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NGV 2	 138,
Honorable Don Fuqua
Chairman
House Committee on Science

and Technology
Washington, D.C:, 20515

Dear Mr. Fuqua:

The attached report on Space Shuttle Upper Stages was prepared at the request of
your committee during the past spring. The study was carried out jointly by the
NASA and DOD and has been reviewed and approved by both organizations.

The report summarizes the status and general 6aracteristics of upper stages now
in use or in development, as well as new vehicle possibilities examined during the
study. It then discusses upper stage requirements for both civil and DOD missions,
categorized generally into near-term (early and mid-19801s), mid-term (late 1980's
to mid-1990's) and far-term (late 1990's and beyond). Finally, it examines the
technical, schedule and cost impact of alternative ways in which these require-
ments could be met, and reaches a number of conclusions and recommendations.

Although it is briefly mentioned in the introductory summary, we would like to
emphasize that the study clearly illustrates that whenever possible approved
satellite programs are designed to have their requirements for launch fall within
the capabilities of approved or existing launch vehicles. This practice obviously
provides the maximum probability of total system compatibility and reduces the
probability of the need for weight saving design changes, reductions in program
scope and schedule delays. As a result, however, any advance in launch capability
must be based on the anticipated needs of programs not yet approved rather than
the firm needs of programs under way. The study, therefore, focused considerable
attention on the program requirements anticipated for the late 1980's and early
1990's since these will be based on the launch vehicle decisions and commitments
which lie ahead. If we fail to move forward in launch capability, we will severely
restrict an important opportunity for flexibility in providing for the advance of
spacecraft capability.

The study, therefore, concluded that the Inertial Upper Stage, now in development
by the DOD, should be continued to support vital national security and civil
missions; and that NASA should undertake the adaptation of the Centaur to be used
in the Shuttle to support the near-term Galileo mission and the projected mid-term
high energy requirements of NASA, DOD and commercial users. The combined
inventory of the two vehicles will adequately accommodate immediate needs and
will provide satellite programs an adequate performance margin to proceed with
confidence in the development of adv_-;iced, r -e capable systems for the late
1980's and early 1990's.
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One further point should be emphasized. The frame of reference for this study was
the President's FY 1982 Budget, as amended in March. Subsequent changes to the
National Space Programs may, of course, effect the requirements on which the
conclusions reflected in the attachment were based.

We are pleased to submit this joint study report on Shuttle Upper Stages.

Sincerely,

HANS MARK
	

VE N R
Deputy Administrator, National

	
Sec et r of the Air Force

Aeronautics and Spice Administr2tion

1 Attachment
Upper Stage Study

cc: Honorable Larry Winn, Jr.
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1.1	 INTRODUCTION

The United States Congress, after reviewing the NASA FY 1982
budget request to develop a Centaur derivative to support the planetary
exploration program, directed that NASA and the DOD conduct a joint
study to determine the nation's upper stage requirements and to
define the most appropriate program for meeting these needs. NASA
was also directed to reevaluate the sole source Centaur procurement
decision; this action will be handled by a separate NASA report to
the Congress.

The Sp ace Transportation System (STS) is made up of severai
major elements. The Space Shuttle is the key element and provides
transportation for payloads from earth to low earth orbit. Upper
stages are required for payloads which must go to higher altitude
orbits or escape the earth and enter interplanetary trajectories.
These stages are of different sizes to accommodate the range of
payload needs. Small, spin-stabilized, upper stages are being
commercially developed to place payloads of 2,750 and 4,400 pounds
in geosynchronous transfer orbits. Payload "Kickstages" then place
spacecraft of 1,400 to 2,200 pounds into geosynchronous orbits.
This report investigates the larger, more sophisticated three-axis
stabilized upper stages. These include the Air Force's Inertial
Upper Stage (IUS), capable of 5,000 pounds to geosynchronous, now
nearing completion of development, and the NASA wide-body Centaur
(13,000 pounds to geosynchronous) which is a modification of an
existing expendable launch vehicle stage.

An STS configured Transtage (8,000 pounds to geosynchronous),
which is representative of the storable propellant systems, and a
Shuttle-optimized Interim Orbital Transfer Vehicle (IOTV), a cryogenic
propellant stage somewhat larger than the Centaur, were also evaluated.
The STS Transtage configurations differ depending on mission unique
requirements ie... 8,000 pounds to geosynchronous orbit and a configura-
tion with a Delta 3920 second stage and a solid kickstage motor as a
third stage for planetary missions. Tt,e major constraint on the IOTV
was for a new stage, ie... new development, at lowest cost to meet
requirements in the late 1980's and early 1990's. By definition,
such a stage would satisfy all technical requirements, however being
a new stage, higher development complexity, schedule and cost risk
will exist.

Both NASA and DOD examined their current and projected mission
requirements and evaluated each of the upper stages (IUS, Centaur,
Trar,stage, IOTV) against those requirements.

The determination of upper stage requirements focused on
near-term "firm" requirements: those imposed by currently approved
programs; and on "anticipated" requirements: those imposed by major
planned program changes and upgrading; and, to a limited extent, on
the more distant requirements or program considerations still in the
very early conceptual stage. The examination of near-term requirements
confirmed that almost without exception, approved programs are based
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on the launch vehicle and upper stage capabilities which exibt or
are in development at the time of program approval. Only where programs
encounter exceptional growth or the addition of a new mission requirement
do "firm" launch requirements exceed approved capabilities. The
requirement to improve launch capability therefore depends upon
"anticipated," rather than "firm," program requirements. To a signi-
ficant extent, therefore, the conclusions and recommendations of the
study focus on the limited "firm" requirements which approach or
exceed approved upper stage capabilities and on the "anticipated"
requirements based on near-term planned program changes and upgrading.
Only in this way is it possible to provide a launch capability which
will allow those program changes to be made with confidence that
their launch requirements will be met.

1.2	 REQUIREMENTS

NASA and defense requirements differ in signficant ways, and
therefore have been analyzed and discussed separately. NASA upper
stage requirements encompass both planetary exploration and earth
orbiting (civil government and commercial) missions.

NASA planetary requirements are directly related to upper
stage performance; the greater the upper stage performance, the
greater the scientific/exploration benefits that can be established
and accompl i shed. The design of interplanetary missions usually
begins with the use of "optimum" trajectories which will permit
reaching the target destination(s) at specified times and locations
with minimum additional spacecraft propulsion capability. Once the
upper stage capability and availability are factored in, trajec-
tory adjustments are made to "recapture" the mission. Essentially,
the development of the final mission requirements is an iterative
process whereby adjustments often result in constraints or degrada-
tions to the original mission design expressed in tE!rms of (1) added
trip time to the planets, (2) more launches, i.e., payload split
into two or more parts, (3) deferred launch dates, (4) use of low-
enerly, gravity-assisted trajectories based on specific launch
opportunities, (5) addition of high energy propulsion systems in the
spacecraft itself which complicates design and raises cost, and/or
(6) reduction in mission objectives. Final mission requirements are
a compromise relative to upper stage capability, payload weight,
mission time, mission reliability, qualitative and quantitative
rccomplishment of mission objectives and overall mission cost or
available funding.

t

r

NASA advanced study results over the past several years relative
to large space structures show that materials technology makes such
payloads as large space platforms and antennas now practical in
earth orbit for the late 1980's. Such payloads, because of size and
fragility of their structure will require upper stage performance
with low thrust capability to prevent structural damage from excessive
acceleration.
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NASA is also responsible for enhancing this nation's technology
in order for us to compete more effectively in international markets.
Commercial communications spacecraft are an important factor in this
competition. The evolution of commercial spacecraft since the early
1960's has been analyzed. The historical trend showed that starting
around 1915 spacecraft weight began to stabilize in order to main-
tain dual capatibility with the STS and expendable launch vehicles.
This has required users to limit spacecraft weight and size and
increase number of spacecraft, support development of other carrier
systems, develop more complex equipment to fit within weight and
size limits, etc.

Defense missions place a wide range of demands upon all elements
of space transportation, including upper stages. These requirements
go well beyond the need for a significant amount of energy for payload
injection and consider a wide range of operational factors important
to maximizing the operational availability of critical defense space-
craft missions. These demands can be expected to increase over time
along with demands For increased payload weight lifting capability.

U rrently approved and funded DOD operational space programs
require 5,000 pounds placed in a geosynchronous orbit (that is,
an orbit sucn that the spacecraft stays at a point over the equator).
Projections of firm requirements for operational defense programs
indicate this requirement will grow to 5,500 pounds in the late
1980's. Furthermore, these operational DOD programs would like
to have a capability of 5,500 pounds in 1981, growing to 6,200
pounds in 1988. Payload weight in final orbit is the most important
discriminator between stages; limited weight capabil i ty can force
mission limitations or increase spacecraft cost to implement weight
reduction programs.

A number of existing operational defense space programs project
significant payload weight increases beginning in 1990 as a new
sequence of block change spacecraft become operational. For those
programs which do not grow dramatically, the IUS could remain as the
primary launch vehicle. However, for programs whose weight in geosyn-
chronous orbit grows into the 8,000-10,000 pound range, a significantly
more capable upper stage is likely to be required. A new upper stage
based either on cryogenic or storable propellants would be suitable
for missions in this weight class.

An assessment of advanced defense mission concepts (all of
which would represent new program starts) shows that in the late
1990's and in the early twenty-first century, that additional sign i

-ficant increases in payload weight will be needed and that a number
of different high energy orbits will come into operational '.se.
Since the Shuttle will likely still be the primary vehicle for launching
such systems, then the performance limitations will be determined
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primarily by the upper stage selected. ^onsequently, the Shutt
throw weight limits -- combined with dramatic increases in miss
requirements -- will ultimately result in the need for the high
efficiency, high-energy levels provided only by cryogenic liqui
propellant stages.

1.3	 ASSESSMENT SUMMARY

An assessment of the overall NASA requirements shows that r,
high energy stage is needed to fulfill projected NASA and commercial
needs. Assessment of upper stage program options reveals that the
decision should be based on schedule and performance rather than life
cycle cost (since cost is not a major discriminator). The long range
cost analysis results showed that the variance between options was
small and within the error inherent in the numbers used in the analysis.
The near term cost analysis as related only to planetary missions
showed that the cost variations between the options, with the excep-
tion of the IOTV options, were smVI .

An assessment of upper stage candidates against the DOD require-
ments can be summarized as follows: The Inertial Upper Stage (IUS)
can meet nearly all the firm defense need, and the IUS can be easily
modified to "capture" the small region o-; missions not within its
basic design capability of 5,000 pounds to geosynchronous orbit. The
Transtage (or other similar storable propellant systems) can satisfy
all the firm defense needs, but can only capture a small portion of
the projected growth. Shuttle payload limits (55,000 pounds) will
limit both the IUS and Transtage growth such that these systems can
never capture a significant portion of the projected long term defense
needs. The cryogenic propellant stages (Centaur and IOTV) can capture
a very large portion of the projected growth, and when combined with
the solar electric propulsion system (using two Shuttle flights)
could even capture a portion of the large high altitude platform
missions.

Consequently, it appears logical to retain the IUS and make
necessary incremental performance improvements to meet firm defense
needs. There appears to be little benefit to transition to the
Transtage, or another storable propellant system, since this approach
does not add to current mission capability and does not capture a
significant portion of the proje ted growth. The logical step for
defense missions is to supplemew. the IUS capability with a high
performance cryogenic upper stage which will have long term utility.

t	 1.4	 JOINT NASA/DOD CONCLUSIONS

The IUS is the only available stage capable of meeting the
near term earth-orbiting requirements for DOD and NASA and, with
modifications, could satisfy NASA and DOD earth orbiting missions

`	 through the 1980s.

'	 The Transtage (or other storable propellant vehicles) couldr
satisfy near term NASA and DOD earth-orbiting requirements from a
performance standpoint, but cannot be available in sufficient time to
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meet current program schedules. In addition, it is not efficient for
NASA planetary missions and falls short of meeting projected long
term national security performance requirements.

An IOTV, since it would be optimally designed to meet national
requirements, would be the best upper stage to meet the long term
performance and operational nee.Ss of both NASA and the DOD. However,
this approach is not acceptable since the development time required
for such a new stage would not allow the NASA near term requirements
to be met. In addition, cost and schedule risks would be con iderably
higher than for the Wide-body Centaur.

The Centaur is the only vehicle capable of meeting near term
NASA planetary requirements, particularly the need for a Galileo
combined Orbiter/Probe mission on a direct trajectory to Jupiter in
1985. The Centaur will satisfy the future envisioned and proposed
NASA planetary missions through the mid-1990's. The Centaur could
also be adapted to meet both current and projected NASA and DOD ea^th-
orbiting requirements and its early availability could offer an option
for considerable enhancement of DOD mission capabilities.

Development of a cryogenic upper s+age will strengthen the
United States leadership role in both hydrogen/oxygen engine techno-
logy and in payload lift capability. The long range requirements
will drive upper stages toward th? very high specific impulse perform-
ance provided by hydroo-n/oxygen cryogenic stages. Proceeding with a
cryogenic upper -.:.,;ge will maintain the small engine cryogenic techno-
logy lead, maintain a second domestic source of cryogenic expertise,
and strengthen the government's long term competitive opportunities.
Proceeding with the wide body Centaur will accomplish these ends and
provide a significant and timely jump in upper stage performance.
This will allow the United States to compete with the Ariane and also
maintain our clear preeminence in the important field of cryogenic
engine technology.

1.5	 RECOMMENDATION

In order to satisfy the naticnil mission requirements of both
the DOD and NASA, the Air Force shouiJ continue development and
production of the IUS and NASA shouli develop the Centaur.
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STUDY
UPPER STAGE ALTERNATIVES FOR

THE SHUTTLE ERA

2.0	 INTRODUCTION

The Space Transportation System (STS), is made up of several
major elements. The Space Shuttle is the key element and provides
transportation for payloads from earth to low earth orbit. However,
many missions require transportation to orbits and earth escape
trajectories which are not attainable by the Space Shuttle. To
accomplish such missions, propulsive stages with the mission pay-
loads attached are carried to low earth orbit by the Space Shuttle
and launched from the Space Shuttle. These propulsive stages are
called upper stages.

Payload missions requiring upper stages fit into different
categories. These categories are defined by mission energy require-
ments which are characterized by mass to be delivered to a particular
orbit, unique trajectory or destination. To best accommodate these
varying mission energy requirements, upper stages of different sizes
and energy capability are required. Such Upper Stages are planned
and under development by NASA, DOD and commercial developers.

The McDonnell Douglas Corporation is developing, as a com-
mercial venture, Spinning Solid Upper Stage:, the SSUS-D and SSUS-A,
to accommodate future payloads of the energy classes which are currently
flown on the expendable Delta and Atlas Centaur launch vehicles.
The performance of the SSUS-D and the SSUS-A, respectively, is 2750
pounds and 4400 pounds to a geosynchronous transfer orbit. This is
approximately equivalent to 1400 pounds and 2200 pounds in geosyn-
chronous orbit. A multiple inix of SSUS's and other payloads can be
flown on a single Shuttle f'iight.

The Air Force is currently developing a two-stage solid pro-
pellant upper stage known as the Inertial Upper Stage (IUS) for
accomplishing earth orbital missions requiring more energy than can
be provided by the SSUS vehicles. The IUS will be compatible with
the Titan III (34D) launch vehicle and the Space Shuttle. The IUS
as baselined for use with the Space Shuttle can deliver 5,000 pounds
to geosynchronous orbit. The IUS will be used by NASA for launching
the Tracking Data Relay Satellite (TDRS) missions and will be used
by DOD for various missions.

A third category of missions exists which requires higher
energy capability than can be provided by the IUS. Effective unmanned
exploration of outer space and other planets requires propulsive
capability beyond that offered by the IUS. NASA has approved and
planned planetary missions to accomplish these objectives. In addi-
tion, the historical growth curve for geosynchronous satellites
indicates that a greater capability than 5,000 pounds to geosyn-
chronous orbit should be available to permit spacecraft growth in
the late 80's or early 90's. Advanced payload planners are also



currently planning large space structures which will eventually
require higher energy upper stages. Europe's Ariane project plans,
as of mid-1981, included growth potential to accommodate a payload
of 12,000 pounds in geosynchronous transfer orbit (approximately
1,000 pounds to geosynchronous orbit). Later information indicates
that their capability for Ariane V could be as high as 8,500 pounds
to geosynchronous orbit. The Ariane IV first stage, which is also
the first stage for Ariane V, will now have liquid strap-on engines
which increases performance by approximately t iuenty percent.

NASA, currently with letter contracts, has initiated effort to
adapt Centaur to the STS in order to meet these current and future
requirements.

	

2.1	 PURPOSE/SCOPE

The NASA approach for accomplishing current and predicted
future requirements has been questioned by Congress and a joint agency,
NASA and DOD, analysis has been performed to determine the basic
national requirements and the best national approach (i.e., vehicle
or family of vehicles) for satisfying these requirements. In addition
to providing the results of the analysis, this report has purposely
been structured to provide background information relative to
requirements, upper stage configurations and options, study approach,
and associated payload and STS data to permit others to derive their
own conclusions. Extracts from other documents, analysis results,
reports, etc., have been incorporated directly rather than by reference
to permit ready assimilation of the report.

	

2.2	 SCOPE LIMITATIONS

'The purpose of the analysis was to determine the best national
upper stage approach to meet the current and projected national
requirements. The effort was not intended to be a precise budget
analysis whereby cost data utilized or resulting from the study would
replace budge' information submitted through proper channels in and
from NASA and DOD. However, the cost data utilized in the study is
the best information currently available and was derived from valid
^,.,!^rces with changes in format and terminology to allow accurate
coinpa^-ative analysis to be performed among options. Again, the
report is not intended to be a budget or funding requirements docu-
ment for NASA or DOD and should not be used for that purpose.

The SSUS programs, although acknowledged during performance of
the analysis, were not a major point of concern in that higher perform-
ance vehicles are being questioned. Therefore, the scope is limited
relative to these projects and the report only addresses them for
completeness.
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3.0	 BACKGROUND

The question, "Which are the most appropriate upper stages to
best meet the national needs", has been studied and restudied exten-
sively for the past 10 years. An in-depth, well prepared, summary
scenario of early study results, of which many of the basic facts are
still valid today, exists in the documented "Hearings Before the
Subcommittee on Manned Space Flight of the Committee on Science and
Aeronautics, U.S. House of Representatives, Nineth-Third Congress,"
published under title of Space Tug-1913.

Since the Congressional hearings in 1973, many decisions were
made by NASA and DOD, with Congressional oversight, relative to upper
stage programs. These decisions, arrived at mutually as partners for
use and in development of the STS, were made based on best infor-
mation, i.e., technical and budgetary existing at the time and with
concern for national interest and policy.

3.1	 HISTORY

During the fall of 1975, NASA and DOD agreed that DOD would
develop ar Interim Upper Stage for national use and that NASA would
plan for development of a Space Tug, i.e... high energy stage, to be
initiated in the early eighties. The initiation of the Interim Upper
Stage program began with the Air Force Validation Phase Contract with
the Boeing Company in September 1976. A contract was awarded in 1978
for the development phase and the vehicle was then designated the
Inertial Upper Stage. NASA participated in the selection process and
provided funds to the Air Force, under a mutual agreement, for NASA-
unique systems and stages. The Air Force was to develop a two-stage
vehicle for use by DOD and NASA with an STS capability of 5,000 pounds
to geosynchronous orbi'	 The vehicle was also to be used by the Air
Force with the Titan Ili (34D) for the Shuttle transition period and
STS backup. The unique NASA vehicles to be developed by the Air
Force with NASA funds were to be high energy twin and three stage
IUS's for accomplishing planetary missions.

Original planning provided for a Galileo mission in early 1982
and an International Solar Polar Mission (ISPM) in early 1983. In
late 1979 it became questionable whether the Space Shuttle/IUS could
support the early 1982 Galileo launch and at that time NASA reviewed
several alternative approaches to meeting the mission objectives. The
most viable alternative at that time was to split the Galileo
Orbiter/Probe combined payload into two separate Shuttle/IUS flights
and slip the launches into early 1984, while maintaining the ISPM
launch in 1983. This alternative remained viable when the Air Force
decided in December 1979, following a comprehensive evaluation of IUS

;y.	 alternatives, to continue the IUS development program.

After NASA's announcement to Congress in November 1979 of
' plans to redirect the Galileo program, Congressional requests were

made to: first, conduct a reassessment of the Galileo and ISPM to
again evaluate the use of the Centaur liquid upper stage for these
missions in lieu of the IUS and, second. ; examine future upper stage
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mission requirements. In response, NASA performed a reassessment of
the Galileo and ISPM missions, reevaluated the use of Centaur as an
upper stage and examined future upper stage mission requirements and
forecasts through the 1985-2000 time frame.

The results of the study were documented in a report, "Study
of Upper Stage Alternatives for Space Transportation Systems Mission
Operations," dated 3 May 1980. Based on both Air Force and NASA
programmatic and budgetary decisions, the upper stage baseline posture
for near-term Space Transportation System operations appeared to meet
the then currently planned mission requirements and NASA recommended
the Galileo mission be flown on two Shuttle/IUS flights in 1984 and
the then known (one NASA and one European spacecraft) ISPM mission on
two Shuttle/IUS flights in 1985. It was also concluded that, from a
technical and operational viewpoint, the Centaur could be modified
and integrated with the Space Shuttle and meet the mission performance
requirements of Galileo and ISPM (one flight each). However, the
orbiter development schedule was intense leading to the first manned
orbital flight and it was not the proper time to introduce additional
schedule risk with early introduction of the liquid cryogenic Centaur
into the Space Shuttle. The cost, at that time, of the Centaur alterna-
tive showed an increase over the then existing baseline IUS program.
Relative to the review of mission forecasts through the 1985-2000
time frame, the results indicated the need for future upper stages of
much greater capability and flexibility than the IUS and that a cryogenic
uppe ► stage (an initial versicn of the Orbital Transfer Vehicle/OTV)
should be introduced into the Space Shuttle in the late 1980's.
Additional studies were initiated to determine the complexities of
integrating the Centaur into the Shuttle.

Congressional responses agreed to the Galileo and ISPM redirec-
tion and NASA and the Air Force proceeded with implementation of the
plan as the most cost beneficial means of mission execution.

The combination of planetary mission requirements increases,
mission delays, and overruns in the basic two-stage IUS development
program combined to increase NASA IUS budget requirements by about
$100M in FY 81/82. Budget constraints necessitated a slip of the
Galileo and ISPM missions from 1984 and 1985 to 1985 and 1986. Slipping
the Galileo from 1984 to 1985 increased the energy requirement markedly
because of changes in the relative positions of the planets. The
only way the IUS could perform the mission would be via an indirect
trajectory, Delta-Velocity Earth Gravity Assist ( p -VEGA) which
added considerable mission time (approximately 3 years) and related
mission costs (approximately $200M), as well as degraded mission
reliability. In response to the situation, NASA (in conjunction with
DOD) performed an upper stage alternative stage study and presented
the results to the joint NASA/DOD Aeronautics and Astronautics
Coordinating Board (AACB) in March 1981. The AACB conclusions were
that the Air Force continue the development of the two-stage IUS and
that NASA develop a Centaur derivative for the high energy planetary
missions. With these conclusions, NASA directed the Air Force to
discontinue develor,;sicnt of the planetary versions of the IUS, notified
Congress of NASA's intent to initiate the Centaur STS program and
proceeded to initiate letter contracts required to protect the mission
launch schedules.
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3.2	 CURRENT SITUATION

Although Congressional concurrence exists for the limited
liability letter contracts for initiation of the Centaur STS program,
Congressional concern was expressed relative to the nation's basic
upper stage mission requirements having been adequately defined and
whether or not the Centaur is the appropriate approach for satisfying
the national requirements. To this end, another joint NASA/DOD
Alternative Upper Stage Study was requested. This report provides
the results of that study.

	

3.3	 UPPER STAGE OPTIONS/STAGE DESCRIPTIONS

NASA and the Air Force, as the DOD representative, have per-
formed a comprehensive and in-depth analysis of upper stage program
options, including expendable launch vehicle/upper stage combinations.

The Upper Stage vehicles receiving :.he major effort as viable
options were the IUS, Centaur, Transtage and several versions of a
cryogenic Interim Orbital Transfer Vehicle. A brief description of
these vehicles and associated systems is provided here for technical
reference. As the use of the Solar Electric Propulsion Stage (SEPS)
with all vehicles was considered, a brief description of SEPS is also
included in Section 3.3.5. A study was also performed relative to
use of a small storable stage with the Centaur STS. This combination
provides for utilization of the best features of both storable and
cryogenic stages. Different ways to implement the major system
concepts (cryogenic, solid, solar electric and/or storable propellant
stages) were studied and discussed. Since the stages used were the
best performers of the classes of vehicles, the basic report conclu-
sions would not be changed by including a greater number of stages or
concepts in the assessment. The following describes the candidate
upper stages used for detailed analysis for this study.

Figure 3.3-1 provides a pictorial comparison of the prime
upper stage options considered for the STS.

FIGURE 3.3-1

UPPER STAGE COMPARISON
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IUS	 TRANSTAGE
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3.3.1	 IUS STS

The basic IUS is a two-stage solid propellant vehicle being
developed by the Air Force and planned for DOD, NASA and civil use.

It will be used both with the Space Shuttle (first flight late 198')
and on the Titan launch vehicle (first flight mid-1982). The reference

STS mission was for 5,000 pounds into geosynchronou n orbit.

The iUS has redundant critical components such as navigation
and guidance avionics, reaction control systems and backup electrical

power supplies which will provide a calculated vehicle reliability of
better than 98 percent.	 It uses two solid-propellant motors, a large

first stage motor containing ?1,400 pounds of propellant and a smaller

second stage motor with 6,000 pounds. A second stage motor extendable
exit cone to provide increased performance is standard with the STS
configuration and optional for Titan. The IUS Twin-Stage was also
reviewed again as an option for performance of planetary missions.

The IUS Twin-Stage utilizes two ?1,400 pound motors.

3.33	 CENTAUR STS DESCRIPTION

The Centaur STS is a wide-body derivative of the upper st0gL
of the expendable launch vehicle, the Atlas Centaur tAC). The Centaur

STS is takinq maximum advantage of current Centaur design, with
minimum changes, to accomplish required performance parameters and
compatibility with other existing elements of the STS. Only mandatory

functional systems, or safety required changes are being considered
in order to preserve already demonstrated high reliability and to
provide the lowest possible development cost and schedule risk leading
to the Galileo mission to Jupiter in April 1985. The Centaur STS
will be capable of placing approximately 1:3,000 pounds into geosyn-

chronous orbits.

With tut.ure requirements under consideration, the multiburn
capability inherent in the reference vehicle configuration is being
preserved in the STS version. The current inherent adaptability for
engine low thrust operation will also be preserved. The wide-body

inherent design will provide the capability to shorten the stage, if
required later, to provide short, high energy stages for long payloads
(up to 42 feet.) within the Orbiter cargo bay constraints. Centaur
airborne support equipment (ASE) is being developed for support of

the Centaur STS while in the Shuttle cargo bay and will be reusable

with minimum refurbishment between flights. Dependence on orbiter
systems and interfaces with the Orbiter will be minimal while main-

taining computability with basic safety requirements. Utilization of
existing facilities and ground support equipment (GSE) at the manu-
facturing plant and the launch site to the maximum extent, is part of

the basic plan.

3.3.3	 STS POSTAGE DESCRIPTION

The Transt.age has been flown on the Air Force Titan vehicle
since the early 60's,	 The plan, as it existed with the start of the

IUS program in 1976, was to phase out the Transtage with the evolution

of the Titan III (340) and the IUS. 	 In the early 70's and as explicitly
discussed in the Hearings before the Subcommittee on Manned Space
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Flight of the Committee on Science and Astronautics, U.S. House of
Representatives in September 1973 and documented, reference Space
Tug-1913, the Transtage and advanced versions have previously been
considered for use as an STS upper stage element.

With the advent of the IUS contract in 1916, the Transtage was
no longer considered as a candidate for the STS upper stage. However,
with the announcement by NASA to cancel the three stage IUS program,
the Martin Marietta Company provided the Ai, Force, and later NASA,
with data relative to advanced versions of the Transtage family for
consideration for utilization with the Titan Ill (34D) and the STS.
These stages would be growth versions of the TIIIC Transtage. To
insure that there were not better Transtage options available, NASA
expanded the family, for analysis purposes, by adding a kickstage to
the configurations provided. A dual standard Transtage configuration
was also reviewed again for performance.

3.3.4	 INTERIM ORBITAL TRANSFER VEHICLES (IOTV) DESCRIPTION

Many studies have taken place over the past decade relative to
Orbital Transfer Vehicles (OTV's) and/or Interim Orbital Transter
Vehicles (IOTV's). Some of these studies were performed by NASA in-
house, some by contractors to NASA and DOD, and many were performed
by various companies with their own funds. As would be expected, the
capability of the various theoretical vehicles varied considerably
depending on basic assumptions such as mission models, timvframe
required, manned requirements or growth capability to manned require-
ments, etc.... For the purpose of this study, a version as provided
by MSFC was utilized but other configurations were included in summary
fashion which would require more complex development with associated
cost and schedule considerations.

The version selected as an option is an IOTV configuration,
not optimum as far as maximum performance, but with performance close
to that which is foreseen to be required through the early 90's.
Growth or adaptability to a larger IOTV size however, was a basic
assumption. The major constraint was for a new stage, i.e., new
development, at lowest cost to meet limited requirements in the late
80's and early 90's. More accommodating new vehicles at higher cost
could also be made available during the addressed time frame should
new/practical requirements become visible and provide the demand.

3.30	 SOLAR ELECTRIC PROPl1LSiON STAGE (SEPS) DESCRIPTION

Similar to a kickstage, SEPS will be launched on the Shuttle
and boosted higher by a Shuttle upper stage. The primary advantage
of SEPS over conventional chemical vehicle~ is itN inherent ability
to provide a large velocity capability due to the very high 4pvcific
impulse and thereby achieve very high energy mission~ that cannot he
accomplished otherwise.

19

F



The distinguishing characteristic of the SEPS is its propul-
sive me ,chod. Solar radiation is collected by large solar arrays and
converted into the kinetic energy of the exhaust beam. Electric
power conditioners produce the voltages required to operate the thrusters.
Thrust results from the electrostatic expulsion of mercury ions.
Electrons from a neutralizer are injected into the main beam path to
prevent a charge buildup on the vehicle. For most missions a specific
impulse of 3000 seconds gives a good compromise between thrust level
and propellant utilization. Specific impulse is a measure of propul-
sion efficiency. SEPS offers a specific impulse on the order of
seven to ten times the best achievable from chemical propulsion systems.

The availability of the SEPS stage for flight is a function of
the program approval date and the available funding. Program defini-
tion studies (Phase B) have been completed and availability would be
approximately 45 months after initiation of a development program.

i
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4.1	 NASA UPPE R STAGE REQUIREMENTS

4.1.1	 SHUTTL E CAP ABI LITIES/CONSTRAINTS

The Space Shuttle is the key element in the STS. Payloads and
carrier vehicles such as upper stages are constrained to the weight,
volume and environment provided by the Shuttle element. Safety require-
ments and operational constraints of the Shuttle system must also be
taken into consideration when calculating usable upper stage and
payload mass. The payload weight of 65,000 pounds to a circular 150
nautical mile orbit with launch due east from Kennedy Space Center is
the performance reference used for most of this study. Other payload
weights and launch inclinations have been discusseu by the study team
as related to Upper Stage vehicle and overall STS performance in
order to evaluate end understand STS flexibility for future missions.
In general, many of these discussion results are not included in the
text in order to keep the text from becoming too lengthy. But it is
obvious that, with higher payload capability or higher energy stage
availability, more mission flexibility will exist in a changing and
demanding environment as requirements evolve in later years. Other
ramifications were also analyzed such as the ability for upper stage
capability growth (i.e., Centaur currently offloading 10,000 pounds
of propellants for geosynchronous orbits because of 65,000 Shuttle
limitation). As liquid stages can dump propellants during abort/contin-
gency situations they aren't constrained by landing requirements as
are solid stages and lift off weight can therefore grow to existing
tank capacity without additional future modifications to the upper
stage.

The total payload, upper stage and spacecraft, is constrained
to 60 feet in length and 15 feet in diameter as provided by the Orbiter
cargo bay. Other factors such as orbiter center of gravity limita-
tions affect the placement of the payload in the bay and can impact
upper stage designs. Support structure considerations in the cargo
bay also vary with stage and payload length requirements. These
considerations were treated generically during the study. The length
and volume provided by the Orbiter is not a limiting factor for NASA
payloads currently under consideration, however, considerable discussion
did take place during the analysis relative to length requirements
for DOD payloads. This matter is discussed under DOD requirements.

The safety and environmental constraints were addressed in the
study to the detail necessary for assurance that each upper stage
option would be compatible with Shuttle constraints and that allowances
to meet constraints/requirements were provided for in  overall cost
data.

_r
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4.1.2	 EARTH ORBITING MISSION REQUIREMENTS

In assessment of large earth orbiting upper stage missions,
the Tracking Data Relay Satellite (TORS) missions are the only currently
fundeo NASA missions. These utilize the full capability of the IUS,
i.e., 5,000 pounds into geosynchronous orbit. The first flight of
TDRS is now scheduled for December 1982. A total of six TORS launches
are currently planned with a seventh as a possible later requirement.

The search for hard, firm requirements in the commercial
community, reveals the fact that spacecraft investors do not plan to
spend funds to design and build spacecraft which exceed the delivery
capability. The uncertainty in the development of higher performing
upper stages for the STS has been and still is influencing user policy
relative to planning advanced high performance spacecraft/satellites.

Discussion with INTELSAT, COMSAT, and others* does indicate
that commercial payload developers desire spacecraft with weight to
geosynchronous orbit requirements which far exceed existing carrier
capability. Intelsat VII could require, if an accommodating demon-
strated upper stage capability exists, the placing of 9,000 to 12,000
pounds in geosynchronous orbit in the early 1990's. It should be
noted that current Intelsats are designed so as to have an integral
propulsion capability such that final placement is from a geosyn-
chronous transfer orbit, which allows compatibility with the Ariane
launch vehicle. Intelsat VI has a design requirement to be compatible
with both the Spice Shuttle and the Ariane.

TABLE 4.1-1

GEOSYNCHRONOUS ORBIT
COMMERCIAL SPACECRAFT APPLICATIONS/GROWTH

0	 MID-60'S - 100-200 POUNDS

0	 LATE 60's - INTELSAT I II - 300-350 POUNDS

0	 MID-70 1 5 - INTELSAT IV - 1,500 POUNDS

0	 EARLY 80'S - INTELSAT V - 2,000-2,200 POUNDS

0	 1986 - INTEt"^T VI - 4,000-4,400 POUNDS

0	 EARLY 90'S - INTELSAT VII - 9,000-12,000 POUNDS*

* PER LETTER FROM INTELSAT

ars, Intelsat to NASA, dated 3 August 1981, N.J.M. Chitre to
ans Mark; COMSAT Satellite Television Corporation to NASA, dated
ist 1981, L. Keane to Dr. Hans Mark; COMSAT General Corporation
SA, dated 13 August 1981, B.I. Edelson to Dr. Hans Mark.
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Table 4.1-1 and Figure 4.1-1 are a tabulation and graphical
presentation of the historical and predicted growth of communications
satellites since the launch of the first commercial ventures in the
mid-1960's. Analysis or the tabulations clearly shows the trend
relative to past and future spacecraft carrier requirements. These
trends have in the past pushed the modification of the Atlas Centaur
and Delta, to provide increased payload capability. It must also be
recognized that growth in weight has been restricted in the late
1970's and 1980's by the need for dual compatibility, i.e., compatible
both with STS and available existing ELV's while in addition, the
growth of U.S. ELV's has been purposely limited because of phaseout
plans.

At this time there are no (other than TORS) commercial satellite
companies planning to use the IUS. This is for several reasons. The
cost uncertainties make commercial use/planning difficult. The demon-
strated capability that it is a functional part of the STS will not
take place until late 1982. Assuming spacecraft development takes
four years or more, should a spacecraft developer, at this time deride
to fly on the IUS, his flight date would be late 1985 or early 1986.
These uncertainties would tend to dictate that he find some other
means to satisfy the "user" requirements i.e... continue with smaller
highly complex and costly spacecraft and fly more of them or find
another carrier vehicle. Intelsat is designing for the Ariane, at least
through the Intelsat VI series, but prefers the larger spacecraft
approach for long range plannin?. If the Centaur proceeds through
development, Intelsat would probably plan earlier conversion, to the
higher STS capability.

F I GURE 4.1-1
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The area of spacecraft growth, i.e., physical size versus
other ways of meeting increasing demands has received considerable
thought and discussion. Increasing size can be relatively low in
cost versus the cost to develop smaller, more complex components to
fit into limited available dimensions to accomplish a specific task
or mission, for example, insertion and placement accuracy and station
keeping functions. The trade of increasing spacecraft size, i.e.,
propellant tanks, for greater placement accuracy may be more econo-
mical than designing and procuring complex, highly reliable avionics
systems for the launch vehicle and/or spacecraft. But if carrier
energy, i.e., launch vehicle/upper stage capability, is limited, then
both the upper stage and the spacecraft must take the sophisticated,
expensive route of costly avionics systems to achieve final placement
accuracy. The reliability, relative to useful life, is also affected.
A spacecraft with twice as much propellant as another, other systems
being equal, can obviously maneuver and remain stable relative to
position longer than one with half the capacity. It also provides
flexibility to better accommodate changes in position to maximize
services. The trend to larger spacecraft in the future in order to
decrease cost, extend life, and expand services can only be accom-
plished through compatible carrier growth. The cost impact of lack
of spacecraft growth, as shown in Fig;;. •e 4.1-1, in 1975 and extending
into the indefinite future is impossible to estimate, The remedy
however, is to eliminate as much as :,,sable, carrier requirement
restrictions, and permit spacecraft Developers to determine competitively
spacecraft services, weight and size requirements.

A recent analysis by Battelle, Columbus Laboratories* reveals
that the geosynchronous arc appropriate for comrr , rcial satellites is
becoming crowded, in a radio frequency (RF) sense, and strong compe-
tition exists for scarce "slots" (World Administration Radiation
Conference-WARC, North-South competition). The demand for geosyn-
chronous transponder capacity is strong (no unleased capacity and a
"Futures Market" is taking place). "De Facto" larger satellites are
being created by colocating existing satellites in one location
(Comstar, ANIK-A) and in some current locations services and users
are beginning to coalesce.

*Report, COMMERCIAL USE OF SHUTTLE/CENTAUR Battelle, Columbus
Laboratories, dated August 18, 1981.
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These platforms will require high energy upper stages for
delivery. The Battelle analysis also indicated that commercial space-
craft designers reg0 re 4-5 years time between design initiation and
flight. As they design to launch vehicle capability, this means that
designers of early 1990's spacecraft will use what exists in the mid-
1980's relative to upper stage capability. A recent study performed
by the AIAA** for The White House, substantiates most of the Battelle
study results.

In order to establish a figure of merit on how other launch
vehicle developers see the payload growth requirements versus carrier
requirements, the Ariane growth plan was examined and is shown in
Figure 4.1-2. This curve, i.e., essentially an exponential growth,
is significant to consider, especially when it must be recognized
that the growth plan requires a considerable investment of funds.
The Ariane planned growth curve substantiates U.S. data relative to
expected spacecraft requirements in the late 1980's and early 1990's.

FIGURE 4.1-2
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NASA advanced study results over the past few years have also
projected the need for heavy lift capability. For example, large
space structures have been studied in detail. Materials technology
makes such payloads now practical for the late 80's. Such payloads
require upper stage performance with low thrust capability to prevent
structural damage from excessive acceleration. Projected longer
range plans require the transfer of men between low and high earth
orbits in the mid-to late nineties and past the year 2000.

The most demanding future mission requirement is the "manned
GEO sortie," in the mid-90's. For this mission there would be a
capsule attached to an OTV in which there would be a crew of two and
supplies for about a week's stay at GEO. Additional equipment may be
needed, depending on the task undertaken (such as repair of a faulty
communications satellite). The minimum weight of capsule and crew
would be in the order of 10,000 pounds and it may be as much as 13,000
pounds for a practical replenish/repair mission in which several GEO
satellites are serviced. Space basing of a large OTV may be required
to accommodate such missions.

The collective trends illustrated as a result of the current
analysis of earth orbiting payload requirements show that in the late
80's, a need will exist to deliver payloads greater than 5,000 pounds
into geosynchronous orbits and that the existing vehicles of the
1980's will determine the spacecraft designs of the late 1980's and
the early 1990's. The results also indicate that geosynchronous
spacecraft development/growth rate was slowed considerably during the
last decade. Should a higher performance vehicle become available at
affordable per flight cost, by 1985, spacecraft requirements will
grow, and effectively utilize the carrier capability in the late
1980's.

4.1.3	 PLANETARY PROGRAM REOUIREMENTS

4.1.3.1	 Introduction

The selection and provision of upper stage capability for
escape from low earth orbit are critical to scalar system exploration.
This section summarizes NASA's requirements of Shuttle upper stage
options with regard to the future of planetary and solar exploration.
The companion subsection of Section 5.0 assesses the impact of each
upper stage option under consideration.

Factors influencing the selection and development of new pro-
f	 pulsion systems include capability, availability, cost, and interface
`

	

	 compatibility. We assume here that all proposed upper stage options
are, by design definition, compatible with Shuttle Orbiter constraints
and will be available on schedules stated elsewhere in this report.
The cost trades between the various stage options are addressed else-
where in this report. Specifically considered here, then are the
capability and availability of the upper stage options as they affect
approved and planned solar system exploration.
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Interplanetary missions are particularly sensitive to propul-
sion capability since it dictates the flight path the payloads must
travel to their destinations. The design of these missions usually
begins with the use of "optimum" trajectories which reach the target
destination at specified times (and locations) with minimum additional
spacecraft propulsion capability. Once the upper stage capability
and availability are factored in, however, trajectory adjustments
must usually be made to "recapture" the mission. These adjustments
often result in constraints or degradations to the original mission
design expressed in terms of (1) added trip time, (2) more launches
(i.e., the payload must be split into two parts to mate" upper stage
capability), (3) deferred launches (an acceptable upper stage isn't
available yet), (4) use of specific launch opportunities (low-energy
gravity-assisted trajectories with increased risk must be used), (5)
the addition of higher energy spacecraft propulsion to shift energy
requirements away from the upper stages, and/or (6) reduction in
mission objectives, and associated hardware or energy requirements,
to stay within available upper stage capability. All of these consi-
derations are used in this assessment of Shuttle upper stage options.

Beyond the concern for meeting upper stage requirements
of current approved missions, selected stage capability will strongly
influence the future direction of solar system exploration. A brief
assessment was performed to determine the degree of impact stage
selection might have on the exploration program over the next twenty
years. For this purpose a group of ten mission objectives, repre-
senting anticipated accomplishments from 1985 to 2000, was defined as
a "reference" mission set. This set of objectives is as follows:

1. Galileo Jupiter Orbiter and Atmospheric Probe

2. International Solar Polar Mission (ISPM) - (ESA Spacecraft)

3. Venus Orbit Imaging Radar Mission

4. Asteroid Multi-Rendezvous

5. Short-Period Comet Rendezvous

6. Mars Geochemical Orbit Mapping

7. Mars Surface Network Science

8. Mars Sample Return

9. Saturn Orbiter with Atmospheric and Titan Probes

10. Atmospheric Probes of Uranus and Neptune



E

Apparent in the list, is the fact that the first three objec-
tives represent the present base of missions in NASA's approved
program for solar system exploration. Beyond the currently approved
missions, the set includes two small body rendezvous missions to
explore several asteroids and to explore a short-period comet. Three
missions to Mars represent a continued interest in the inner planets.
They include global geochemical mapping and selected surface investi-
gations (network science) as precursor objectives to a sample return
mission. For the outer planets, a Galileo clas p, orbiter to Saturn is
included with entry probes for the planet and its satellite Titan.
Two reconnaissance objectives to probe the primordial atmospheres to
Uranus and Neptune complete the list. It must be emphasized that
this "reference" set of mission objectives is not a proposed 20-year
program for exploration. Rather it is thought to be representative
of solar system exploration activity in the remainder of this century,
and therefore is used to assess the impact of Shuttle upper stage
capability on such exploration.

In the subsections which follow, an overview of upper stage
requirements is presented first in the familiar terms of (injected)
payload mass and escape energy. The specific impacts of the consi-
dered upper stage options on the three currently approved solar system
exploration missions, i.e., Galileo, ISPM, and VOIR, are then addressed
in Section 5.2.2. Finally, the broader scope of exploration capa-
bility over the next 20 years was examined considering each upper
stage option individually, with and without SEPS (Solar Electric
Propulsion Stage),Stage), and the results are presented in Section 5.2.2.

4.1.3.2 Overvi ew of Upper Stage Requirements

Earth escape propulsion capability is commonly expressed in
terms of the amount of mass (payload) which can be delivered by an
upper stage to a specified escape energy (C3 which equals (Km/Sec)2).
The escape energy parameter, C3, is the square of the excess velocity
leaving earth and is a direct function of the upper stage impulse,
the orbit at which the impulse is made, and the earth's gravity. At a
C3 value of zero the payload barely escapes the earth's gravity, and
will riot leave the earth's heliocentric orbit in the solar system.
For positive values of C3, interplanetary flight becomes possible.
Negative values of C3 are possible and indicate that the upper stage
has added insuff 4 c lent energy to the payload for earth escape. If
the payload itself includes propulsion capability, however, it may
still be capable of escape. In these instances the payload is said
to include a "kick" stage to affect the final impulse necessary for
escape.

To establish quantitatively escape performance requirements to
measure against upper stage capability, a graphical format of injected
mass (escape payload) and injection energy (C3) is used. This format
is presented in Figure 4.1-3. Within the figure, four regions are
shown which bound the upper stage requirements of (1) inner planet
missions, (2) comet and asteroid missions, (3) outer planet missions,
and (4) solar missions. These regions assume a ballistic flight mode
(i.e., interplanetary coasting) and include most of the solar system
exploration missions presently under consideration.
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There are, however, a few missions, e.g., multiple asteroid
rendezvous, not included in Figure 4.1-3, and a number of others
shown within the regions of 4.1-3, which require special launch
opportunities and/or intermediate planetary swingbys. Figure 4.1-4
shows how the adeitional use of low-thrust interplanetary transfers
using SEPS affects the size and content of these regions. Each of the
original four ballistic regions is smaller in injected mass (vertical
axis in Figures) extent, this being the consequenceof removing
propulsion-intensive missions from them. The fifth region in the
upper left-hand corner of the figure contains all the low-thrust SEPS
missions.

FIGURE 4.1-3
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Comparing Figures 4.1-3 and 4.1-4 it is seen that the inclu-
sion of SEPS reduces the payload requirements of the three higher
energy mission regions which reduces the demand on upper stage perform-
ance. Without elaboration, SEPS also enables missions (e.g., single
launch multiple asteroid rendezvous) and frees others from unique
launch opportunities (e.g., Mercury and Saturn orbiters). In summary,
these advantages result from splitting the ballistic escape-energy
requirements with SEPS which delivers seven to ten times more impulse
per pound of propellant than the chemical upper stages.
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Relative to schedules and firm missior requirements, the Galileo
is an approved mission and is currently funded and scheduled for
launch in April 1985 on the Centaur STS. The design of the spacecraft
hardware is essentially complete and any delays caused by carrier
availability and/or carrier performance capability would drive the
cost up considerably. These aspects are addressed later in the report
in the assessment section.

The ISPM mission is an approved mission for 1986 whereby ESA
is providing the spacecraft and the U.S. is providing the trans-
portation system. This is considered a firm committment with the
U.S. government by ESA and any further delay or impact relative to
accomplishing the transportation requirements could be detrimental to
future U.S./foreign joint space/scientific ventures. ESA is currently
planning spacecraft interface compatibility with the Centaur STS.

The VOIR mission is planned for 1988. The energy requirements
can most efficiently be met with a cryogenic upper stage. The
assessment of launch alternatives in section 5.2.2 provides d9tailed
assessment data relative to performance satisfaction.

FIGURE 4.1-4
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4.2	 DOD UPPER STAGE REQUIREMENTS

4.2.1	 INTRODUCTION

The requirements for upper stages to support DOD missions are
strongly influenced by the nature of defense space satellite missions.
The defense space satellites represent a wide variety of mission
types and orbits which are, to varying degrees, critical to the defense
and, therefore, the survival of the United States. In addition, each
of the defense spacecraft programs has a mission that is of a continuing
nature. The technical requirements which each spacecraft prograr,
must satisfy are influenced by the Soviet threat so that the technology,
and therefore, the spacecraft configuration (size and weight) may
vary over time. In general, programs are implemented by having periodic
"block changes," (a block change is a major increase in spacecraft
capability) with intervening evolutionary changes which tend to cause
slow growth in spacecraft weight and capability until a major mission
requirements change results in another spacecraft block change at a
later time. Those defense space programs requiring an upper stage are
currently preparing for their transition to the Space Transportation
System/Intertial Upper Stage. Many programs have taken advantage of
the STS opportunity in order to undergo a mission block change which
has resulted in significantly larger and more capable spacecraft than
have hitherto Leen employed. The d scussion of specific defense space
programs and their missions has been excluded from to t'iis report.
That information is available to those people with the appropriate
security clearances and a specific "need to know."

4.2.2	 SHUTTLE CAPABILITIES AND CONSTRAINTS

The Space Shuttle offers many new and unique capabilities
which promise to fundamentally alter the nature of defense space
activities. These Shuttle capabilities, when combined with the
continuing operational objectives discussed in the preceding para-
graph, can be used to enhance the overall probability of mission
success for defense spacecraft programs. Specifically, this means
using the Shuttle capability to support spacecraft and upper stage
checkout prior to release; using the Shuttle on-orbit loiter capability
to support a release later in the mission; or when necessary, using
the Shuttle abort capability to return with the spacecraft and upper
stage. This approach leads to mission planning based on the launch
scenarios as shown in Figure 4.2-1. Because of the mission and cost
impacts of delays in launch and deployment, the Air Force has expended
considerable effort to maximize the chances for a successful deploy-
ment on the first flight, but with careful consideration to the
reflight if an abort landing should occur. The upper stage requirements
discussed in the following sections will be heavily influenced by
these considerations.
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FIGURE 4.2-1

OPERATIONAL LAUNCH SCENARIOS
JSPACECWT WITH UPPER STAGE IN SHUTTLEI
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Shuttle constraints also must be considered in system design
and operation. For example, the Orbiter payload bay voiume is a
major constraint; 60 feet is an absolute maximum and it must accommo-
date both the spacecraft and its upper stage. Shuttle payload weight
limits (65,000 pounds to a 28 0 inclined orbit) will become a signi-
ficant constraint for higher energy upper stages since propellant
weight (which is t^;e bulk of the upper stage weight) grows rapidly
with increases in performance capabilities. This limit is a signi-
ficant factor in evaluating the upper stages in this report. Over
the longer term, the Shuttle weight constraint will need to be eased
by increasing Shuttle performance, by using new orbital transfer
techniques such as solar-electric propulsion, or by joining the space-
craft and upper stage on-orbit with two Shuttle flights. Indeed, a
combination of these techniques will probably be needed to meet 21st
century requirements.

4.2.3	 DOD STUDY APPROACH

The DOD upper stage requirements analysis has been conducted
on a qualitiv^e basis; a more definite, quantified approach could not
be accomplished ii, the time available for this study. The wide range

'	 of potential options makes a highly quantitative approach extremely
difficult, if not impossible, since it is unclear what mix of payload
programs would be assigned to any specific upper stage. The upper
stage requirements are still a complex set, and it is necessary to
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consider each requirement essentially independently from the others
in order to assess the various upper stage candidates. In reality,
the requirements are interactive with each other, vary in criticality
based on the spacecraft programs assigned to a specific upper stage,
and can change significantly if a different technical solution is
found to a particular problem. Given these limitations, the Air
Force has performed as rigorous an assessment as possible.

The Air Force conducted a detailed ;!Irvey of all operational
defense spacecraft programs and asked thE 1i to specify their upper
stage requirements using the format shown in Figure 4.2-2. In each
case programs defined their requirements as "firm" (i.e., necessary
to support budgeted program activities) or as "desired" (unconstrained
by budget, but based on the program manager's judgement as to how he
could best fulfill his mission objectives). Each spacecraft program
prepared an assessment in the format of Figure 4.2-2. The opera-
tional spacecraft program requirements have been accumulated into a
single set of upper stage requirements and are shown in Figure 4.2-2.
The specific requirements and their rationale will be discussed later
in this section. It ;s essential to satisfy the firm requirements
levied on the upper stage by these operational DOD payloads since
they represent existing missions; we must also consider the desires
(Figure 4.2-2, Column 3) of these programs since these often become
funded, firm, requirements at a later time.

The Air Force also performed an assessment of advanced program
concepts. Generally, these represent ideas for potential post-1990
DOD missions which have only received limited study and which are
limited to a relatively simple concept definition and first order
estimates of the payload size and orbits required in order to conduct
missions of this nature. Such an advanced concept might include the
use of a maneuverable vehicle to repair defense spacecraft in various
orbits. The upper stage requirements for selected concepts are shown
in Figure 4.2-3. This shows the implications that such missions, if
approved, might have on defense upper stage requirements in the 1990's
and on into the 21th century. These concepts are used primarily as
a "boundary condition" check in terms of upper stage selection; that
is, as a means of assessing whether any given upper stage option
could logically grow to satisfy such needs or whether it would reach
its limitations before it could satisfy these long term requirements.
These long term requirements might help choose the appropriate path
to follow in the near term.

In addition, we have considered other factors not directly
related to mission per se--such as the possibility of operational
contingencies where only one of the two Shuttle launch sites is
available--and have attempted to apply some experience and judgement
to our long term projections.
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4.2.4	 DOD UPPER STAGE REQUIREMENTS

In this section we define, and briefly discuss the rationale
for, each of the upper stage requirements shown in the left hand
column of Figures 4.2-2 and 4.2-3. We also present a summary of
those requirements as a function of time over the rest of the 20th
century.

Performance requirements: These 'nclude the payload weight
placed in final orbit and the accur acy with which it is placed there.
All requirements in this section are presented in "geosynchronous
equivalent" performance.

Currently approved and funded DOD operational space programs
require 5,000 pounds placed in a geosynchronous orbit (that is, an
orbit such that the spacecraft stays at a point over the equator).
Projections of firm requirements for operational defense programs
indicate this requirement will grow to 5,500 pounds in the late 1980's.
Furthermore, these operational DOD programs would like to have a
capability of 5,500 pounds in 1987, growing to 6,200 pounds in 1988,
with at least one program projecting a block change (with a spacecraft
potentially weighing 8,000 pounds) in 1990. Payload weight in final
orbit is the most important discriminator between stages; limited
weight capability can force mission limitations or increase spacecraft
cost to implement weight reduction programs.

The accuracy at which the spacecraft is placed in its final
orbit includes its position (or precise location), the residual
velocity at that point in space, and its inclination (the angle the
orbit makes the equator). Operational payload programs are showing
requirements for placement accuracies approximately twice as good as
the specification requirements levied on current stages; these tighter
requirements are reflected in Figure 4.2-2. Placement accuracy is an
extremely important parameter since errors must be overcome by using
spacecraft propulsion capability. The greater spacecraft adjustment
needed the greater the impact on the ultimate on-orbit life of the
spacecraft. Hence, there is direct relationship between placement
accuracy and spacecraft life, and increased spacecraft on-orbit life
translates directly into both increased operational effectiveness and
lower program costs for each spacecraft program. There is an inter-
action between injection accuracy and payload weight capability of
the upper stage in that excess payload weight capability can be used
to provide additional spacecraft propellant for orbit adjustments
and--to some degree--reduce injection accuracy requirements.

Operational requirements: In addition to the critical perform-
ance requirements, the nature of defense space programs results in a
number of additional operational requirements which must be considered
in development and deployment of an upper stage. The Shuttle, with
its flexibility and its payload return capability, opens a totally
new approach to planning and executing operational space launches.
The upper stage design must take this into account and much of the
following discussion builds on these objectives.
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FIGURE 4.2-2

STS UPPER STAGE REQUIREMENTS FOR
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FIGURE 4.2-3

PROJECTED STS UPPER STAGE REQUIREMENTS FOR
POTENTIAL POST-1990 DOD MISSIONS
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Reliability requirements are based on a 96 per cent probability
of launch success. High reliability is extremely important in reducing
the number of spacecraft lost due to launch failure. Each spacecraft
lost results in some degredation of capability - ranging from tolerable
to catastropic. Consequently, we attempt to minimize the loss of
critical operational spacecraft at launch and thus minimize the period
in which the operational spacecraft capability is lost. The goal of
maximizing launch success is achieved by a combination of high quality
components and redundant systems. The effects of this approach goes
beyond the increase in "calculated" reliability (which is based upon
the reliability of individual components). Figure 4.2-4 illustrates
the benefits; eleven earlier launch failures (5 Transtage and 6 Centaur)
were analyzed based on the cause of failure. A redundant system
would have resulted in eight of those eleven failed launches being
successful. Further, the average cost of defense spacecraft, combined
with their launch cost, ranges from a low of approximately $200M per
flight to a high of perhaps $400M per flight (in FY 81 $). The varia-
tion in cost is due to the differences in the cost of individual
spacecraft, which range from a low of about $100M to a high of about
$30CM each, the balance is made up of launch related costs (Shuttle
flight charge, upper stage buy, integration and launch services).
Consequently, there are significant economic benefits in addition to
the operational benefits, of maintaining a high probability of launch
success.

FIGURE 4.2-4
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The requirement for adapt've guidance is based on an accumu-
lation of factors including the multiple types of orbits required for
the range of defense spacecraft and the opportunity presented by the
Space Shuttle to allow two or more chances for deployment and a success-
ful mission should the initial planned deployment not be possible for
some reason. Consequently, in order to simplify the operational use
of an upper stage, and to minimize future software changes, a relatively
generalized guidance scheme is needed. This range of requirements,
while it can be mechanized in other ways, is important to meeting all
defense requirements efficiently over a long period of time.

Load alleviation systems are an essential element for a defense
upper stage using the Space Shuttle. This enables the spacecraft.
some of which have relatively fragile structures, to survive both
launch and abort landing loads. This insures that the spacecraft is
available in a short time after an abort for reflight to meet its
operational requirements. Further, each mission not lost due to an
abort represents a considerable programmatic savings, ranging from
$ZOOM to S400M ( including spacecraft savings of MOM to $. OM).

Defense upper stages must be capable of remaining in the Orbiter
bay for up to seven days prior to deployment. This takes advantage
of a new opportunity presented by the Shuttle so that, if the original
planned deployment is not made, the upper stage will be capable of
remaining in space with the Orbiter and the spacecraft up to the
limit of the Orbiter capability -- which is now seven days. 	 In this
way we maximize the number of possible opportunities to successfully
deploy the mission, thus preventing the need for a return, landing,
refurbishment, and reflight. This has the effect of providing the
spacecraft in operational use earlier than it would be available
should an abort have been required, and eliminates the cost asso-
ciated with an abort and reflight.

Available payload length is a critical factor for a number of
defense missions which have spacecraft whose length approaches 42
feet, allowing only 18 feet of the Shuttle payload bay for an Upper
Stage and deployment mechanisms. Several payload programs have
mission and technical requirements which could not readily be
satisfied with current technology (or without a significant increase
in development costs) if payload space were severely curtailed. Thus,
the physical length of an upper stage is a critical factor for
defense missions.

Defense spacecraft operate in a widely varying range of orbits.
For example, geosynchronous orbits provide unique opportunities for
worldwide communications and 12 hour elliptical orbits provide a
unique capability for conducting communications in polar regions
which are not accessible to geosynchronous satellites. Defense
missions employ these orbits, as well as others, as an essential

x	 means of meeting their mission requirements. Thus the upper stage
must be capable of deploying spacecraft at any desired location.
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The capability to conduct predepioyment checkout of the space-

craft and upper stage represents yet another unique opportunity provided

by the Space Shuttle. This checkout is conducted in the Shuttle bay

prior to release of the spacecraft/upper stage combination. If the

spacecraft has failed in score s<,hctantiai way during the Shuttle

ascent phase of the flight it is possible to return and repair the
spacecraft for another launch thus preventing the complete loss of a
valuable spacecraft and the loss of its operational capability.

Defense spacecraft require specific upper stage services such
as telemetry, power, and limited commandiog -apability in order to

conduct the predeployment checkout, to otherwise ensure that spacecraft
is healthy, and provide an opportunity to recover the spacecraft.

This requirement comes from several sources; the NASA desire to main-
tain simple Shuttle interfaces, the DOD desire to make Shuttle transi-

tion as easy as possible for the spacecraft programs, and the need to

provide a backup expendable launch vehicle capability during Shuttle
transition. Consequently, all DOD spacecraft using an upper stage

are configured si-ch that they have no direct interface with lie Shuttle
Orbiter. All spacecraft services are provided by the upper stage
which also provides all interfaces to the Orbiter. These services

are another important element in taking advantage of the opportunities

provided by the Space Shuttle.

The capability to provide long term on-orbit storage of an

upper stage is not currently a part of defense mission requirements.
However, several programs have analyzed this technique as a means of
protecting against possible Shuttle outages or groundings. Indeed,
one program elected to employ an integrated propulsion system with a

secondary reason being the desire to avoid having the upper stage
provide an electrical power system capable of indefinite on-orbit
storage. Current defense missions involve the launch and deployment

of a satellite which takes place in a relatively short (hours as
opposed to days or wecks) period of time. An upper stage containing
storable propellants, and long life electrical power, would have
benefits for high energy maneuvering should it be required after a

long period on orbit as a means of threat avoidance.

Spacecraft recovery is not a requirement of current high alti-
tude defense programs. High altitude spacecraft using an upper stage

have very long lives (from about three to seven years), and at the
end of their useful operational lives are of relatively limited
mission value and are replaced by spacecraft with significantly greater
technical capabilities. Further, the cost of launch and recovery is

a large percentage of the spacecraft cost. Consequently, current

high altitude missions do not find spacecraft recovery operationally

or economically attractive. Over the long term, however, as larger
and more complex systems are deployed and maintained for an extended

period of time. recover y of these sp acecraft may become more economical.

Multiple upper stage engine starts for the purpose of on-orbit
ivering (other than for deployment of the spacecraft into an
itional orbit) are not currently required by defense space pro-

s. However, as spacecraft survivability considerations become

important, this capability could also grow in importance.
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A number of defense missions have a requirement for wide
variation of potential orbit positions. This is known as "large
mission box." This has the effect of placing significantly greater
demands on the guidance system for thethe upper stage an ,:± on the opera-
tional process of planning and conducting spacecraft launches since
the precise launch target will not be defined until very near the
launch date.

't

	

	 Launch call-up is required for a number of defense missions
because of the essential need to maintain a continued on-orbit capa-
bility. Should sudden failures occur in operational spacecraft it is
necessary to bring a new spacecraft through final processing and
launch in a short period of time. Failure to do so could seriously
jeopardize our national defense by allowing critical defense space
capabilities to be lost and thus have large coverage gaps for an
extended period.

Some defense spacecraft programs require the deployment of
multiple satellites on a single launch. This also results in reduced
spacecraft program costs by distributing launch costs over a larger
number of on-orbit satellites.

No current operational defense program requires the ability
for the upper stage to rendezvous with the spacecraft once it has
been deployed in orbit. Thi s rendezvous capability may have long
term potential for future missions.

Other requirements: In addition to the performance and opera-
tional requirements discussed above, a number of other significant
demands are placed on the upper stage design.

Three axis stabilization, (the ab i lity of the stage to maintain
a fixed orientation in space without spinning) is essential for the
launch of most defense satellites. This stabilization approach gives
the spacecraft designer considerably more freedom in configuring his
spacecraft to handle the significantly different demands of launch
and on-orbit operations, and that results in a significantly lower
cost to develop the same operational capability.

A capability to restow the spacecraft/upper stage combination
in the Shuttle bay is essential to take full advantage of the Shuttle
opportunity for recovery and reflight of a failed mission. If a
restow capability is not designed into the system, and spacecraft
deployment cannot be accomplished after the spacecraft is erected,
then it would be necessary to abandon the spacecraft and upper stage
in order to close the orbiter bay doors prior to reentry. This would
result in the loss of a valuable spacecraft and upper stage.

The Shuttle park orbit currently is planned as a 150 nautical
mile circular orbit. This provides a firm baseline from which all
spacecraft and upper stage designers can work. A higher Shuttle park
orbit is not part of the current program baselines. However, the
higher park orbit has the potential--by more efficiently using the
Shuttle energy--to increase the payload ultimately placed in final
orbit without any modifications to the payload, the upper stage, or
the Shuttle itself.

a
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4.2.5	 DOD REQUIREMENTS SUMMARY

^e

i

A review of the requirements for operational defense space
programs and for conceptual post 1990 defense missions (as shown in
Figures 4.2-2 and 4.2-3) allows us to draw several conclusions.

Operational defense space programs (Figure 4.2-2) have indicated
a need for all of the capabilities which are part of the current
baseline specifications levied on the Inertial Upper Stage when used
in the S p ace Shuttle. Further, no spacecraft program has indicated a
requirement for any capability not currently included in the DOD
upper stage requirements such as lone term on-orbit storage, multiple
burn, or rendezvous. Defense space programs have stated a require-
ment for higher orbital injection accuracies than current specifications
demand, and also project firm growth to approximately 5,500 pounds by
1987 based upon their currently funded (approved and planned columns
in Figure 4.2-2) program activities.

These operational programs also project the possibility, although
not currently in the program funding, of growth to approximately
5,800 pounds by 1987, to about 6,200 pounds in 1988, and with the
potential for 8,000 pound spacecraft in geosynchronous orbit in 1990.

As space systems become increasingly vital to our defense
effort, we must also consider the potential need for contingency
launch operations in which only one Shuttle launch site is opera-
tional. In wartime, or other national emergencies, we could launch
selected missions from either the Kennedy Space Center or Vandenberg
AFB. In particular, since all our upper stage operations are at
Kennedy, all the defense missions discussed in this report are normally
launched from Kennedy. If sufficient energy were available both from
the Shuttle and from the upper stage, we could launch high altitude
defense missions from Vandenberg AFB.

The conceptual post 1990 defense missions (Figure 4.2-3) show
dramatic growth in payload weight combined with extremely high energy
orbits. Payload weight can be expected to grow to perhaps ten times
current levels, and be combined with extremely high altitude orbits.
This will place extreme demands on the launch systems, driving them
to maximize their efficiency and performance. Such missions are well
beyond the capability of any existing or planned upper stage and
might even require, in addition to a large upper stage, the possibility
of on-orbit rendezvous of the upper stage and payload, the use of a
solar electric propulsion system to supplement the chemical propulsion
upper stage, an increase in space shuttle weight capability beyond
65,000 pounds, or new launch vehicles larger than the Shuttle. In
addition, these missions also show in some instances where it may be
desirable to have storable propellants in an upper stage and where
spacecraft recovery, upper stage engine restart, and multiple
rendezvous capabilities would clearly be needed. Consequently, the
demands on the next generation of upper stages will be significantly
greater than those placed on the current generation.
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	5.0	 UPPER STAGE ASSESSMENT

	

5.1	 INTRODUCTION

Up to this point in the report, which followed the study sequence

of events, the basic requirements or national needs of spacecraft
developers, satellite users, etc... have been examined for the near

term and foreseeable future. With a reasonable understanding of the

payload requirements, an assessment of payload requirements versus
upper stage capabilities was conducted.

	

5.2	 NASA ASSESSMENT

The NASA requirements include earth orbiting and planetary
requirements for NASA and Commercial Spacecraft. Section 5.2.1 will

discuss the capability of the STS upper stage options for meeting
earth orbiting needs and Section 5.2.2 will provide the results of
the assessment of launch alternatives, including use of expendable

launch vehicles, for planetary missions.

5.2.1	 NASA ASSESSMENT - EARTH ORBITING MISSIONS

As Section 4.1.2 discussed the earth orb'iLing mission require-

ments, t riis area of the report will show a comparison of STS upper

stage options as they relate to deliverable mass in geosynchronous

orbit.

Figure 5.1-1 shows a comparison of the mass to geosynchronous
orbit for the primary STS upper stages.

FIGURE 5.1-1
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The IUS performance shown is for the current IUS Two-Stage
vehicle i.e ... 5,000 pounds to geosynchronous orbit. Growth capability
does exist for the IUS, even though it is a solid propellant vehicle.
The delivery of 6,000 plus pounds is possible with modifications.
Growth to 8,000 pounds is also considered possible with moderate
development complexity. Additional growth beyond that point is limited
by shuttle lift capabilities.

The storable propellant stage capability shown represents the
STS Transtage with a 4 tank STS configuration. This is a viable
option, but future growth beyond the 8,000 pounds is limited by shuttle
lift capabilities and would not meet requirements such as planned for
Intelsat VII, i.e... 9,000 to 12,000 pounds into geosynchronous orbit.

The Shuttle/Centaur as shown on the bargraph depicts the
performance of the wide-body Centaur STS configuration as envisioned
for the Galileo mission in 1985. The low thrust missions maintain
the same configuration with operation of the engine in an idle mode.
The Centaur, although high in mission performance, would have to be
modified extensively to provide growth potential to an optimum OTV in
the 1990's.

The Centaur's high energy capability would satisfy projected
requirements well into the 1990's. With 4 years spacecraft development
time, the spacecraft designers could fly as early as 1989 should they
require flight demonstration for assurance that the stage is available
prior to beginning spacecraft development. Positive program backing
and or other incentives may provide earlier confidence such that
users may invest earlier and fly earlier. The Intelsat VI spacecraft
is scheduled to fly in 1986 and requires 4,400 pounds into geosyn-
chronous orbit. It is being designed to be compatible with the Ariane
and the STS. In the STS it could fly on either the IUS or the Centaur.

The IOTV, since it would be a new design, could have numerous
new features, i.e.. redundant Guidance and Control Systems, a low
thrust capability and dimensions optimized for the Shuttle. However,
all these features would tend to add cost, reduce performance and
increase schedule risk. With these features, our estimates indicate
a development cost increase of about 50% more than the wide-body
Centaur and a delay of 2-3 years in first flight.

g.

In summary, the Centaur will meet mission needs for the
foreseeable future and could be available at least two years earlier
than an IOTV. As Centaur is already a proven reliable stage, the
commercial world may waive the flight demonstration as a requirement
for beginning spacecraft design. However, NASA would have to continue
to provide firm program funding commitments for the Centaur STS, to
provide the sound basis for early business investment in larger space-
craft. Other benefits of the Centaur and/or IOTV such as low thrust,
multiple burn capability, use of propellant off loading to maximize
unique mission compatibility with the Shuttle, etc... are also important
considerations in favor of a liquid stage.
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The storable and solid stages are limited to the degree that
uprating programs would be required. None of these would lead to
eventual OTV capability or provide experience which would be even-
tually useful relative to development of an OTV capability. They are
"dead ended" programs as far as STS growth is concerned.

A cost benefits analysis was performed to show cost per pouol
to geosynchronous orbit with existing/planned systems. Figure 5.1-2
displays some of the results.

Results are that (1) the Centaur is not cost effective for
currently designed payloads, i.e., spacecraft weights small for
compatibility with the ELV capability, (2) Centaur could be cost
effective for some currently designed spacecraft if multi-spacecraft
per launch were considered, (3) the Centaur would be cost effective
for new future spacecraft where spacecraft weight growth is not
restricted for dual compatibility, i.e., ELV and STS, and (4) STS
cost/pound to geosynchronous orbit decreases rapidly with increasing
upper stage performance.

FIGURE 5.1-2
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The role of the United States' leadership in technology and
its application to selection of an appropriate upper stage was discussed
in considerable detail during the study.	 In review of foreign planned
launch vehicles, i.e., ESA's Ariane, the Japanese H-1 development,
and China's launch vehicle efforts, it is obvious that foreign nation's
tippet, stage technology and industrial base capability are advancing
rapidly. The Ariane i vehicle has a cryogenic third stage (12,000
pounds of thrust) and the Ariane V will have a large cryogenic second
stage. Tile Japanese are perfecting a cryogenic second stage which
Will have a specific impulse comparable to that of the Centaur. This
rapid advancement in foreign technology is being fueled bythe already
existing multi-billion dollar conrnercial spacecraft launch business.

The cancellations or delay of the Centaur STS development, at
this time, will eventually reduce the U.S. industrial base in cryogenic
propulsion systems to a single company. Not only will the current
technology and production capability for engines in the tippet , stage
class no longer exist, but the domestic industrial base required for
future advancement in cryogenic engines will be greatly impaired.

In final a""ossment of earth orbital c(lll ►Irrercial business require-
Illents, a t111r('ly Cryogenic Upper St?ge capability similar to thdt
which can be provided by the Centaur STS is just ified it' the United States
is to maintain competitive status.

A development complexity and schedule risk factor analysis was
also performed. Figure 5.1-3 provides a matrix view of the results.
The major points considered are marled by an ellipse. 1h(' RIS is
needed in 198:' by NASA fc the TDRS missions. The IUS two stage
program iti at the point in development and production where risk are
low. The Centaur prog ram has been initiated with an existing solid
data base.	 As it is a derivative of a highly successful prior
development, the schedule risks are considered moderate. lire IOTV,
being a new vehicle, would have a higher complexity factor and a
greater schedule risk factor. Accordingly the availability date is
19.;1.
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ÔDERA'R MODERATE

YES YES 198q
HIGH HIGH

IOTV

I

FIGURE 5.1-3
UPPER STAGE ALTERNATIVES
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^.l.?	 UPPER STAGE MISSION ASSESSMENT FOR NASA PLANETARY
PROGRAM

5.?.?.1	 introduction

Against the regions of solar system exploration mission require-
ments developer! in Section 4, specific upper stage options can be
compared. This is done in Figure 5.1-4 comparing upper stage perform-
ance curves against the four mission regions shown in Figure 4.1-3
(The additional specific benefits of SEPS are treated in SUbsection
5.?.?.6 which addresses exploration performance requirement.s over the
next ?O years). Five performance curves are shown for the following
upper stage options:

1.	 lus

?.	 iUS Star 48 kick

3. lUS (Twin)

4. Advanced 'Transtage/Delta 3920 2nd Stage

5. Wide-Body Centaur

6. 1OTV
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FIGURE 5.1-4

PLANETARY MISSION CAPTURE ABILITY
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Also shown as a dashed curve is the performance of the expen-
dable Titan III (34D)/Centaur launch vehicle. Any mission whose
injection point (i.e., injected mass and C3) falls beneath an upper
stage performance curve is "captured" by that upper stage. The wide-
body Centaur (or equivalent IOTV) is obviously the best performing
upper stage option and would capture most missions in all four regions.
Next best is the Advanced Transtage closely followed by the Titan III
(340)/Centaur expendable vehicle. The IUS Star 48 is better than the
IUS(Twin) at higher energies but not for the lower inner planet missions.
For purposes of the subsequent impact analysis the difference at low
energies was not a discriminator. As a consequence, the performance
of the IUS Star 48 was assumed. The IUS falls below all regions except
half of the inner planets region.

Also plotted in Figure 5.1-4, are the injection points for the
three solar system exploration projects in the present NASA Five Year
Plan which are as follows:

1. 1985 Galileo combined orbiter/probe mission

2. 1986 ISPM-ESA Spacecraft mission

3. 1988 VOIR with aerobraking mission
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The Galileo mission is only captured by the wide-body Centaur
(the IOTV is not available until 1987). The ISPM-F,SA mission is
captured by the IUS Star 48, Advanced Transtage, Wide-Body Centaur,
and the expendable Titan III (340)/Centaur. The VOIR mission with
aerobraking would be captured by the Advanced Transtage, Wide-Body
Centaur, IOTV, IUS Star 48 and the expendable Titan III (340) /Centaur.
A complete assessment of the possible upper-stage impacts on these
three early Flight Projects is presented next.

5.2.2.2 Assessment of Early Mission Alternatives

The present NASA Five-Year Plan includes three Solar System
Exploration Flight Projects which are Galileo, ISPM, and VOIR. The
purpose of this discussion is to present the impact on these flight
projects on u pper-stage capability and availability and to assess the
consequences of those impacts. The approach used in this assessment
considers each project individually, presenting mission alternatives
and comparing alternative mission characteristics to the current
baselines. Results are then briefly summarized with respect to the
upper stage options being evaluated in this study.

5.2.2.3 Galileo

We begin with the Galileo Jupiter orbiter and probe mission
project. Six mission alternatives for Galileo are presented in Table
5.2-1. Case I, a 1985 launch of the combined orbiter/probe payload,
arriving in mid-1987 is the present Project baseline. It is a direct
flight to Jupiter requiring no additional injection or deep-space
propulsion and has full orbit capability of 11 encounters with Jupiter's
satellites. As seen in Table 5.2-1, it requires the wide-body Centaur
upper stage for earth escape. This same mission could be launched
with an IOTV with adequate performance. The earliest an IOTV could
be ready would be 1987 (Case 2). If an IOTV did not have Centaur's
performance the Galileo mission would have to be split once again
into two separate STS launches or launched on a&•-VEGA trajectory--in
either case project Galileo cost increases would be substantial.

The next case is to split the mission (Case 3), launching the
orbiter without the probe in 1985 on a &-VEGA trajectory and launching
the probe with a newly procured carrier spacecraft a year later in
June 1986. The orbiter must also be modified to include a payload
kick stage. The resultant performance is equivalent to the IUS Star
48. The 11 satellite encounters are preserved but due to the launch
delay, do not occur until almost three years later than the present
baseline mission.

The next two cases, (4 and 5) recombine the orbiter and probe
for a single 1985 launch using the& -VEGA flight mode to reduce upper
stage requirements. Preserving the 11 satellite encounters (Case 4),
requires the Advanced Transtage (or the Titan III (340)/Centaur), but
without any payload propulsion changes. To capture the combined
orbiter/ probe launch with the IUS (Case 5), not only requires the ,& -
VEGA flight mode and a payload kick stage, but also reduces mission
capability to only six satellite encounters.
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Assuming an orderly SEPS procurement and development program
the SEPS could be available in 1987. With the SEPS the IUS captures
the baseline combined orbiter/probelaunch and 11 satellite encounters
using the Solar Electric with Earth gravity assist (SEEGA) flight
mode (Case 6). The trip time is only a year longer but Jupiter arrival
occurs more than three years after the 1985 baseline due to the 1987
launch.

TABLE 5.2 -1

SUMMARY OF GALILEO MISSION ALTERNATIVES

JUPITER SAT. FLIGHT POST-STAGE
CASE ARRIVAL LAUNCH PAYLOAD ENCS MODE PROPULSION UPPER STAGE

1 AIIO_V APR 15 ORBITER/ 11 DIRECT NOW WIDF-6001
PROBE CENTAUR

1OTV
2 LARLY•90 JUL h ORBITERI 11 DIRECT NONE

PROBE

I IATE-W JUNE 06 PROBE DIRECT Pit KICK IUS
IWICARRIERI STAGE

LATE-19 AUG 85 ORBITER 11 AVEGA P0. KICK IDS
ONLY STAGE

4 EARLY-90 AUG BS ORBITER/ IL AVEGA NONE ADV
PROBE I0•551 TRANSTs%GEI

63920 OR

TND/CENTAUR

5 EARLY-90 AUG 85 ORBITER/ 6 AVEGA Pit KICK IUS
PROBE STAGE

6 LATE-90 JUL Bi ORBITER/ 11 SEEGA SEPS IDS
PROBE

Significant upper stage impacts on Galileo mission can be
summarized as follows:

1. Only the wide-body Centaur option preserves the
present 1985 Galileo baseline mission.

2. All other stage options defer Galileo results by 2-3 years
and substantially increase project cost.

3. Restricting stage capability to the IUS in 1985 requires
additional post-stage propulsion development, more launches,
and/or reduced mission objectives.
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5.2.2.4 ISPM-ESA

Two mission alternatives for the International Solar Polar
Flight Project (ISPM) are presented in Table 5.2-2, each assuming
only the launch of the ESA spacecraft. Both assume a launch in May
1986. Case 1, the baseline, assumes a Centaur launch. Case 2 with
the IUS is captured... provided a kick stage is incorporated into the
ESA payload or integrated with the stage (e.g., IUS Star 48). The
injection conditions for either alternative preserve near-polar transits
of the Sun as required by baseline science objectives. Using the
Advanced Transtage or wide-body Centaur would obviate the need for
the kick stage.

TABLE 5.2-2

SUMMARY OF ISPM MISSION ALTERNATIVES
CA Sr
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7 tATf	 AO PIN 07 rSA S ic 111P11FR
S.'i1NbRV

P01 KICK	
WIDE ronY
CENTAUR

5.2.2.5 VOIR

Three alternatives were assessed for the VOIR Flight Project,
all launched during the 1988 opportunity. These are presented in
Table 5.2-3. Case 1 assumes full chemical payload propulsion at
Venus for capture to low circular orbit required for radar mapping
of the planet's surface. An early Type II launch allows the mapping
mission to begin by mid-1988. Only the wide-body Centaur or IOTV
capture this alternative due to the large amount of payload propul-
sion which must be carried to Venus. Case 2 uses aerobraking in the
upper Venus atmosphere to reduce orbit propulsion requirements and
hence injected mass at Earth escape. A conservative aerobraking
sequence ending in a 3-hour elliptical Venus orbit is used and forms
the present baseline for this mission. A March 1988 Type l launch
delivers the payload to the mapping orbit after aerobraking about two
months later than the all-chemical option. At least the performance
of the IUS Twin, an Advanced Transtage, or the Titan III (34D)/Centaur
is required to capture this option. Case 3 is similar to Case 2 in
that aerobraking is also used, but has been extended down to a final
2-hour Venus orbit. While this entails more risk and complexity of
flight operations, it also reduces the chemical orbit propulsion
requirement. The consequent injected mass reduction is sufficient
for this alternative to be captured by the IUS provided there is a
payload kick stage added to the spacecraft. The mapping mission is
also delayed a few more weeks to allow for the added afro braking.
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TABLE 5.2-3

SUMMARY OF VOIR MISSION ALTERNATIVES
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In summary, the baseline VOIR aerobraking mission provides
ample payload margin for either a wide-body Centaur or I0TV launch.
It is also captured by the Advanced Transtage or Titan III (340)/Centaur.
The all-chemical VOIR alternative, although captured by the wide-body
Centaur (or IOTV), has little margin (5%) for spacecraft propulsion
development growth or upper stage degradation. Consequently, aero-
braking is incorporated in the baseline mission design. The extended
aerobra'cing option is acceptable and allows the mission to be captured
by the IUS Star 48 with adequate margin. A strong preference for
wide-body Centaur capability exists to avoid a launch deficient capa-
bility as this project progresses.

5.2.2.6 0 tp ion Asses sment

In addition t.,, the basic Upper Stage capability, a number of
options have been proposed and addressed in this study. This assess-
ment considers the following options:

1. Advanced Transtage with Delta 3920 second stage

2. Wide-Body Centaur

3. Interim Orbital Transfer Vehicle (IOTV)

Each of these options is addressed with and without the addi-
tion of SEPS (Solar Electric Propulsion Stage) as needed to perform
the "reference" mission set. In this set, mission numbered 4, 5 and
9 utilize the SEPS. The approach taken in assessing stage performance
impacts on exploration was to first structure a program addressing
all ten mission objectives around the preferred capability of the
Wide-Body Centaur with SEPS augmentation. Then the missions within
this program were redefined to accommodate the reduced capability/
availability of the remaining options, including the IUS, and the
resulting changes (or impacts) were evaluated to determine a compara-
tive degree of degradation associated with each performance reduction.
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Impacts were classified into six specific areas, which are as
E	 follows:

1. available launch opportunities (or availability to launch
on schedule for near term missions,

2. number of launches to achieve the same objective,

3. payload margin,

4. extended trip time and/or more complex or extended mission
operations

5. necessary hardware to be developed,

6. mission objectives accomplished.

Launch opportunities to most solar system targets occur with a
frequency of at least once every two years. Launch frequency is
impacted by two stage-related factors: 1) inadequate performance,
and 2) availability of the upper stage. The result, or impact, on
program planning is one of reduced flexibility since missions become
constrained to specific launch opportunities. If the upper stage
performance is substantially degraded (e.g. IUS vs. Wide-Body Centaur)
it may also be necessary to split a larger high-energy mission into
two smaller payloads thus doubling the number of launches, which
results in the second impart given above. Every launch has an associated
launch margin. Less capability means less launch margin even though
it may not be necessary to split the payload or slip the launch date.
Less launch margin will have a mission impact if payload growth during
development exceeds available margin.

The fourth stage-related mission impact is longer trip time
and/or more complex flight operations required to reach she objective.
This impact is especially critical for outer planet missions where
very long trip times can result from inadequate stage capability.
Poor upper stage performance can also result in the need for addi-
tional payload hardware. This impact almost always occurs when a
single payload has to be split into two launches. It also happens
when a lower launch-energy trajectory must be used which requires
more payload propulsion (e.g. Q-VEGA deep space impulses) to reach
the target. The final impact area given is the reduction of mission
objectives. This is usually a last resort to solving upper stage
performance deficiency, without losing the mission altogether. It
means for example, eliminating an entry probe, reducing the number of
asteroid targets or satellite encounters, or eliminating some of the
science experiments to savE weight.

For the upper stage impacts analysis, then, each of the six
impact areas was examined for each mission objective in the "reference"
mission set. This was done for each of seven alternative stage options
compared to the Wide-Body Centaur with SEPS "baseline" case. Impacts
were categorized into two levels:
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1., Severe(S) - severe impact, schedule/Upper Stage availability
or major performance degradation

2. Moderate(M) - possible impact or minor performance degradation

The assessment results are presented in Tables 5.2-4 through
5.?-12. Nine mission objectives are listed along the left-hand side
of each table; the two Mars precursor objectives have been combined
into one mission opportunity since the Wide-body Centaur is capable
of launching both spacecraft at once. Note that three of the nine
mission objectives use SEPS augmentations when it is available.

Table 5.2-4 displays the only launch vehicle alternative which
satisfies all planetary program requirements...the Wide-Body Centaur
with SEPS augmentation. There are no impact areas and consequently
this can be used to establish the reference capability.

TABLE 5.2-4
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

WIDE-BODY CENTAUR AND SEPS CAPABILITY

MISSION OBJECTIVES OPPOR- NUMBER Of AND OR MASS HARDWARE OBJECTIVESTIINITIF.S LAUNCHES OPFRATION MARGIN

ALI LEO
(JUPITER ORBITER & PROBE)

ISPM

VOIR
IAEROBRAKING
MULTI PLE ASTEROID
KEN	 V	 ,cL—
URANUS	 NEPTUNE
FLYBYS & PROBE
MARS POLAR ORBITER &
MARS NETWORK

COMET RENDEZVOUS

SATURN ORBITER WITH
DUAL PROBES
MARS SAMPLE RETURN
(AEROCAPlURE & PROP PROD)

qM SEVERE (S) - SEVERE IMPACT OR MAJOR PERf. DEGRADATION ....................... 0%
MODERATE (M) - POSSIBLE IMPACT OR MINOR PERf. DEGRADATION .............. 0°% 	}SUMMARYNO IMPACT OR EQUIVALENT PERFORMANCE ................. ...........................100% )
SEPS MISSIONS

Table 5.2-5 presents the impact results anticipated with
development of the Wide-body Centaur without SEPS augmentation.
Clearly, only the three SEPS "reference" missions are affected. In
the order of increasing performance impact, these missions are Saturn
orbiter/probes, comet rendezvous, and multiple asteroid rendezvous.
The summary across the entire mission model shown at the bottom of
the chart indicates that about 20% of the areas are adversely affected.
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TABLE 5.2-5
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

WIDE-BODY CENTAUR WITHOUT SEPS CAPABILITY
COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOR- I NUMBER OF AND , 	MASS HARDWARE OBJECTIVES► llNlliES LAl1NCNE5 (^Pi RAII(^N
	 MARGIN

LI LEO
(JUPITER ORBITER & PROBE)

ISPM

VOIR

IAEROBRAK Nf

MULTIPLE-RO M S M S S
R NDE.jyot,JS_,
U ANUS & NEPTUNE
FLYBYS & PROBES
MARS POLAR ORBITER &
MARS N[TWORK

COMET RENDEZVOUS M M S i

SATURN ORBITER WITH
S SDUAL PROBE S

MARS SAMPt r RETURN
(AEROCAPIURt k PROP PROD)

S	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. ULGRADA 11t.,N .......................13%
M	 MODERATI (M) - POSSIBLE IMPACT OR MINOR PERF. DEt-AtADATION .............. 7%	 SUMMARY

NO IMPACT OR EQUIVALENT PERFORMANCE ............................................ 60

Table 5.?-6 presents the results anticipated with development
of the i0TV and SEPS augmentation. Here the issue is not one of
performance but rather- availability. Severe impacts Occur only on
the first two missions, i.e. Galileo and ISPM. However, because the
impacts cause launch opportunity delays not only would near-term
cotits grow, but any fi-lnned sequence of future objectives would,
undoubtedly, also be effected.

fable 5.2-7 presents the impact. results anticipated with develop-
ment of the IOTV without SEPS augmentation. These results are basically
the same as the Centaur without. SEPS option except for , the near-term
Galileo and ISPM missions for which the 10TV would not be available.
Viewed against the entire "reference" mission set., the degree of
major impact for IOTV without. SEPS is about 17% compared to only 4%
when SEPS availability was assumed.

Table 5.?-8 presents the impact results anticipated with
development of the Advanced Transtage with SEPS augmentation.
Although considerably less severe than those caused by having only
the IUS, severe impacts again occur in the first mission i.e. Galileo.
The schedule impact to Galileo is classified as "M" since the overall
assessment of schedule indicates a moderate risk of delivering the
Advanced Transtage in time for the Galileo launch in 1985. Most of
the longer-term mission impacts Occur in the form of less mass margin
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TABLE 5.2-6
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

IOTV AND SEPS CAPABILITY
COMPARED TO WIDE- BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOR-
TUNITIES

NUMBER OF1
LAUNC11L5 AND/Olt

OPERATION
MASS

MARGIN HARDWARE OBJECTIVES

ALI S
IJUPITER ORBITER & PROBE) (SCHEDULE)

I S PM S
(SCHEDULE)

V101 R
IAEROBRAK	 G

MU LTI
R
URANUSNEPTUNE

FLYBY	 & PROBES
MARS POLAR ORBITER &
MARS NETWORK

COMET RENDEZVOUS

SATURN ORBITER WITH
DUAL PROBES
MARS SAMPLE RETURN
IAEROCAPTURE & PROP PROD)

5	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION .......................4%
M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION .............. 0%SUMMARY

NO IMPACT OR EQUIVALENT PERFORMANCE ............................................96% 	 )JJ
^k SEPS MISSIONS

TABLE 5.2-7
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

IOTV WITHOUT SEPS CAPABILITY
COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSIONOBJECTIVES OPPOR-
TUNITIES

NUMBER OF
LAUNCHES AND!ORE

OPERATION
MASS

MARGIN HARDWARE OBJECTIVES

ALI LEO S
(JUPITER ORBITER & PROBE)

ISPM S

VOIR

IAEROBRAKING

MULTIPLE ASTEROID
RENDEZVO US

M S M S S

URANUS & NEPTUNE
FLYBYS & PROBES
MARS POLAR ORBITER &
MARS NETWORK

COMET RENDEZVOUS M M S S

SATURN ORBITER WITH
DUAL PROBES

S S

MARS SAMPLE RETURN
(AEROCAPTURE & PROP PROD)

S	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION .......................17% 	 )M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION .............. 7% 	 }SUMMARYNO IMPACT OR EQUIVALENT PERFORMANCE ............................................76% 	 )))
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which, although judged of intermediate concern, is not at all comforting
considering the preliminary level of definition which exists for
these objectives. The summary at the bottom of the chart indicates
that about one-fifth of the areas are adversely affected, split evenly
between the "Severe and Moderate" levels.

TABLE 5.2-8

ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS
ADV TRANSTAGE AND SEPS CAPABILITY

COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOR-
TUNITIES

NUMBEROF
LAUNCHES AND'OR

OPIRATION
I	 MASS

MARGIN HARDWARE O

L I LEO M S(JUPITER ORBITER & PROBE) SCHEDULE

ISPM

OIL
IAEROBRAK

M

MULTIPLE
R

M

URANUSNEPTUNE
FLYBY	 & PROBES

S S S

MARS POLAR ORBITER &
MARS NETWORK

M

COMET RENDEZVOUS 	 * M

SATURN ORBITER WITH *
DUAL PROBES

S

MARS SAMPLE RETURN M
IAEROCAPTURE & PROP PRODI

SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION .......................10%
M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION 

.............. 
12%	 ! SUMMARYNOIMPACT OR EQUIVALENT PERFORMANCE ................ ...........................8096	 )

iF SEPS MISSIONS

Table 5.2-9 presents the impact results anticipated with develop-
ment of the Advanced Transtage without SEPS augmentation. Since this
upper stage is considerably more capable than is the IUS, the adverse
impact is not as severe but is still significant. Approximately 50%
of the areas are unaffected relative to the "baseline" option. Severe
impacts for the Advanced Transtage without SEPS has increased to 30%
compared to only 14% when SEPS availability was assumed.

Table 5.2-10 presents the impact results of attempting the
"reference" mission set with present IUS capability with SEPS augmen-
tation. Every mission objective except ISPM has at least one severe
impact with some having as many as four. Fewer than half of the
impact areas examined are unaffected by the lower IUS performance
capability compared to the Wide-Body Centaur. The impacts are
particularly severe on near-term objectives, i.e. Galileo, where
mission designs have already evolved to maturity assuming much better
performance capability. The summary at the bottom of the chart indi-
Cates that 44% of possible impacts would be severe with another 20%
being of moderate concern.
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TABLE 5.2-9
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

ADV TRANSTAGE WITHOUT SEPS CAPABILITY
COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOR- NUMBER Of AND OR MASS HARDWARE OBJECTIVESTUNIIIES LAUNCHES OPERATION MARGIN

L LEO M S
(JUPITE R ORBITER & PROBE) (SCHEDULE)

ISPM

VOIR M
IAEROBRAK 1
MULTIPLE ASTEROID

S S M S S M
RN
URANUS	 NEPTUNE S S S
FLYBY	 & PROBES
MARS POLAR ORBITER & M
MARS NETWORK

COMET RENDEZVOUS M S S S M

SATURN ORBITER WITH S S M ' S
DUAL PROBES
MARS

1 1AEROCAPTUREn &E PROP PROD) _7­7 M 1 ---1

S	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION ....................... 30%'
M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION. ............. 19	 SUMMARY

NO IMPACT OR EQUIVALENT PERFORMANCE ........................................... 51% 	))

TABLE 5.2-10
ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS

IUS AND SEPS CAPABILITY
COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOIt-
TUNITIES

NUMBER OF
LAUNCHES AND/ IM

OPERATION
MASSMARGIN HARDWARE OBJECTIVES

ALILEO M S S S M
(JUPITER ORBITER & PROBE) (SCHEDULE)

ISPM M M M M

VOIR
IAEROBRAKING M S M

MULTIPLE ASTERO I D *
REN DE ' V

M S
URANUS	 NEPTUNE S S S SFLYBYS & PROBE
MARS POLAR ORBITER & M M SMARS NETWORK

COMET RENDEZVOUS 	 * S S S

SATURN ORBITER WITH *
DUAL PROBES

M S S S S

MARS SAMPLE RETURN S g S(AEkUCAPTURE & PROP PROD)

S	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION ................44%
M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION ..............

....... 
20% } SUMMARYNO IMPACT OR EQUIVALENT PERFORMANCE ............................................ 36% J

*SEPS MISSIONS
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Table 5.2-11 presents the impact results anticipated with the
use of the present IUS .apability without SEPS augmentation. This
Upper stage option is a very poor performer against the "reference"
mission set. Fewer than 30% of the impact areas are unaffected
compared to the Wide-body Centaur with SEPS "baseline". The degree
of areas severely impacted by use of the IUS has increased from 39%
(with SEPS) to 57% (without SEPS. In the case of the comet rendezvous,
no possible mission has yet been identified. Due to purely energy
considerations it is believed that no such mission exists.

TABLE 5.2-11

ASSESSMENT OF SOLAR SYSTEM EXPLORATION MISSION IMPACTS
IUS WITHOUT SEPS CAPABILITY

COMPARED TO WIDE-BODY CENTAUR AND SEPS

MISSION OBJECTIVES OPPOR- I NUMBER OF
AND OR

MASS
HARDWARE OBJEC11VE5TUNITIES LAUNCHES OPERATION MARGIN

ALILEO M S S S M
(JUPITE R ORBITER & PROBE) (SChEDULE)

ISPM M M M M

VOIR M S M
IAEROBRAKING
MULTIPLESTEROID

S S S S S S
R NDE V U-5_
URANUS & NEPTUNE S S S S
FLYBYS & PROBE
MARS POLAR ORBITER & M M S
MARS NETWORK

COMET RENDEZVOUS	 •• S S S S S S

SATURN ORBITER WITH S S S S S M
DUAL PROBES
WARS SAMPLE RETURN S S(AEROCAPTURE & PROP PROD(

S	 SEVERE (S) - SEVERE IMPACT OR MAJOR PERF. DEGRADATION ....................... 57%
M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERF. DEGRADATION .............. 20%	 SL MM;RY

NO IMPACT OR EQUIVALENT PERFORMANCE ............................................ 23%

'• NO MISSION

A summary matrix of all these impact results is presented in
Table 5.2-12. Here the "reference" mission objectives have been
combined into two categories: 1) near-term program, arid (2) future
program. Each of the four upper stage candidates are listed across
the top of the matrix. Comparative ratings are given both with and
without SEPS augmentation. Recall that the "baseline" case for this
comparison is the Wide-body Centaur with SEPS augmentation. Combina-
tions of program category and upper stage option with no impact are
obviously acceptable. Those rated "Severe" are unacceptable for the
reasons outlined above. Those rated "Moderate" might be acceptable,
depending upon more specific development of future exploration plans.
Only the Wide-body Centaur is acceptable to the near-term plan which
consists of Galileo, ISPM and VOIR missions. Only the Wide-body
Centaur and IOTV provide the necessary performance capability in the
future program objectives to assure adequate flexibility and resilence
for sensible planning.
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TABLE 5.2-12
SUMMARY

UPPER STAGE ASSESSMENT FOR SOLAR SYSTEM EXPLORATION

UPPER STAGE ALTERNATIVEPROGRAM IWITH SEPS I WITHOUT SEPS)WIDE -101y IOTV ADVANCED IUS Ii OBJECTIVE CENTAUR TRANSTAGE
NEAR TERM ISCHS DUIE) S
MISSIONS S VS(SCHEDULE)

FUTURE MMISSIONS M M S XS.
SEVERE (S) - SEVERE IMPACT OR MAJOR PERf. DEGRADATION

M	 MODERATE (M) - POSSIBLE IMPACT OR MINOR PERf. DEGRADATION
NO IMPACTOR EQUIVALENT PERfORMANCE

5.3	 OOQ ASSESSMENT

5.3.1	 INTRODUCTION

We will measure each system concept, as proposed, against the
requirements that were outlined and discussed in the previous section.
This will be a qualitative assessment and consequently somewhat less
rigorous than would be done in a formal system validation process.
The IUS and Centaur data is available in considerable depth in formal
contractual documentation; however, most of the other system concepts
presented are available only in a briefing format. Consequently,
considerable judgement must be applied as to the degree that each
system concept meets each specific requirement. Most concepts, as
proposed, are based on a relatively simple, minimum modification
approach to putting an upper stage in the Shuttle. This, in fact,
closely parallels concepts previously considered and rejected by the
Air Force as not adequate for meeting DOD upper stage requirements in
the Space Shuttle era.
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5.3.2	 SYSTEMS EVALUATED

We have evaluated a range of upper stages as proposed by a
number of different contractors. Those assessed here are representa-
tive of the systems potentially available. Several contractors have
presented concepts that are not specifically addressed in this report;
while there are some differences in approach, there were no fundamentally
different concepts presented. We do believe, therefore, that there
is a sufficient number of upper stage concepts to preclude the
possibility that significant changes in the final conclusions would
result by the addition of another candidate. The stages included in
this assessment are illustrated in Figure 5.3-1.

FIGURE 5.3-1

UPPER STAGE COMPARISON

CENTAUR	
IOTV

	

T....,	 SEP$

IUS	 TRANSTAGE	 '

l 	 T
b I '	 I•16.8 FT	 15.2 F1, i	 17.5 F1	 29.1 FT ( 	t 	 ^^	 c	 8.2

1	 ^	 i	 j	 18.0	 ^	 ^S` • ^^

Inertial Upper Stage (IUS) Two-Stage configuration. Manu-
facturer - Boeing Aerospace Corporation. The IUS is a solid rocket
motor propelled vehicle with one large and one small rocket motor.
The IUS is currently being developed to meet defense and NASA earth
orbiting mission requirements. The IUS has redundant systems in
order to maximize the probability of launch success.

Wide-Bodied Centaur. Manufacturer - General Dynamics Corpora-
tion. This is a derivative of the expendable launch vehicle version
of the Centaur, which is a cryogenic (liquid oxygen, liquid hydrogen)
upper stage. Cryogenic propellants approach the theoretical limits
of efficiency for chemical propulsion systems. NASA has begun develop-
ment of the wide-bodied Centaur (29' long version) for use on plane-
tary missions in the Shuttle.

STS Transtage. Manufacturer - Martin Marietta Corporation.
The STS Transtage is an adaption of the existing Titan Transtage for
Shuttle use. It employs storable hypergolic propellants. The Transtage
is representative of the storable propellant upper stage concepts; it
is also the most mature of these concepts.
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Interim Orbitil Transfer Vehicle (IOTV) or Optimized Cryogenic
Upper Stage. Manufacturer - to be determined by competition. An
optimized family of cryogenic stages would be built from the beginning
to accommodate the full range of NASA and defense requirements. Pro-
gram costs estimates are based on this intent and include high launch
reliability and various length stages, as well as the other operational
defense requirements.

Solar Electric Propulsion System (SEPS). The conceptual SEPS
can supplement the chemical propulsion stages avid is capable of moving
larg(. or heavy satellites to earth orbits with low, but continuous,
act.eleration. Very long transit times are required (month versus
hours for chemical stages).

5.3.3	 EVALUATION METHODOLOGY

Each Upper Stage has received a qualitative assessment of its
ability, as presently conceived, to meet each of the stated defense
mission requirements. The evaluation of each upper stage was first
done against the operational DOD payload requirements and then against
the requirements for the potential post-1990 DOD missions. In each
case, a detailed evaluation was performed against each of the require-
ments shown in Figures 4.2-2 and 4.2-3. This detailed assessment was
then summarized as shown in Figures 5.3-2 and 5.3-3; this summary
provides a more balanced assessment since not all requirements are of
equal importance. This assessment is conducted and presented on a
qualitative basis with the results presented in a satisfactory/unsatis-
factory code. The meaning of each code is out'ined below:

Unsatisfactory (U): Upper stage concept as presented clearly
does not meet the specified requirement, and would be ..xtremely diffi-
cult or impossible to fix to satisfy the requirement.

Satisfactory with Modifications (S/M): Concept does not meet
the requirement, but the system concept can be modified to satisfy
the requirement at some cost; or the concept is sufficiently undefined
so that a significant uncertainty exists in the system capability.

Satisfactory (S): System concept as presented meets the require-
ment.

We will discuss the significant deviations from the operational
DOD payload requirements as presented and then provide a brief assess-
ment of the long term growth potential of each stage against the
potential post-1990 DOD missions.
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FIGURE 5.3-2

DOD STS UPPER STAGE REQUIREMENTS SATISFACT
FOR OPERATIONAL DOD PAYLOADS
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*Unmatiafactory - U - Does not c.at requirement; extremely difficult or Impossible to fix. 	 N/A -
5etlsfaclory with Modifications - SIN - Requires Modifications to most requirements.
Satisfactory - S - Meets requirement completely.

k

5.3.4	 UPPER STAGE ASSESSMENT VERSUS OPERATIONAL DOD PAYLOAD

URE Q IREMENTS 

We will briefly summarize each stage against its technical
requirements as shown in Section 4.2 of this report, with particular
emphasis on those items where the requirements are not fully met.

The detailed results of our assessment of each stage against operational

DOD payload requirements are shown in Figure 5.3-2. A word of caution
- these assessments are riot absolute, they represent a relative measure
against DOD requirements. Additional funding can reduce or eliminate

some of the deficiencies cited; in fact, any of the candidate systems
evaluated can meet the full range of operational requirements with

adequate funding.

r
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FIGURE 5.3-3

000 STS UPPER STAGE REQUIR MENTS SATISFACTION
FOR POTENTIAL POST - IM 000 MISSIONS
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*Unsatisfactory - U - Does not vast requirement ,. extremely difficult or impossible to fix. 	 N/A - Not applicable
Satisfactory with Modifications - S/N - Requires Modifications to not requlnxeents.
Satisfactory - S - Meets requirement completely.

Inertial Upper Stage.

The IUS, as designed, meets all approved program (Figure 4.2-2,
Column 1) current DOD launch requirements (5,000 pounds to a geosyn-
chronous orbit).

The IUS will meet all firm planned (Figure 4.2-2, Column 2)
payload launch requirements projected through the 1980's with one
exception. Moderate growth to a 5,500 pound payload weight will be
required; this change can be accommodated through a relatively low
risk propulsion upgrade. Sufficient lead time is available so this
upgrade can be routinely accomplished. The 5,500 pound capability
can be obtained by a non recurring investment of about $50M to $60M.

The IUS can grow to about a 6,000-6,500 pound geosynchronous
orbit capability by continuing the propulsion upgrade mentioned above.
This capability can be obtained for a total non recurring investment
of about $130M to $140M (an increment of $80 million above the 5,500
pound capability in the previous paragraph). This would meet the
desired capability (Figure 4.2-2, Column 3) stated by the operational
DOD payload programs (5,800 pounds in 1987, 6,200 pounds in 1988)
until a major payload block change occurs (projected as 8,000 pounds
in 1990). However, the 6,000+ pounds represents the limits of low to
moderate technical risk IUS growth; the 8,000 pound capability could
only be obtained through a higher risk propulsion upgrade.
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IUS growth potential over the long term is severely limited.
While the IUS can still continue to support a number of missions
through the 1990's, a new stage will likely be required to accommo-
date major DOD spacecraft block changes and new missions in the late
1990's and early in the 21st Century.

Wide-Bodied Centaur (29 Foot Version).

The wide-bodied Centaur meets, and indeed greatly exceeds, all
projected firm defense requirements for throw weight through the
1980's and into the mid-1990's.

Considerable effort, above the planned NASA baseline, would be
required to satisfy the full range of defense mission requirements.
This results from the minimum modification approach currently planned
to utilize the Centaur in the Shuttle. However, depending upon which
defense payloads transition to the Centaur, only a portion of these
requirements may need to be satisfied at any given point in time.
Reliability and guidance system improvements are closely related;
incorporating redundant avionics with current technology (probably by
adapting the IUS avionics) would eliminate the deficiencies in relia-
bility and guidance and improve the injection accuracy. A structural
modification (including qualification of the RL10 engine to run on a
6:1 mixture ratio) will enable the Centaur to accommodate 42 foot
payloads. A load alleviation system can be designed and qualified
which will enable the DOD spacecraft to survive the peak Shuttle
landing loads. Several other modifications can be made (additional
spacecraft services; insulat;on of the tanks, etc) which will improve
the ability to accommodate the range of defense mission requirements.
These changes could be retrofitted into the basic Centaur for between
$250M and $215M, and this work could be accomplished downstream as
needed to support those spacecraft which choose to transition to the
Centaur.

STS Transtage.

The proposed Transtage configuration can meet all known firm
and projected DOD payload weight requirements through the 1980's and
into the early 1990's.

Additional effort, above the contractor proposed baseline,
would be required to meet all defense requirements. Since the Tran-
stage is considered as a replacement (vice supplement) to the IUS all
the requirements would need to be satisfied. As with the Centaur,
adapting the redundant avionics from the IUS would significantly
improve system reliab;lity and guidance flexibility and accuracy. A
load alleviation systems can be designed to enable the Transtage to
absorb the Shuttle landing loads and prevent spacecraft damage. Only
relatively minor changes would be needed in other system areas to
fully accommodate defense mission needs (the Transtage has been
launching defense spacecraft on the expendable Titan IIIC). Conse-
quently, the Transtage changes could be made for between $100M and
$125M.
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Interim Orbital Transfer Vehicle (IOTV)/Optimized Cryogenic Upper
Stage.

E	 This stage could meet all current and projected defense require-
"	 ments through the 1980's and into the early 1990's. This new optimized

Stage has the greatest long term growth potential since it can make
maximum utilization of the Space Shuttle bay and could be built to
meet the full range of defense mission requirements.

5.3.5	 UPPER STAGE ASSESSMENT VE RSUS POTENTIAL POST-1990

The operational DOD payloads discussed in the previous section
will probably continue (in larger and more capable configurations)
indefinitely. However, some new mission concepts are likely to be
added late in this century. Selected concepts were presented in
Figure 4.2-3 in terms of their upper stage requirements. These new
concepts will place even greater demands on all aspects of space
transportation including the upper stage. Figure 5.3-3 presents an
esti mate of long term requirements based on these post-1990 missions;
each upper stage is then assessed against these requirements. There
are some very significant changes in the results when compared with
operational DOD payloads.

Inertial Upper Stage (IUS).

The IUS payload capability falls far short of meeting the more
demanding of these missions, and Shuttle throw weight limits will be
reached at about 9-10,000 pounds of geo,ynchronores payload. Shuttle
weight limits will also constrain IUS use in an on-orbit rendezvous
mode with large (full bay) payloads. Further, the new demands of
spacecraft recovery, multiple engine burns, and multiple rendezvous
cannot be reasonably attained by a solid-propellant stage. Long term
IUS use will be limited to deployment of payloads similar to those
planned for the 1980's.

Wide-Bodied Centaur (29 Foot Version).

The Centaur shows a considerable capability against these long
term requirements, although significant modifications would be needed
to fully satisfy the projected needs. However, even the Centaur (and
the IOTV) cannot handle the largest projected payloads (equivalent to
30,000 pounds in geosynchronous orbit) without added propulsion capa-
bility such as the Solar Electric Propulsion System (SEPS).
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FIGURE 5.3-4
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STS Transtage.

The Transtage is also limited on maximum payload (at about
9,000 to 10,000 pounds) to geosynchronous orbit due to the Shuttle
throw weight limitations. Even its ability to handle long-term, on-
orbit storage is of limited value; Figure 5.3-4 shows that the cryogenic
stages can provide greater on-orbit maneuver capability by transporting
a storable propellant maneuver module (either separate or integrated
with the spacecraft) to the storage orbit.

Interim Orbital Transfer Vehicle (IOTV)

The IOTV shows a greater capability against these potential
post-1990 DOD mission requirements than any otht. upper stage. However,
as with the Centaur, an added propulsive capability, like the SEPS,
will be needed for the most demanding missions.

5.3.6	 OTHER CONSIDERATIONS

It is apparent that the requirements of 21st century defense
space missions go well beyond the level which can be satisfied
completely with higher energy upper stages (even those in the Centaur/
IOTV class), particularly if they must operate within a Shuttle which
is performance limited to 65,000 pounds. Consequently, we should
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begin to assess methods of increasing Shuttle payload capability,
evaluate follow-on launch systems with payload capabilities well
beyond the Shuttle, investigate the benefits of using multiple Shuttle
flights with on-orbit renedezvous of the upper stage and payload, and
consider the use of performance techniques like Solar Electric Propulsion.

Further, as the survivability of space systems becomes increasingly
important tc, oar national defense, higher energy will likely be required
for all aspects of space transportation. Survivability requirements
could resu l t in heavier spacecraft and, eventually, in the need to
conduct high altitude launches from Vandenberg AFB in the case of
outage at the Kennedy Space Center. This will drive both greater
Shuttle performance (to lift the combined spacecraft and upper stage)
and increased upper stage performance (to handle the greater plane
ch nqe needed to achieve geosynchronous orbit from a Vandenberg launch).
These factors will also drive future upper stages toward the more
efficient cryogenic propellant vehicles.
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6.0	 UPPER STAGE OPTIONS - COST AND SCHEDULE CONSIDERATIONS

r 6.1	 INTRODUCTION

6.2	 LIFE CYCLE COST ANALYSIS

6.2.1 INTRODUCTION

orta^kt factor in near termSchedule considerations are an imS e	 p
decisions regarding upper stage availability for critical defense
missions. During the process of preparing the life cycle cost analysis
to be discussed in a later paragraph, several schedule related assump-
tions were made: they included: first, a 1 Oct 81 upper stage decision;
NASA funding, as required, available on 1 Oct 81; DOD funding for
new starts or production available 1 Oct 82. This establishes the
earliest availability of Shuttle upper stages. The availability of
these stages is illustrated in Figure 6.2-1. As a part of the life
cycle cost analysis, each stage within each option was assessed for

I

	

	 its ability to capture some element of the mission model and thus
ensure that all payload requirements could be met. The following
paragraphs discuss the options investigated and illustrate the
resulting mission "capture" for each stage.

FIGURE 6.2-1
EARLIEST UPPER STAGE AVAILABILITY

CALENDAR YEAR

STAGE 82 83 84 85 86 87

T34D/TRANSTAGE

T34D/IUS Q^

T34D/CENTAUR ^►

STS	 IUS

2 STAGE BASIC
2 STAGE GROWTH

4

(6,000+ LB GEO)

TWIN STAGE

STS/CENTAUR

29 FT ""
18 FT ""

STS/TRANSTAGE .'^►" ""Q

STS/SEPS Q
STS/IOTV

" EXISTING AVIONICS	 "" IUS CLASS (REDUNDANT/INCREASED RELIABILITY) AVIONICS
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6.2.2 OPTIONS

A number of possible options were developed in order to assess
the capability of each stage to support particular elements of the
mission model. The life cycle launch cost was evaluated for each of
these options. The options are d.fined in Figure 6.2-2 and include
various mixes of IUS, modified Centaur, an optimized cryogenic vehicle
known as the Interim Orbital Transfer Vehicle (IOTV), and Transtage.
An option employing the Solar Electric Propulsion System (SEPS) was
also considered. One conclusion emerges from evaluation of the
schedule availability; the procurement of the first 13 Inertial
Upper Stage vehicles is necessary in order , to support near term NASA
and defense earth orbiting launch requirements. However, the IUS
schedule is extremely tight if additional IUS vehicles should be
required to support a 1985 planetary flight.

FIGURE 6.2-2

NASA/DOD UPPER STAGE OPTIONS
FOR LIFE CYCLE COST ANALYSIS

1 2 STAGE IUS (1982), TWIN IUS (1985) SPACECRAFT KICK STAGE (ISPM)

2 2 STAGE IUS (1982), 29 FT WIDE BODY CENTAUR (1985)

3A 2 STAGE IUS (1982), T34D/CENTAUR (1985),	 IOTV (1987)

3B 2 STAGE IUS (1982), SPACECRAFT KICK STAGE (ISPM)	 IOTV (1987)

3C 2 STAGE IUS IOTV (1987)

4A (111
THR

982)

PROD19TION BUY (4), WIDE BODY
CENTAGE IU29(FT8

2)UAFIRST

4B 4A PLUS CENTAUR WITH ALL DOD MODIFICATIONS (1987)

5A 2 STAGE IUS (1982) THRU FIRST PRODUCTION BUY (4), STS TRANSTAGE
(1985)

5B 5A PLUS TRANSTAGE WITH ALL DOD MODIFICATIONS (1987)

6 2 STAGE IUS (1982), SPACECRAFT KICK STAGE (ISMP s VOIR), SEPS
(1987)

•	 7 2 STAGE IUS (1982), KICK STAGE (GALILEO (2), VOIR Z ISPM)

REQUIRES SPLIT MISSIONS AND/OR INDIRECT TRAJECTORIES FOR PLANETARY
MISSIONS

6.2.3 MISSION MODEL

The specific mission model for each option is shown in Figure
it shows the number and types of missions (both civil and

e) "captured" by each upper stage. For example, in Option 1,
al flights are projected through 1994 with 58 of these flights
NASA or DOD upper stage missions. The remaining missions are
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civil commercial spacecraft. The total number of flights varies
somewhat from one optijn to another because of payload mixing which
is possible in certain cases due to the larger throw weight capability
of the cryogenic stages.

FIGURE 6.2-3

TRAFFIC SUMMARY
FOR LIFE CYCLE CYCLE COST ANALYSIS

AGENCY/VENICLE_ __ _`
1P	 I nil

 .S8— - ..G-__
DOD

1340/1RANSIAGE 2 1 2 1 1 2 2 1 1 2 2

134D/IUS 4 4 4 4 4 4 4 4

S1	

g

GROWTH
ppy4 pp4 pp4

12
3 3 3 3

32 1211 12 12

STS/CENIAUR
py qq

18 FI 12 12

STS/TRANSTAGE 38 38

NOW-DOD (TOTAL CIVIL'/NASA)

1340/CENTAUR 212

STpSp/I(IS

INSIAGE
25^t 6/6 10/6 11/7 7/6 6/6 6/6 6/6 6/6 30/10 32/12

2 STAGE • SEPS 1/1

STS/CENTAUR 21/S 2015 20/S

STS/INANSIAGE

2 
p y p p

3920L 2ND STAGE 3/3 27/3

STS/101V 1b/7 17/4 2015

TOTAL (NATIONAL" 'DOD • NASA) 78158 14/58 75/58 75/S8 14/58 13/58 73/58 78158 18/58 18/58 79/59

. INCLUDES COMMERCIAL SPACECRAFT	 .. INCLUDES CD.NERCIAL • DOD • NASA SPACECRAFT

6.2.4 LIFE CYCLE COST ASSESSMENT

This analysis was performed based upon the schedule assumptions
of Figure 6.2-1, the options of Figure 6.2-2, and the mission capture
of Figure 6.2-3. We then developed a data base containing the major-
cost elements for each upper stage.

Several significant assumptions and ground rules form the
basis for costs used in this analysis.

r

Cost data was obtained from the responsible government office
(i.e. NASA/Lewis for Centaur, AF Space Division for IUS, etc).

All costs include a 20 per cent contingency factor--this may
differ from the contingencies used in budgeting by both agencies.

Only costs subsequent to 1 October 1981 are used in the analysis;
therefore, all prior "sunk" costs are excluded since FY 81 and prior
year costs are the same for all options.
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Transportation costs (upper stage, Shu'tle, expendable launch
vehicles) are the focus of this analysis, although an attempt was
made to assess the spacecraft and nonrecurring integration costs
when a different upper stage is used. Modifications to NASA planetary
spacecraft are included; modification to DOD spacecraft are assumed
"zero" and excluded since there was not sufficient time to evaluate
this area in sufficient depth to make reliable estimates. All other
spacecraft program costs are excluded.

Commercial users of upper stages are included in the non-POD
traffic. This adds 20 commercial spacecraft to the traffic (node+
and influences the upper stage build rate (and thus the unit cos').
However, only government costs are included in the life cycle cos
results. This also has the effect of causing the st-)dy results t.,
differ from agency budgets since we do riot consider any potential
"savings" (which result from reduced unit costs from larger buys)
from upper stage purchases by commercial customers when planning DOD
and NASA budgets.

IUS modifications to increase payload weight capability above
6000 pounds are included in all options where IUS is continued
indefinitely. Further the IUS cost-to-complete includes all near
term inputs resulting from development contract cost growth and the
NASA termination of the planetary IUS variants. Out-year p)-o-
duction cost estimates are developed on the same idealized ground
rules used for the other upper stages (steady state production, no
production breaks, etc).

All costs are in constant FY 31 dollars.

FIGURE 6.2-4
LIFE CYCLE COST COMPARISON

[MILLIONS OF FY81 DOLLARS)
AGENCY/VEH1f ^^	

I PTIDN
SA SE SL 4A,

NON-RECURRIN6 ( 960) (1203) (1551) (1499) (1480) (12S3) (1373) (1158) (1343) (	 931) (	 994)	 1

IUS 487 411 412 411 412 277 277 277 277 43/ 437

CENTAUR 460 - - - 605 725 - - -

TRANSTAGE - - - 425 610 - -

SEPS 300 300 3U0 300 300 300 300 300 300 303 300

IOTV - - 680 680 680 - -

T340/CENTAUR - SO - - - - -

PAYLGAO 173 31 109 101 1	 88 71 71 156 156 194 151

RECURRING (1984) (3014) (3018) (2934) (3013) (2782) (3028) (2921) (3167) (3038) (3053)

UPPER SOM 1424 1454 1365 1374 1453 1222 1468 1361 1607 1478 1463

SHUTTLE 1560 1560 1500 1560 1560 1560 1560 1560 1560 1560 1593

T540 - - 1S3 - - - - - I	 - -

TOTAL 3944 4217 4569 4433 4493 4035 4401 4079 4510 3969 4347

DELTA -273 - •552 0216 •276 •112 •184 •136 •293 •246 -170

1
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The results of this analysis are shown in Figure 6.2-4.
Option 2 (with the DOD using the IUS and NASA using the Centaur) is
the study baseline, and option costs are measured relative to
Option 2. Several general conclusions can be reached from this analysis.

Life cycle cost is not a driving decision factor. The varia-
tions between options are within the error inherent in the analysis.
All options fall within ± 8% of the baseline program (Option 2).

General cost tendencies offer few surprises -- the cost of
IUS-dominant alternatives are generally lower sine much of the
development costs are behind us; the cost of IOTV options are generally
higher since the entire development is ahead of us; and the costs of
DOD reliability modifications (Options 4B and 5B) tend to be higher
than the corresponding "simple" systems because reliability effects
are not considered. However, when the value of the spacecraft that
would be saved due to increased reliability are considered, the
reliability investments are repaid in every case; this is because
the value of the first mission saved ($200M - $400M) equals the
entire life cycle cost of the reliability upgrade.

Since the life cycle cost does not dominate the decision,
near term investment strategies become important factors. NASA and
DOD near term earth orbital requirements can only be satisfied by
the IUS, so there is no significant near term DOD funding issue
arising from this analysis. NASA funding strategy questions -- due
to thei early (1985) planetary launch requirements -- are much more
significant and will be addressed in the following section.

6.3	 PLANETARY MISSION COST ANALYSIS RESULTS

The analysis performed took into consideration all aspects of
costs, i.e., the development cost of upper stages, development and
modification costs of launch complexes, modification cost to Orbiter,
delta costs associated with the spacecraft configurations based on
carrier vehicle requirements, cost of carrier vehicles, operations
cost (ground and flight), etc. The options analyzed are shown in
Figure 6.3-1.

The results are shown in Table 6.3-1 in real year dollars.

The nine options divide, by cost,	 roughly into three groups.
Options 1, 2, 4 and 7 range in total cost from $1992M to $2161M.
Options 5 and 6 cost from $2312M to $2381M.	 Options 3A, 3B and 3C
cost from $2611M to $2740M. 	 Options IA, 3B and 3C cost the least 	 in
FY 1982 and FY 1983 but cost the most 	 in runout	 since the development
cost of the IOTV is deferred past 1983.

Options 1 and 7	 in the first group use only the two stage or
twin stage IUS plus kick stages. 	 They offer competitive costs to
Options 2 and 4 in 1982 and about MOM less cost in 1983.
Options 2 and 4 utilize the Centaur STS and are thus capable of
flying the missions	 in the most effective manner.

iq
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FIGURE 6.3-1
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Options 5 and 6 call for development of advanced Transtage
plus the Delta 3920 stage and the early development of SEPS, respec-
tively. In addition to adding cost to the planetary programs, these
options create more complex missions, degrade mission performance,
and have limited growth potential. The Transtage from a planetary
mission point of view, considering cost and performance, is r,ot a
good option.

Options 3A, 3B and 3C all assume development of an IOTV. From
a total cost picture, these options are the highest in cost. With
the current requirements the possible advantages of an IOTV does not
appear to justify the additional cost and development.

A specific cost analysis was also performed as related only
to the Galileo mission as flown on either the Centaur STS or the IUS
Two-Stage. The IUS Two-Stage option was associated with a split
mission approach, with the Orbiter launch in 1985 and the Probe in
1986. Results indicate that some near term savings, small dollars
can be realized but that at final completion with the Centaur approach,
for less dollars (Centaur $1217.OM vs IUS $1279.7M), the U.S. gains
a high energy stage in the U.S. STS stable. With the II IS's no new
benefits are realized. In addition, the Centaur provides a direct
trajectory, combined spacecraft, mission with less trip time and
other positive benefits.
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TABLE 6.3-1
COST OF LAUNCH ALTERNATIVES FOR PLANETARY PROGRAMS

A	 b	 C	 0	 l	 F	 (J	 11	 1

U/' I TUNS
CUb1 /l1.MJN1b

I 1 JA m ^^ ^ b e ,

1 STS/IUS —TRANSTAGE 1	 y

::: a

r1,1	 it

,	 u

HM „ „

. 15	 ,

511	 1,

,,,	 a

r.: n

1n u

6X f	 7 lot)	 0+ f ,6	 n

2 STS /CENTAUR —IOTV

1:2,1)

hll	 ll

3 TITAN I I I/CENTAUR

4 STS FLIGHTS n6 :

b/_I I

:r:.0 r::.n :15	 1 :v1	 !

5 GALILEB X11	 1'

5u. J

11.11 417.11 567	 11 h)r	 11 11M	 I,

6 SOLAR POLAR 75, i 50	 1 75	 1 56	 i 5u, i 5u. i 75.	 1 75	 1

7 VOIR
bnt)ll 6X0.0 bMII.II bN„ 11 bXU.fl 6411,11 ball.Il 64tl.0 b9X U

8 ORBITER/KSC - Ir. a 161	 1, 14(1	 0 140.0 1.04.0 Iuv.1 - -

9 TOTAL 179!	 1 UJ1 .	 J .7 . ,0.	 1 :bt I	 a :b: /	 1 :0	 1	 J :11!	 1 .0 1111	 U :IbI. J

10 FY 1962 209,0 !41.11 14S	 2 110,.5 1rb.0 241.0 190.6 169.9 215.5

11 FY 1983
112..1 1f7.4 I117.1 2 it

	
.It 146.0 111.4 ib9.5 117.0 l Jo, tl

NOTES:	 12 1	 I	 BASE	 •)n', n	 •57',	 7	 1 •595 it	 0	 1•2110 h	 •)49.7	 1 .110.0

An IUS Galileo, combined spacecraft mission, case 5 in Section
5.3.1.3, utilizing the IUS on a p — VEGA trajectory was also analyzed
with development of preliminary cost figures. Based on preliminary
mission analysis, this option provided, at best, major compromise to
the mission which would have to be subjected to detailed review by
the scientific community. Further mission analysis, while possible,
to identify other mission options would involve much more detailed
analysis.	 In addition to mission deficiencies, the combination of
weight and CG location for a Galileo combined spacecraft with kick
stage would re present a load to the geleric IUS which is greater
than design liiiits. This fact would require, as a minimum, structural
modifications to stiffen that upper stage. The implications of such
a modification and the cost and schedule consequences as well as
risks are not well understood at this time. In summary, while it is
apparent that a mission with a combined Galileo spacecraft can be
accomplished with upper stage performance characteristics equivalent
to an IUS it is not clear that such a mission could be accomplished
without major science compromises as well as hiyh cost and schedule
risks which would make a single launch in 1985 undesirable.
Consequently, as this option provided for extremely high technical
risk and a low mission accomplishment reliability factor, the assess-
ment and cost analysis was discontinued.
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	7.0	 SUMMARY

	

7.1	 NASA SUMMARY

7.1.1 INTRODUCTION

As requested by Congress, NASA and DOD have performed a study
to determine the nation's upper stage mission requirements and have
performed a comprehensive analysis of upper stage options, to define
the most appropriate program for meeting the nation's needs.

7.1.2 NASA/COMMERCIAL EARTH-ORBITING REQUIREMENTS

The evolution of commercial spacecraft since the early 1960's
has been analyzed. The historical trend showed starting around 1975
spacecraft weight began to stabilize within the performance of the
STS. In a number of cases this has required users to limit space-
craft weight and size, increase number of spacecraft, support develop-
ment of other carrier systems, and develop more complex equipment to
fit within weight and size limits.

With an earth orbital transportation system market developing,
ESA initiated the Ariane program with several options. Ariane I,
II, III and IV will be competitive in performance and cost with the
Delta, Atlas Centaur, SSUS-D, SSUS-A and the STS/IUS. Ariane V,
which will require a new cryogenic second stage with the Ariane IV,
a stage approximately one-half the size of the Saturn S-IVB stage
and of similar technology, will be capable of carrying up to 8,500
pounds to geosynchronous orbit. The performance will exceed the
current planned STS/IUS performance capability and is expected to be
priced so as to be cost competitive. The Intelsat VI spacecraft is
being designed to be compatible with Ariane IV. The Centaur STS
will exceed the Ariane V performance, 8,500 pounds, by at least
4,500 pounds.

Intelsat has indicated that they see the need for future
geosynchronous spacecraft in the 9,000 to 12,000 pound class. Based
on past experience this spacecraft development will most certainly
take place if firm plans exist for a cryogenic upper stage capable
of delivering such spacecraft to geosynchronous orbit. Comsat has
also stated that they see future generations of spacecraft to be
much heaver than current spacecraft and the industry could very
well benefit from a carrier capability such as an integrated
Shuttle/Centaur launch system.

Normally, four to five years exist between the initiation of
spacecraft design and the flight date. The first commercial use of
a high energy upper stage could therefore be between 1986 and 1989,
depending on the firmness and maturity of the selected upper stage

im. In any case, firm commercial requirements for and use of
?w carrier capability will follow by some period of time the
)pment phase of the carrier program.
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NASA studies of lar ge space structures show that materials
technology makes payloads such as large space platforms and antennas
now practical for the late 1980's. Such payloads, because of size
and fragility of structure will require upper stage performance with
low thrust capability to prevent structural damage from excessive
acceleration. This capability has been extensibly demonstrated with
RL-10 engine tests. The RL-10 engines are used on the Centaur STS.

In summary of earth orbiting requirements:

1) Spacecraft growth rate has been limited by planned/available
carrier capability.

2) ESA has embarked on a vigorous program (the Ariane launch
vehicle program) to competitively satisfy user/spacecraft
requirements.

3) Spacecraft requirements in the late 1980's and early
1990's will depend on firm upper stage/carrier capability
plans existing in the early and mid 1980's.

4) Earth orbital requirements for the late 1980's for a
high energy STS upper stage capability, are real. But
earth orbital requirements cannot mature, or develop
into business ventures because of business risk philosophy,
prior to maturity and confirmation of upper stage plans.

7.1.3 NASA PLANETARY R EQUIREME NTS

The development of the final mission capabilities and require-
ments is an iterative process in which launch limitations are accommo-
dated by (1) added trip time to the planets, (2) more launches,
i.e., payload split into two or more parts, (3) use of low-energy
gravity assisted trajectories based on specific launch opportunities,
(4) addition of high energy propulsion systems in the spacecraft
itself which complicates design and raises cost, and/or (5) deduction
in mission objectives.

Development of a high energy upper stage for the Shuttle will
alleviate most of these constraints and significantly improve the
cost/scientific return relationship for planetary missions.

The ISPM mission is an approved cooperative mission for 1986
whereby the European Space Agency (ESA) is providing the spacecraft
and the U.S. is providing the transportation system. Mission planning
and spacecraft system design has proceeded using the Centaur as the
most effective upper stage for the program. A change in interface
requirements at this time could affect spacecraft cost and established
working relationships.

In summary of planetary mission requirements, currently funded
missions exist. The first mission, the Galileo scheduled for launch
in 1985, with a spacecraft weight of 5,500 pounds and a C3 of 83,
requires the Centaur STS performince capability. For subsequent
missions, funded and planned, the requirement exists for similar
high energy performance for maximum benefit per mission dollar expen-
diture, i.e., maximum scientific return per mission cost.
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7.1.4 NASA CONCLUSIONS

Assessment of the overall requirement shows that a high energy
stage is needed to fulfill projected NASA and commercial needs.
Assessment of total program cost to fulfill the mission requirements,
as related to possible upper stage program options reveal that the
decision should be based on schedule and performance rather than
life cycle cost (i.e., cost is not a major discriminator). The long
range cost analysis results showed that the variance between options
was small and within error inherent in the analysis. The near term
cost analysis as related only to planetary missions showed that the
cost variations between the baseline and other options with exception
of the IOTV options (IOTV cost were much h 4 gher) were small. An
overall summary by stage is as follows:

The IUS vehicle could satisfy NASA firm earth-orbiting require-
ments through the 1980's. The IUS is clearly the best option fir
the TDRS missions for NASA. It does not capture the NASA planetary
missions in an efficient manner. It does not meet the anticipated
commercial or government performance requirements for the late 1980's
or early 1990's.

The Transtage could satisfy the NASA firm earth-orbiting
requirements through the 1980's from a performance standpoint, but
could not be available in time to support TDRS missions. The Transtage
is not efficient for the N ,, "A planetary missions and it does not
meet the anticipated commercial or NASA performance requirements for
the late 1980's or early 1990's.

The IOTV is the highest cost approach as a new stage would
have to be developed. With current requirements, the possible advan-
tage of an IOTV does not appear to justify the additional cost and
development tine.

The Centaur is the only vehicle able to meet schedule require-
ments for the current planetary missions. In addition, it could
compete on a cost and performance basis for new programs, such as
Intelsat VI, beginning in 1986.

The Centaur would meet and exceed the Ariane performance by
approximately 4,500 pounds, be available in 1985, and would accommodate
the current and envisioned missions through at least the mid-1990's.

SEPS - The SEPS was studied in combination with the IUS,
Transtage, and Centaur vehicles. The current IUS combined with SEPS
is not as efficient as the Centaur alone for the currently approved
planetary missions. The SEPS combined with a high energy upper
stage such as the Centaur or IOTV is required for projected NASA
mi ssions in the loan's.
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7.2 DOD SUMMARY

7.2.1 INTRODUCTION

Defense missions place a wide range of demands upon all ele-
ments of space transportation, including upper staves. These
requirements go well beyond the need for a significant amount of
energy for payload injection and consider a wide range of operational
factors important to maximizing the operational availability of
critical defense spacecraft missions. These demands can be expected
to increase over time along with demands for increased payload weight
lifting capability.

7.2.2 NEAR TERM DEFENSE REQUIREMENTS

As indicated by the assessment in Section 5.0, the Inertial
Upper Stage, with modifications, can satisfy all firm defense require-
ments projected through the 1980's. This is not a surprising result
since the IUS was designed specifically to meet those requirements
during this period of time. Most operational defense spacecraft
programs are undergoing mission block changes conci ► rrent with transi-
tion to the Shuttle and the IUS. Consequently, only evolutionary
growth can be expected in the systems over the next several years.
The operational DOD payload programs also desire to grow to about
5,800 pounds by 1987 and 6,200 pounds by 1988. Some improvements in
IUS propulsion will be needed in order to satisfy these evolutionary
requirements. Such improvements should be relatively low risk and
involve moderate cost to achieve. Should a higher energy upper
stage become available before 1990, it is likely that some defense
spacecraft programs will take advantage of the enhanced mission
capability as opposed to trying for more capability within a con-
strained payload weight.

1.2.3 LONG TERM DEFENSE REQUIREMENTS

A number of operational defense space programs project signi-
ficant payload weight increases beginning in 1990 as the new sequence
of block change spacecraft become operational. For those programs
which do not grow dramatically, the IUS would likely remain the
primary launch vehicle. However, for programs whose weight in geosyn-
chronous orbit grows into the 8,000-10,000 lb. range, a significantly
more capable upper stage will be required. A new upper stage based
either on cryogenic or storable propellants would be suitable for
missions in this weight class.

An assessment of the advanced mission concepts for defense
satellites, however, shows that beginning in the late 1990's, that
significant increases in payload weight will be needed and that a
number of different high energy orbits will come into operational
use. Since the Shuttle will likely still be the primary vehicle for
launching such systems, then the performance limitations will be
determined primarily by the upper stage selected. Consequently, the
Shuttle throw weight limits--combined with dramatic increase in
mission requirements--will ultimately result in the need for the
high-efficiency, loigh-energy levels provided only by a cryogenic
liquid propellant stage. Long term defense requirements could be
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satisfied by any cryogenic upper stage. The Centaur concept as it
is currently being implemented by NASA, would require significant
modifications in order to fully satisfy defense requirements. A new
stage would be built to these requirements. Further, there is some
possibility that a single Shuttle - optimized cryogenic liquid stage
(roughly 20 feet in length) could satisfy both defense and NASA
planetary mission needs.

Payload weight requirements in the 21st century will require
additional propulsion capability such as could be provided by the
Solar Electric propulsion System (SEPS), or by alternative payload
capability erhancements such as increased Shuttle performance and e
new generation of launch vehicles.

7.2.4 DOD CONCLUSIONS

Upper Stage performance requirements (payload weight and
injection accuracy) remain the most important discriminator between
systems. Figure 7.2-1 illustrates the defense requirements for pay-
load weight in orbit as a function of the incremental velocity
required above the Shuttle park orbit; the capability of the various
upper stages are then shown relative to those requirements. The
firm defense payload requirements are shown by the cross-hatched
regions in the lower left of the figure. The potential post-1990
DOD mission requirements are illustrated by the three dashed regions;
these regions (marked "projected growth") show significant increases
in launch energy. In particular, the dashed region in the upper
left of Figure 7.2-1 shows the performance needs for large platforms
in high altitude orbits, while the dashed region in the lower right
shows the performance needs for "two-way" missions which go to high
altitudes and return to the Shuttle.

The Upper Stage performance curves, when overlaid on the
mission requirements of Figure 7.2-1, clearly illustrate the appro-
priate upper stage strategy to satisfy defense needs. The Inertial
Upper Stage (IUS) can meet nearly all the firm defense needs, and
the IUS can be easily modified to "capture" the small region of
missions not wit,'lin its basic design capability of 5,000 pounds to
geosynchronous orbit. The Transtage (or other storable propellant
systems) can satisfy all the firm defense needs, but can only capture
a small portion of the projected growth. Shuttle payload limits
(65,000 pounds) will limit both the IUS and Transtage growth such
that these systems can never capture a significant portion of the
projected defense needs. The cryogenic propellant stages (Centaur
and IOTV) can capture a very large portion of the projected growth,
and when combined with the solar electric propulsion system (using
two Shuttle flights) could even capture a portion of the large high
altitude platform missions.

Consequently, it appears logical to retain the IUS and make
'

	

	 necessary incremental performance improvements to meet firm defense
needs. There appears to be little benefit to transition to the
Transtage, or another storable propellant system, since this approach
does not appreciably add to current mission capability and does not
capture a significant portion of the projected growth. In terms
of overall system capabilities, the Transtage should be considered
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as a substitute for, rather than a follow on to, the IUS. The logical
step for defense missions is to complement the IUS capability with a
cryogenic upper stage which will have long term utility.

Figure 7.2-1, however, also illustrates the limitations of
upper stages; it will ultimately be necessary to increase the basic
Shuttle lift capability (or build larger boosters) to capture all
the projected mission growth. Improvements in Shuttle (or booster)
lift capability has the effect of moving all the upper stage perform-
ance curves up and to the right in Figure 7.2-1 thus increasing the
total mission capability.

FIGURE 702-2
SUMMARY ASSESSMENT

DOD STS UPPER STAGE REQUIREMENTS SATISFACTION
FOR DOD PAYLOADS

REQUIREMENTS

STAGE	 IUS CENTAUR TRANSTAGE CRYOGENIC REMARKS

DEGREE
SATISFY
R	 T•

DEGREE
SATISFY
R	 T

DEGREE
SATISFY
RQMT

DEGREE
SATISFY
R MT

OPERATIONAL DOD PAYLOADS

Current Requirements S N/A N/A N/A

Requirements thru 1990 S S M S M S

Post 1990 Block Chan e S M SIN S M S

POTENTIAL  POS -
DOD MISSIONS

As defined U S M U S

Adaptability to Chan U S M U S

•Unsatisfactory - U - Does not meet requirement; extremely difficult or impossible to fix. N/A - Not applicable
Satisfactory with Modifications - S/M - Requires Modifications to meet requirements.
Satisfactory - S - Meets requirement completely.

Gpr'i .

The overall conclusions relative to defense upper stage require-
ments are presented in Figure 7.3-2, and considers both the performance
capabilities presented in Figure 7.2-1 and the operational reouirements
discussed in this report. These conclusions can be summarized as
follows:

IUS, with low risk propulsion upgrades, can satisfy all opera-
tional DOD payload program firm and desired capabilities through the
1980 1 s; however, IUS is severely limited in its ability to support
operational program block changes in the 1990's, and it probably
cannot be adapted to support the potential new missions beginning in
the late 1990's.

Transtage (and other storable liquid systems) has capabilities
and limitations generally similar to the IUS over the long term.
Consequently,  it does not appear advantageous to transition defense
spacecraft to a storable propellant system.
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Centaur provides an adequate growth upper stage for defense
missions, although considerable effort (above the planned NASA baseline)
would be required to satisfy defense requirements. No firm defense
requirement exists before about 1990; however, an early availability
would permit enhanced spacecraft mission capability without the
constraints of payload weight limits.

A cryogenic propellant IOTV, designed for the full range of
defense missions, could be available in sufficient time for DOD
needs.

W
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	8.0	 JOINT NASA/DOD CONCLUSIONS/RECOMMENDATIONS

	

8.1	 CONCLUSIONS

The IUS is the only available stage capable of meeting the
near term earth-orbiting requirements for DOD and NASA. With modi-
fications, the IUS could satisfy NASA and DOD earth-orbiting missions
through the 1980's.

The Transtage (or other storable propellant vehicles) could
satisfy near term NASA and DOD earth-orbiting requirements from a
performance standpoint, but cannot be available in sufficient time
to meet current program schedules. In addition, it is not efficient
for NASA planetary missions and falls short of meeting projected
long term national performance requirements.

An IOTV since it would be optimally designed to meet national
requirements, would be the best upper stage to meet the long term
performance and operational needs of both NASA and the DOD. However,
this approach is not acceptable since the development time required
for such a new stage would not allow the NASA near term requirements
to be met. In addition, cost and schedule risks would be considerably
higher than for the Wide-body Centaur.

The Centaur is the only vehicle capable of meeting near term
NASA planetary requirements, particularly the need for a Galileo
combined Orbiter/Probe mission on a direct trajectory to Jupiter in
1985. The Centaur will satisfy the future envisioned and proposed
NASA planetary missions through the mid-1990's. The Centaur can
also be adapted to meet both current and projected NASA and DOD
earth-orbiting requirements and its early availability could provide
considerable enhancement to DOD mission capabilities.

Development of a cryogenic upper stage will strengthen the
United States leadership role in both hydrogen/oxygen engine technology
and in payload lift capability. The long range requirements will
drive upper stages toward the very high specific impulse performance
provided by hydrogen/oxygen cryogenic stages. Proceeding with a
cryogenic upper stage will maintain the small engine cryogenic techno-
logy lead, maintain a second domestic source of cryogenic expertise,
and strengthen the government's long term competitive opportunities.
Proceeding with the wide body Centaur will accomplish these ends and
provide a significant and timely jump in upper stage performance.
This will allow the United States to compete with the Ariane and
also maintain our clear preeminence in the important field of cryogenic
engine technology.

	

8.2	 RECOMMENDATIONS

n order to satisfy the national mission requirement/needs of
DOD and NASA, the Air Force should continue development and

on of the IUS and NASA should develop the Centaur.
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