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ABSTRACT

The GLAS climate model is a general circulation model based on the priaitive
equations in sigma coordinates on a global domain in the presence of orography.
The model incorporates parameterizations of the effects of radiation, convection,
large scale latent heat release, turbulent and boundary layer fluxes and ground
hydrology.

Winter and summer simulations have been carried out with this model, ana
the resulting data compared to observations. These comparisons indicate that:
(1) The simulated mean dynamical fields of the upper troposphere in winter and
the lower troposphere in summer are more realistic than those of the lower
troposphere in winter and the upper troposphere in summer. A serious problem
is the unrealistically cold polar upper troposphere in both simulations. (ii)
The latitude-height structure of the components of the simulated fields with
various spatial (planetary wave, synoptic scale wave) scales and temporal (time
mean, low frequency, medium frequency) scales shows overall agreement with the
ohservations. However, the variance of low frequency planetary waves is somewhat
too small. (iii1) Maps of local variability indicate that the model's band-pass
variances are well simulated except for the upper level heat and momentum
fluxes. The local, low-pass variances are not realistic. (iv) The simulation
of physical processes is generally realistic. The distribution of simulated
evaporation, precipitation and surface stress show good agreement with observa-
tions. The surface sensible heat flux is somewhat too high, and the model
shows a serious excess of supersaturation clouds in the lowest layer. (v) The
Hadley cells in both seasons are somewhat too weak, but their location and
depth are realistic. The model Walke. circulation in the winter subtropics

indicates rising over an oceanic precipitation maximum and sinking over land.




FOREWORD

This technical memoranduam has been prepared as a documentation of the
design and performance of the GLAS Climate Model. Although this global general
circulation model is continually evolving, “he results presented here should be
useful both as an indication of modeling skill and as a basis for comparison

with future model results.
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1. Introduction

General circulation models are mathematical toole for conducting sensi-
tivity, predictability and observing system simulation studies. The simple
quasi -geostrophic, channel model with prescribed hecating and hydrologic cycle
developed by Phillips (1956) led the way for development of more complex models
(Smagorinsky, 1963; Mintz, 1964; Manabe et al. 1965, Leith, 1964, Arakawa et
al. 1969), which were based on the primitive equations of motion on a global
domain, and parameterized the physical processes of radiation, large scale and
convective condensation, boundary layer and turbulent fluxes, and ground hydro-
logy. The primary objective of these efforts was to simulate the space-time
structure of the stationary and transient components of the circulation.
Although further model developments are being carried out to determine and
correct the deficiencies of the general circulation models (GCMs), their degree
of success in simulating the observed circulation justifies their use for con-
ducting appropriate sensitivity, predictability and observing system simulation
studies.

In this paper we present the analysis of winter and summer circulations
simulated by the GLAS (Goddard Laboratory for Atmospheric Sciences) general
circulation climate model. The present version of the model has undergone sub-
stantial modifications since the publication of its earlier version seven years
ago by Somerville et al. (1974). Results of simulations by an intermediate
version of the model were presented by Halem et al. (1979) at the GARP/JOC
(Joint Organizing Committee) conference on climate models.

The kind of controlled numerical experiments that can be carried out with
a GCM depends upon the model's ability to simulate specific features of the
circulation. As one of our main objectives is to conduct sensitivity studies

to determine the role of the slowly varying boundary conditions of sea surface
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temperature, soil moisture, sea ice and snow in determining the predictability

of monthly and seasonal anomalies and their geographical distribution, we present
a detailed spatial and temporal analysis of the physical state parsmeters and
processes of the model atmosphere.

The model shows a serious deficiency in simulating the mean circulation
near the poles. The upper tropospheric temperatures near the winter poles are
too low compared to the observations and the corresponding upper level zonal
winds are too strong. Another deficiency is that the tropical troposphere
warms up by 2-3°C during the course of the simulation. We have not yet deter-
mined the precise cause of this deficiency. But the simulated tropospheric
circulation in the middle latitudes and the tropics is realistic enough to
warrant detailed analysis of its space-time variability.

Some of the primary objectives of NASA's climate modeling program are:

1) to conduct simulation studies which will help optimize space-observing
systems; and 2) to determine how the global boundary conditions of sea surface
temperature, soil moisture, sea ice and snow affect the variability and predic-
tability of monthly and seasonal atmospheric anomalies. These studies are being
carried out by NASA's own scientific staff, and also, in collaboration with
scientists in other institutions. We hope this description and evaluation of
the model's performance will enable the individual researchers to judge its
utility as a GCM-experimentation tool. A bibliography of works dealing with

the present and the earlier versions of the GLAS climate model is enclosed as

an Appendix.



2. Model description

The GLAS climate model has evolved from the GISS GCM, described by Sommer-
ville et al. (1974) and Stone et al. (1977), which in turn, was based on the
>=level 1970 version of the GCM developed by A. Arakawa (1972) and Y. Mintz at
UCLA. The model uses a form of the o coordinate system (Phillips, 1957), with
nine layers, all of the same o thickness, and a 4 x 5 degree latitude-longitude
grid, which is modified in the polar regions as discussed below. The variables
are staggered in the horizontal according to the B-grid scheme of Arskawa and
Lamb (1977), and ia the vertical according to the scheme of Lorenz (1960). The
upper boundary of the model is at 10 mb., The prognostic atmospheric variables
are the surface pressure, the zonal and meridional components of the horizontal
wind, the temperature, and the water vapor mixing ratio. The prognostic boundary
variables are the bulk ground temperature and ground wetness, and the snow depth,

Although the current model is similar to the GISS GCM presented by Somer-
ville et _al. (1974) and Stone et al. (1977), significant changes have been made
in both the finite-difference schemes and the physical parameterizations. As
described by Halem and Russell (1973), Halem et al. (1979), and Herman and
Johnson (1978), the model incorporates a "split grid,” in which the number of
grid points on a latitude circle is systematically reduced near the poles. This
allows the use of a ten-minute time step, with only weak longitudinal smoothing
at high latitudes. The idea is similar in principle to that proposed by Kurihara
(1965), but is applied at only a few interfaces separating latitudinal bands
within which the horizontal resolution is uniform. The resolution in each lati-
tudinal band is twice that of its poleward adjacent neighbor. The differencing
scheme maintains the quasi-conservative properties of kinetic energy and mean-
square vorticity, as in the Arakawa scheme, Although written to handle an

arbitrary number of bands, the geometry used in the present model has five
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latitudinal bands, consisting of a central region extending from -66° to +66°,
bounded by one set of bands from 70° to 78°, and a second set from 82° to 86°.
The latitudinal resolution is 4° in ali bands. The longitudinal resolutions
are 5°, 10°, and 20°, respectively.

Once every simulated half hour, a sixteenth-order Shapiro filter (Shapiro,
1970) is applied, in the longitudinal direction, to the sea level pressure, and
to the potential temperature and the wind components on the o surfaces. The
filter was introduced as an ad hoc device to suppress the "checkerboard” noise
in the prognostic fields, which arises from the inability of the B-grid to sim-
ulare the geostrophic adjustment process at the two grid interval level (Arakawa
and Lamb, 1977), However, a substantial price has been paid for this noise
suppression. Filtering the potential temperature on the ¢ surfaces leads to a
systematic cooling of the air over mountains and a systematic warming in the
neighboring valleys., Filtering of the winds dissipates kinetic energy. Filter-
ing of the sea-level pressure interferes with every conservation property of
the model (except mass conservation). The magnitudes of some of these false,
filter-induced sources and sinks have been determined. The filtering of poten-
tial temperature generates 2.5 W n~2 of potential energy, and filtering of the
winds dissipates 1.5 W m~2 of kinetic energy.

The Matsuno forward-backward time differencing scheme is used. This scheme
tends to damp high frequencies, and so it helps to control computational noise
in the model, but at the cost of almost doubling the computing time required
for the dynamics,

We use the cumulus parameterization developed by Arakawa (1969; see also
Haltiner, 1971) for the three-level UCLA GCM; but as modified for use in a
nine-level GCM by Sommerville et al. (1974; see also Helfand, 1979). Although
this Arakawa cumulus parameterization predates the cumulus parameterization
theory of Arakawa and Schubert (1974) and Lord and Arskawa (1981), tany key

4=



concepts employed by Arakawa and Schubert were already present in the 1969
paper, including the cumulus mass flux, a spectrum of clouds distinguished by
their fractional entrainment rates, and closure formulated in terms of the
stabilization of the environment by the clouds. Helfand (1979) wodified the
paraseterization to include very deep clouds and cumulus friction, but these
nodifications are not incorporated into the present model.

The model also includes latent heat release due to large-scale saturation,
which occurs when the relative humidity exceeds 100%.

The short-wave radiation parameterization is that presented by Lacis and
Hansen (1974). It includes absorption by ozone, water vapor, and clouds.

The long-wave radiation parameterization of the current model is based on
the method of Wu (1976), Wu et al. (1978), and Wu (1980). The parameterization
includes a water vapor transmittance that uses a statistical band model with
the strong line version of the Curtis-Godson (Godson, 1955) approximation; the
vater vapor dimer effect in the 8-13 window region; line-by-line precalcula-
tion of COy transmittance including fundamental bands, hot bands, and isotopes;
tables of ozone transmittance calculated by Dr. N. Scott (private communication);
a special treatment of the nearby layer quadrature for increased accuracy in
the numerical integration; and the effects of clouds. In order to calculate
the incoming long wave flux at the 10 mb level, the top of the model, zonally-
averaged climatological temperatures at 1 mb and 5 mb are prescribed. In order
to save computing time, the time step for the long-wave radiation is 5 hours
for the simulations presented in this paper.

Clouds are assumed to occur if and only {f the model predicts cumulus con-
vection (restricted to the lowest six layers) or large-scale saturation (in any
layer). No parameterization of subgrid-scale fractional cloudiness is attempted;
both supersaturation and convective clouds are assumed to completely fill a
grid box. Moeng and Randall (1982) have recently studied the sensitivity of the

e
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model to this extreme parameterizaticn of convective cloudiness. The optical
properties of the clouds are prescribed as shown in Table 2.1. In the terres-
trial radiation parameteri-ation, all clouds are assumed to be black bodies.

The planetary boundary layer (PBL) parameterization was formulated by
Katayama, (as reported by Arakava, 1972) and modified by Sommerville, et al.
(1974). We have revised the parameterization in order to correct a defect
noted by Charney et al. (1977): earlier versions of the model produced too
little evaporation over land and too much over the oceans. We found a high~
frequency (in time) computazional mode in the surface evaporation and sensibie
heat flux fields. A simple revision of the numerical algorithm for computing
these fluxes eliminated the computational mode, and the revised model produces
more realistic surface flux distributions (Sud and Ab: les, 1981).

The mode! incorporates a prognostic soil moisture, following the UCLA
model (Arakawa, 1972), but with different formulaticne for the runoff, snow
melt, and potential evapotranspiration, as developed by Lin et al. (1978).

A comprehensive, detailed, and up-to-date documentation of the model and

its post-processing routines is in preparation as a NASA Technical Memorandum

(Sud et .10, 1982)0
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3. Boundary and initial conditions

The present GLAS climate model uses the externally imposed boundary con-
ditions listed in Table 3.1. The observed climatological values of these
boundary conditions are available only in the form of monthly means. A contin-
uously changing set of prescribed boundary conditions was obtained by assigning
the observed values to the midpoint (in time) of the appropriate month, and
computing the values on all other days by linear interpolation. Table 3.1
gives the source of the data for the winter and summer simulatiosns, and the
name of the GLAS data set containing the data. Fig. 3.la shows the topography
used for both runs, while Figs. 3.2 and 3.3 show the sea surface temperature,
land-sea and snow-ice distributions, and surface albedo for the months of
February and July.

As revealed by a comparison of Figs. 3.la and b, the topography has been
greatly smoothed, and the land-surface heights for Greenland substantially
reduced. This was necessary in order to reduce the level of computational
noise in the earlier versions of the model.

Observed values of the surface albedo are prescribed for the land, ocean
and desert regions are shown in Figs. 3.3a and 3.3b. This data was prepared
from that described by Posey and Clapp (1964). Although the snow depth is
predicted by the model, prescribed albedoes were used exclusively in the present
runs. The snow and ice distributions used to determine the surface albedo are
those listed in Table 3.1 and plotted in Fig. 3.2.

The winter simulation described in this paper started with the observed
state of the atmosphere for 00Z on January 1, 1975. The summer simulation is
started with the observed state of the atmosphere for 00Z on June 15, 1979.

In both runs, the initial ground temperatures for land and sea ice points were

assumed to be equal to the suface air temperature. The initial soil moistures

PAGE4INTENT|ONALLY BLANK -9-



were obtained from climatological surface air relative humidities, as explained
by Stone et al. (1977). The initial snow boundaries were obtained from the

climatological data of Matson (1978), and the initial snow depths were specified

as functions of the surface albedo.

-10-




D

Prescribed
Boundary Condition

Topography

Sea Surface
Temperatures

Surface
Albedoes

Snow/ 1ce
Distributions

Table 3.1

Data
Source

NASA/Goddard Institute
for Space Studies

NOAA/Geophysical Fluid
Dynamics Laboratory

Posey and Clapp (1964)

British Met. Office (1977)
Matson (1978)

-11-

GLAS
Data Set Name

ClAPF79T

ClAPF79T

ClAPF79A

CIAPF79S



—uod 3YyJ, °*SUOTIETNWIS 13WWNS pue 13JUlm 3yl Ul pasn Aydeadodog]

*‘w gO¢ ST [BA1I2IUT 1NO3

B[*f 2and14

apniibuo
09¢ 0oc¢g 08¢ ove 002 09l (oA 08 ov 0
I | 1 | ] | R | ] | 1 | 1 1
Passl N S Vs = — Y . — \.\\\ w.w\\WJrau

,},.,,f/ \_ malff| wﬂ\!, /w\HMH\M(W\MM \\\\ ) S~ B
=SS : —
2 —
/¢ ;
\ﬁf —
._‘ . =
/7 i
./ &
w N =
A =) L

\\\\ \\. . \

A [

1

06 -

0L-

06G-

O¢€-

Ol-

Ol

og

0%

0L

06

apn4iion

12

gy



iy

‘mw Q0S ST TBAI2IUT INOJUOD 3yl °*PTi8 apniTsuoT-3pnITIe]
22189p ¢ x % & 03 uo SuyBeiase eale a7duys £q paurelqo Aydeisodojy

apniibuon

09¢ oce 082 OvZ 002 09l 02l (0F°]

q1*¢ @an3ry4

STV I WA A S N W N E

N AT T P e M o S 2
W.n = —_ o - ———— C /= o -
= = — <
\ \ g = N \\ [, ) \ N
~ T\ =~ 2 / st
(L ~ ) \\ Y Ny 4 ( ——
—— e N . - " s iy, — % l\l\
NI e S s e

P

06 -

0L-

06 -

og-

Ol -

Ol

(0]

0s

0L

06

apn4iinn

13



e Al A AR A AT R L R )

e (ARG RO RNV RV RV PRV R

- o ~ " . "
v

i

9 B
- . ST |

. '

e T ROV R T T N R )

L,\r;;\h\l%a\

;
‘- 4 d d o2
.{Lq,uaaa.ds:q\
g,

N R
PR e
R R e e

.:_..4.‘44:.4.4471!

N

JJJJJJ
R

apn4Non

-140 -100 60 ~20 20 60 100 140 180

-180

Longitude

L = bare

The symbol meanings are:

February sea surface temperatures, land-sea distribution, and

snow/ ice distributions.

Figure 3.2a

land, S = snow-covered land, I = ice.



*30T = ] ‘puBT P213A0D-MOUS = §
*SUOTINQTIISTIP 31T

/mous pue ‘uoriInqiilsIp eIs-pue] ‘sainjeiadwsal adejins eas A[n[

‘puel 31eq = 7 :3le s3urueaw joquis ayjJ

qz*¢ @and14g

apniibuon
(03] ovli 00l 09 0¢ o¢e- 09- 00I- O0Ovi- 08I-
___________________________ | T | | A |

b S S e e e

06-

apn{4on

15



(FEBRUARY)

GLAS CLIMATE mMODEL

DIGITIZED ALBEDO PERCENTAGE

ORIGINAL PAGE 1S
8?‘ QOR QUALITY

. . e i, :::_T:G‘I’""O‘»‘m-ﬂl‘lﬁllﬁwﬁ»-ﬁw\fJ!,J‘J“-‘m.ﬂ-’ Ge-~socT D
B | B I i M S S R R T TR B -~ e D
TR e TS lE R E v ~~ww Vel [FTS ) prerEe T
[ e R R e ® ~~ &= 5w AT oA AT o o i o A e
:?—5‘5-.5-! S = e e e G G S S S S R b
SSESR e S e O S A e
2 SZSR S 3-SR P v P - I e e et "
SS9 - - il L Il R E ] Cal - - e Bl
44— o | e [ e [ T e e - o e~ e~
SI2X =2 ~[owele e nininintaisin 1 RARANEEE
=== = - =~ o~ i e i o el =R 1 o e e~ .
=== - — e e RS LCICA e - # - -
EES 4 = [T A R TATA AT A = ] e e e =TT ~
oy, P P 1D i o, o= e s C G 4 IJ\PI'\IJ\ mm.mm]mPV‘NN_
=SESS == ! (o el~~]
e O g O o e e s TARA e e 1 T~
b - i - 3 I A A - $_5T='
4~ o e T (L7 [ [ W [ [ AT [ W o o (o 48 |6~
= = IS i | WA I oo~ r
EESEES - ettt :
SS<SS - ——=== ) A A LA s =
SR DT TR R cen A e im0 S DA ISt W oo ol e~ =~ T -
== » porfer S Jied | IO i WA A WAV A A s A e o~ T T
=€ - ~ Rt on ol o il -
o = et N e e e e " haTe T~ b -4
O T o o T o o [ T~ o 3 o Lo o B o i o P T "
— e ) NN A WA A AR LT A eleis T~ - a8 -
R D i S en oo 0] | [ e o o I i
~. 0 —irdr o wtmmmlw,..bm— ~ kB -
= - - o R S I T e
Tl A - L il et e S -
) i L o ™ p_:-: i =~ 1)
—y ‘e—4r 4, - o T T ] I o 4
I~ L - - A for 1"~
o~ — o AhA A s s s s s o o~ i~ -
B~ - R i i
- === | - i o ol WA o T~ - e
O == . | ™ A W D [
eI o ) o 4 R R S R S e e O e e e
T2 o~~we o e e e e
Tl ~ w00 .| | W o - ! " 4
ol IEEP ry ~ vy ) " Alrfele == Te e = '
OSSR N0 M ARAln falinlin faln nien —~ -
ST T @ T sls e Al nn e io i a e IFB:@~ ~‘al'_‘_:*! - f
TPy vy v oo ™) FAPREREaeS . e
Ll el L R Il ol Ll Salbad s alt ) . ’
- e B A [ R R I A
’C:’G‘.'-“-T-{T e QAREECE 3 o+
- w I~ - - i) S - - 4
e = T ¥
- T W M -
- o L e o e - -
WARA A TATATATRATA WA A B~ =~ e oy - S
AW AR S W B B S BB S - - S
P A AR AR A LA A A LA e~ —~ - b
T S S A AR LA AT A A R B~
L A T I ICET 4
P A A A A A " L
LA A R R G PN el d y
FAFFAR B P e et
[RERG Alnpniche @ = = & 2 B ) E
P I T N - .
o T P I A I Y A T ) i i
VAT W W AR o S A A A e~ “
PRV e i W P T IERER N ¢ °
P L I I Rl ol Sl TR e )

S
5
$
b)
§
L]
6
!
1
(]
]

..
W AP

- e
B N S L

e -
e e R S G -

-
AT AR S W AW W S

[ I R I

Ao lealettiusiethmidetomiitaibubloatle bl et At SR s b LS.
(e g e ey ey e N

e e s e e Tory S/ 3P7 ar —-
L e N L A I R )

16

February prescribed surface albedoes, percent, based on the data

of Posey and Clapp (1964).

Figure 3.3a



P

ORIGINAL PAGE |5
OF POOR QUALITY

'CITIZED ALBEDO PERCENTAGE (JULY)

GLAS CLIMATE MODEL

m‘am‘omwm‘nwxw\:qwx.n G OO S O i 4 i -
m;_,,_-JuumwﬂwﬂnhrmT.pT.aT.n'.me.nmRn~o‘1~ ettt =18
=2 2229 t.w-TJ'Nl-hv.?l-ﬂld'mlulrllw‘nml.ﬂmuﬂ‘,‘,‘-IH.T. A S
.—uvuwl.r:n;.cﬂ.n..n.m IE A C A ey R L E4d i
o v o [V W WA ATATA A A RO TA [ A TA A e T8 e T e Ten g
==l iA Sl la A s A A e a e i e e e~ TS e
fdiad ™ (PRSP PV P P P -
= = . pndeed 2 (FRERFY _ MR PRIV () -
| S === S - R NG RR G — e -
DR i Al om0 e e A WA A RAIA WA A i
B s i o B2 e on s A P A WA A [ A e ) =
4 - X e TS Saonlin &8 PR W e v .
S s U o e ) - s WS A S A A - s =
[ oo S — v v [ NN ATTTRA WA 8 [~ woien |
o T - R e S S I e = e 4
(e et gy 4 i et GG - I e = o~
o o ' o B vt Gl e Gl St o e et =4 4
e A T Rl e et e T == A A A e W e = [ e jen (2 T -
=" AL o o e e s (] ! o | -~ o o [T
[ E EF T hpF 4 ] - REERR = ~ o 'S
= TR e by & G - -~ i =
= 0 P fom e e e e gy e R S S G e e et b
M= v 4 SR W0 A A A A ke e e s .—:1'; Pl
2 D R el s b 4 Bt i T e e o i (e ol 3 4 e £
BREE o= el el o e e G i e e o i S e et o B -
IR | b v ad bt SR " b [ o e it
o o el I e o oma T I, - ~ VWA A -~ i~ O | = fmod =l
R0 et ek e == ] el e e = ~ -
LRI AN C e o adi o i | A e (e e e e R ]
[ R W e e e il ) = B bt
N et G i et e (e e e e
R D e g T = —— e QAL 4N
LR = T gk ———— = b C3E [ 36354 F
B = o e ] e o Vo o e - [~ oo O = >
g x T e 3 X SRR | e b
EEEGCRTTTXD b S [Pn ATAlele o=~ e o = 1=
Sl ew~ oj‘:.n_ o~ 4 G ST T ---—,-Lg;,_-_ X o
IR ST e Py AT e
L NI el A o st Tos Jamfon [T 1
= S I8ls ONESRERS (WA A A Re e e = T e o TS TR
= B S S A A s s L 3t -~ o [ TR -
6 P A Y qﬁ-~.~‘ao_:_ L - > X
| 4~ ISR ey v v o (un lva = o e on T
'?,_ b 4 SLATFTATATA Al WA s ey 0 o ;L--Wn .. w4
T X - P A R O e e e
(== SIS i 4o BT
—4 T o ST b 4
- i fd
- - [ ]
[T ——— - -] .
A~ 4
ER v il - -
2 A A Ao [ 0~ T e (o () (T
A A
A
O e .
LY "RFAT e eI el
= e s P[RR A A A e - e '
L e N S Y S T e Al 44
-
~
o T
RS
[N ey -y
(R v vy
PR PP Pl B '
WA S e -
AT A
e e )

17

July prescribed surface albedoes, percent, based on the data of

Posey and Clapp (1964).

Figure 3.3b



1T Ao~ TSI MR

PRECEDING PAGE BLANK NOT FILMED

4, Mean prognostic fields

a. Sea level pressure. Figures 4.la and 4.2a show the 16 year mean sea

level pressure for January and July reproduced from Godbole and Shukla (1981),
and Figures 4.lb and 4.2b show the model simulated mean sea level pressure for
the single February and July, respectively.

For February, the simulation of the prominent Northern Hemispheric circul-
ation features, such as the Aleutian low, the Icelandic low and the Siberian
high are fairly realistic. When comparing a single month model simulation with
the mean climatology, one must keep in mind that there 1is considerable inter-
annual variability in the observed monthly means. For example, the structure
and intensity of the Aleutian and the Icelandic lows show considerable varia-
bility over the 16 years analyzed by Godbole and Shukla (1981) and the model
simulation that is shown here falls well within the range of this variability.
However, the discrepancy in the structure and intensity of the Siberian high
(Compare Figs. 4.la and 4.1b) is too large to be accounted for by the interannual
variability or by differences between January and February. It has been conjec-
tured by Halem et al. (1979) that the lack of » well organized Siberian high is
due to excessive stratus formation over the region. The most serious deficiency
of the simulated sea level pressure field in February is in the Southern Hemi-
sphere. The -hserved sea level pressure is zonally uniform between about 40°S-
60°S, while the simulated pressure field shows a large eddy structure in this
zone., It has been our general experience that the simulation of the Southern
Hemisphere pressure field is very sensitive to the model physics and numenigq:_

For July, the simulated sea level pressure field is also in fairly good
agreement with the observations. The high pressure cell over the North Atlantic
i{s very well simulated both with regard to intensity and to structure. Over the

north Pacific the simulated high pressure cell is too small in the east-west
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direction, and its major axis is oriented NNW-SSE instead of WSW-ENE. The
Asiatic monsoon low is well simulated. The subtropical high pressure cells in
the Southern Hemisphere are well simulated over the Iadian Ocean, Atlantic
Ocean and the eastern Pacific but not over Australia. The westerly zoaal geo-
strophic flow that is shown by the isobars between 40°S and 60°S is fairly well
simulated over the south Atlantic and south Indian Ocean; but in the south
Pacific Ocean the simulated geostrophic flow is easterly between 40°S-60°S.

For summer and winter, the model shows a common deficiency of distinct non-

zonal isobar configurations .n the southern hemispheric mid~latitudes.

b. Geopotential heights, Figures 4.3a and 4.4a show the observed (Crutcher

and Davis, 1969) 200 mb geopotential height field for winter (December, January,
February) and summer (June, July, August), and Figures 4.3b and 4.4b show the
corresponding model simulation results for February and July respectively.

For February, the model simulation of the trough over the northeast USA
and eastern Canada, the ridge over the eastern Atlantic and the jet stream over
Japan are quite realistic. The ridge over the west coast of the USA is displaced
to the east. The simulation of the upper level anticyclonic circulation over
the tropics is reasonable. The actual values of the geopotential, however, are
higber than the mean climatology. The southern hemispheric flow is also well
simulated. Model simulations show more distinct eddy structure in the southern
hemispheric circumpolar flow along 40°-60°S. It will be shown in section 5 that
the model simulated stationary variance is in excellent agreement with the
observed stationary variance.

For July, the model simulated 200 mb flow shows large amplitude short waves
over North America and the adjacent Pacific Ocean., The ridge over central U.S.A.
1s well simulated but the trough off the west coast of U.S.A. is not present

in the observed climatology. Although the local maximum associated with the
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Tibetan high is not well simulated, the large scale anticyclone over the Asiatic
monsoon is reasonable. The geopotential height in the tropical belt is higher
by about 200 gpm than climatology. This i{s due to a gradual warming of the
tropical atmosphere in the model simulation. We do not yet know the reason
for this problem. The location of the simulated mid-Atlantic trough does not
agree with the observations. The observed and simulated upper-level flows are
both predominantly zonal in the Southern Hemisphere,

The surface circulation during July and the upper level circulation during
January are, in general, better simulated than the surface circulation duriag

winter and the upper level circulation during summer.

c. Flow at 200 mb. Figures 4.5a and 4.6a show the observed 200 mb flow

pattern for February and July, and Figures 4.5b and 4.6b show the correspond-
ing model simulations for February and July, respectively. The observed 200 mb
flow for February was obtained from the NMC analysis of February, 1979 and for
July it is reproduced from Sadler (1975).

For February, the locations and the intensities of the jet streams in both
hemispheres are well simulated. The model simulated jet stream speeds in both
hemispheres, are, in general, stronger than the observations of February, 1979,
especially in the Southern Hemisphere. Away from the equator, the flow patterns
are quite consistent with the gecpotential height fields shown earlier.

The simulated July 200 mb geopotential height field does not compare well
with the observations, One deficiency is the weakness of the summer monsoon
easterly jet stream along 10°N, The subtropical jet stream near Japan is
reascnable in terms of location and intensity, but the flow pattern over the

subtropics of the Western Hemisphere is not realistic.

d. Zonal wind., Figures 4.7a and 4.8a (solid lines) show the observed zonal

wind for February and July 1979, and Figures 4.7b and 4.8b (solid lines) show
-2]=-



the corresponding model simulations for February and July, respectively.

For February, the most conspicuous deficiency of the simulation is the
absence of the closed maximum near 200 mb which is seen in the observations.

The model simulated zonsl wind increases with height and tilts towards the north
so that the model simulated zonal wind near the upper boundary is stronger than
is obsarved. This model deficiency is related to very low model temperatures

in the the upper tropospheric polar regions. The locations of the strongest
zonal wind maxima in both hemispheres is fairly well simulated. The zonally
averaged equatorial easterlies are a little too weak. The configuration of the
zero wind line is not unreasonable except that it is too low south of the
equator.

The dashed lines in Figures 4.7a and 4.7b show the zonally averaged temper-
ature. The largest discrepancy is found near tie upper boundary over the polar
regions., Dynamical heat fluxes are not sufficient to compensate for the exces-
sjve radiative cooling associated with high level supersaturation clouds which
are treated as black bodies. The middle tropospherc over the polar regions is
warmer than the observations. The model simulated tropical atmosphere is consi-
derably warmer than the observations., 1In a separate study Shukla and Wallace
have found that most of the warming of the tropics occurs in first 30 days.

For July, the observed and simulated zonal wind fields are in very good
agreement, except that the jet in the Southern Hemisphere increases monotonically
with height so that the maximum value occurs near the upper boundary. Zonally
averaged temperatures (dashed line) near the northern pole are lower in the
model simulations than in the observations. The model simulated tropical atmo-
sphere i{s again warmer than observations and this may be one of the reasons for
a stronger westerly jet in the Southern Hemisphere.

e. Zonally averaged specific humidity. Figures 4.9a and 4.10a show the

observed zonally averaged specific humidity for February and .July, 1979, and
-22-
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Figures 4.9b and 4.10b show the corresponding model simulations for February

and July, respectively. For both seasons, the general latitudinal and vertical
structure of the humidity field i¢ quite reasonable. However, the simulated
specific humidity at the lower levels is larger than observed. As will be

shown later, the simulated rates of evaporation and precipitation are comparable
to the observations. Therefore, the high values of specific humidity may be
related to the houndary layer parameterization and the values of surface traasfer

coefficients used in the simulations.
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5. Fluctuations in space and time

a. Energetics-hemispheric energy cycles. The energy cycle is an entity

which summarizes the energy content of the atmosphere, its resolution into
various components, and the transformations between these components (Lorenz,
1955; Oort, 1964). Figures 5.1 and 5.2 present the energy cycles of the simu-
lated winter and summer seasons, and those estimated for the real atmosphere
(Oort and Peixoto, 1974). Each energy cycle is computed in the space-time
domain (Oort, 1964) and on a hemispheric basisl.

The observed energetics for January in the Northern Hemisphere (Figure
5.1a) indicate a strong (baroclinic) flow of energy from zonal available poten-
tial (Py) to eddy available potential (Pg) to eddy kinetic (Kg) energy, and a
weaker (barotropic) flow from eddy kinetic to zonal kinetic (Ky) energy. Also
indicated is a conversion from Ky to Py, although this estimate has a large
degree of uncertainty associated with it (Oort and Peixoto, 1974). These
energy transfers are reproduced remarkably well in the model Northern Hemisphere
energy cycle for February (Figure 5.1b). The sizable conversion of KM to Py
in the model suggests that the energy conversion of the thermally indirect
Ferrel cell overcompensates that of the thermally direct Hadley cell. This is
not inconsistent with the much 'arger mass flux associated with the Hadley cell,
since the Ferrel cell exhibits a much larger temperature difference between the
ascending and descending branches. The energy amounts in the model simulation
agree well with the observations except for Ky; the fact that the model Ky is
almost twice that of the observations is consistent with th¢ model's unrealisti-

cally strong subtropical jet. Given the large uncertainties in estimrting the

] The model conversions from potential to kinetic energy were computed using
the "wa” formulation, while the estimates given by Oort and Peixoto (1974)
used the "V+*72" formulation, Hence it was necessary to transform the observed
estimates to the “wa" formulation by making use of the observed fluxes of
energy across the equator (Oort and Peixoto, 1974; Peixoto and Oort, 1974).
it ety BLANK 45
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generation and dissipation of energy in the real atmosphere (Oort and Peixoto,
1974), it is difficult to assess the model's performance with regard to these
quantities. The dissipation of kinetic energy in the model's Northern Hemisphere
(in winter) is within a factor of two of the observed estimate, with the model
showing less dissipation of eddy kinetic energy than the observations. The
model's winter generation of Py (due to both dry and moist processes) is much
stronger than the observed estimate., This may be due to excessive cooling near
the winter pole and warming of the tropical atmosphere. The model also predicts
a small net diabatic loss of Pg, in contrast with the estimate for the atmosphere.

The Southern Hemisphere energy cycle for the winter (July) simulation is
indicated in Figure 5.lc, and it is seen to be quite similar to the simulated
Northern Hemisphere winter cycle (Figure 5.1b). The only energy conversion which
is substantially different is the barotropic conversion from Kg to Ky, which is
of opposite sign in the two hemispheres. The energy sources and sinks are also
qualitatively similar, and the zonal available potential and eddy kinetic ener-
gies are close in magnitude. Pg is greater in the Northern Hemisphere, while
Ky is greater in the Southern Hemisphere,

The observed summer Northern Hemisphere energy cycle (July) is presented
in Figure 5.2a. The baroclinic energy conversions, Py to Pg and Pg to Kg, still
have the same sense, although they are smaller than in January. The weak (baro-
tropic) conversion from Kg to Ky 1s again present, but the estimate of the con-
version between Ky and Py has changed sign from the January observations. The
amounts of the different types of energy are considerably less in summer than
in winter., The energy conversions of the model Northern Hemisphere summer (July,
Figure 5.2b) are in the same sense as observed, but they are generally of much
larger magnitude. This is particularly true of the conversion from Pg to Kg.

Furthermore, t%:e amounts of energy in the model simulation are somewhat larger

than observed, the discrepancy being the greatest for Py. Frictional dissipation

-46-



in the model is approximately the same as the observed estimate, but the total
model generation of Py and Pg greatly exceeds the estimates of the real atmo-
sphere. In general, the simulated Northern Hemisphere summer circulation
appears to be overly vigorous.

Comparing the model energy cycles for Northern Hemisphere summer (July,
Figure 5.2b) and Southern Hemisphere summer (February, Figure 5.2c), it is seen
that the conversions are generally similar in magnitude and are in the same
direction. It should be noted, however, that the conversions Py to Pg and Kg
to Ky are larger in the Southern Hemisphere summer. Both hemispheres contain
similar amounts of Kg and Pg, but the Southern Hemisphere Ky and Py are signi-
ficantly greater than those of the Northern Hemisphere. The sources and sinks
of energy are comparable in the two summer hemispheres, although the generation

of Pg by dry diabatic processes is of opposite sign.

Meridional energy transports. This subsection presents the meridional

transports of the various components of energy density, viz., sensible heat
(internal energy), potential energy, kinetic energy, and the latent energy of
condensation of water. These transports are time-averaged and vertically inte-
grated, and are also divided into eddy and zonal-mean components.

The observed zonal-mean transports of the various forms of energy density
are presented for February in Figure 5.3a, while the mean model transports are
given in Figure 5.3b, The source of all the observed transports reported here
is Oort and Rasmusson (1971). The observed mean transport of potential energy
is directed opposite to the transports of latent and sensible heat; potential
energy is carried northward by the Hadley cell, whereas sensible and latent
heat are transported southward. North of 26N, the presence of tha Ferrel cell
causes this pattern to reverse, although the mean latent heat transport becomes

very small. Because the transports of the individual components tend to oppose
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each other, the total energy transport is relatively swmall. 1t is also con-
sistently in the direction of the potential energy transport. The mean trans-
port of kinetic energy is not depicted, since it is too small to play any role
in the overall energy transport. The February zonal-mean energy transports of
the model are given in Figure 5.3b. The basic pattern of transports agrees
well with the observations, with the potential energy transport again opposing
that of sensible and latent heat. However, the transition from northward to

southward flow of total (or potential) energy occurs about 8 degrees too far

north. 1In addition, the magnitude of the sensible heat and potential energy %
transported by the model's Hadley cell is too small, as is the amount of sen-
sible heat flow in northern mid-latitudes. (Note the difference in scale

between Figures 5.3a and 5.3b.) The Hadley cell transport of latent heat agrees
well with observations.

The observed eddies transport both latent and sensible heat northward in
February, the total northward energy flow reaching a broad maximum in northern
mid-latitudes (Figure 5.3c). The eddy traunsports of potential and kinetic energy
are both quite small. Although the model results for the latent and sensible g
heat carried by the eddies (Figure 5.3d) show basic agrecment with the observa- .
tions north of 30N, there are discrepancies. The magnitude of the total model
transport is somewhat too large, and the peak in sensible heat flow occurs &
degrees (one grid point) too far south. Between 30N and the equator, the model's
eddies transport sensible heat southwards, while the latent heat transport !
remains near its peak value, Neither of these features is observed. 1In the
Southern Hemisphere, the (poleward) eddy transports of latent and sensible heat
resemble those in the northen hemisphere, although che amount of sensible heat
carried is considerably smaller. The potential and kinetic energy transports

are again quite small,
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It is quite apparent frow Figures 5.3a~5.3d that almost all of the poten-
tial energy transport is accomplished by the mean flow. In contrast, Figure
S.3e indicates that in the cese of kinetic energy, it is the eddies which doni-
nate the transport. The model's eddy kinetic energy flow agrees with the
observed only in the grossest sense: the transports ave both to the north froam
about 14N to 62N. Not only does the model transport much more energy than is
observed, but it transports kinetic energy southward north of 62N, in contrast
to the obgervations. Also, the double maximum in the observed transport is
absent in the model results.

The observed zonal-mean transports of energy in July (Figure 5.4a) strongly
resemble the winter transports, with the Hadley cell now shifted southwards and
directed towards the Southern Hemisphere, The mean energy transports of the
model fn July (Figure 5.4b) indicate the same deficiencies present in Pebruary,
namely that tho transports of sensible heat and potential energy are too small.
(Note the difference in scale between Figures 5.4a and 5.4b.) Also, the latitude
of peak transport of the Hadley cell is located at least 4 degrees too far
north. Gauging the strength of the model winter hemisphere Ferrel cell by its
transport of potential energy, one concludes from Figures 5.3b and 5.4b that
the cell is weaker in July than it is in February.

The observed July eddy transports (Figure 5.4c) are naturally much weaker
than in February, with the peak magnitude of northward latent heat transport
greater than that of the sensible heat transport. This overall pattern is
reproduced in the Northern Hemisphere July model results (Figure 5.4d), although
the model peak of northward latent heat transpeort is too large by almost a
factor of two., The position of the peak in sensible heat transport is slightly
too far south in the model, although the peak magnitude is correct. Also, the
transition from northward to southward energy transport occurs near the equator,
as is observed. The flows of latent and sensible heat in the model Southern
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(winter) Hemisphere generally resemble those of the February Northern (winter)
Hemisphere (Figure 5.3d), with the exception that the July sensible heat trans-
port is a factor of two less than the Fabruary traasport.

The July eddy transports of kinetic energy, both as simulated and observed,
are shown in Figure 5.4e. The only significant observed feature in the Northern
(summer) Hemisphere is a peak of northwn?d transport at 34N, This ig absent in
the model results, which indicate weaker maxima of northward transport at 42N
and 58N and maxima of southward transport at 28N and 66N. 1In the Southern Hemi-
sphere, the model's eddies carry a great deal of kinetic energy southward near
32S, and, further south, an equally large amount northward. Whether the very
sizesble convergence of eddy kinetic energy at 40S is realistic or not is a

question which cannot be answered with the data presently in hand.

b. Stationary waves in the geopotential height field. The time-averaged

departures from zonal symmetry of the basic meteorological fields reflect the
lack of such symmetry at the lower boundary. That is, the presence of station-
ary waves 1is due to the existence of orography and geographically fixed, asym-
metric, heat sources. Thus, in order for a GCM to reproduce the observed
three-dinensional structure of the stationary waves, the model must simulate the
geographically fixed heat sources and flow over orography in a realistic manner.
In this section results are presented for the stationary (time-averaged)
component of the geopotential height, from which the stationary temperature and
wind fields may be estimated by using hydrostatic and geostrophic balance respec-
tively. Figure 5.5a shows the observed winter variance around a latitude circle
of the stationary geopotential height, summed over the planetary waves (wave-
numbers 1-4). The term "stationary” reafers to a 90-day average commencing on
January 1. This average was computed from NMC analyses for each of the years

1963-1977, and the mean over these years was taken. The corresponding stationary
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planetary wave variance for the winter GCM simulation is presented in Figure
5.5b1, "Stationary” here refers to a time-average over tiix first 90 da;a of
the simulation, which was initialized from data valid for January 1, 1975. The
model results show good overall agreement with the observations, with both
varisnces reaching a maximun in the mid-latitude upper troposphere. The model
variance is slightly too weak up to the 250 mb level, above which {t fails to
shov the decrease with height apparent in the observations, This failure may
be related to the unrealistically low polar temperatures and strong zonal winds
at the upper levels. The model stationary planetary wave variance in the
Southern (summer) Hemisphere (Figure 5.5b2) is almost an order of magnitude
smaller than in the Northern Hemisphere, due to the relative lack of orography
and geographically fixed heat sources in the Southern Hemisphere. It should

be noted that the zonal variance of the stationary height field in the lowest
four wavenumbers is (in winter) several orders of magnitude larger than the
variance in higher wavenumbers, indicating that the total stationary variance
will strongly resemble the planetary wave variance.

A more detailed description of the stationary waves is afforded by a zonal
wavenumber decompusition of the geopotential height field. Figures (5.6a)-
(5.6f) present the amplitude and pha|e2'3 of wavenumbers 1-3 (separately) for
both the observed and simulated winters., Comparison of Figures (5.6a) (15 year
mean observations) and (5.6b) (GCM) shows that the amplitude of wavenumber 1

in the GCM agrees well with the observations in that both amplitudes reach a

2 The phase is defined as the relative position of the ridge, i.e. the phase ¢
is defined by writing the wave as A cos (k) - ¢), where k is the zonal wave-
number and )2 the longitude.

3 The plots of amplitude and phase were consiructed from data at only five vertical
levels (200 wb, 300 ab, 500 mb, 700 mb and 850 mb). This vertical resolution was
not adequate to resolve certain ambiguities in the¢ behavior of the phase as a
function of latitute and height,. Certain portions of the phase plots hence were
left blank.
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maximum in the mid-latitude upper troposphere. However, the GCM amplitude does
not decrease above 300 mb as does the observed amplitude, and the maximum in
the GCM amplitude is both somewhat too strong and located about 6 degrees too
far north, The phase of the GCM's wavenumber 1 tilts westward with height in
mid-latitudes, but with less slope than 13 observed. The eastward phase tilt
with increasing latitude evident in the observations is almost completely
absent in the model. Further, the actual values of the GCM phase are about 30
degrees less than (to the west of) the observed values near the mid-latitude
amplitude maximum,

The behavior of the model wavenumber 2 (Figures 5.6c-5.6d) presents a con-
trast to the wavenumber 1 results in that the phase shows better agreement with
the observations than does the amplitude. The simulated amplitude is only half
as large as the observed throughout mid-latitudes, although the overall latitude-
height structure is similar, with a broad mid-latitude upper tropospheric maxi-
mum and one in the sub-tropical upper troposphere. Both the simulated and
observed wave phase show a westward tilt with height and with (increasing)
latitude in mid-latitudes, although the model phase tends to tilt too rapidly.
In the vicinity of the mid-latitude amplitude maximum, the phase of the GCM
wave is about 30 degrees too large (too far to the east).

The amplitude and phase of the observed and simulated wavenumber 3 are pre-
sented in Figures (5.6e)-(5.6f). The model amplitude agrees well with the
observations, both with regard to the overall latitude-height structure and to
the maximum amplitude, although the GCM maximum is located about 4 degrees too
far north. 1In the vicinity of the mid-latitude maximum both the GCM phase and
the observed phase show a moderate westward tilt with height and eastward tilt
with (increasing) latitude. The values of the phase are also in rough agreement.

To the north of 60N, the observed phase tilts westward with increasing latitude,

while the model phase continues to shift eastward with latitude in the lower
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troposphere. In the subtropics, the model captures the observed westward phase
shift with height but fails to capture the obrerved eastward shift with latitude
in the upper troposphere.

The observed summer variance of the stationary component of the geopoten-
tial height, summed over wavenumbers l-4, is presented in Figure 5.7a. The cor-
responding GCM variance is shown in Figure 5.7bl. These quantities were computed
in the same manner as for the winter season, except that the averaging period
was defined to be the 90 days starting on June 15. (This time period was
chosen to correspond to the summer simulation, which was initialized with data
valid for June 15, 1979.) The simulated planetary wave variance agrees well
with the observations with regard to the location and strength of the three
maxima: one in mid-latitudes at about 300 mb, and two in the subtropics, at
850 mb and 200 mb. Discrepancies include tne fact that the simulated mid-
latitude variance does not decrease above 300 mb, the slight northward displace-
ment in the GCM of the subtropical maximum at 850 mb, and the weakness of the
simulated subtropical maximum at 230 mb. It is noteworthy that the Southern
(winter) Hemisphere .ltra~-long wave variance (Figure 5.7b2) is now of the same
order of magnitude as the Northern (summer) Hemisphere variance.

The amplitude and phase of the stationary zonal wavenumber 1 in sumwer is
shown in Figures 5.8a for the observations and in Figures 5.8b for the GCM.

The latitude-height structure of the observed amplitude is very similar to that
of the total planetary wave variance; one mid-latitude maximum in the upper
troposphere is present, as are sub-tropical maxima at 850 mb and 200 mb. The
model amplitude shows good agreement with the observations, the major discrep-
ancies being the excess strength and southward displacement in the model of

the midlatitude maximum. The GCM phase strongly resembles the observed south

of 34N, exhibiting strorg eastward tilt with height but little tilt with lati-

tude. In mid-latitudes, however, the model phase is less realistic. The
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observations show a slight eaatward tilt with height and a stronger eastward

tilt with (increasing) latitude south of the mid-latitude maximum, and a moderate
westward tilt with height and no tilt with lat{tude just north of the maximum.
The phase in the GCM, in coantrast, tilts westward with height and eastward with

(increasing) latitude through much of the mid-latitude region.

The observed summer amplitude of stationary wavenumber 2 shows a good deal
of structure (Figure 5.8cl); there are three distinct amplitude maxima and two
distinct minima. The maxima again occur in the upper troposphere in mid-
latitudes, and in the subtropics at §50 mb and 200 mb. The structure of the
GCM amplitude (Figure 5.8d1) is generally similar, but differences of detail
exist. The locations of the maxima are too far north, both upper tropospheric
maxima are too strong, and the minima ~~e not as distinct as in the observa-
tions. The behavior of the observed phase shows several regimes, and these
are present to some extent in the model results. 1In the upper tropical tropo-
sphere, the observed phase tilts little with latitude, and tilts westward with
height. The model phase in this region tends to show much less shift with
height and much more (westward) tilt with latitude. The observed phase in mid-
latitudes tilts eastward with (increasing) latitude in the lower troposphere,
and westward in the upper troposphere, up to the latitude of the amplitude
maximum. The phase tilts eastward with height throughout this region. North
of the amplitude maximum, the phase slopes westward with latitude, but shows
little shift with height. The phase of the GCM wave reproduces this structure
very well in an overall sense, but the values of the phase tend to be uniformly
smaller (wave located too far to the west).

The structure of the observed summer wavenumber 3 amplitude is quite simi~
lar to that of the lower wavenumbers (Figures 5.8e), with three distinct maxima
again present. In this case, however, the 850 mb maximum {8 located in mid-

latitudes, at 38N, The GCM wave 3 amplitude agair follows the pattern quite
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well (Figures 5.8f), although the maxima are located slightly too far north, and
the upper-tropospheric mid-latitude maximum is somewhat too weak. The observed
phase slopes rapidly eastward with latitude in the subtropics, and slopes slowly
westward with height. The model phase, however, shows a more rapid westward
tilt with height and a westward tilt with latitude. Between 38N and 46N, the
observations indicate almost no phase tilt with height and a strong eastward
tilt with latitude, while the phase of the GCM shows a strong eastward tilt

with height and no tilt with latitude. Between 46N and the mid-latitude ampli-
tude maximum, both observed and simulated phases slope rapidly eastward with
latitude, and very little with height. The region near the amplitude maximum

is one with little phase change for either the GCM or the real atmosphere.

c. Space-time structure of transient fluctuations-local analysis of vuriance.

A useful description of the fluctuations in any basic field is afforded by the
analysis of local varlability discussed by Blackmon (1976). This method portrays
the spatially local fluctuations of a particular field by the construction of
maps of its RMS deviation in time. The variability due to low frequency motions
or that due to higher frequency baroclinic activity can be separated by first
filtering the data with a low-pass filter (retaining periods of 10-90 days), or
a band-pass filter (retaining fluctuations of 2.5 to 6 days). Ir, the applica-
tion of this method, an estimate of the annual cycle is removed from the data
before either the filtering or the computation of the RMS deviation.

The RMS deviation of the (unfiltered) 500 mb geopotential height in the

Northern Hemisphere winter is presented for the observations® in Figure 5.9a

4 Figures 5.9a, 5.10a and 5.11a are taken from Blackmon (1976). In that paper,
the winter season was defined to be the period of 120 days commencing on Novem-
ber 15. The data consisted of the NMC analyses, twice daily, for the years
1963 through 1972, from which nine winter seasons were abstracted. The first
four harmonics of the annual cycle were removed. The RMS deviations of the
filtered and unfiltered fields were computed for each winter, and then averaged.
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and for the GCM3 in Figure 5.9b. The observed map shows a trend of tncréacing
variability with higher latitude, at least up to mid-latitudes. Particularly
noticeable are the regions of high variability in the northeast Pacific, in the
north Atlantic, and over north-central Asia. The GCM results show the same
general trend, although the values of the RMS deviation tend to be less. The
observed high in the north Pacific is present in the model, although in much
weakened form, while the observed strong north Atlantic high is replaced by a
pattern of weaker highs over Newfoundland and off the east coast of Greenland
and a low over the northeast Atlantic. In addition, the model shows a region
of relatively high variability over the west coast of the United States, a
feature that is not observed. The level of noise in the GCM map relative to
the observations is to be expected, for the latter represents an average of
nine individual atmospheric realizations, whereas the former represents a single
(simulated) realization.,

The discrepancies between the simulated and observed RMS maps are further
elucidated by the separate consideration of the low-pass and band-pass RMS
maps. The low-pass filtered geopotential height field gets strong contribu-
tions from blocking ridges, or positive anomalies that persist longer than,
say 10 days (Blackmon, 1976). Their occurrence in nature is highly variable
from one year to the next, so that the RMS low-pass field for any one year (or
any one model simulation) may be quite different than the climatological mean.
The average RMS low-pass map for the observations (Figure 5.10a) and for the
GCM (Figure 5.10b) both strongly resemble their unfiltered counterparts. Thus

the discrepancies noted between Figures 5.9a and 5.9b are in large part the

5 Here the winter season is defined as the 90-day period commencing on January 1.
The annual cycle was estimated by fitting each 90-day time series with a para-
bola. The filters used are identical to those of Blackmon (1976).
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differences between the climatology of persistent anomalies and their presence
or sbsence in one model simulation.

The band-pass RMS, on the other hand, is closely associated with regions
having a high frequency of cyclonic activity, and so indicates the location of
the "storm tracks" (Blackmon, et al., 1977). A comparison of the observed band
pass RMS (Figure S.11a) with that of the GCM (Figure 5.11b) shows excellent
agreement in terms of both the location and strength of the major areas of
cyclonic activity in the north central Pacific and western Atlanmtic.

The observed total RMS of the summer 500 mb height field® is presented in
Figure S.12a. The two oceanic vegions of high variability in the winter map
(Figure 5.9a) are‘again present, although they are weaker and their positions
have been somewhat shifted. The simulated total RMS summer 500 mb height field
(Figure 5.12b) is quite noisy compared to the observations. 1In the Atlantic,
there is an extended region of high RMS, but the RMS is much too small. The
GCM shows a rapid succession of highs and lows in the Pacific region where the
observations indicate a broad high. The average RMS in this area is also much
too small.

The observed summer band-pass RMS height field (Figure 5.13a) shows the
two oceanic maxima present on the winter map. The Atlantic maximum has been
shifted to the east, and the magnitude of the summer RMS is generally much
smaller. The corresponding (Northern Hemispheric) map for the GCM (Figure 5.13b)
indicates tliat the Atlantic maximum has been realistically simulated, both with
respect to position and to magnitude. The Pacific maximum, however, is too

weak and is located too far to the west.

6 The observed fields (Figures 5.12a, 5.13a) are taken from Blackmon (1976).
The summer season was defined there to be the 123-day period from May 15 to
September 14, The data base was identical to that mentioned in footrote 4,
as was the methodology used to obtain the maps.
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The RMS deviation for the 850 mb temperature field for the observations
and for the model are shown in Figures 5.14a and 5.14b, recpective1y7. The
observations show greater variability over land than over oceans, especially at
high latitudes, with no clear indication of the oceanic storm tracks. The most
noticeable region of high variability is that over northwestern Canada, reflect-
ing the alternation of high marine and low Arctic air temperatures (Blackmon
et al., 1977). Other (less striking) regions of high RMS are Greenland and an
area in north-central Asia. The GCM map also shows more variability over land
than over water. The maximum in the RMS over northwestern Canada and Greenland
are not only present but are in fact unrealistically strong. In addition, the
Atlantic storm tracks stand out more in the GCM than in the observations. The
observed high over north-central Asia appears over eastern Siberia in the GCM,
and also appears too strong. Both the observed and simulated low-pass RMS maps
(Figures 5.15a and 5.15b) resemble the total RMS maps, with the exception that
the model's Atlantic storm tracks now are not apparent.

The observed band-pass RMS (Figure 5.16a) shows both the presence of high
variability over the oceanic storm tracks and in the lee of the Rocky mountains,
presumably reflecting the cyclogenetic activity there. The GCM band-pass RMS
(Figure 5.16b) shows the presence of both the Pacific and Atlantic storm tracks.

The lee-side Rocky mountain maximum does not appear on the simulated map.

Wavenumber-frequency spectra. Space-time spectral analysis is an

approach in which the longitude- and time-variance of a field is separated into
components of distinct spatial scales (described by wavenumber) and time scales

(measured by frequency). The calculations of the wavenumber-frequency spectra

7 The observed RMS deviations are from Blackmon et al. (1977). The annual
cycle was estimated from the 850 mb temperature field in that work by fitting
a parabola to the time series at each grid point. Otherwise, the methodology
is as described in footnote 4,
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reported here are described in Straus and Shukla (1981), to which the reader
should refer for complete details8,

The observed winter wavenumber-frequency spectrum of the 500 mb geopoten-
tial height field at 50N is shown in Figure 5.17a, and the model results are
given in Figure 5.17b. These plots show the spectral density as a function of
zonal wavenumber and frequency (in cycles per day). Both the observed and
model spectra possess two noteworthy features: (i) the lowest frequencies and
wavenumbers have the greatest spectral density, and (ii) a ridge of high spec-
tral density extends diagonally from lower frequencies and wavenumbers to
higher frequencies and wavenumbers. These two features are common to many of
the spectra that are presented in this paper. The orientation of this ridge
is very similar in the model and observed spectra, and is consistent (in a very
approximate way) with the Rossby phase speed formula (Pratt, 1977). Hence,
this ridge is referred to as the "propagation band” (Pratt, 1975). The major
difference between Figures 5.17a and 5.17b is the relatively small magnitude
of the model spectral density at low frequencies and low wavenumbers. This
shortcoming of the model will be evident in further results (to be presented),
and 1s also a failing of other GCM's (Pratt, 1979).

The dashed lines in Figure 5.17a divide the wavenumber-frequency plane into
four domains: (i) low frequency planetary waves (LFPW's), consisting of wave-
numbers 1-4 with periods of 7.5 to 90 days, (ii) low frequency synoptic-scale
wavee (LFSW's), consisting of wavenumber 5-10 with periods of 7.5 to 90 days,
(111) medium frequency planetary waves (MFPW's), consisting of wavenumbers

1-4 with periods of 2.8 to 6.9 days, and (iv) medium frequency synoptic-scale

8 A brief description of the methodology is as follows: The winter (summer)
season 1s defined as the 90-day period commencing on January 1 (June 15).
The observational data consist of 15 years (1962-1977) of NMC analyses. Each
observed season and model simulation had a separate parabolic estimate of the
annual cycle removed from each grid point before the spectra were computed.
The reported observational spectra have been averaged over 15 seasons.
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waves (MFSW's), consisting of wavenumbers 5-10 with periods of 2.8 to 6.9 days.
The latter category is associated with propagating, baroclinically active
systems, while the LFSW category may be related to the growth and decay (life
cycle) of such systems. There are numerous physical mechanisms capable of
explaining the presence of the LFPW's in the atmosphere, including the insta-
bility of either axisymmetric or non-axisymmetric mean states, the non-linear
transfer of energy from synoptic-scale wavés. or the propagation of essentially
free modes. Which of these explanations is valid is not known. These categories
will be used to compile the space-time spectral summaries presented in a later
subsection.

The observed spectrum of 500 mb geopotential height at 30N in winter is
given in Figure 5.18a, and the GCM spectrum in Figure 5.18b. The observed
spectrum at 30N is less intense than at 50N, although the main features of the
two spectra resemble each other, The simulated spectrum at 30N has the same
overall shape as thec observed, with the magnitudes of the spectral density being
generally comparable. The model LFPW's are only moderately too weak, although
the discrepancy 1s more striking for wavenumber 1. The simulated spectrum
also shows a peak at wavenumber 6 and frequencies near 0.10 cpd, a feature that
is not observed.

The observed (simulated) spectrum of 500 mb height at 50N in summer is
given in Figure 5.19a (5.19b), while the spectrum at 30N is shown in Figure
5.20a (5.20b), The observed summer spectra are much weaker than their winter
counterparts, particularly at 30N. At 50N, the propagation band has been
shifted to higher wavenumbers (consistent with the observations of Pratt, 1975),
while at 30N it has ceased to exist altogether. The propagation band of the
simulated summer spectrum at 50N does not appear to have shifted from its winter
position, although it is not very well defined. In addition, the shape of the
model spectrum is quite different than observed, with the model low frequency
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peak at wavenumbers 1 and 2 contrasting with the observed peak at wavenumbers

4 and 5. The model spectral density is generally too small. At 30N, the model
spectrum does not show any signs of a propagation band, a feature which agrees
with the observations. But rather than indicating one low frequency peak at
wavenumber i, the model results show a series of peaks at wavenumbers 1, 3 and

7. Here the low frequency model spectral density is much larger than is observed.

A further useful diagnostic defined in the space-time spectral domain is
the net propagation tendency, which measures the extent to which motions of a
particular space and time scale propagate preferentially westward or eastward.
(This measure is defined so that ~1.0 corresponds to pure eastward propagation,
+]1.0 to pure westward propagation.) The net propagation of the observed (simu-
lated) winter 500 mb geupotential height at 50N is presented in Figure 5.21a
(5.21b), and that of the temperature? in Figure 5.22a (5.22b).

Both the observed temperature and heights have a net propagation tendency
of close to -1.0 in the MFSW region, consistent with the eastward propagation
of synoptic-scale systems. On the other hand, it is clear that the observed
low frequency planetary waves have little tendency to propagate preferentially
in any direction; the values reported for those scales in Figures 5.21a and
5.22a are small and positive for the height field, and small and negative for
the temperature field. The observational study of Pratt and Wallace (1976)
indicates that this may be due to the coex}stence of two dominant low fre-
quency planetary wave modes, one which propagates westward and one which propa-
gates eastward. Although the westward propagating mode is dominated by the

height field at 500 mb and the eastward propagating mode is dominated by the

9 The net propagation tendency of the temperature was taken from Pratt and
Wallace (1976). The major differences between their methodology and that
used in this paper are the definition of the winter season (they definc it
to be the 132-day period starting November 25), the choice of band width
(they use 0.133 cycles per day as opposed to 0.0667 cycles per day used here),
and the data base (they used only four years of NMC analyses).
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temperature field, both variables contribute to both modes, leading to a certain
amount of cancellation in the net propagition tendency. The observed pattern

of net propagation tendency is reproduced in the model results for temperature
and geopotential (Figures 5.21b and 5.22b). Both fields show almost exclusively
eastward propagetion in the MFSW scales, while the height (temperature) field
shows a slight tendency to propagate westward (eastward) in the LFPW scale.

The region of positive net propagation tendency in the model spectrum is, how-
ever, not as extensive as in the observations.

In order to provide a background for the space-time spectral analyses of
heat and momentum fluxes to be discussed in subsections d and e, spectra of the
u and v winds are presented here. The spectrum of the observed 300 mb u-wind
(v-wind) in winter at 35N is presented in Figure 5.23a (5.24a), and the simu-
lated spectrum (at 34N) in Figure 5.23b (5.24b). The observedl0 u-wind spec-
trum is similar to the spectra of the geopotential in that most of the spectral
density 1is concentrated in the LFPW's, and in the appearance of a distinct
propagation band, The propagation band of the model spectrum is somewhat dis-
organized, although the LFPW maximum is well simulated. The spectral density
is in general too low, especially for low frequencies at wavenumber 1.

In contrast, the v-wind spectrum is very well simulated by the model, The
propagation band is correctly represented as running from wavenumber 5 and lower
frequencies to higher wavenumbers and frequencies. (That the low frequency end
of the propagation band occurs at wavenumber 5 rather than 1 or 2 is a direct
consequence of geostrophic balance.) Also, the magnitude of the simulated
spectral density is generally quite realistic, including the values at the max-

ima, Howevever, the model spectrum does show a peak near wavenumber 7 and a

10 The observed wind spectra are reproduced from Pratt (1977). The methodology
of that paper is similar to that described in footnote 9.
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frequency of 0.175 cpd, a feature that is not observed. (1t is important to
note that some features may appear more localized in frequency in the GCM spectra
than in Pratt's observed spectra because of the difference in band width alluded

to in Footnote 9.)

Space-time spectral summaries. In order to obtain a representation

of the vertical and meridional structure of the wavenumber-frequency spectra,

it 18 useful to be able to summarize each spectrum by a few parameters. It is

for this purpose that the four space-time categories of the previous subsection
(low frequency planetary waves, low frequency synoptic-scale waves, medium fre-
quency planetary waves, and medium frequency synoptic-scale waves) were introduced
The parameters to be discussed in this subsection are derived by integrating the
spectral density over these four space-time regimes,

The latitude-height structure of the observed winter LFPW variance is shown
in Figure 5.25a. This variance reaches a maximum slightly above the 300 mb
level at about 64N, and shows a decrease above this level. The GCM variance
(Figure 5.25b) has a similar structure, except that the variance increases up
to at least 200 mb. In addition, the model variance is somewhat too small
throughout the northern hemispheric extratropical domain.

The observed winter LFSW variance (Figure 5.26a) reaches a fairly sharp
maximum at 300 mb near 46N. The structure of the simulated variance (Figure
5.26b) is again similar to this, althiough the aaximum is much more diffuse in
both the vertical and meridional directions. As before, the model variance is
not large enough south of 62N, whereas north of this latitude it is too large.

Figure (5.27a) presents the observed winter MFPW varfance. Its structure
is seen to be quite similar tc the LFPW variance, except that the maximum is
pushed further northwards. The magnitude of the MFPW variance, on the other

hand, is considerably less than that of the LFPW's. The deficiencies of tche
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model MFPW variance (Figure 5.27b) are quite similar to the deficiencies of the
model LFPW variance; the model variance is generally too small, and does not
show the observed decrease above 300 mb.

In contrast to these results, the simulated MFSW variance (Figure 5.28b)
agrees quite well with the observations (Figure 5.28a). Not only is the model
variance almost as large as {s observed, but it also shows the observed decrease
above the 300 mb maxinum.

The observed summer varfances in the LFPW, LFSW, MFPW and MFSW categories
are presented in Figures 5.29a, 5.30a, 5.3la and 5.32a, respectively. In gen-
eral, the latitude-height structures of the variance are quite similar to the
corresponding winter results, except that the 300 mb maxima have moved somewhat
farther north, and the magnitude of the summer variances is somewhat less. The
summer LFSW variance does not fit this pattern, however, since the winter maxi-
mun at 300 mb has moved up to at least 200 mb in summer, and the magnitude of
the variance has decreased only slightly.

Figures 5.29b, 5.30b 5.31b and 5.32b give the GCM results for the variances
in the LFPW, LFSW, MFPW and MFSW categories. All the model variances iuncrease
with height up to at least 200 mb, so that except for the LFSW's, their struc-
ture is not in agreement with the observations. In addition, the model mediunm
frequency (MFPW, MFSW) variances show indications of two maxima at 200 mb. The
magnitudes of the planetary wave (LFPW, MFPW) variances are too small over the
whole northern hemispheric extratropical domain, while in the case of the
synoptic-scale wave (LFSW, MFSW) variances, the simulated magnitudes are too
small in the vicinity of the observed maximum but are too large far to the

south and north of this region,

d. Northward eddy transport of heat. The analysis of meridional energy trans-

sports presented in gubsection a indicated that the total vertically integrated
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northward transport of heat by the eddies was fairly realistic in both the
winter and summer simulations, In this subsection, the northward flux of heat
1s diagnosed in much more detail. The first part discusses latitude-height
cross sections of both stationary and cransient zonally-averaged meridionsl heat
fluxes, while the geographical structure of the local transient heat flux and
its breakdown into low-pass and band-pass components are studied in the zecond

part. Some representative space-time spectra are presented in the third part.

Stationary and transient eddy heat flux. The observed (simulated)

time mean February heat flux due to the stationary eddies is shown as a function
of latftude and pressure levellls12 1 Pigure 5.33a (5.33b). The agreement
between the model results and “he observation is quite good. The observed mid-
latitude maximum of positive heat flux is well reproduced, as is the secondary
maximum at 200 mb. Discrepsncies include the presence of a sizeable negative
heat flux in the model subtropics at 200 mb (which is not observed), the incor-
rect sign of the model heat flux north of 70N in the lower troposphere, and the
slight equatorward displacement of the 200 mb maximum in the model results.

The time mean heat flux due to the transiert eddies in February is given
for the modell? {n Figure 5.34b and for the observations in Figure 5.34a. It
is important to note that no prefiltering of the data has been done before com- ~
puting the transient component, so that this component includes a contribution
due to the annual cycle. Both the observed broad ma.imum of positive flux in
the mid-latitude lower troposphere and the weaker maximum near 200 mb are well

reproduced by the model. Several differences exist, however. The region of

11 The observed results for the stationary and transient heat flux are taken
from Oort and Rasmusson (1971). Their dafinitions of stationary and trans{ent
eddy fluxes have been adhered to in computing the model statistics.

12 The apparent maximum in the lower :roposphere between 3ON and 38N is an
artifact of the reduction of the fields below the Himalayas.
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large positive heat flux in the model penetrates higher than is observed, and
the upper tropospheric maximum is unrealistically weak in the model.

The stationary eddy heat flux in July is very weak for both the model
(Figure 5.,35b) and the observations (Figure 5.35a). However, the model results
show several features that are not observed, including maxima of negative flux
in the subtropical lower troposphere, a maximum of positive flux at high lati-
tudes in the lower troposphere, and a strong maximum of postive flux at the
mid-latitude tropopause. The transient eddy heat flux in July, shown for the
observations (model) in Figure 5.36a (5.36b), is much stronger. The model
reproduces well the observed broad marimum of positive flux in mid-latitudes,
although the peak values in the model seem slightly t>o large. Further, the
maximum of positive flux near the tropopause in mid-latitudes is very weak

in the model results.

Local covariance analysis. The observed local transient northward

heat flux a: 850 mb in winter, as reported by Blackmon et al. (1977) is shown

in Figure 5.37a. This quantity is given by the covariance of northward velocity
with temperature, where each field has had the annual cycle removed in the
manner described in subsection c. The Atlantic and Pacific storm tracks corres-
pond to regions of high (positive) covariance, and other (positive) maxima

occur over the Gulf of Alaska, the east coast of Iceland, and southern Russia.
Minima (areas of relatively lar;e negative flux) are seen over western Canada
and northwestern Russia. The simulated northern hemispheric winter covariance
of transient heat flux at 850 mb (Figure 5.37b) shows some similarity tc the
observations. Both major oceanic storm tracks stand out clearly, although the
heat flux associated with the one in the Atlantic is somewhat too small. The
maxima near thc Gulf of Alaska and in southern Russia are present, although

their magnitudes, crientations and precise positions do not agree with the
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observations. The observed minimum over western Canada is very weak in the
model results.

The observed low-pass and band-pass transient 850 mb heat fluxes (obtained
from the covariances of the filtered v-wind and temperature fields) are shown
in Figures (5.38a) and (5.39a). The band-pass heat flux is dominated by the
major oceanic storm tracks, while the low-pass results show the other major
features that were present in Figure 5.37a. Two features that appear as part
of the storm tracks in Figure 5.37a, but which are seen to correspond to lower
frequency phenc '‘ena in Figure 5.38a, are the maxima of heat flux over the
eastern United States and over southeast Asia. These tw) features are present
in the simulated 850 mb low-pass heat flux (Figure 5.38)), whose resemblance to
the total simulated transient heat flux (Figure 5.37b) is close but not as
close as in the observations. The simulated band-pass heat flux (Figure 5.39b)
is dominated by the major oceanic storm tracks, which agree very well with the
observations (Figure 5.39a) both with regard to position and intensity.

The observed local transient heat flux in winter at 300 mb and 200 mb
(Figures 5.40a and 5.41a) present an interesting contrast with one another.
(Lau, 1978). There are maxima in the northward heat flux over the western
oceans at both levels, but the heat fluxes over western North America and
western Europe show an abrupt change in going from large and equatorward at
300 mb to large and poleward at 200 mb. The simulated winter transient heat
fluxes at 300 mb and 200 mb (Figures 5.40b and 5.41b) show some evidence of
this sharp transition. The 200 mb heat flux resembles the observations to the
extent that it is maximum over the western oceans and western continents, but
the peak values of the heat flux (except over North America) are unrealistically
low. 1In addition, the model results indicate an area of very strong equatorward

flux in the eastern Pacific and one of more moderate equatorward flux further
west. Neither of these are observed. The simulated 300 mb heat flux reaches
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a maximum of negative values over western North America with a peak magnitude
that agrees with the observations. Thus, in this region the model reproduces
the change of sign of the heat flux. The 300 mb heat flux reproduces the
obgserved (positive) maxima off the East coasts of North America and Asia,
although they are too weak. The observed large, equatorward flux over Western

Europe at 300 mb is not present in the simulated results.

Wavenumber-frequency cospectra. The behavior of the transient heat !

flux can be farther described by its wavenumber-frequency cospectrum, which
expresses the longitude- and time-covariance of v and T in terms of contribu~-
tions from different wavenumbers and frequencies. The model cospectra reported j
here were calculated in a manner entirely analagous to the wavenumber-frequency
variance spectra described in subsection c. The obse.ved cospectra are taken
from Pratt (1975)13, Figures 5.42a and 5.43a show the observed winter heat
flux cospectra at 50N at 850 mb and 200 mb, respectively. The corresponding
cospectra of the GCM are given in Figures 5.42b and 5.43b. Both the observed
and simulated 850 mb heat flux at 50N show a distinct propagation band, with
the maximum covariance for wavenumbers 4-5 and for low frequencies. The modeil
cospectrum, in general, looks quite realistic, the main exception being the
lack of covariance near the low frequency end of the propagation band.

In contrast, the GCM heat flux cospectrum at 200 mb, SON, looks quite
unrealistic. The observed cospectrum again shows a well-defined propagation
band, with a maximum covariance at wavenumber 4, at low frequencies. There is

i also a slight secondary maximum at wavenumbers 7-8 and frequencies near .30,
space and time scales which are associated with cyclones. The propagation band
so evident in the observations is not present in the GCM cospectrum, which is

; dominated by very large values at wavenumber 3 near frequencies of 0.10 cpd.

13 The methodology used by Pratt (1975) is similar to that described in footnote 9.
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In addition, the low frequency cospectrum for wavenumber 2 is sizesble and
negative, indicating a relatively large southward heat transport by these
gscales of motion. It is worth noting that the weak secondary maximum in the
synoptic-scale region is evident in the model results.

The summer heat flux cospectrum at 850 mb, SON (Figure 5.44a) also indi-
cates the presence of a propagation band, but with its low frequency end shifted
to higher wavenumbers compared to the corresponding winter cospectrum. The
magnitudes of the heat flux are of course also much less than in winter. This
decrease in magnitude and shift to higher wavenumber is captured by the GCM
summer cospectrum at 850 mb, 50N (Figure 5.44b), which agrees well qualitatively
with the observations. There are some differences in detail, with the observa-
tions showing low frequency peaks at wavenumbers 4 and 6, whereas maxima in the
simulated cospectrum occur at wavenumbers 6 and 7.

The propagation band of the observed 200 mb cospectrum at 50N (Figure 5.45a)
is not noticeably weaker than its winter counterpart, although it {is shifted
towards higher wavenumbers. The simulated spectrum (Figure 5.45b) is similar
to the observed only in that there is some indication of a propagation band
present. The GCM cospectra show a large drop in peak magnitudes in going from
winter to summer, and the maximum values in the summer cospectra appear at very
low frequencies in wavenumbers 2 and 5. These features do not correspond to

the observations.

e. Northward eddy transport of momentum-stationary and transient eddy

momentum flux. The time mean momentum flux due to the stationary eddies in

February is shown (as a function of latitude and pressure level) for the obser-

vations!4 in Figure 5.46a, and for the GCM in Figure 5.46b. The observations

14 The observed results for stationary and transient momentum flux are taken
from Oort and Rasmusson (1971). Their definitions of stationary and transient
eddy fluxes have been adhered to in computing the model statistics.

_69.,



are dominated by large positive (northward) values of the flux in the upper
troposphere at mid-latitudes, and large negtive (southward) values farther
north. The peak northward flux in the model upper troposphere in mid-latitudes
is larger than observed, while the observed region of large southward flux is
almost completely missing in the GCM results.

The observed time mean momentum flux due to transient eddies for February
is shown in Figure 5.47a. It is dominated by a large peak in northward flux
slightly north of 30N at the 200 mb level. The only other feature of note is
the relatively small peak of negative (southward) flux at 200 mb at the equator.
The model results (Figure 5.47b) also show a large maximum of positive flux,
and its position is correct, However, it is too weak by a factor of two. A
small maximum of southward flux at 200 mb over the equator is also preseant in
the model, but it is too weak. A feature preseant in the GCM results which is
not observed is the region of negative flux in the upper troposphere between
54 and 70N.

The behavior of the GCM's time mean momentum flux due to the stationary
eddies for .July is quite unrealistic (Figures 5.48a-b). The observations show
a peak of northward flux at 200 mb at about 30N, while in the GCM results this
peak is completely missing. The (small) maxima of negative flux in the model
upper troposphere do not have their counterpart in the observations. 1In con-
trast to the stationary eddy flux of momentum, the model transient eddy flux of
momentum behaves more realistically. The observations (Figure 5.49a) show
three important features: a large maximum of positive flux at 200 mb at 45N, a
smaller (positive) maximum at 200 mb just south of the equator, and a broad
upper tropospheric maximum of negative flux north of 60N. The GCY results
(Figure 5.49b) show the same basic features, located approximately in the cor-
rect positions. However, the positive maxima are too small, and the negative

maximun too large in magnitude.
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Local covariance analysis. The observed local transient northward

flux of momentum at 250 mb in winter, as reported by Lau et al. (1978), is
shown in Figure 5.50a. This quantity is given by the covariance of northward
velocity with eastward velocity. The covariance of the band-pass filtered
fields is given in Figure 5.5la. The main features of these two observed
fields are similar, although the magnitude of the band-pass covariance is con-
siderably less than that of the total covariance. One feature that is prominent
in both maps is the dipole structure that appears over the western and central
Atlantic with poleward fluxes south of about 45N and equatorward fluxes north
of this. This feature implies a large convergence of momentum flux into the
storm track region (defined by the maximum RMS of the 500 mb band-pass height
field), which is indicated in the figures by the dashed arrows. A similar
feature appears in the Pacific. Another important feature is the large north-
ward flux apparent over the western parts of continents, particularly the
United States. The GCM local winter covariance at 200 mb is shown in Figure
5.50b, and the band-pass local covariance in Figure 5.5lb. The simulated map
of local covariance shows dipole patterns over North America and the Eastern
Pacific, off the east coast of Asia, and over Western Europe. Clearly the sim-
ulated convergence of momentum flux is not realistic. The Pacific and Atlantic
storm tracks seem to be marked by almost no convergence of momentum flux, in
contrast to the observations. The GCM band-pass covariance has dipole-like
patterns in the Atlantic (although it is south of the storm track) and in the
eastern Pacific, but they are too weak. The maximum over western North America
is present in the GCM results but it is too weak.

The observed winter covariance of westward and northward velocities at
500 mb (taken from Blackmon et al., 1977) is given in Figure 5.52a, and the band-
pass variance in Figure 5.53a. The map of total covariance shows a general pat-
tern of momentum flux convergence into mid-latitudes, although the dipole-like
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gtructures evident at 250 mb are not clear here. Features which the model
covariances (Figure 5.52b) capture are the peaks of poleward flux over the
extreme western oceans and western continents (although the magnitude of the
model flux is generally too small), and the tongue of equatorward flux near
Greenland.

The observed winter band-pass variance at 500 mb is similar to the 250 mb
covariance, with distinct dipole-like patterns over the western oceans, and a
large poleward flux over the western United States. The GCM band-pass covari-
ance (Figure 5.53b) at S00 mb is much more realistic than at 200 mb., The dipole
pattern observed in the Atlantic is evident in the model results, although it
is too extensive. 1In the Pacific, the observed dipole pattern is also evident

in the model results, but it appears to be too diffuse.

Wavenumber-frequency cospectra. The transient momentum flux can be

further examined by means of wavenumber-frequency cospectra, exactly analagous
to the heat flux cospectra described in subsection d. The observed wiater
wavenumber-frequency cospectrum of northward and eastward velocities at 300 mb,
35N (taken from Pratt, 1975) is shown in Figure 5.54a, and the GCM cospectrum
(at 34N) is shown in Figure 5.54b. Both the observed and the simulated cospectra
show a clear propagation band. The observed cospectrum peaks at wavenumber 5,
at a frequency of 0.10 cpd, whereas the model results show two low frequency
peaks, at wavenumbers 2 and 5. The presence of a double peak makes the slope
of the model propagation band ambiguous at the low frequency, low wavenumber
end. The observed region of negative (equatorward) flux at low frequencies and
wavenumbers 8 and 9 is present in the model, although the choice of contours in
Figure 5.54b obscures this somewhat. The secondary peak at wavenumber 7 and

frequencies near 0.175 cpd. dnes not appear in the observations.
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Balance of transient eddy flux convergence and ageostrophic accelera-

tion in the local momentum budget. In the zonally-averaged budget of zonal

momentum, the contribution of the Coriolis acceleration due to the time-mean
meridional ageostrophic wind is very weak. However, this is no longer true in
the framework of a local budget (Lau, 1978). In fact, locally the advection of
zonal momentum by the time-mean circulation is basically balanced by the ageo-
strophic Coriolis acceleration, the horizontal convergence of transient mowentum
flux playing a less important role. This (two-dimensional) convergence is cal-
culated from observations for winter at 250 mb in Lau (1978), and is presented
here in Figure 5.55a. This should be contrasted to the Coriolis acceleration
accompanying the time-mean meridional ageostrophic flow shown in Figure 5.56a.
In the vicinity of the two major jet streams (indicated in Figure 5.56a by the
solid arrows) the ageostrophic acceleration dominates the transient flux coatri-
bution, causing a local acceleration in the jet entry regions and a local deccel-
eration in the jet exit regions. In the area of the North American—Atlantic jet
stream, the transient fluxes work to oppose these accelerations. Their effect
in the region of the Japan jet is not as systematic. It should be pointed out
that the dominance of the ageostrophic term is seen also over large portions

of Europe and Asia.

The corresponding GCM results for the convergence of transient momentum
flux and for the ageostrophic Coriolis acceleration at 285 mb for the month of
February are shown in Figures 5.55b and 5.56b. Figure 5.56b also shows the
model's jet streams. It is apparent that the Pacific jet is correctly located,
but that the Atlantic jet is not oriented towards the northeast as in the
observations. In comparing the model results to those that are observed, it is
the relationship of the terms in the momentum budget to the jet streams that
will be considered. (Note also that the observed results are obtained from 11
winter seasons, each winter being defined as the 120 day period starting on
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15 November, wher2as the model results represent an average over one month
only.) The ageostrophic Coriolis acceleration in the GCM acts very realisti-
cally in relation to the jets, causing an acceleration over eastern Asia and
off the southern coast of the United States, and causing a decceleration in the
jet exit regions. The magnitude of these accelerations is quite realistic for
the Atlantic jet, but is too weak in the Pacific. The horizontal coavergence

of transient monmentum flux is realistic in the sense that it is of the observed
magnitude, approximately a factor of two less than the ageostrophic accelera-
tions. Otherwise the patterns show differences. The observed convergence
(acceleration) in the Atlantic is replaced in the model with a divergence, while
the observed convergence over western North America appears in the eastern
Pacific in the GCM. The observed divergence over Japan is realistically simu-
lated, but the observed divergence downstream is replaced in the model by a
region of convergence. Overall, the model's transient momentum flux convergence

does not have a consistent relationship to the positions of the jets.
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al height field

500 mb geopotenti

Figure 5.9b GCM RMS deviation
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Contour interval is 10 m.

Observed RMS deviation of the summer 500 mb geopotential height

field (Northern Hemisphere), units of m.

Figure 5.12a
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500 mb geopotentia
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179

CM winter local transient heat flux at 850 mb, in units of
°K m/sec. Contour interval is 10°K m/sec (Northern Hemisphere).

(Several contours have been omitted in the immediate vicinity of

very sharp maxima or minima.)

Figure 5.37b G
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cal transient heat flux at 200 mb, in units

lo

Figure 5.41b GCM winter

(Northera Hemisphere

°K m/sec

°K m/sec.
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units of
2 (Northern Hemisphere).

at 200 mb in

al is 20 (m/sec)

ansient momentum flux
terv
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209

Contour interval is 20 (m/sec)? (Northern Hemisphere).

(Several contours have been omitted in the immediate vicinity of

GCM winter local transient momentum flux at 500 mb in units of
very sharp maxima or minima.)

(m/sec)?.

Figure 5.52b
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6. Simulation of diabatic and frictional processes

a. Summary of the global sensible heat and moisture budgets. In both sim-

ulations all fluxes of heat and moisture across the top and bottom boundaries
of the atmosphere were accumulated at every grid point. Global sums were car-
ried out to obtain the average global values of each boundary flux. Figs. 6.la-b
and Tables 6.1 and 6.2 summarize the global sensible heat and moisture budgets
for the February and July simulations, giving the globally averaged surface
sensible heat flux, evaporation, their ratio (termed the global Powen ratio),
the precipitation rate, and the planetary albedo. The observed surface fluxes
are these of Budyko (1963) as given by Schutz and Gates (1971, 1972), the
observed precipitation rates are from Jaeger (1976), and the observed planetary
albedoes are from Raschke, et al. (1973). The simulated global mean evaporation
and precipitation rates agree well with observations, and are improved relative
to earlier versions of the model. The simulated surface sensible heat flux is
also significantly improved, but it continues to be excessive. Finally, the
simulated planetary albedoes are too high in both February and July, and are
inferior to those obtained with earlier versions of the model.

The following subsections explore these and other results in more detail.

b. Surface fluxes. The simulated and observed (Schutz and Gates, 1971,

1972) January/February and July geographical distributions and zonal means of
the evaporation are shown in Figs. 6.2a-f. 1In the February simulation, the
evaporation maxima off the east coasts of Asia and North America have their
observed magnitudes, although their shapes are not well-simulated and the
secondary maximum south of Greenland is missed. The observed equatorial minimum
is simulated in the Eastern Pacific, but is missed in Melanesia and the Indian
Ocean. The zonal mean does not show the observed sharp equatorial minimum.

Observed maxima in the tropical South Atlantic, Indian, and South Eastern
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Pacific oceans are either missing or weak and malformed.

Similarly, the simulated and observed (Schutz and Gates, 1971, 1972) heat
flux distributions and zonal means for January/February and July are shown in
Figs. h.3a-f, The February simulated surface sensible heat flux has maxima of
the observed intensities off the east coasts of Asia and North America, but the
Atlantic maximum fails to extend to the west coast of Scandinavia; it hugs the
coast of North America more closely than cbserved.

In the July simulation, the evaporation maxima off the coasts of Brazil
and Madagascar are correctly simulated, as are the minima over Australia and
North Africa. To some extent, the minima over such desert areas must be cor-
rectly simulated, since the ground moisture distribution was initialized from
observations and has a memory of several weeks. The general pattern of oceanic
evaporation is not very satisfactory. The simulated maximum in the tropical
Western Pacific is too strong, and does not show the observed relative minimum
at the equator. The equatorial minimum is also missed in the central Pacific.

The zonal mean of the simulated surface sensible heat flux is much stronger
then observed. The simulated relative minimum at 10° north is about 20 W m~2,
The largest zonal mean values occur at 30° north, in both the simulation and
the observations, but the simulated maximum is too strong.

Figs. 6.4b and d show the simulated global surface stress distribution for
February and July, and Figs. 6.4a and c show the corresponding observed stresses,
over the oceans only, as derived by Mintz (197%) from the data of Hellerman
(1967). The simulation is reasonably successful in reproducing the observed
stresses, except in the "roaring fifties"” around Antarctica, where the simulated
stresses are weak and disorganized, reflecting the model's failure to simulate
the dynamics of that region.

c. Precipitation. The simulated and observed (Jaeger, 1976) February and

July distributions of precipitation are shown in Fig. 6.5a-d. The simulated
=220~




precipitation field is in excellent agreement with observations. Almost all
important features are well-simulated in both position and intensity. Perhaps
the single major discrepancy is the somewhat excessive (2 mm/day too large)
February precipitation over the Tibetan plateau. In the July simulation the
major monsoons are captured. The observed maximum over eastern North America
is somewhat overpredicted.

Figs. 6.5e and f show the partitioning of the simulated total precipitation
between large-scale-saturation and convection, in the zonal mean, for February
and July. In both seasons, cu.ualus precipitation dominates in the tropics,
while large-scale precipitation dominates in higher latitudes.

d. Cloudiness and albedo. The simulated and observed February and July

distributions of total cloudiness are shown in Fig. 6.6a-d. It is apparent that
the simulated cloudiness is excessive. This is confirmed by the fact that the
simulated planetary albedoes are too high (see again Tables 6.1-2): the simu-
lated February and July planetary albedoes are 0.390 and 0.380, while the corre-
sponding observed values (Raschke et al., 1973) are 0.283 and 0.281, respectively.
Much of the excessive cloudiness is due to widespread "supersaturation” in the
lowest model layer. Moeng and Randall (1982) show that even if cumulus cloud-
iness is completely neglected, the simulated albedo is practically unchanged.
Apparently the boundary layer and cumulus parameterizations of the model do not
allow realistic transport of moisture up out of the lowest model layer (Randall,
1982).

The model correctly simulates the seasonal increase in zonally-averaged
cloudiness from summer to winter in the high latitudes of each hemisphere,
except that the observed increase in Arctic cloudiness from February to July
is missed. The cloudiness of the ITCZ is reasonably well-simulated, particul-

arly for February, and the observed subtropical minima are also captured.

-221~-



The simulated longitudinal distribution of cloudiness is much less satis-

factory. The observed subtropical July maxima off the west coasts of North

America, South America, and South Africa are not only missed; they are replaced :
by minima. The cbserved maxima are known to be associated with stratus and
stratocumulus clouds within the planetary boundary layer. The fact that the

model has not simulated these maxima indicat2s that an improved planetary

boundary layer parameterization is needed (Randall, 1982).

e. Total diabatic heating. Fig. 6.7a shows the "observed” zonally aver-

aged total diabatic heating reported by Newell et al. (1972), and Figs. 6.7b

and ¢ show the corresponding simulations for February and July. The simulations
produce deep equatorial maxima associated with the convection of the ITCZ, and
prominent low-level winter-hemisphere maxima due to boundary layer heating.

The middle and upper troposphere are radiatively cooled. In each season, cool-
ing predominates above 800 mb in the subtropics of the winter hemisphere. This
radiative cooling is balanced by the adiabatic warming in the descending branch
of the Hadley circulation (see Section 7). The low-level equatorial heating

reported by Newell et al. 1is negative, but it is positive in the model.
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Table 6.2a

February energy balance (W m™

2)

Analysis of heat budget fields
Items S. hemisphere |N. hemisphere Global
Mean Mean Mean
Top Boundary of Atmosphere
Incoming short wave flux 440,18 273.14 356.83
Outgoing short wave flux 178.59 100.09 139.34
Outgoing long wave flux 196.12 194.24 195.18
Within the Atmosphere
S.W. absorbed 65.18 40.80 52.99
L.H. release by precip. 99.67 78.70 89.19
S.H. increase 1.12 2.16 1.64
KE increase 0.05 -0.06 -0.005
LE increase .70 .66 .68
Bottom Boundary of Atmosphere
S.W. absorbed 196.40 132.60 164.50
L.W. outgoing 27.78 35.49 31.63
S.H. flux outgoing 23.53 31.55 27.54
L.H. flux outgoing 88.78 87.54 88.16
Net Energy Absorbed
Land - - - - -1.30
Ocean - - = - 25.08
Lower boundary 56.32 -21.98 17.117
Top boundary 65.47 -20.85 22,31
Planetary Albedo 0.41 0.37 0.39
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Table 6.2b

July energy balance (W n=2),

Analysis of heat budget fields

Items S. hemisphere| N. hemisphere Global ]
Mean Mean Mean

Top Boundary of Atmosphere

Incoming short wave flux 214,99 458.18 336.58

Outgoing short wave flux 76.14 180.80 128.47

Outgoing long wave flux 199.78 210.02 204.90
Within the Atmosphere

S.W. absorbed 33.30 69.30 51.30

L.H. release by precip. 84.30 103.76 94.03

S.H. increase -1.24 6.15 2.45

KE increase 0.098 0.056 0.021

LE increase 0.044 2.729 1.387

i

Bottom Boundary of Atmosphere

S.W. absorbed 105.54 208.09 156.81

L.W. outgoing 32.76 35.75 34.26

S.H. flux outgoing 31.54 33.42 32.48

L.H. flux outgoing 95.72 91.37 93.54
Net Energy Absorbed

Land - - - - 3.60

Ocean - - - - -6.48

Lower boundary -54.48 47.54 =-3.47

Top boundary 60.94 -67.38 -3.22
Planetary Albedo 0.35 0.39 0.38
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140W 100w 60W 20w 20E 60E I00E 140E I80E

180w

February observed precipitation, taken from Jaeger (1976). The

Figure 6.5a

_l.

contour interval is | mm dy
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140W

180W

July simulated precipitation. The contour interval is 1 mm dy~1

except in congested regions.

Figure 6.5d
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7. Llarge-scale overturnings

a. Mean meridional circulations. The mass transport streamfunctions of

the simulated February and July mean meridional circulations have been deter-
mined by interpolating the six-hourly simulated meridional winds to isobaric
surfaces, time- and zonally-averaging the result, and subtracting away its ver-
tical mean. The streamfunction for the time- and zonally-averaged meridional

circulation is then given by
PS

¥y (d,p) = - (1/g) [ [V] 2ma cos ¢ dp' ,
p (7.1)

where v is the meridional wind, the overbar denotes a time average, | | denotes
a zonal average, a is the radius of the earth, ¢ is latitude, p is pressure,

and subscript S denotes the earth's surface, The simulated latitude-height dis-
tributions of ¥y for February and July are given in Fig. 7.1b and c; the
observed distributions obtained by Newell et al. (1972) are shown for comparison
in Fig. 7.la. 1In both seasons, but particularly in July, the simulated Hadley
cells are somewhat weaker than observed. In view of the present model's lack

of cumulus friction, and the widespread belief (e.g., Helfand, 1979) that
cumulus friction acts to strengthen the Hadley circulation, this result is to

he expected if not welcomed. The simulated mid-latitude Ferrel cells are also

weaker than observed.

b. The Walker circulations. Bjerknes (1969) suggested the possible impor-

tance of large-scale equatorial east-west overturnings, which he called Walker
circulations., It is believed (Cornejo-Garrido and Stone, 1977) that the Walker
circulation is driven by a longitudinal variation of the latent heating. Newell
et al. (1972) suggested that the term "Walker circulation™ be generalized to

include any longitudinal overturning, tropical or otherwise.
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We have computed the simulated Walker mass transport streamfunctions by
the following procedure: The zonal wind field is interpolated to isobaric
surfaces, and subsequently time-averaged. At each level and latitude the zonal
mean of the result is then subtracted away. Finally, the vertical mean of the
result is subtracted away at each latitude and longitude to yield closed circul-

ations. For convenience, let the residual zonal wind obtained by this procedure

x

be denoted by us where the overbar again denotes a time mean, the * denotes a
departure from the zonal mean, and the tilde denotes a departure from the verti-

cal mean., The mass transport stream function is then given by
Ps
W= (1/g) [ (u)y adp' (7.2)
1

P ol
where ( )41.2denotes an average over latitude from ¢ to ¢7.

For both February and July, we have computed Yy for the latitude strips
30°S-Equator and Equator-30°N; the results are shown in Fig. 7.2b-e. For com-
parison, Fig. 7.2a shows with the observations reported by Newell et al. (1972),
for 5°S and 5°N. The most striking finding in the simulations is the very
large, well-organized Northern Hemispheric circulation in February. The rising
branch of this Walker cell is near 140° west longitude, over the eastern North
Pacific. As shown in Fig. 6.5, there is an intense precipitation maximum at
about 10°N at this longitude. The sinking branch of the Walker cell is near
90° east longitude, in the vicinity of the Siberian high. 1In July, the simulated
Northern Hemisphere Walker circulation is much weaker and less well-organized.

In the Southern Hemisphere winter, there is a modest Walker cell whose
rising branch is near the spectacular precipitation maximum on the date line,
and whose sinking branch is near South Africa. The February simulation exhibits

a weaker, less well-organized Southern Hemispheric Walker circulation.
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Summarizing, the model has produced vigorous winter-hemisphere Walker cir-
culations in both February and July. The cells have their rising branches over
oceanic regions of strong latent heat release, and their sinking branches over
land. The summer-hemisphere circulations are much weaker in both February and

Jul)'.
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8. Summary and Conclusions

The GLAS climate model simulation of the mean dynamical fields is quite
reasonable for winter and summer circulations. In general, the lower tropo-
spheric summer circulation features and the upper troposheric winter circula-
tion features compare very well with the respective observed circulations.
This is not the case for the upper tropospheric summer circulation and the
lower tropospheric winter circulation features. One of the serious deficien-
cies of the model both in summer and winter simulations is the unrealistically
cold polar upper troposphere and the excessive zonal velocity at the uppermost
level.

The analysis of spatial and temporal fluctuations indicates that, while
the GCM behaves realistically in many respects, some discrepancies between the
model and the atmosphere are evident. With regard to the stationary wave
field, the zonal variance in the model planetary waves shows a latitude-height
structure very similar to that observed. However, the GCM's simulation of the
amplitude and phase of individual planetary waves is not as realistic. Maps
of local variability show that the model's band-pass variances generally are
in accord with observations, with the exception of the upper level transient
heat and momentum fluxes. The low-pass variances are not successfully simu-
lated however. In the wavenumber-frequency domain, the model is very skillful
in handling the medium frequency synoptic scale waves, but has much less
success in the simulation of the low frequency planetary waves. With regard
to the latitude-height structure of the total transient fluxes, the heat flux
is much more realistically simulated than is the momentum flux.

The model's simulation of diabatic and frictional processes is generally
satisfactory. The simulated evaporation, surface sensible heat flux, and

surface stress are in good agreement with observations, although the sensible
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heat flux is somewhat too high. The simulated precipitation distribution is
realistic and shows the expected predominance of cumulus precipitation in the
tropics. The most serious deficiency is the excessive frequency of super-
saturation clouds in the lowest model layer. We believe that the problem is
due to certain weaknesses in the boundary layer parameterization; appropriate
revisions are in preparation.

The simulated Hadley circulations are weaker than observed, but their
location and depths are satisfactory. The model produces a vigorous subtropi-
cal Walker circulation in the winter hemisphere. The rising branch of the
Walker cell coincides with an oceanic precipitation maximum, while the sinking

branch is over land.
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