,666 21	 0-96

2.	 Maximum Shear Stress 4,848 36,038

3.	 Octahedral Shear Stress 7,923 249196

4.	 Tsai-Hill 4,693 40,356

5.	 Hoffman 2,262 14,750

6.	 Tsai-Wu (Modified) 2,497 14,225
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mode. The maximuw normal stress theory results were presented in Figure S.

The octahedral shear stress theory results are shown in Figure 18. Mode II

(shear) failure is predominate when the maximum shear stress or Tsai-Hill

failure criterion is assumed, the predicted ultimate rtrengths being 36.0

and 40.4 ksi, respectively. The Hoffman and Tsai-Wu failure criteria,

both of which exhibit predominantly Model I type failures, predicted ultimate

strengths of 14.8 and 14.2 ksi, respectively. Figure 19 represents the

crack propagation pattern predicted using the maximum shear stress failure

criterion. As can be seen, there is a strong tendency for the crack to

propagate along the fiber-matrix interface, due to the high shear stress

In this region (as shown in Figure 14). Of course, for complete failure

(fracture) of the model composite to occur due to the applied axial

tensile stress, the matrix crack must eventually propagate to the

outer radius, as shown in the last sketch of Figure 19.

3
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Figure 18. Crack Propagation in a Boron/Aluminum Composite Model as Predicted

by the Octahedral Shear Stress Theory, rg/rm-O.46 (stresses in psi)
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Figure 19. Crack Propagation in a Boron/Aluminum Composite Model as Predicted

by the Maximum Shear Stress Theory, rg/rm . 0.46 (stresses in psi)
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4.3 Energy of Crack Propagation in a Model Composite

a

An estimation of the absorption of energy associated with crack

propagation is an important aspect of any fracture mechanics study. A

significant amount of information can be obtained by studying the variation

of energy levels during crack propagation

4.3.1 Evaluation of Fracture Energy

The total potential Pry	 V , of a cracked body consists of elastic

strain energy, Up , the energy absorbed in the plastic region, U p , surface

energy, U
,S

, and the ;potential energy of external loads, 0. A balance of

these energies during crack propagation, as presented by Griffith, Irwin,

and Orowan [30] forms the basis of linear elastic fracture mechanics (LF.FM).

The above criterion states that a crack propagates when the energy

release rate, G, is equal to the energy absorbed, R, i.e., G=R.

Since the energy release rate and the stress intensity factor, K,

are related when G =Gc (critical value of G), the corresponding Stress

Intensity factor is Kc . This critical K value i^, the so-called fracture

toughness (i.e., resistance to crick growth). A significant amount of

work has been done to characterize the fracture toughness as a material

property. It has been observed that the crack resisting parameter R i5

not a constant, but increases as the crack extends due to the increase in

the plastic enclave absorbing ,io:e and m,re energy. The fact that R

is not a constant, but increases as the crack extends, explains the observed

stable crack growth. Plots of G and R as functions of crack length a (see

Figure 5), for a range of initial crack lengths, are known as R.-curves.

The R-curves are very useful in understanding the behaviour of crack
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4.3.2 Calculation of Total Potential Evert► and Energy Release Rate

In the present finite element analysis, the total potential energy is

calculated at each load increment. The total potential energy, V, is

Riven as

V -U+9	 (6)

where U is the total strain energy (Ue plus Up ) and 0 is the potential

energy of the external loads. Surface cn prgy is assumed negli3ible.

The total strain energy U is given by

n

U - iYl I V	 Uoi dVi	(7)i

where U
oi 

- strain energy density in a finite element

- A{o}T{de}

n - number of finite elements

Vi - volume of an element

The potential energy of the external loads is

si - —YP 1 6^	 (8)

where 6^ is the displacement of the loaded boundary point J.

The energy release rate, G, is then calculated as

G _ V 	 V2	 (9)
As

where V1 is the total potential energy at the initiation of the crack

and V2 is the total potential energy after the crack has extended an

increment Da.

Figure 20 shows the variations cf total potential energy in the

boron /aluminum, broken-fiber model (figure 1) as the crack extends.
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Since, in the present finite element analysis, cracks extend in finite

lengths (equal to the size of the failed element), a step variation ie

observed. The dashed lines indicate the smoothed curves.

In Figure. 21, R-curves corresponding to thr%e different initial

t

crack lengths (equal to the broken fiber radius) are plotted. It can be
0

observed that the energy release (i.e., the energy absorbed) is higher

for the smaller initial crack length, and attains an unstable condition

earlier than for the larger initial crack length geometries.
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Figure 21. Energy Absorption During Crack Propagation in a Boron/Aluminum
Axisymmetric Model Composite
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SECTION 5

DISCUSSION

The primary purpose in developing the axisymmetric analysis, with

inelastic crack propagation capability, was to permit the cortelat.on of

analytical predictions of crack propagation and failure with experimental

measurements. It is the experimental work which encourages the use of a

simple composite model. By using a simple test specimen, experimental

measurements are relatively easy to perform, and interpret.

At the present time, experimental data for the boron/aluminum

composite, single broken fiber model is not yet available. The original

plan was that NASA-Lewis would generate this Bata. It now appears that

this may not be possible. One alternative is to undertake this as a

subsequent study at the University of Wyoming.

Another alternative is to model an epoxy-matrix composite, and then

correlate the predicted response with available single fiber composite

data. For example, preliminary discussions with Drzal [31) indicate that

he may have suitable data for a graphite/epoxy model composite. To

establish that the present analysis will perform as well in predicting

stable crack propagation in an epoxy matrix, a much less ductile material

than the aluminum matrix used in obtaining the present results,another

serieF of computer runs were made, for bosh glass/epoxy and graphite/epoxy.

These results are summarized in Reference [32]. In general, the results

obtained were similar to those presented here, in the sense of stable cracks

being propagated. One obvious and distinct advantage of using a polymer

matrix is its transparency. The propagating crack can be observed directly,

and measurements of such parameters as crack opening displacement (the gap
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width between the ends of the broken fiber) can be made optically. For

the metal matrix composite model, an X-ray technique or something similar

will be required.
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