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PREFACE

This annual Technical Report presents research conducted during
the third year of NASA-Lewis Grant NSG-3217. The NASA-Lewis Technical
Monitor since the inception of this zrant has been Dr. J. A. DiCarlo
of the Materials Sci~nce Branch.

This study 18 being performed within the Composite Materials
Research Group at the University of Wyoming. The Principal Investigator
is Dr. Donald F. Adams, Professor of Mechanical Engineering. Mr. J. M.
Mahishi, Ph.D. student Jn Mechanical Engineering, performed the work
contained herein, as part of his research assis.antshi{p duties within

the Composite Macterials Research Group.
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SECTION 1

INTRODUCTTON

The present report includes work performed during the third year ;

of a NASA-Lewis grant to study the energy absorption mechanisms during
crack propagation in metal matrix composites.

The report of the first-year work [1l] contains a literature review
covering the general area of micromechanics analyses of unidirectional
composites, as related to the present study. During the first year,
an existing elastoplastic, generalized plane strain, finite element
micromechanics analysis [2-4] was modified to include crack propagation,
folloving the gereral procedure developed earlier by Adams [5-8]). Both
long.tudinal and transverse cross section models were used to study the
influence of & broken fiber on inelastic stress Jdistributions,

During the second-year study reported in Reference [9], the generalized
plane strain crack propagation procedure was refined, and detailed results
obtained. The analysis wuas also reformulated for an axisymmetric model.
This alternate two-dimensional analysis retained all of the general
featuves of the generalized plane s:rain version. Its intended primary
application was to permit the study of a simple model composite consisting
of a single broken fiber in a circular cylindrical sheath of matrix material.
The boundary condition selected during a crack propagation increment was
constant applied stress. While a realistic condition, it resulted in a
crack propagating catastropically once 1t initiated.

During the present third-year study, this boundary condition has been

altered so that a constant boundary displacement can be maintained during
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Thus, the applied stress reduces as the

e
™

an increment of propagation,

o crack propagates, rosulting in crack arrestment. This boundary condition

is representative of what can be readily simulated in a laboratory

: environmernt, using a testing machine in its displacement-control mode.
Ei ' Having the ability to simulate the propagation of a stable crack,
E the present report focuses on the energy dissipation »nd fracture response

of a single broken boron fiber in a sheath of aluminum matrix material, as a

' composite model which could be readily correlated with experimental data,
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SECTION 2

AXISYMMETRIC FINITE ELEMENT MODEL

One purpose of the axisymmetric modei as described in Reference [9)
was to provide supporting correlations with the two-dimensional, generalized
plane strain longitudinal and traverse cross section models. However, an
even more important purpose 's to provide analytical results for comparison
with proposed experiments under similar conditions, {.e., a single broken
boron fiber surrounded by a uniform annular sheath of aluminum matrix, as
shown In Figure 1. The formulation of the required axtsymmetric element
and the corresponding computer program are presented in Reference [9]. The
finite element and the computer program were fully developed and some pre-
lim*nary results were presented. However, it was noted that the initiation
of a crack in the siugle filber axisymmetric model led almost immediately to
a catastropic failure of the composite. Thus, the results were not useful
from an experimental correlation point of view, which requires the deter-
mination of measurable quantities such as crack opening displacements and
surface strains during the process of crack extensfon. For experimental
verification purposes, a constant boundary displacement crack propagation
scheme has been implemented in the program during the present study, which
ensures stable crack propagation.

It was also felt that the number of elements used in the previous
study [9] was inadequate to represent the high stress gradients which occur
near broken fiber ends. A refined model was evolved, shown in Figure 2,
having 840 elemenis, nearly 400 of which are concentrated near the broken
fiber end. An automated triangular elemerit mesh generaticn routine [10]

has been implemented for more accurate and efficient grid data generation.

L W




Y T T I TR P e g
,"' g @

T R

Plane of
Fiber Break

W

Aluminum
Matrix
Boron Fiber

Figure 1. Axisymmetric Analysis Model of a Single Broken Fiber in a

Sheath of Matrix Material
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Figure 2. Finite Element Grid Utilized
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A special double node concepi has been used at the junction of the
broken fiber end and the surrounding matrix, as shown in Figure 3, to more
accurately represent actual physical conditions. A routine hus been
implemented in the main program which automaticaii, regenerates the mesh

data accounting for the double nodes.

2.1 Constant Displsacement Loading Scheme

The catastropic failures observed in the previous model (9]} were
attributed to the fa:t that the crack initiated by the first fauilure of
an element led to failure of additional elements during the process of
transferring the reaction loads of the failed element to the adjacent
elements. Further failure of a very large nunber of elements was observed
during the process of reaction load transfur of the fuiled elements,
growing the crack ripidly to the edge of the model ut the same applied
load which initiated the firdt failure,

A simple scheme was developed during the present study which prevents
such rarid growth of the crack. 1In this new scheme the loaded boundary of
the specimen 1s constrained from further movement during the ensuing crack
propagation after initiation. The boundary 1s held at constant displacement
until a state of equilibrium is attained, 1.e., a stress state at which the
reisction loads of failed elements applied to adjacent elements do not lead
to any further failure of elements. The applied loads are automatically
continuously reduced during crack propagation to maintain eq.ilibrium.

The procedure adopted in the computer program for the constant
.isplacement condition is as follows. After assembling the stiffnesses of
each of the individual elements into a banded global stiffness matrix of

the form [2]
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where (F} 18 the load vector, {u} ir. the displacement vector, and [K) is
the global stiffness matrix.

The maintenance of a condition of uniform axial displacement of both
fiber and matrix at the loading boundary necessitates the use of the Branca

boundary condition technique [11]. This technique as adapted to the

micromechanics analysis has been explained in detail in References {1, 2, 9].

In this technique, the equations representing the axial displacements of all
loaded boundary nodes are added to the equatiun corresponding to the axial
displacement at the cornar of the region of interest (i.e., tuv che axial
displacement equation representing the extreme right loading edge boundary
node, which 18 uumbered last for cunvenience in identifying it).

The constant boundary displacement condition is easily applied by
setting the value of the stiffness in the jast equation, which corresponds
to the displacement of the entire loading boundary, to a very large number
after the Iinitiation of the crack. A value of ]O30 psi has been used in
the present analysis.

The value of the load reduction which results when the displacement i:
constrained is obtained by multiplying the displacem=nt ector with the

stiffness coefficients corresponding to the last boundary node axial

displacement, i.e.,

{Fz} = [K]){u} (2)
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2.2 Boundary C~nditlons

The constant lateral displacement boundary conditions applied in the
original version of the axisymmetric model [9] have been removed as they
do not adequately represent physical conditions. The outer surface of the
matrix is now free to deform in any direction.

During the present analysis, it was found that the common node point
for both fiber and matrix at the outer radlius of the broken fibers, on the plane
of the fiber break, led to very high stress concentrations in the fiber
material. The reason for 1he presence of these large stress concentrations
was found to be due to the modaled continuity of the supposedly completely
broken fiber at the common node. In order to represent the actual conditions
of total discontinuity of the {iber at the break while retaining the
continuity of the matrix material at the same point, a doubl. node approach
has been incorporated. Two separate node numbers are assigned at the same
point (Figure 2), one being consldered to be ussociated - ‘th the fiber
material and the other with the matrix material. The boundary conditions
are applied such that the node point in the fiber i{s allowed to have both
axial and radial displacements (lL.e., it Is free to move in voth the axial
and radia! directions) while the node point in the matri{x (s constrained
by the symmetry conditions to have only a radial displacement. Actually, both
of these nodes (Nodez 8 and 9 in Fipure 2) should also be constrained to
have the same radial displacement. However, this would lead to the task of
implementing a constrafied equation cavability in the program. By experimenting
with the program it was found that the affect of the absence of this constrained
displacement condition on the results was not significant and could be neglected.
In practice, the element in the matrix at the br- .»n fiber end typically falls

early in the loading process, making this node ineffective as the element itself

will not be effect:ve any lenper.
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2.3 Fajlure Criteria

The failure of interest in the present study is that of the matrix
material, which is exhibited 2s a matrix crack initiation at the tip of
the pre-existing crack or fiber break. This crack then propagates with
increasing applied load, corresponding to succesaive failures of finite
elements in the vicinity of the crack t

The matrix is typically an isotropic material (although the analysis
is not restricted to this assumption). There are a considerable number

of failure criteria available,many of which have been used in connecticn

with cecmposite material analyses.

In the prior version of the present axisymmetric model analysis [1, 9],
an octahedral shear stress failure critecion was used. In the present
study, it was found that this failure criterion did not always lead to 3
realistic results. Thus, the analysis and related computei program was
modified to permit the selection of any one of six different failure
criteria, at theuser's option. These six criteria are presented in Table 1.

Example results and additional discussion will be presented later, in

Section 5 of this report.

The use of rthe axisymmetric model, with all of these modi.ications

incorporated, is demonstrated by a series of numerical examples in the
following sections. In the next section, Saction 3, the properties of the
boron fiber and aluminum matrix utilized are presented. These are the same !
as those used in the two prior reports [1,9]. Thus, direct comparisons can ;
be made for all results presented here.

The axisymmetric finite element mcdel is first applieﬂ to a solid aluminum
rod containing a central penny-shaped crack, in Section 4.1, The results are
compared with those obtained using other (closed form) methods, thus esta-

blishing the performance of the finite element model. Then, in Section 4.2,
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detailed results are presented for various boron/aluminum composite

models. Finally, in Section 4.3, energy absorption associated with crack

propagation is discussed.
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SECTION 3

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have
been treated as brittle, linearly elastic materials with 1isotropic
strength and stiffness properties. The aluminum matrix has alsc been
considered to be isotropic, but is modeled as an elastoplastic material.
To accomplish this, the actual stress-strain curve of the aluminum alloy
selected 1s input to the analysis by curve fitting via a Richard-Blacklock
two-parameter equation [21], as discussed in Appendix A-5 of Referance [1].
Thus, at any load level the tangent modulus for any given element can be
computed. This makes possible an accurate representation of the plastic
deformation of the matrix,

Although the nonlinear material properties of any matrix material,
e.g., another aluminum alloy, can readily be incorporated in the analysis,
a 6061-T6 aluminum alloy at 75°F was used in obtaining the present results.
The material properties shown in Table 1 were obtained from Reference [22];
the full range stress-strain curve for determining the curve-fit parameters

used 18 shown 1in Figure 4.

Table 2
6061-T6 Aluminum Alloy Matrix Material Piaperties [22]

10.0 x 106 psi

Young's Modulus E =

Poisson's Ratio v = 0.33

Tensile Yield Strength FtY = 36000 psi
Tensile Ult!mate Strength FtY = 45000 psi
Coefficient of Thermal Expansion a = 13.0 x 10-6/°F
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: The boron fiber propertias indicated in Table 3 were obtained from
Reference [23].
\ Table 3
§:
é Boron Fiber Material Froperties {23]
%.
;\ Young's Modulus E = 60.5 x 106 psi
1 Poisson's Ratio v = 0,13
", Tensile Ultimate Strength Ftu = Fty = 500,000 psi
' Ultimate Strain ctU = Ftu = 8,264 x 1073 in./in.
E
Coefficient of Thermal Expansion a = 9,0 x 1¢76/°F
50r
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. Figure 4. Typical Full Range Stress-Strain Curve for 6061-T6 Aluminum
Alloy at Room Temperature [22].

S TR URURAN SOft

T VTS S PPN Ty



RO A e o S i . & ‘3

E A 2 . e e o 5 e AN 0 M 1 S+ T - 4,,..Lw,_,s,.::m1
B )

SECTION &4 :

R ok ‘;'”W

e
e A A g
o

NUMERICAL RESULTS

4.1 Evaluation of the Axisymmetric Finite Element Model for Crack Problems
in General

According to linear elastic fracture mechanics (LEFM) theories, a crack

will begin to propagate when the amplitude of the stress field in the

T et e rner TR ¢ e s o

immediate vicinity of the crack tip (the stress intensity factor) reaches
a critical value., Thus, the prediction of stress intensity factors for

different geometric conditions assumes major importance in LEFM theories.

A

Even though the present finite element model and related computer
program are not limited by linear elasticity assumptions, it was decided

to flrst evaluate the performance of the model under this most severe case

ISR CON T T

L . of singular stresses near the crack tip.

4.1.,1 Application of Conventional Elements

A considerablc amount of work has been done in the area of finite

element applicatiine to LEFM problems, and a number of two-dimensional and

three-dimensional elements with embedded singularities are now available. ii
However, conventional elements, even though they do not adequately represent
the singular state of stress, can be used for rather accurate estimations of
stress intensity factors by proper interpretation of the results.

There are two different techniques for calculating stress intensity
factors from conventional element solutions. The first technique requires a
very fine grid near the crack tip to obtain a very accurate description of
the displacement field. These displacements are then substituted into the

classical continuum solution to obtain the stress intensity factors. 1In

the second techrnique, the strain energy of the system with a crack is
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calculated for two slightly different crack lengtha. The strain energy
release rate during the crack extension gives the stress intensity factors

directly. J

4,1.2 Axisvmmetric Crack Problems

The two types of axisymmatric cracks in an axisymmetric body that can
be analyzed using the axisymmetric finite element method are a central
penny-shaped crack and a circumfervutial crack. In the present verification

example, only a central penny-shaped crack in an aluminum rod subjected to

axial tension will be utilized.

The basic equations of linear fracture machanics are [11,24]

K
g = ———I—g cos($/2)[1 - sin($/2)sin(3¢/2)]

(20)

%

z ()}

cos(¢/2)[1 + sin(¢/2)81in(3¢4/2)]

K

Ly = T in(u/2)cos(6/2)cos(34/2) €} ;
(20)° |
K, (20)? .

u, = —gg— [(5 - Bv)cos(¢/2)-cos(3¢/2)] + Eﬁ(l-v)vos ¢+ .

K (2
u, = —gg— [(7-8v)sin(4/2)-s1n(3¢/2)] -

apv
2G

sin ¢ + ,

where
KI = gtress intensity factor
Py ¢ = polar coord.nates, as shown in Figure 5
G = shear modulus, v = Poirson's ratio

a = coefficlent of second term in theasymptotic expansion [25]

O 4, 0 , T = radial, axial and shear stresses
rr 22 rz

U, ou = radial and axial displacement components
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Figure 5. Coordinate System used in Equation (3) and Description of
Geometric Parameters used in Equation (4)
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The stress intensity factor KI is calculated from the expressions for
u. and u7 by substituting corresponding values of u. and uz obtained from
the finite element ,olution.

For the above case of a central penny-shaped crack in an isotropic

thick cylinder subjected to Mode 1 type loading, there is also a closed

form solution available for stress intensity factor, as follows [26-28]:

2 3
} Y
& KI-—%/-E[%[]+§%-§—9—2~]+0.268%‘I (4)
| 1-(a/b) 8b b~ -

> where a, b and ¢ are geometric parameters, as shown in Figure 5.

4.1.3 Stress Tatensity Factors

Penny-shaped cracks of three different radii were analyzed. The
. overall finite element grid geometry was maintained; the radius of the
crack was varied by changing only the boundary conditions. No effort was
made to concentrate more elements near the crack tip as the purpose of
this linear elastic fracture mechanics example was not so much to
accurately determine the stress intensity factor, but rather to evaluate
the finite element model to be subsequently used for studying composite

behavior. Even better estimates of stress intensity factors would have

been possible if that had been the primary purpose.

The estimated stress intensity factors calculated using the present
finite element model, and the corresponuing values obtained using the

closed form solution of Eq. (4), are presented in Table 4.
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Table 4

Stress Intensity Factors

ra/Th K /o
(see Fig. 5) g{ggggg 5&3 §gis close%gg?r? solution
0.25 0.531 0.819
0.46 0.809 1.112
0.84 1.647 1.698

Since the stress intensity factors are calculated using the displace-
ment ccmponents obtained from the finite element solution, they are very
senslitive to the accuracy of the displacement field. Since the constant
strain triangular element only allows linear variations of displacements
within each element, a better representation of the displacement field
can be achieved by having a larger number of smaller elements near the

crack tip.

4+.1.4 1Inelastic Crack Propagation in an Aluminum Bar

Having verified the accuracy of the axisymmetric finite element analysis
and related computer program in predicting the high localized stress concen-
trations at the crack tip of a homogeneous, linearly elastic material, as
presented in Section 4.1.3, the capability of the analysis to model inelastic
material response and crack propagation was exercised. All of the modifi-
cations described in Section 2 were incorporated.

The example of the penny-shaped crack in an aluminum bar of circular
cross section, used in Sections 4.1.1 through 4.1.3, was extended by

increasing the applied axial stress to cause inelastic material response

and then crack propagation to failure. The stress-strain response predicted

is presented in Figure 6. It should be noted that the stress plotted 1s the

axial stress applied at a large distance from the crack site, i.e., the total

$ons : P b e 7 TR AR

ki




S TR TR RS TR LT T e R T T e T T e T T LR T

2 i
T
o Ez
= nadl §
; b
£ a0}
~
;;: L) A%
Y 4
} g @11, -~ l
| W 30 7/ I
264
U) .,'/ // l
} aJ L It l
™ 20k I :
; < ,IG.O |
\ o l=
F % | 1/1,=084  [5/r,=0.96 :rolrb-O 25
a 0 |
(oW i I
< ! |
i I
’ 0 1a 1 1 I
o) | 2 3 4 5
: AVERAGE AXIAL STRAIN, §,(10%)
l
- Figure 6. Stress-Strain Response uf an Aluminum Circular Rod with
] Central Penny-Shaped Crack

ek aa Al maotde Ve avent MU . e i diw sdlas




=
-

R

»
i

21
applied load divided by the gross cross-sectional area. The first abrupt
drop in applied axial stress corresponds to the initiation of crack growth,
which becomes arrested as the applied stress drops during the constant

boundary displacement crack grewth increment. The applied stress is then

subsequently increcased as additional axial loading increments are applied,
leading to additional increments of crack growth, unti]l the crack propa-

pates completely outward across the entire crosi section.

4.2 Crack Propagation in a Boron’Aluminum Model Composite

The constituent material properties presented in Section 3 were utilized.
The single broken fiber model {s shown in Figure 1, and the finite element
prid utilized is presented in Figures 2 and 3.

The variable studied was the thickness of the aluminum sheath surrounding

the broken boron fiber. This has been defined, as in the previous veport [9],
as the ratio of the radius of the fiber to the radius of the matrix sheath,
{.e., r¢/ry. Three arbitrary radius ratios were analyzed, viz, r¢/ry = 0.25,
0.46, and 0.84, which correspond to fiber volume contents of 6.25, 21.2,
and 70.6 percent, respectively, 4
As in the prior work, no attempt was made to model thermal stress
effects due tc fabrication processes, although the analysis has this
capability. The maximum normal stress fallure criterion was used as governing
the crack propagation process (see Table 1).
Results are presentea in Figure 7. Af can be seen, there 1s a conslderable
amount of stable crack propagation, as indlcated by the many abrupt drops in
the applied axial stress. This increased with increasing thickness of the

aluminum matrix sheath, as would be expected. Since the Area under the

stress-straia curve is proportional to the energy absorption capacity of the

composite, this stable crack growth is obviously beneficial.
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Pictorial representations of the crack propagation pattarns for
each of tha .'f/rm ratios of Figure 7 are shown in Figure 8. The failed
eiements are shown shaded. The two values of applied axial stress (in
units of psi) given under each diagram indicate the stress level (from
Figure 7) at which that increment of crack propagation initiated, and
arrested, As can be seen, the cracks tended to grow radially outward, with
a slight tendency to also grow along the fiber-matrix interface.

The predicted ultimate axial st-ength for each of the rf/rm ratios
can also be obtained from Figure 7. These three values are plotted in
FFigure 9. The value for rf/rm = 0 represents the ultimate strength of
the aluminum matrix (Figure 4 and Table 2), viz, 45 ksi. The value for
ri/tym = 1.0 of zero corresponds to the trivial case of a broken fiber
and no aluminum matrix.

While a linear relation between ultimate strength and r¢/ry 1s not
necessary fo. chis nonlinear material response example, the data of
Figure 9 do indicate a relatively linear relation.

An important, longer term objective of the present study is to provide
numerical results which can be used to correlate with experimental work as
it becomes available. Crack opening displacement would be one such
experimental measurement (using X-ray or some similar technique for _he
present case of the optically opaque aluminum matrix). Filgure 10 is a
plot of crack opening displacement (defined heve as the distance between
the two ends of the fiber at the break), for ali three rf/rm ratios. As can
be seen, the predicted displacement values are large enough (in thousandths

of an inch) to be readily measured experimentally.
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Figure 10. Crack Opening Displacement Versus Applied Axial Stress
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It would be simpler, of course, to meassure the surface displacement
(strain) of the brnken~fiber model at the plane of the fiber break. This
measurement could be made directly, by using a strain gage or extensometer.
Predicted axial strains, €,s ON the surface of the aluminum matrix at the
plane of the fiber break, are plotted in Figure 11 for all three rf/rm
ratios. The corresponding circumferential strains, €qs are presented in
Figure 12. The straight lines corresponding to the strain response of
a solid aluminum rod are also given, for comparison purposes.

As can be seen in Figures 11 and 12, the measurement of surface
strains is not a very sensitive method of determining the extent of crack
propagation,

A practicnl consideration in attempting correlations with experimental
data is how long the numerical model must be to avoid influences of end
effects. It is usually desireable to minimize the length of the model,
in order to reduce the number of finite elements required, and thus to
reduce computing time. The length of the model required can be determined
by selecting a length, and then observing how rapidly tlie stresses return
to their undisturbed values away from the discontinutty (the fiber break
in the present case). The models used in the present examples were all
4.1 composite model diameters long.

In the case of a single broken fiber in a matrix sheath, the normal
stress in the axial direction on a transverse cross section of the fiber
remote from the discontinuity will be uniform, as will the normil stress
in the matrix sheath. The shear stress will be zero, including the shear
stress at the fiber-matrix interface. .

Figure 13 is a plot of the axial normal stress distribution across

both the fiber and matrix, for the case rf/rm = 0,46, on cross sections
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at Increasing distances from the fiber break. The applied axial stress is
4 kni, well within the elastic range of material response. Right at the
plane of the break, the axial normal stress in the fiber is zero, by
definition of n free surface., However, the stress concentration in the
matrix adjacent to the fibar break is severe, an axial normal strees of
28 ksi being indicated in Figure 13. However, at a distance of about
only one and one-half fiber diameters, the stress distribution in both fiber
and matrix is almost uniform again.

Figure 14 1s a plot of the shear stress along the fiber-matrix
intorface, plotted as a function of distance in fiber diameters from the
fiber break. It 1is this shear stress which transfers the applied loading
across the fiber break, via the matrix sheath. As can be seen, the shear
stress builde up very rapidly near the break, but also decays rapidly
with increasing distance from the break. At three fiber diameters, the
shear stress 1s negligibly small.

The criticel fiber length for complete load transfer, as predicted

by the simple mechanics of materials models, is

)
Q

£
T

ln‘

(5)

=%
]
%
N =
2

where Ie is the fiber axial strength and Tm is the matrix shear strength;
as discussed by Chamis [29]. For the present boron/aluminum composite,
g = 500 ksi, Ty ° 26 ksi, df = (0.0056 in. Thus, using Eq. (5), lc/df = ).,6,
corresponding to a distance of 4.8 fiber diameters from the fiber break in
Figures 13 and 14. This is in reasonable agreement with the results obtained
in a more rigorous manner in the present study. *

The resuits presented in Figures 13 and 14 do not differ significantly

for other rf/rm ratios. For exampie, Figures 15 and 16 are contour plots
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BORON/6061 T-6 ALUMINIUM
NORWALIZED OCTAHEDRAL SHEAR STRESS NORWALIZED NRT 1697PSI
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"
1 TEPERRTIRE 0.0 MOISTLRE PERCENT 0.0
AVC STRESS  R= 0.0 2= 4000.0 -
CONTOR VALLES .07 .18 .50 .41 .53 .64

a) Normalized Octahedral Shear Stress

Figure 15. Matrix Stress Contour Plots for rg¢/rym = 0.25
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BORON/6061 T-6 ALUMINIUM

MAXIAN PRINCIPAL STRESS IN KSI

I 1 TEMPERATURE 0.0

AVC. STRESS R= 0.0 2= 4000.0

CONTOUR VRLUES 3.43 6.26 13.40 18.50 23.60 26.4
" x ° [y * z

b) Maximum Princioal Stress

Figure 15 (continued)
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BOR(ON/6061 T-6 ALUMINIUM

SHEAR STRESS IN KSI

L

IN 1 TEMPERATURE 0.0
AVC STRESS R= 0.0 Z= 4000.0
CONTOLR VALUES .89 3.83 6.63 9.82

" | ® [ 3

¢) Shear Stress

Figure 15 (continued)
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a) Normalired Octahedral Shear Stroess

Figure 16. Matrix Stress Contour Plots tor vi/ry = 0.84
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b) Maximum Principal Stress

Figure 16 (continued)
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BORON/6061 T-6 ALUMINIUM

SHEAR STRESS IN KSI

T}
INC 1 TEMPERATURE 0.0

AVC STRESS R= 0.0 Z= 4000.0

CONTOUR VALLES .69 3.98 7.47 11.00 14,50 17.79
L | | [ A | § X
¢) Shear Stress

MOISTURE PERCENT 0.0

Figure 16 (continued)
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of three different stress components throughout the aluminum matrix.

for r¢/ry ratios of 0.25 and 0.84, respectively, for an applied axial
stress of 4 kei. ‘These are computer-generated contour plots; the
numerical values of the contours, and the identifying symbols, listed in
the legend beneath each plot, are useful in identifying closely spaced
contours.

The octahedral shear stress plots of Figures 15a and 16a are
significant in that this stress is used to define yield in the present
analysis. The contour values have been normalized by dividing by the
yield value of the octahedral shear stress, viz, 16.97 ksi, as indicated
in the caption. As can be seen in both Figures 15a and 16a, the cctahedral
shear stresses, although still in the elastic range (the highest normalized
values are less than one), are highly localized at the fiber break. It is
obvious that first yield will occur at this location.

The maximum principal stress is plotted in Figures 15b and 16b. 1In
the present examples, the maximum normal (i.e., principal) stress failure
criterion (see Table 1) was used, as previously noted. The high axial
normal stress in the aluminum matrix immediately adjacent to the fiber break
(previously indicated in Figure 13 for rf/rm = (0.46) is obvious, as is
the rapid decrease in stress away from this location.

Shear stress contours in the matrix are shown in Figures 15c¢ and léc.
Again, the stress concentration at the fiber break can be readily observed,
consistent with the plot for rg/ry = 0.46 presented in Figure 14.

The stress contour plots of Figures 15 and 16 were for an upplied axial
stress of only 4 ksi, well within the elastic range of tp? aluminum matrix

material response (see Figure 4). Figure 17 represents a series of normalized

octahedral shear stress plots for rf/rm = 0,46, for increasing levels of

applied axial stress, well into the range of inelastic material response and
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INC 1 TEMPERATURE 0.0 MOISTURE PERCENT 0.0
AVC STRESS R= 0.0 Z= 4000 .
CONTOUR VALUES .05 .16 .28 .40 .51 .63
" x ° A * x

a) Applied Axial Stress 0, = 4,000 psi

Figure 17. Matrix Octahedral Shear Stress Contour Plots (Normalized) for
rf/ry = 0.46, Showing Influence of Crack Propagation
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BORON/ALUMINIUM
NORNALIZED OCTRHEDRAL SHEAR STRESS NORNALIZED WRT 1687:ASI
00
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b) Applied Axial Stress Bz ~ 8,915 psi

Figure 17 (continued).
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c) Applied Axial Stress Sz = 12,989 psi
Figure 17 (continued)
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INC 8 TEMPERATURE 0.0 MOISTURE PERCENT 0.0
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d) Applied Axial Stress Ez = 13,696 psi

Figure 17 (continued)
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Figure 17 (continued)
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crack propagation. The normalized values of the octahedral shear stress
contours are generally less than one on'y Lecause these plots represent
the state of stress immediately following an increment of crack grewth
(during which the stresses decrease, as indicated in Figure 7).

Beyond the loading state represented by Figure 17d, the applied
stress continues to decrease with continued crack propagation (see Figure 7).

It will be nntgd in Figure 17 that a high stress concentration persists
in the region of the propagating crack, as would be expected.

All of the preceeding numerical results were generated using the
maximum normal stress failure criterion., The applied axial stress at
which the crack initiates, and the ultimate applied stress, are sensitive
to the failure criterion utilized. Six different failure criteria have been
ifncluded in the present analysis, as presented in Table 1 of Section 2.3.
Results using each of these theories, for the boron/aluminum composite
model with r¢/ry = 0.46, are presented in Table 5.

Much more study will be required to understand the full signiffcance
of the different results obtained. It is obvious, however, that the
considerable differences exhibited in Table 5 indfcate that which failure
criterion selected is important, and that 1t stould be relatively straight-
forward to select the appropriate one, or ones, by correlation with
experiment.

In addition to the variation in predicted stress levels, the
appropriate failure criterion will also be governed by the correlation
between predicted and exper mentally observed crack propagation patterns.
For example, the maximum normal stress theory :.nd the octahedral shear
stress theory, which predict axial tensile ultimate stréhgths of 21.7 and

24,2 ksi, respectively (Tabie 5), both indicate a Mode I (opening) failure
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Table 5
Influence of Assumad Failure Theory on Crack Propagation
in a Boron/Aluminum Composite, rflrm = 0.46 :
Crack Initiation -1' ;
Failure Theory Stress Ultimate Strength
(psi) (psi) :
3
1, Maximum Normal Stress 5,666 2) €96 :
2, Maximum Shear Stress 4,848 36,038

;2 3. Octahedral Shear Stress 7,923 24,196 1
1
4., Tsai-Hill 4,693 40,356 {
. 5. Hoffman 2,262 14,750 P

; 6. Teai-Wu (Modified) 2,497 14,225
.
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mode. The maximur normal stress theory results wero prevented in Figure 8,
The octahedral shear stress theory results are shown in Figure 18. Mode II
(shear) failure is predominate when the maximum shear stress or Tsai-Hill
failure criterion is assumed, the predicted ultimate rtrengths being 36.0
and 40.4 ksi, respectively. The Hoffman and Tsai-Wu failure criteria,

both of which exhibit predominently Model I type failures, predicted ultimate
strengths of 14.8 and 14.2 ksi, respectively. Figure 19 represents the
crack propagation pattern predicted using the maximum shear stress failure
criterion. As can be seen, there is a strong tendency for the crack to
propagate along the fiber-matrix interface, due to the high shear stress

in this region (as shown in Figure 14), Of course, for complete failure
(fracture) of the model composite to occur due to the applied axial

tensile stress, the matrix crack must eventually propagate to the

outer radius, as shown in the last sketch of Figure 19.
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Figure 18, Crack Propagation in a Boron/Aluminum Composite Model as Predicted
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4.3 Energy of Crack Propagation in a Model Composite
An estimation of the absorption of energy associated with crack
propagation is an important aspect of any fracture mechanics study. A
significant amount of informatioa can be obtained by studying the variation

of energy levels during crack propagation

4.,3.1 Evaluation of Fracture Energy

The total potential er > V , of a cracked body consists of elastic
strain energy, Up, the energy absorbed in the plastic region, Up, surface
energy, US, and the potential energy of external loads, Q. A balance of
these energies during crack propagation, as presented by Griffith, Irwin,
and Orowan [30] forms the basis of linear elastic fracture mechanics (LEFM).

The above criterion states that a crack propagates when the energy
release rate, G, 1s equal to the energy absorbed, R, i.c., G=R.

Since the energy release rate and the stress intensity factor, K,
are related when G=GC (critical value of G), the corresponding stress
intensity factor is Kc' This critical K value is the so-called fracture
toughness (i.e., resistance to crwck growth). A significant amount of
work has been done to characterize the fracture toughness as a material
preperty. It has been cbserved that the crack resisting parameter R is
not a constant, buf increases as the crack extends due to the increase in
the plastic enclave absorbing .o-e and more energy. The fact that R
is not a constant, but increases as the crack extends, explains the observed
stable crack growth. Plots of G and R as functions of crack length a (see
Figure 5), for a range of initial crack lengths, are known as PF-curves.

The R-curves are very useful in understanding the behavtour of crack

propagation.
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4.3.2 Calculation of Total Potential Eqergy and Energy Release Rate
In the present finite element analysis, the total potential energy is

calculated at each load increment. The total potential energy, V, is
given as

VsU<+20Q (6)
where U is the total strain energy (Ue plus Up) and 2 is the potential
energy of the external loads. Surface cnergy is assumed neglizible.

The total strain energy U is given by

L

where Uoi = gtrain energy density in a finite element

= 30} {de}
n = number of finite elements
Vi = yolume of an element

The potential energy of the external loads is

Q= «)P.8 8
IPy8y (8)
where Gj is the displacement of the loaded boundary point j.
The energy release rate, G, is then calculated as
1o 5% (9)

G = Aa

where Vi is the total potential energy at the initiation of the crack

and V, is the total potential energy after the crack has extended an

2

increment Aa.

Figure 20 shows the variations cf total potential energy in the

boron/aluminum, broken-fiber model (Figure 1) as the crack extends.
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Since, in the present finite element analysis, cracks extend in finite
lengths (equal to the size of the failed element), a step variation is
observed. The dashed 1ines indicate the smoothed curves.

In Figure 21, R-curves corresponding to thrze different initial
crack lengths (equal to the broken fiber radius) are plotted. It can be
observed that the energy release (i.e., the energy absorbed) 1is higher i
for the smaller initial crack length, and attains an unstable condition

earlier than for the larger initial crack length geometries.
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SECTION 5

DISCUSSION

The primary purpose in developing the axisymmetric analyeis, with
inelastic crack propagation capability, was to permit the corielat .on of
analytical predictions of crack propagation and failure with exparimental
measurements. It is the experimental work which encourages the use of a
simple composite model. By using a simple test specimen, experimental
measurements are relatively easy to perform, and interpret.

At the present time, experimental data for the boron/aluminum
composite, single broken fiber model is not yet available. The original
plan was that NASA-Lewis would generate this cata. It now appears that
this may not he possible. One alternative is to undertake this as a
subsequent study at the University of Wyoming.

Another alternative is to model an epoxy-matrix composite, and then
correlate the predicted response with available single fiber composite
data. For example, preliminary discussions with Drzal [31] indicate that
he may have suitable data for a graphite/epoxy model composite. To
establish that the present analysis will perform as well in predicting

stable crack propagation in an epoxy matrix, a much less ductile material

than the aluminum matrix used in obtaining the present results, another

serier of computer runs were made, for both glass/epoxy and graphite/epoxy.

These results are summarized in Reference [32]. In general, the results

obtained were similar to those presented here, in the sense of stable cracks

being propagated. Ore obvious and distinct advantage of using a polymer
matrix is its transparency.

and measurements of such parameters as crack opening displacement (the gap

The propagating crack can be observed directly,
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width between the ends of the brokan fiber) can be made optically. For
the metal matrix composite model, an X-ray technique or something similar

will be required.
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