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-Y INTRODUCTION

There is considerable current interest in theossih lit of utilizing theP	 _ _Y	 g
near-zero gravity environment aboard orbiting space stations for various
materials processing applications. There are a number of potential appli-
cations where the near absence of convective stirring during the process
would presumably enhance the quality of the product. The purpose of the

s

t	 research program described in this document is to perform numerical com-
putations of thermally induced convection for various experiment configura
tions under microgravity conditions simulating the orbiting space station
environment. The research program was initiated in August 1979. This
document is an annual report summarizing the results of effort during the

. year from August 1980 to August 1981. 

Three basic tasks were performed during this year' s effort;

1. An analysis was performed of thermal convection in the Lal l/Kroesy	 p	 _ c	 /

experiment configuration. 	 The analysis was based on a simplified
geometry where three-dimensional flow conditions in the cubical
shaped container were approximated by axisymmetric flow in a

, spherical shaped container of equal volume.
2. An _1^^al s is was performed of thermal convection in a two-

+ d%m.ensional circular enclosure where the gravity vector changes
in both magnitude avid direct oa.

3. An analysis was performer',. of thee,  effect of container shape on the
intensity of natural, convection,	 Results were obtained for two-

w dimensional enclosures of circular, half-circular and square
shaped cross sections.

The results of these tasks are described in the following Parts 1, 2 and
3 of this document.

L
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Part 1

NUMERICAL SIMULATION OF NATUR,44,L CON-
VECTION W A SPHERICAL CONTAINER DUE
TO COOL1190 AT THE CENTER (IDEALIZATION
OF THE LAL/KROES EXPERIMENT)
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ABSTRACT

-	 Natural convection in a spherical container with cooling at the center
was numerically simulated using the Lockheed-developed General Interpolants

TM	
Method (GIM) numerical fluid dynamics computer program. The numerical
analysis was simplified by assuming axisymmetric flow in the spherical con-
tainer, with the symmetry axis being a sphere diagonal parallel to the gravity
vector. This	 saxis mmetric spherical geometry was intended as an idealiza .-y	 p	 g	 y
tion of the proposed Lal/Kroes crystal growing experiment to be performed
on board Spacelab. Results were obtained for a range of Rayleigh numbers
from 25 to 10,000. For a temperature difference of 10 C from the cooling
sting at the center to the container surface, and a gravitational loading of
( 1.0 ge , a computed maximum fluid velocity of about 2. x l0' S cm/sec was

^M	 reached after- about 250 sec. The computed velocities were found to be ap-
proximately proportional to the Rayleigh watriber over the range of Rayleigh
numbers investigated.
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NOMENCLATURE

^J
S ty 	 bo l DescriP-tion

g gravity force in units of acceleration

8e gravitational acceleration on surface of earth, 980 cm/sect

r radial distance

R sphere radius
3

Ra Rayleigh number

< T temperature

AT temperature difference between cooled crystal growing
surface at center of container and container wall

t time

t dimensionless time : vt/ 2.R

v velocity

a

0%.
V dimensionless velocity	 ----	 y	

-2 
v

AT Rg R

a thermal diffusivity

a
p volumetric coefficien4 of thermal expansion

V kinematic viscosity

t

stream function

I v
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f INTRODUCTION

. One of the proposed experiments to be performed using the Fluids Expe.z-
ment System (FES) facility aboard Spacelab is the Lal/Kroes experiment (Rot. 1),
which is concerned with the controlled growth of a single crystal under near-
zero gravity conditions.	 The crystal is to be grown from a triglycine sulfate
(TGS) solution contained in a 10 x 1.0 x 10 cm cubical shaped container.	 The
concentration is to be nominally 45 g TGS/100 cc water. 	 The temperature
of the solution will be within the range of 35 to 50 C. 	 The crystal will be
grown on a cooled 1 4aa diameter diskP ositioned at the center of the container
at the end of a 2 cm diameter insulated sting. 	 The disk will be cooled up to
10 C less than the surrounding container walls.

The purpose of the experiment is to study crystal growth in the absence
of significant gravity induced convective stirring of the solution. 	 The near
elimination of convective stirring is expected to result in the growth of high
quality crystals.	 The purpose of this numerical study is to predict the in-
tensity of convective stirring due to the small residual gravity forces re-
maining under orbital flight conditions.	 The Lockheed developed General
Interpolant Method (GIM) code computer program (Ref. 2) was used in the
numerical simulations.	 This computer code numerically integrates the basicP	 Y	 B
fluid dynamics equations W conservation form, 	 Computations were perforn,'ed
on the NASA-Langley Cyber 203.

Lek
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NUMERICAL SIMULATION

To permit reasonable economy in computer usage, the cubical shaped

experiment configuration was modeled by a sphere of the same volume as

the cubical container, with axisymmetric flow assumed. The axis of sym-

metry is along a sphere diameter parallel to the gravity vector. The nodal

point distribution was generated by the GIM code geometry module by speci-

fying an array of 20 x 10 area elements and 21 x 11 nodal points over the

half-sphere cross section enclosed by a semicircular arc and sphere axis

of symmetry. The geometry module treated the semicircular region as a

four-sided figure, with the bottom side the axis of symmetry and the other

three sides concentric circv!ar arcs. The region was divided into an array

of quadrilateral elements with curvilinear sides, and with the nodal points

located at the corners of the individual elements. The geometry is shown

in Fig. 1 with the computational grid network superimposed. The cooled

crystal growing surface is represented by the outline of grid lines at the

center of the sphere. The gravity vector is directed downward as shown

in the figure.

A steady state conduction temperature distribution is generated by the

computer program as an initial condition. The nodal points outlining the

cooled crystal growing surface are maintained at a temperature 10 C less

than the surrounding container surface.

The physical properties of the TGS solution were not well known at the

time of this analysis. Based on conversations with Dr. R. L. Kroes, the NASA

Principal Investigator, physical property values were assumisd as listed in

Table 1.

f *.
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Table 1
LIST OF ASSUIViI: D PHYSICAL PROPERTY VALUES FOR TRIGLYG[iiE

SULPHATE (TGS) SOLUTION (45 g TGS/100 cc WATER)

viscosity, 11 1.78 cent poise
Thermal Conductivity, k 0,00143 cal/cm-sec-G

1.15 g/cm3Density, P
Specific Meat, G p 1.0 cal/gm-C
Thermal ,Expansion Coefficient, 2.07 x 10"/C
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RESULTS

Numerical simulations were perforr ,-= .d :or Rayleigh numbers, Ra, vary-
ing from 25 up to 10,000. The computed spatial maximum velocities are plotted
in Fig, 2 as a function of time for the various Rayleigh numbers. Dote that by
nondimensionalzng the velocity and time as shown, the results collapse very
closely about a single curve for Rayleigh numbers through 2500. The Ra:
10,000 results are in accord with the other Rayleigh number results througli
the initial transient up to a dirswnsionless time of about 0. 1.

For the lower Rayleigh numbers, the results shown in Fig. 2 indicate the
r	following approximate relationship for the spatial maximum velocity as a funs-

tton of time.

vmax 0.00485 .fi b OT l2R l - exp (-4Z -L—)]
R

e 0.00485 R Ra l - exp (-42 lit
k	 r	 R

For the f.al/Kroes experiment configuration, the equal volume sphere radius,
R, corresponding to the 10 x 10 x 10 cm cube is 6.2 cm. The time required to
reach steady state is about 250 sec after imposition of an impulse gravitational
load, The maximum spatial velocity at steady state is 2.4,x 10 -5 ctn/sec for
a 10 -6 ge gravitational load and a 10 C AT.

The temperature, streamline and velocity contours at steady state are
shown in ;Figs. 3 through 5 for various Rayleigh numbers. Dote that the tem-

perature contour distortion from the conduction profile increases with
Rayleigh number as expected. The higher Rayleigh number temperature

contours show a strong distortion from the low Rayleigh number results, The

streamline contours, however, are basically unchanged over the range of
Rayleigh numbers, except for a relatively slight asymmetry introduced at

the higher Rayleigh numbers. The flow pattern consists of a single con-

vection cell for all of the Rayleigh numbers shown.

x
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^•	 The variations in temperature, streamline and velocity contours with

time are shown in Figs. 6, 7 and 8 for Ra = 10,000, As expected, the dis -

tortion 
in 

the temperature field increases with time toward the steady statfs

condition. The single convection cell is also shown to shift gradually froni

the symmetry characteristic of low Rayleigh numbers toward the asymmetry

characteristic of high Rayleigh numbers.

10
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ON C LUSIONS

There are a number of mechanisms other than gravity-induced con-
vection affecting the duality of crystal growth. The results obtained in
this study, therefore, must be considered in conjunction with other infor-
mation in evaluating the effect of gravity on the outcome of the Lal/Kroes
experiment. The results of this study indicate gravity induced convection
velocities ranging from approximately 2 x 10-5 to 2 x 10 -3 cm/sec for
typical orbital gravity loads of 10

-6 
to 10' 4 ge . Although these velocities

appear to be extremely small, they are comparable to the expected crystal
growth rate velocities and molecular diffusion velocities,

F

14
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Part 2

NUMERICAL SIMULATION OF NATURAL CON-
VECTION WITH GRAVITY-SHIFT IN CIRCULAR
CYLINDERS IN LOW GRAVITY
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ABSTRACT

A numerical analysis was performed to simulate natural convection in
circOar cylinder enclosures with gravity shifts similar to what might be ex-

pected on board an orbiting spacecraft. The particular cases Investigated

were for a vertical Rayleigh number (based on the vertical component of

gravity) of 1000 with superimposed horizontal Rayleigh numbers of +1000 to

.000. The initial temperature gradient was taken to be in the direction of
rt	

the horizontal. For a given set of vertical and horizontal gravity components,

the results at steady state were found to be the same regardless of the order

in which the two components were Imposed. A supercritical horizontal

Rayleigh number case with no vertical component was simulated to Invest!-

gate transient development of convective flow from rest. The convective

flow was found to grow exponentially from a small perturbation until steady

state is approached. The numerical results for both subcritical and super-

critical Rayleigh numbers were found to agree closely with results predicted

by a simple analytical model derived for simultaneous loading of both vertical

and horizontal components.

11
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NOMENCLATURE

Synzbol 	Description

d	 cylinder diameter = 2 R
g	 gravity force

g11	 horizontal g component

8V	 vertical g component

r radial distance
R cylinder radius

goA T d3Ra Rayleigh number :=
va

RaH horizontal Rayleigh number

RaV vertical Rayleigh number

T temperature

To initial mid-point temperature

AT temperature difference across circular
cylinder

t time

t dimensionli..-s time = VtlR2

V velocity

'max spatial maximum velocity

vrnax vmax for zero horizontal gravity component
0

AV max vmax ` vmaxo

V dimensionless velocity	
go

1 A 
Td
v^ v

x, y rectangular coordinates (Fig.1)
a thermal diffusivity

volumetric coefficient of thermal expansion

Vi
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I

NOMENCLATURE (Concluded)

` Symbol	 Description

0	 polar angle (Fig, l )
dynamic viscosity^	 v	 v

U	 kinematic viscosity, µ/p
r	 stream function

p	 density
y Po	 pat T= To

c

vii
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INTRODUCTION

Some of the fluid mechanics experiments planned to be performed
aboard the forthcoming Space Shuttle/Spacelab flights are intended to Investi-
gate the use of the near-zero gravity conditions In orbit for various materials
processing applications. The near elimination of gravity-induced convective
stirring under orbital conditions is expected to yield various high quality
specialized products that cannot easily be produced under terrestrial gravity
conditions

A number of theoretical and experimental studies have been made of
convective flows within various geometric enclosures. Batchelor (Ref. 1)
and Weinbaum, (Ref. 2) investigated, respectively, rectangular and circular
two-dimensional enclosures using non-numerical analytical methods for
steady state conditions. Dressler (Ref. 3) recently extended Weinbaam l t;
steady state results for the cylinder to include a transient solution. The',(,
analytical results are valid only for low Rayleigh numbers. Robertson an(t
Spradley (Ref. 4) performed numerical analyses to show that the low Rayleigh
niarnber analytical theory is valid for Rayleigh nur yfbe'rs up to approximately
1000. All of these investigations have assumed terrestrial-like constant
gravity conditions,.

In the near-zero gravity environment aboard orbiting spacecraft, the
small accelerations that simulate residual gravity conditions are likely to
change with time in both magnitude and direction. The purpose of this numer-
ical study is to predict convective flows in circular enclosures with.

 loads that do not remain fixed in time. The Lockheed-,developed General
Interpolant Method (GIM) computer code (Ref. 5) was used in the numerical
computations. The computations were perforn-ted on the NASA-Langley Cybor
203 system.
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PROBLEM FORMULATION AND NUMERICAL SIMULATION

The problem investigated is that of two-dimensional natural convection
within the circular cylinder enclosure shown in Fig. 1.

Y

Hot Side
-- x

9Ifi

t' V

T -- To „ OT 
,Lo To + AT

Fig. l - Geometry for Circular Cylinder Enclosure

The initial temperature distribution was based on a linear horizontal gradient
in the positive x direction, with the boundary points held constant in time:

T(r, o) = To + (AT/2) x/R
(1)

T(R,t) = To + (AT/2) cosh

The gravitation loading consisted of two components, a vertical component; gV
in the negative y direction and a horizontal component in either the positive
or negative x direction. We investigated applying the gravitational components
in the following sequences: ( 1) the vertical component applied until steady
state, followed by the horizontal component superimposed to produce a new

I
2
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steady state; (2) both components applied simultaneously until steady state;
and (3) the horizontal component applied, first followed by the vertical com-
ponent.

The numerical simulation was based on a nodal point distribution
generated by the GTM code geometry module; by specifying an array of 20 x:20
area elements with 21 x 21 nodal points. The circle was treated as a four-
aided figure, each side being a quarter-circle arc. using stretching functions,
the circular area was divided into generalized quadrilateral elements with
curvilinear sides, with the nodal points located at the four corners of each
element. The circular geometry is shown in Fig. 2 with the computational
grid network superimposed.

For convenience in the numerical simulation, we assumed a cylinder
radius R. of 1 cm and a temperature difference AT of 100 C. The gravity
components were changed accordingly to yield the proper Rayleigh number
values. The fluid was assumed to have the thermophysical properties of
water and to behave as a Boussinesq fluid in its thermal expansion character-
istics. The thermophysical properties used in the numerical simulation are
listed as follows:

Property Value
Viscosity, µ 1 centipoise
Thermal conductivity, k 0.00143 cal/cm-sec-C
Density, p 1 gm/cu cm
Specific heat, C 1 cal/gm- C

Thermal expansion coefficient, a 2.07 x 10-4/C

r
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Fig, 2 - Geometry and Computational Grid for Numerical Simulation
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Rl,-',SULTS

f

Results were obtained for a vertical Rayleigh nunibor,Ra v , of 1000 and
and horizontal Rayleigh numbers,Ra 1-11 of •1000, ±2000 P and + 5000. We found
that Clio final steady state result for a given set of vertical and horizontal
gravity components is the same regardless of the order in which the two
components are applied. The steady state spatial maxin-lunx velocities for
the various Rayleigh number combinations are presented in Fig. 3 in terms

of a percentage deviation from the Ra H =0 case. Those results are com-
pared to a simplified analytic a1 theory derived In the appendix for the easo
of simultaneous 11-1-1pulse applications of the -:-ertical and horizontal gravity
components. Reasonable agreem(nit with the analytical prediction is .down
in Chts comparison, pafticularly for low horizontal Rayleigh numbers. The
numerical results show an increase in the spatial maximum of about- 150;'O
for a positive horizontal Rayleigh number of 5000 and a decrease of about
40 1'90 for a negative Rayleigh number of 5000. Note that the percent deviation
depends only on Clio magnitude of the horizontal Rayleigh number.

The sliriplified analytical theory, in agrearrient with Weinbakin-, (Ref. 21),

predicts that, for a zero vertical Rayleigh number, convective flow will 11ot

develop for horizontal Rayleigh numbers less than 9216. The GIM code,
however, probably due. to numerical noise in the program, will generate a
small convective flow at subcritical Rayleigh numbers. Superimposing a
vortical gravity component on Chose results leads to a duplication of :he
results obtained by applying the gravity components either in the revers-c
order or simultaneo«sly.

The temperature contours at steady state are presented in Fig. 4 for
a vertical Rayleigh number of 1000 and horizontal Rayleigh numbers of 0,
+1000 and +5000. The positive horizontal components are shown to noticeably

r.	 5

r.
LOCKIOAD-HUNTSVILLU, Rl t,[AHCH & ENGIMIRING (',ENTLR



``1 1

I

LMSC-HREC TR D78448

Rav , 1000

Numerical Results (GIM)

AV max	 (1/9216) 
I2a 

III
v max	 4 - 179 2 1 ) Ila 

11
0

(Simplified Analytical Prediction)

+Horizontal Rayleigh Number, Ra 
11

pig, 3 - Percent Change in Spatial MaxL!̂ ,,wni Velocity
vs Horizontal Rayleigh Number
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increase the distortion in the isotherms as expected,	 The negative horizontal
components decrease the distortion somewhat, but not as noticeably as in the

positive cases,

The velocity contours at steady state are shown in Fig, 5, again for a
vertical Rayleigh number of 1000 and horizontal Rayleigh numbers of 0,
+1000 and +5000.	 The exhibited flow appears to be nearly perfectly circular
in all cases, with the maximum velocity indicated roughly near the r = 0.5 to
0.6 radial position.	 The theoretical maximum occurs at r = 114-S = 0.58
(see Appendix).	 Some of the departure from circular symmetry in the velocity
contours is probably due to the numerical noise in computing such small ve-

rline
locities.	 The circularity of the flow is more clearly indicated by the steam -

contours shown in Fig, 6, 	 A nearly perfectly circular flow pattern is
shown in all cases.

Fi
A supercritical horizontal Rayleigh nimber case was simulated to

investigate the transient development of convective flow from rest. 	 The
RaH = 10,000 case was selected with no vertical component. 	 A small ini-

r
tial velocity perturbation in the flow field is required to start the develop-
ment of convective flow.	 According to the simplified theory outlined in the

f Appendix, this velocity perturbation should grow exponentially until the sim-
plified theory is no longer applicable. 	 We started the numerical simulation
with a velocity perturbation of 10- 10 cm/sec in a counterclockwise direction.

&*

The resulting flow development is shown in the plot of spatial maximum ve-
locity as a function of time in Fig. 7. 	 In the first stage of the numerical sim-
ulation, the computed velocities rapidly increased to levels beyond that
expected from the simplified theory, then decreased to a lower level, 	 At

t this point the flow began to rise exponentially approximately as predicted by
the simplified theory.	 The first stage of the numerical simulation probably
represents a numerical noise.	 After this period of adjustment, the simulated

tflow development takes on an apparently realistic trend. 	 Note that the initial

t0.89
slope in the nearly linear portion of the logarithmic plot is 0.64 compared to

bypredicted	 the simplified theory for a Rayleigh number of 10,000, 	 The
flow peaks out and reaches a steady state dimensionless spatial maximum

8
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velocity of approximately 0.2 after a dimensionless time of approximately 6:.
This steady state velocity is of the same order as the 0.385 dimensionless
velocity (lief, 4) corresponding to a purely vertical gravity component,
Theoretic0ly, the time required to reach steady state depends on the magni-
tude of the initial velocity perturbation, which is arbitrary. Our computed
time to reach steady state, therefore, is not necessarily representative of
actual supercritical cases involving the development of convective flow from

	

k '^	 qrest,
n ^ r

	r	 The development of convective flow from rest for the supercritical
RaH = 10,000 case is illustrated by the contour plots of temperature and
streamlines in Fig. 8, Steady state was reached in this case without breakup
into multiple convective cells.

r
r
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CONCLUSIONS

t

For stibcritical horizontal Rayleigh numbers, the imposition of a given
set of vertical and horizontal gravity components yields the same steady state
convective flow field regardless of the order in which the two components are.
imposed, For supercritical horizontal Rayleigh numbers without a vertical
component, the convective velocity initially grows exponentially from a small
perturbation until steady state conditions are approached, For both sub-
critical and supercritical Rayleigh numbers, the computer simulation results

qy

agree reasonably well with predictions based on a simple analytical model,

F
F
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Appendix

SIMPLIFIED ANALYTICAL MODEL
FOR NATURAL CONVECTION IN A
HORIZONTAL TWO-DIMLNSIONAL

I'
	 CIRCULAR ENCLOSURE
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Appendix

All previous analyses, including Weinbaum (Ref. 2), Dressler (Ref. 3)

and Robertson and Spradley (Ref. 4) have demonstrated that the steady ataLv

flow pattern. is circular with the velocity given by

3 AFT
v	 (1 - (r/R)	 (r/R)	 (A. I

1"or simplicity, we assume that the transient flow maintains the same form as

Eq. (A.1) with v	 varying wit=h time.max

Based on the shape of the temperature isotherms noted 
in 

Ref. 2, we

assume that the temperature distribution is given by

T = To +	 (r R) cosO + T'	 (A."))

where T' is a pertur , I)Atlon term clue to convective flow given by

T' = A CI - (r/R)`'	 (r/R) sllnO

= A	 1 -	 + y2 )/R2 ]  (y/R)	 (A.3)

Along the y axis (0 = 7r/2), the perturbed temperature distribution defined by

Eq. (A.3) follows the same form as the velocity distribution given by Eq. (A.1).

A-1
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Wo determined the constant, A, in Eq. (A.3) by satisfying the steady state

conduction equation shown below.

it

rd

V"r = (X Vz T	 (A.4)

at the point of maximum veloc-Ity and temperature perturbation along the y

Taxis, r = 14 3 (.-,z= 0,	 1/43 ). A more accurate method of accomplislibig
this perhaps, would be by minimizing error ! ,,i Eq. (A.4) over the entire circtflar

region, rather than concentrating on the maxii-rium velocity ande p r, tur(rn 0 -1

perturbation point. For the simplified solution that we are seeking, howevvr,

the approach we selected seems appropriate, Finding the temperature gradient
and Laplacian at x 0 and	 l/	 from' Eqs. (A.2) and (A.3) and solving

Eq. (A.4) yields:

43 v max R AT
A	 (A.5)

The torque, MVP on the fluid mass due to viscous shear stress on tho

interior cylinder surface is given by

M Zr RA D v
V	 R

67F 4-3 11 v max R

We take the counter-clockwise direction as positive, since the convot*Uva flow
\vill assume this direction.

The fluid density disPribut'lon is based on a Boussinesq variation with

temperature:

P = P , [ 1 - 0 (T - To )]	 (A.7)

A-Z
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Which, from Eq. (A.4), b",onics:

1	 0 A T1
P = P O 	 (r/11) COSO + TI

Tho, torque due to gravity MC
 
is found by:

m 0 = - ff P ( gV x + g,, y) (IS

(A.8)

where the integration is carried out over the circular region. TJJLc Ver(ILal

gravity component g\, is always positive and acts in the negative y direction.

The horizontal component,	 rimy be either positive Or negative according

to its direction with respect to the x axis. Carrying out the integration of

r, q. (A.9) yields

27 R

MG	 f f p (gV cosO + g,, sinO) z 2 dig dO

0 0

17	 3	
V3 v max R

8 PO O AT R ( gV +	 24 m _ gI-I)	 (A. 10)

The instantaneous angular momentum of the fluid iiiass is given by:

p 
= ff 

r Pv dS
	

(A. 11)

^Y	 -A-3
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where, again, the integration is carried out over the circular region. Carry-
ing out this integration yields

27T R

P =	 pvr2drd9fo 0

	

v	 =	 n R3 p v	 (A. 12)4	 o max

By balancing the rate of change of angular momentum to the net torque
on the fluid mass, a differential equation is obtained for the variation of vmax
with time:

dP dt = M + MG V

^^-	 ^3 R gV4 R3 Po vmax 8 po p T R3 g V + 24a 
H 

vmax - 6	 Fl R vmax (A • 13)
U

Re-arranging Eq. (A.13) yields:

1	 a v Ra - 24 v	 1- 
a H v	 (A.14)

	

vmax - 1 
f3 R

3 V R2	
R

921 . max

which yields the solution

	

a '	 vmax (vmax)t = 0 
exp 1-24 1 %-'14 	 t

R

(a /R) RaV.	 'R'aH vt+	
Raj-,\ 

1 - exp -24 1 - TM R2	 (A.15)
384113 (1 - 9.2^/

A-4
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where 
(v,,nax 	 Is an initial small perturbation 

I
II v	 Note that, for,,	 0	 max*

zero vertical gravity component (Ra 	 0), any Initial small perturbation in

N"max will be damped for RaFT 
< 9216. The value 9216, therefore, is 

the critical

Rayleigh number for initiating convective flow for cases where the gravitational

vector is in the direction of the temperature gradient. This value agree ,.; with

Weinbaum' s (Ref. 2) stability analysis for the horizontal cylinder (Weinbakin) , 8

value of 576 is based on a definition of Rayleigh number which differs by a

factor of 16 from our Rayleigh number).

For Rav> 0 and Ra,., < 9216, Eq. (A.15) yields the steady state result-:

Vmax
v	

0	 (A. 16)
	max	 R a H

1 - 9216

where v max is the maximum. velocity for a vertical component only (Ra th 
= 0):

0 

	

RVmax	 jf RaV 	 (A. 17)

	

0	 384 IC3

The fractional deviation in v 	 due to a side load is given by:max

Vmax - v max	 Ra0	 H (A. 18)
v max	 Ra H

0	 1 -9- 2-1T

For horizontal Rayleigh numbers approaching or greater than the critical

value of 9216, this simplified analysis is no longer applicable.

it

A-5
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Part 3
AEFFECT OF CONTAINER 'Sp IMPEONNATURAL

CONVECTION IN ENCLOSURES

r

I
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r

Numerical computations were made of natural convection in two-
dimensional enclosures of various shape but of equal cross sectional area,

rResults were obtained for enclosures with circular, half-circular and square
shapes. For the shapes investigated, the maximum convective velocity was
found to be about the same for all shapes, This suggests that, as a general
rule, complicated container shapes can be approximated by simpler shapes

rof equal area for purposes of predicting the intensity of natural convection
in experiment configurations. Additional computations are planned for
other enclosure shapes, such as a triangle and rectangle, The complete
results will be documented in the future as a Lockheed technical report

r

and as a paper in the open. scientific literature.
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