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BURGERS APPROXIMATION FOR TWO-DIMENSIONAL
FLOW PAST AN ELLIPSE

By
J. Mark Dorrepaal¥

INTRODUCTION

Efforts during this phase of the research have concentrated oa analyz=
ing the Burgers flow past a circular cylinder, comparing predictions of the
Burgers model with those of Oseen flow past a circle, and deriving eract
solutions of the flow equations- for elliptic geometries. The results are
provided in the following sections of this report. The first section fol-
lowing the List of Symbols describes a motivation_for. studying Burgers flow,
Then "Solutisén' outlines & solution technique which works equally well for
Oseen or Burgers flow past a circular cylinder. This is followed by secr
tions which describe the separation.behind the cylinder, the drag experi-
enced by the cylinder, and asymptotic behavior far from the cylinder. The
section titled "Burgers Flow and Os¢en Flow: How Do They Di€fer?" shows
that the predictions of Burgers flow near the cylinder provide a substantial
improvement over those of Oseen flow. Finally, "Burgers Flow Past an El-
liptic Cylinder" gives the formulation and solution of the equations of
motion f,r flow past an ellipse.

LIST OF SYMBOLS

a cylinder radius

A(6) coefficient in least squares fit
Cp drag coefficient

E, coefficient in vorticity expansion

*.sgociate Professor, Department of Mathematical Sciences, Old Dominion
University, Norfolk, Virginia 23508.
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Fn(r)

Gekn _.(3. - -l'l: Rz)
G(r,8;r,,0))

k

K, (%)

P(r.e)

P

(r,0)

radial eigenfunction resulting from aeparation of
variables

modified Mathieu fuhction

Green's function

unit vector im z-direction

modified Bessel function

pressure

rear stagnation.peint of the cylinder
polar coordinates

Reynolds number

éritical minimum Reynolds numbet

Reynolds number based on the semimajor axis of the
ellipse

Mathieu function *

angular eigenfunction resulting from separation of
variables

free-stream velocity
fluid velocity

Cartésian coordinates

Reynolds number exponent in least squares fit

coefficient in infinite lidear system of equations

Kroneckar delta
delta function

gradient operator

Laplacian operator

elliptic coordinates for flow parallel to major axis

:iigpcic coordinates for flow perpendicular to major

e+ 2 e il S L



v kinematic viscosity l
) fluid density 5
i

% e, %50 stress components %
¢ (x,0) harmonic conjugate of potential flow stream function $
®k(R) coefficient of higher order term in asymptotic f“i
expansion of stream function §

4

x(R) ggggg‘%c asgt gnsecond term in asymptotic expansion of ,
u,A) stream function for potential flow past an ellipse )
X, perpend %u ar to ggapmajgr axis P P i
V(r,0) stream function for Oseen or Burgers flow past a circle !
y(E,n) stream function for Burgers flow past an ellipse '
}

¥YE,n) t function £ tential flow past an ellips i
' SEEafR.fUrgeien fefopeispgiel flov past an eltipue |

w(r,8) vorticity

MOTIVATION

The nondimensional Navier-Stokes equation has the form L |

+ +> » *>
Ry« V)y = Vp + V2 ¥ (1) 4 ‘
>
where R, v, p are Reynolds number, fluid velocity, and pressure, i
respectively. The veloc¢ity vector must also satisfy the continuity 4
équation |
> »
Vevmg (2)

which i8 guatanteed if we use the following representation:

; = curl {y(r,0)k} (3)




where ¢(r,8) is the stream function. By substituting equation (3) into
equation (1) and eliminating p(r,0), we can write the Navier-8tokes equa-
tion in the equivalent ecalar form

" w w =y2 § (4)
[Vz +2 D(w,l]w .y (5)
5 r .
where
DY) 2 311.3_-3_"’.1_ '\
dr 90 90 Ar |

This suggests an iterative process

v2 ——Y i
N k=0,1,2,..,,
2 . R .
[V + : D(wk)] mk"'l = &) , i
i
- which defines a sequence {y.(r,8)} of spatially uniform approximations to ;
the solution of eauation (1). It is assumed that under appropriate condi- :
tions this cequenc 1ll converge to the solution of equation (1). V
- :
= To begin the iterations we must propose initial values of y(r,0)
and ¢4(r,0) consistent with equation (6). Since we are comsidering
ii uniform flow past a circular cylinder r = 1, the flow is irrotational at J
= infinity and it is reasonable to choose wg(r,0) & 0. If we choose Yo = ‘
4y ]
! r sin 6, corresponding to a uniform stream, the problem for (w1, Y1) is x
% Oseen flow. On the other hand, if we choose Yy, = (r - ¢~1) sin 6, corres-
? ponding to continuous inviscid flow past the cylinder, the resulting problem
§ for (wy, y;) is Burgers flow. Both flows should behave similarly at infj-
4

nity., But in Oseen flow vorticity is convected through the cylinder while
if in Burgers flow it is convected around the cylinder. This suggests a
difference in the two flows near the circle.

4



S8OLUTION

With'k = 0.and yg = ¢ ain 0, equation (7) becomes the Useen verticity

equatian
|
[vz erO893 cpne0 d lur,0)mo @)
r 09 or

The Burgers verticity equation has the form

[\7.2_4' R(l‘. * .1.‘_..) sin 6 E_ - R(l - 1_.) cos 0 .a_.]w(r,e) =0 (9)
r 36 2 or

Both solutions are of the form

w(z,8) = e "»”nz_l £ F_(£) T(8) (10)

where En are coustants to be determined and ¢, Fn’ Tn are given in

in table 1.

Table 1. functions occurring in vorticity expression.

Method 6(r,8) Fo(r) T,(0)

Oseen %Rr gos 0 K, (.;. Rr) sinn 8
Burgere R cosh & cos 6 Gek, (2, - é.R?) se, (e, = %.R?) z®=lnr




The functions Gekn and aan ave Mathieu fuactiond, the former behaving
asymptotically like exp (=R cosh z) as z = ln.g.2.4.m the latter being odd
and periodic in © with period 27,

The stream function corresponding to w(r,0) satisfics the Poigson
equation (4) and tho beundary conditions

) v1,8) = ¥ (1,00 = 0 (11)
ar

A Green's function defined by

1

v2 c(:.e;:o.eo) -8 (r-r)8C - 0,) (12)

G(r,azl.eo) = 0 (13)

is used to solve for Y(r,0) with the result:
* n .
V(rg,8) = (¢ = r " )ein 6 +;£ fl w(r,8) b

. G(r.egro.eo)t dr d6 (14) f

where

2 2 -9
t€ + 1 = 2rr  cos (¢ o)

G(r,e;ro.eo) - - ..1_. in
41 (rro)2 +1=2rr cos (6 - 8,) ‘

To obtain the coefficients B in equation (10), we invoke the no-slip

condition in equation (14):

1] \ T
0= — (1,6 ) =2 sin @ *.,{ fl w(r,9)

aro

L (r.e;l,eo) r dr do (15)

3r° ;l 1




:Yel
Expanding X in a Fourier sine eeries in 00 and equating the resulting
o

coefficients of sin ueo (k = 1,2,3,...) on the zight side of equatien (15)
to gero, wo obtain an infinite linear system of the form

@ -
Zx E Ty ® “m k®1,2,3,... (16)
n-

where

r -}.fﬂf: rl"k el./2 Re coaex

1
n(" Rr.) sin nd

2

+ gin kO dr 40 (Oseen)

. I Ieo e(z - k)z +-R cosh z cos © Gek_ (z, -1 32>
'n

kn 6 ‘o 4
« sin kO se, (6, - E.R?) dz .d9 (Burgers)
4

1f equation (16) is truncated at k = n = 8, good results are obtained for
Reynolds numbers in the range 0 < R < 4,

SEPARATION

Both Oseen and Buvgers flows exhibit separation on the downstream side
of the cylinder provided the Reynolds number exceeds some ceritical minimum
R., This value is found by solving the equation

ow
— (1,0;R,) = 0 17)
39

Yamada (ref. 1) has shown that R, = 1,51 for Oseen tlow and our calcula-
tions verify this result. For Burgers flow we find R, = 1,12, A numeri-




cal value obtained by Underwood (ref, 2) frum the Navier-8tokes equation is
Rc - 1. 58c

It is expected that tho Burgers result would be lags thau the numerical
value, The convective veloeity fiold in Burgers flow is continuous invisecid
potontial flow past the cylindor, and-this violates the no-alip condition at
the cylinderls surface, The velocity field which solves the full Navier-
Stokes equation satisfiecs this condition. Thue, convection effects ncar the
cylinder are more dominant in Burgers flow than in. Navier-Stokcs £low, and
dny phenomena related to convection, such-as separation, ghould occur at
lower Reynolds numbers in Burgers flow,

The fact that the Burgers result is less than the Oseen value is a
little surprising, but can be explained. Separation. Leging at the rear
stagnation-point P of the cylinder where locally the flow appears as in.
figure 1. At the onset of separation a bubble of circulating fluid forms
about B, The direction of motion along the axis of symmetry inside the
bubble is opposed to that outside the bubble (fig. 2). 1In Oseen flow the
convective velocity field is constant in magnitude and perpendicular to the
cylinder boundary in the vicinity of P as shown in figure 3. Oseen con-

" wection therefore will deter the establishment of reverse flow at P be=-

cause it directly opposes the direction of fluid motion along the axis of
symmetry inside the separation bubble. In contrast, the convective velocity
field in Burgers fléw is parallel to the cylinder boundary near P; in
fact, its magnitude vanishes at the point P itself (£ig. 4). Burgers
convection does not oppose the establishment of a separation bubble about P
in the way Oseen convection does, and we would therefore expect separation
to initiate in Burgers flow at a lower Reynolds number.

As R increases beyond Ry = 1,12 in Burgers flow, the wake grows in
size, When R = 2,0 the flow appears as in figure 5. The length of the wake

is PQ = 0,53 where OP is the unit of length and <SOP = 34.8°. Point T,
whose 0 -coordinate is 83°, marks the location where the fluid pressure along
the boundary is a winimum. The flow from T to 8 is against an adverse
pressure gradient,




DRAG

A circular cylinder in 4 uniform stream expariences a force in the
direction of tha flow at infinity., The magnitude of this force is obtained
by integrating the component 6f the strosc vector-in the direction of the

\ uniform stroam about tho circumforance of.-the circla, Tho drag is thoroefore

A S e 12 TS TR

PR Y

n !
D = pvU ] 8 -0 ., sin 9) de (18) ‘
P _{ ( rr 508 r0 r=l 1

where °rr’ °r9 are the stress components and p, Vv, U are fluid
density, kinematic viscosity, and free-stream velocity, respectively. The
stress components can be calculated from equation (14) with the result

“
D= 20U § E_|Gek <0. -._)-Gek' (o -_) :
n.l ﬂ[ n 4 0 ’ 4 1
‘ 3
2 i
. f" eR cos 8 se (9, -..R._) sin 6 dé (19) :
n 1
o 4
The drag coefficient is defined to be

D q

CD L S (20)

(p V2 a) !

where a is cylinder radius., Table 2 provides drag coefficients as comput-
ed from equation (19) for Reynolds numbers in the range 1 € R € 2,

Table 2, Drag coefficients for 1 < R € 2,

e ks e

R
1.0 1,12 1.25 1.50 2.0
c 7.76 7.29 6.86 6.22 5.35




These values agree well with tlie experiménts of Tritfon (see refs. 3 and 4).

Table 2 will be expandad shortly to include Reynolde numbers in the range
1€ R € 4 and drag coefficienta for olliptic cylinders,

ASYMPTOTIC FORM.OF-PLOW-FAR FROM CYLINDER

The solution of the full Navior-8tokes equation past-a .inito obstacle
predicts a boundary layor surtounding the obstacle in which the flow is
rotational and tho.velocity gradients are large. Outaide this boundary
layer the flow is cssentially icrotational. Mathematically this means the
stream function outside the boundary layer is harmonic. Since Oseen flow
and Burgers flow. are spatially uniform linear models of a Navier-Stokes
flow, we would expect them both to exhibit this behavior.

If the Green's function G(r,e;ro,eo) in equation (14) is eupantad in
a Fourier series, the coefficients of cos k8 (k = 1,2,.,,) ~}1 variar, ieav-
ing the stream function in the following form:

1 v 1 k v S0 1k
P(r ,0 ) = = -t sin ko e ® w(r,8) sin k8 dr d6
oo ® kzl k ° ° L { '

® r
«1y E.ronk sin kO fr° e 1*® (e, 0)
r k=l k o 1

s gin k6 dr de (21)

This expression can in turn be written

r
[7[,° w(z,0) sin © dar 40 + 1
[«]

3

W(ro,eo) o sip éo - gin eo

r-l

L 0

(22)
(cont'd)

10
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B e
L t'o 1~k
© f !1 r w(r,0) ain kO dr d6
- .1. ) .1. 8in keo °
T ke2 K ok
R o
B -
r
® f“ flo r“k w(r,0) sin k6 dr db
*i z -1'- aiu_ke S
a..k=] k k
r
) ° " (22

(concl'd)

“he three expressions in brackets in equation (22) all have finite limits as

s+ ®, Taking this limit, therefore, will yield the second term-in the
asymptotic expansion of the stream function far from the cylinder. The

raesult is

w(ro.eo) ~ T, sin 90 - - x(R) Z - ain ko + 0 (1 ) (23)
b k=l k r
0
Now it is known that
S 1 1
—8in kg =_ (v -6 ) 0<9, < (24)
k§'1 k ° 2 ° °
elr-0) <o <o (25)
.; ] o -1 o 2
Thus the stream function has the asymptotic form
1 eo -1
vb(ro,eo) ~ T, sin 8, - .; X (R) (tl - .ﬂ_.) + 0(1'o ) (26)

with the plus sign being taken if 0 < 8, < 7 and the minus sign if -n <
6 < 0, The second term in equation (26) can be made analytic along 9 = i,
but suffers a jump discontinuity across 6, = 0,

11
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Expansiona of the atream function for 6, = 0 and r, finite reveal
no discontinuity, howeves, The discontinuity in equation (26) im a proparty
of the asymptotic expansion of y(ry, 04), but not of Fhe stream
function itself,

This rathor strange behavior can be explained. From equation (10) the
vorticlity can be shown to behave asymptotically like

=1/2 Re (1 - cos 90)

Ve

where £(0) = 0, £'(0) ®# 0, Thus the vorticity decays exponentially as
r+® provided 8 # 0. Along 6 = 0, hownver. we have w(r,0) = 0 for all r
and'3§ (,0) =0 (c~172) gg r + ®, Thus~33 (r,0) dacays algebraically along
6w0, Ifr=1L>1, the Eunction«sg (L,0) will be exponentially small as--.

w(r,8) ~& £(0) as t + ® (27)

8 + 0, but will jump to a much larger value when 6 = 0 gince its decay along _
this ray is so much-slower, This behavior is not unlike a delta function,
and, since the stream function is related to the vorticity through Poisson's
equation, it is not surprising that a step function behavior appears in the
asymptotic expansion of ¢(r,0) along 6 = 0,. It must be stressed, however,

- that this is a feature of the asymptotics only. The stream function itself
is analytic in the fluid domain. :

The next term in equation (23) can be calculated and is of the form

OI(R)ra'l sin 8 . 1In fact, all subsequent terms are of the form Ok(R)r‘k
sin keo (k = 1,2,3,...). The asymptotic expansion of the stream function

is therefore harmonic (except possibly along 6, = 0) and gives us the
potential flow far from the cylinder. Table 3 contains some computed exam-
ples.

BURGERS FLOW AND OSEEN FLOW: HOW DO THEY DIFFER?
The previous section shows that one distinct advantage of a spatially

uniform linear approximation to the Navier-Stokes solution is the abi: ity to
calculate from it the rosulting potential flow at infinity., This potential

¢
3
1
d
!



Table., 3. Asymptekic expansions for large T

- P
i Oseen Plow e o e s .
' R = 1.51 U~ reind - 3.3118 (n - ...)- 05995 280 4 o(ttn ) P
- ) — r \ 2 .
R =20 2.9247 0.5777 i &

4

R - 300 204888 005“85 *’:
R = 4.0 2,281 0.5302 b

|
R = 5.0 2.0918 0.5171 i
.

Burgers Flow

R=1.12 ¢~ rsinb - 3.6509 (n -3)- 11251 800 o o(’““ 26)

" tz
R = 2.0 2.6709 1.1396 ;
R = 2,828 2.2327 1.1439 j
R = 3.464 2.0213 1. 1486
R = 4.0 1.8763 1.1467

13




flavw cannot be obtained a priori without some knowledge of the flow ncdr the
cylinder because the flow near the cylinder determines the outer edge of the
boundary layer, which in turn defines the region of irrotational flow.
Without an approximation like Osean flow or Burgers flow, theraefore, the
problem of finding ¢(r,0) far from the cylindar reduces to finding a harmo=
nic function in a region whose boundary is unknown.

Having obtained the asymptotic expansion given in the previous section,
however, it is possible to define the location of the outer edge of the
boundary layer as the curve along which this asymptotic expansion vanishes.
This amounts to finding a boundary which the potential flow does not pene-
trate. Slippage along this boundary is, of course, permitted. The boundary
go defined determines the displacement body which the potential flow far
from the cylinder "sees." The-displacement body includes the cylinder, its
wake, and the boundary layer surrounding the cylinder.

By setting the asymptotic expansions given in table 3 equal to zero and
solving for r, we.can obtain approximations to-the displacement bodies for
the various flows. A typical example is._given in figure 6. Note that the
displacement body is semi-~infinite with its thickness at infinity being

twice the value of the (%1 --%) - coefficient, Since the cylinder boundary
is given by r = 1, the thickness of the boundary layer is easily calculated.

Tables 4—and 5 compile these results for a variety of Reynolds numbers and
locations. along the cylinder boundary. Note that 6 = wn refeérs to the for-
ward stagnation point on the cylinder boundary.

The last ¢olumn in tables 4 and 5 is a least-gquares fit of the data
given in each row. In table 4 the value of a depends on 9, 1In table §,
however, the value of a hovers about a, = 1/2 regardless of 6. This
suggests that the boundary layer thickness is inversely proportional to Ri/2
in Burgers flow but not in Oseen flow.

Studies of the nonlinear boundary layer flow past a semi-infinite flat
plate show unquestionably that the boundary layer thickness behaves like
R 1/2, our work obtains a similar result for a bluff body using a linear
model in which vorticity i8 convected around the obstacle's boundary. The
agreement between this pred’:tion of Burgers flow and that of nonlinear
analysis regarding boundary layer behavior indicates that thé Burgers model

14
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Table 4. Boundary layer thickness: Oacen flow.

0 R=20 R=30 R=40 R=35,0 A(0) /R®

¢ .0,3568 0,2360 0,1691 0.1254 0,7984/R} 1336

2 {—%- t  0.3649 0.2627 0.1750 0.1308 0.8038/ R1.1127 |

| -t% n  0.3904 0.2637 0.1936 0.1478 0.8230/R! 0545 ‘;‘i

. -91-2- 7 0.4363 0.3014 0.2270 0.1784  0.8047/ RO.9721

; -':—i r  0.5086 0,3610 0.2796 0.2267 0.9415/R0+8798 '
' %—5 +  0.6185 0.4515 0.,3597 0.3001 1.0706/R0 7885
- 5{-5- +  0.7858 0.5895 0.4818 0.4121 1.2796/R0.70u4
—: -i-:( s 1.0483 0.8066 0.6743 0.5887 1.6182/R0.6302
; f{-z- =  1.4840 11,1688 0.9962 0.8846 2. 1876/R0.5654
% %2- \d 2,2783 1.8334 11,5892 1.4314 3.2260/R0.5083
; -f-; «  3.9903 3.2763 2.8834 2,6288  5.4491/R0Y 565
} i—z e 9.4140 7.8764 7.0282 6.4777 12.4377/R0.4091

e e i o . yoaal,




Table 5. Boundary layer thickness: Burgers flow.
8 R=20 R=2U828 R®=3.466 R=4.0 a(8) /r%

n  0.5741 0.4823 0.4407  0.4103 0.8005/R0.4825
Ly o808 0.0878  0.4436—0.4147  0.8108/R0.4841
-:—g-w --0,6018 0.5045 0.4603  0.4283..  0,8427/R0.4886
-:—_;m 0.6394 0.5347 0.4870  0,4527 0.9001 /R0 .4962
-‘11-2-« 0.6988 0.5823 0.5291  0.4912 0.9911/R0.5069
:1,'2"‘ 0.7891 0.6545 0.5930  0.5494 1.1297/R0.52085
S 0.9269  0.7646  0.6902  0.6381  1.3422/R0.5368
‘;’—2-1: 1.1444 0.9385 0.8437  0.7780 1.61286/R0.5552
%n_ 1.5101 1.2314 1.1023  1.0138 2.2435/R0.5734
%51' 2.1901 1.7797 1.5878  1.4569 3,2853/R0.5867
%n 3.6943 3.0067 2.6809  2.4587 5.5407/R0.5858
%—2-1: 8.5786 7.0497 6.3159  5.8136  12,6387/R0.5598

16




is a substantial improvement over the Oseen model in describing the flow
near the cylinder,

BURGERS-ELOW PAST AN ELLIPTIC CYLINDER
We consider first the casc when-themajor axis of the ellipse is
parallel.to the-uniform stream at infinity, The appropriate coordinate
system is (§,n" -here
x-= cosh £ cos n

y = sinh £ sin n (28)

The curve ¢ = g, represents an ellipse with major axis 2 cosh o along

the x-axis and minor axis 2 sinh g, e continuous inviscid potential

flow which gives the convective velocity field satisfies the boundary value
problem

Ym0 &> Ep -t <ncaw

‘P(Eo.n) =0
1 &
¥~y~pe sinn as £+ += (29)
The solution of equation (29) is

3
¥(E,n) = e ginh (£ - £,) sinn (30)

1£ ¥(,n) is the stream function for Burgers flow past an ellipse,
the boundary value problem for ¢ is defined as follows:

2 2
o3 g3 .33 Myemeo (31)
3g2  9n2 3 an  9n 3¢

17
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A

>

2 1 %y . a%y| .
Ve cosh®f = coaln {382 ) n? () D

L1
W(Eo.n) - -a? (Eo."l) =0
¢~§'ee sinn 48 £ + @ (33)

The parameter R in equation (31) is proportional to the Reynolds number.
Its value is

R

Re 2 _ (34)
cosh €° i

where Ry jg the Reynolds number based ¢n the semimajor axis of the el-

lipse. In the limit g, + o, the ellipse degenerates to a finite flat
plate. Since the potential flow parallel to a flat plate is a uniform

stream, Burgers flow and Oseen flow are equivalent when g, = g,

As in-the-case.nf the circle, the vorticity function has the form

1
w(,n) = -e? KeEn) °2° E F () T (n) (35)
! gap R R n

€
where ¢(E,0) = e © cosh (£ = Eo) cos n is the harmonic conjugate of Y¥(E,n).

The resulting ordinary differential equations for Fn(ﬁ) and rn(n) are
different versions of Mathieu's equation with solutions given by

1 2 250
Fn(E) - Gekn (E - 66’ - I;'R e

1 2€o
T,(n) = se <n. - I;.R? e (36)

18




If we make the following subatitutiona in equacions (35) and (36)1

eO

8"E =&, 0 mn, C-.;.Re 37

the Burgere vorticity past an ellipsa has exactly the same form.as that past
a circle: namely,

[ ]
w(g,8) = =¢C cosh & cos 9 Y E_Gek [z, - 1)) se (e. -1 cz) (38)
n=p O n 4 n 4

Poisson's equation [eq. (32)] becomes

2 2
L3 u L) ne,0) w(z,®) (39) ‘=
3g2 982 2
where ‘
h(z,0) = cosh 2(z + Eo) - cos 20 (40) j

and its solution follows the teéhrique described under “Solutién." Omitting
the details we find

3 T e
¥(z 18 ) = e ° sinh 2 sin O +% [ [ h(z,8)
™ o

s w(z,0) G(z,egzo.eo) dz d6 (41)

where

-1 cosh (2 =2 ) = cos (6 -0 )
G(z.B;zo,So) = In o °

4n cosh (z + zo) - cos (8 - 90)

The coefficients E;, in equation (38) satisty the infinite linear system
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dey n Pen "G B 23 42)
where
o 1 e 6
Pen ™ e [ ] h(z.e)e'k' ¢ C cosh-2 .cos
T o o
. Gekn<z, - }.‘cz> sin ko se, (9, -r cz) dz..de (43)
4 4

1f the ellipse has_its major axis perpendicular to the flow at
infinity, a different coordinate system is reéquired. Consider the elliptic
coordinates (u,A) defined by

x = ginh ¢ cos.A
y = cosh 4 sin A (44)

The curve u ™ uy represents an ellipse with major axis along the y=-axis.
The potential flow past this ellipse has strdéam function x(u,A) which

satisfies exactly those conditions given in equation (29). Thus from
équation (30) we have

u
X(uA) = e ® sinh (u = u ) sin A (45)

Since the potential flows in equations (30) and (45) are functionally the
same, it follows that the Burgers solution in (u,\) coordinates will be
similar to that in (&,n) coordinates. In fact, if the variables (u,A,x)
are replaced by (§,n,¥), the problem is identical with that in equations
(31) to (33), except that equation (32) is replaced by

2 2
2y = 1 {al LA PR (46)
sinh?E + cos?n 362 an?

20
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It follawa that the atream function for Burgers flow past an ellipse whose
major axis is perpendicular to the flow is given by aquations (41) to (43)
where h(z,0) is now given byj

h(z,8) = conh 2(a Eo) + cos 20 %7)

The roscarch that remains to be donc includes a detailed analysis of
the elliptical solutions. It is my intention to compute drag coefficients
for various elliptical cylinders, examine separation phenomena, and calcu-
late surface pressure distributions. The asymptotic form of the stream
function will be used to deduce displacement body shape and boundary layer
thickness for various cases. The special cases of the flow past a finite
flat plate (both parallel to and perpendicular to the un’.form gtream) will
be éonsidered in detail and compared with experime.tal data where possible.
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Pigure 5. Burgers flow at Re2.0 ;
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