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ABSTRACT
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e	 Research Professor

Institute for Physical Science and Technology
a

A tunable diode laser spectrometer has been constructed and used to study: (1) the

effects of centrifugal distortion on the transition frequencies and strengths of the v 2 band

of H2S, and (2) nuclear quadrupole hyperfine structure in the 1-0 band of HI. Sonic

zdditional transition frequencies in the v 2 band of H2S were measured with a high resolu-

tion grating spectrometer.

A total of 126 line frequencies and 94 line strengths in the v, band were measured.

The average accuracy of the line frequency measurements was 30.00016cm- 1 . An error

analysis of relative frequency measurements using a diode laser is given. The line strengths

were measuree to an average accuracy of about 3%. The effect of the finite spectral

width of the diode laser on the measurement of line strengths is discussed in detail.

The observed H 2S line frequencies were fit to Watson's AS and NS reduced Hamil-

tonians in both the I r and Ilir coordinate representations in order to determine the best

set of rotation-distortion constants for the upper state of the v-, band. Successful fits

were obtained for all the reduced Hamiltonians except the AS Hamiltonian in the lllr

representation. The characteristics of this Hamiltonian are examined in detail to under-

stand its poor behavior relative to the other reduced Hamiitonians. Comparisons of

observed line strengths in this band to calculated rigid rotor line strengths are also

presented.

Nuclear quadrupole hyperfine structur° in the 1-0 vibration-rotation band of HI.

was observed with the diode laser spectrometer. The R(0). P(1), P(?), and P(3) lines of



this band were recorded, all of which clearly exhibit nuclear quadrupole splittings. The

upper vibrational state nuclear quadrupole coupling constant, determined from the ob-

served splittings, was found to be . 18SOMHz t 12MHz, or 1.2% t 0.7% larger than the

ground state coupling constant. It is believed that this is the first observation of nuclear

quadrupole structure in the vibration—rotation s.tec t rum of a diatomic molecule.

The results of the H 2S measurements described here should serve as a severe test of

present and future theories of centrifugal distortion in asymmetric rotor spectra. This

work also demonstrates the utility of diode lasers for highly accurate studies of infrared

molecular spectra.
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CHAPTER I

INTRODUCTION

Information about the geometry, potential function, and electric dipole moment func-

tion of a molecule cin be obtained from a quantitative study of its vibration-rotation

spectrum. As the experimcntal methods of infrared molecular spectroscopy improve, bet-

ter molecular models can be constructed from the interpretation of the observed spectra.

Accurate experimental studies of molecular vibration-rotation spectra are also important

for a number of diverse applications such as laser isotope separation and the study of

planetary atmospheres (including the Earth's atmosphere).

The development of tunable diode lasers has made it possible to obtain molecular

spectra in the 500cm' 1 to 2500cm- 1 spectral region with essentially Doppler limited reso-

lution. Very precise spectroscopic measurements can be made with diode lasers in a rela-

tively straightforward manner without complex instrumentation. The high re!; : )lution of

diode lasers makes them very attraLtive for the measurement of' absorption line strengths,

an aspect of molecular vibration-rotation spectra that is much less studied than transition

frequencies. Tunable diode lasers can also be used to measure transition frequencies if'

absorption frequency standards are available in the spectral region under study.

In this work, a tunable diode laser spectrometer was constructed and used to study

the effects of centrifugal distortion on the transition frequencies and strengths of' the v2

band of H,S. Some additional line frequencies in the v.) band were measured with a high

resolution grating spectrometer. A study of nuclear quadrupole hyperfine structure in the

low J lines of the 1-0 band of HI was also made with the diode laser spectrometer and

will be presented here.

The main portion of this work is concerned with the v, vibration-rotation band of

H,S, centered at I I90cm- f . While the spectra of light asymmetric rotors such as H-)S and

H 2O have been understood qualitatively for many years, the quantitative characterization



)oth their energy levels and transition strengths has remained a difficult problem. This

is due in part to the relatively large effects of centrifugal distortion on the spectra of light

asymmetric rotors. Since the v2 vibration of H2S is largely unperturbed by other vibrations of

the molecule, this band is ideal for a study of the effects of centrifugal distortion without

other complicating interactions. Also, the v 1 and v2 vibrational bands of H 2S exhibit what

are perhaps the largest intensity perturbations due to centrifugal distortion ever observed

in the spectrum of an asymmetric rotor.

In a low resolution ( w 5 cm- 1 ) study of the v2 band, Emerson and Eggers{ 1) found

that the P branch region of th i-_ band is about five times less intense than the R branch

region. They were able to qualitatively account for the observed intensity anomalies by

including centrifugal distortion in a calculation of the line strengths of this band. Since

their work, no further studies of the strengths in this band have been made. In fact, no

individual line strengths in the infrared spectrum of H 2S have ever been measured.

The only previous rotational analysis of the line frequencies in the v 2 band of H2S

was performed by Allen and Plyler( 2 ) They assigned 55 transitions from 1080cm- 1 to
1257cm- 1 from a spectrum recorded with a resolution of 0.3cm- 1 . They were able to ob-

tain values for the quadratic rotational constants A, 8, and C in the upper vibrational

state of the v2 band, but no centrifugal distortion constant: were determined.

In the present work, a total of 126 line frequencies and 94 line strengths in the v 2 band

were measured. The line frequencies were successfully fit to several of Watson's reduced rota-

tional Hamiltonians f 3 ) and a number of centrifugal distortion constants in the first excited

state of the v 2 vibration as well as the quadratic rotational constants were determined.

Also, the measured line strengths were compared to calculated rigid rotor strengths in order

to determine the magnitude of the centrifugal distortion perturbations. The line strengths

measured here should serve as a stringent test of the existing theories of centrifugal distor-

tion perturbations in light asyrmetric rotor line strengths.

In Chapter 11, the derivation of Watson's reduced rotational Hamiltonian is summarized

as well as the basic theory of line strengths in asymmetric rotor vibration-rotation spectra.

i
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Chapters III and IV deal with the experimental portion of this work. In Chapter III, the

diode laser spectrometer is discussed and several examples of spectra of H 2S taken with

this instrument are presented. The determination of the H2S line frequencies and

strengths from the diode laser spectra is outlined in Chapter IV and a detailed error

analysis given.

If	 The least-squares analysis of the observed v2 band frequencies using Watson's AS and

NS reduced Hamiltonians is presented in Chapter V. Successful fits to the frequencies

were obtained using the AS Hamiltonian in the I r coordinate representation, and the NS

Hamiltonian in both the I r and III r representations. The AS Hamiltonian in the IIir

representation, though, was unexpectedly found to fit the frequencies very poorly. A

large part of Chapter V deals with the characteristics of this particular Hamiltonian and

why it fits the frequencies so poorly.

In Chapter VI the results of the H2S line strength measurements are compared to cal-

culated rigid rotor line strengths. The dependence of the observed line strength perturba-

tions on J, Ka, and Kc is also examined.

In Chapter VII, the study of nuclear quadrupole hyperfine structure in the 1-0

vibration-rotation band of hydrogen iodide near 2200cm- 1 is presented. Using the diode

laser spectrometer the R(0), P(1), P(21 ), and P(3) lines of this band were recorded, all of

which exhibit nuclear quadrupole hyperfine structure. Nuclear quadrupole splittings, which

arise from the interaction of the electric field gradient of the molecular electron cloud

with the nuclear electric quadrupole moment, are commonly observed in microwave pure

rotational spectra. In infrared molecular spectra, these hyperfine splittings are usually

masked by either the Doppler width of the absorption lines or by the low resolution of

the spectrometer being used to record the spectrum.

In the case of hydrogen iodide, its extremely large nuclear quadrupole moment and

molecular weight combine to give relatively large hyperfine splittings with small Doppler

widths. This allowed the resolution of some structure in the low J transitions of hydro-

gen iodide using the diode laser spe :trometer. From these spectra, the nuclear quadrupole

3



coupling constant of hydrogen iodide in both the ground and upper vibrational states was

determined. It is believed that this is the gust observation of nuclear quadrupole hyper-

tine structure in the vibrational spectrum of a diatomic molecule.

4



CHAPTER I1

THEORY OF ASYMMETRIC ROTOR VIBRATION-ROTATION SPECTRA

11. A. Development of the Rotational Hamiltonian

The complete molecular Hamiltonian for a polyatomic molecule can be written as

Ir

	

Pn2	 p 2

H = E	 +—e	 + Vnn + Vet + VRe •	 (11-1)

	

R ° 2M	 2M

	

n	 e

•

	

	 where Pn and Pe are the momentum operators for the nuclei and electrons. The poten-

tial energy terms Vnn , Vee, and Vne come from the nucleus-nucleus, electron-electron,

and nucleus-electron interactions respectively. A great simplification to H can be made

using the Born-Oppenheimer approximation, which is adopted in this work. This approxi-

mation assumes that since electrons are much lighter than nuclei, they move much more

quickly. Therefore the electron's motion at any time is the same as if the nuclei were fixed

at their present instantaneous positions. This allows one to separate Schrodinger's equation

into an electronic part. and a vibration-rotation part, to be solved separately. in the elec-

tronic wave equation the nuclear positions are taken to be adjustable parameters. In

the vibration-rotation wave equation the electronic energy as a function of nuclear posi-

tion becomes the potential energy term in the Hamiltonian. To solve the vibration-

rotation problem we can treat the molecule as a set of point masses representing the

nuclei lying in some potential field. With this model the classical Hamiltonian can be

developed from which the quantum-mechanical Hamiltonian is obtained by proper replace-

ment of coordinates and their conjugate momenta with the corresponding quantum-

mechanical operators.

For a molecule of N nuclei, there are 3N degrees of freedom. Three of these degrees

of freedom describe the translational motion of the molecular center of mass thus leaving

	

11

	

	
3N-3 degrees of freedom to describe 	 the rotation and vibration of the molecule. The

rotation can be described by introducing a coordinate system which rotates with the itiole-

rule, called the molecule-fixed axes, whose origin is at the molecule's center of mass. Three

5



coordinates, such as the Euler angles, are required to give the orientation of this axis system

with respect to space fixed axes. The remaining 3N-6 degrees of freedom are associated

with the normal mode vibrations of the molecule, there being three of these for a three atom

molecule such as hydrogen sulfide. The molecular vibrations are described relative to the

rotating and translating molecule-fixed axes with the normal vibrational coordinates Qj.

The classical expression for the molecular kinetic energy is obtained by transforming

the kinetic energy in the space fixed frame, T = !': ^ Mn hn • fin , to the molecule-fixed axis

frame. This was originally done in a rigorous fashion by Wilson and Howard (a) who obtained

T = :Vi(Ja - t1a) µad (JS - no) + y, 1;pi2	 (11-2)
ci's

where a, Q = x, y, z in the molecule-fixed frame and i runs over the 3N-6 normal coordi-

nates. In this expression J . = aT/awn is the nth component of angular momentum, wa

being the ath component of the angular velocity of the molecule-fixed axes. 1l a is a quan-

tity close to the vibrational angular momentum about the a axis but has some contributions

from the rotational motion and is not conjugate to any part i cular angular coordinate. The

term Nall is a function of the norr„al coordinates and is almost, but not quite, equal to the in-

stantaneous inverse momem of inertia tensor. Pi = MaQj is the momentum due to vibration

and is conjugate to the normal coordinate Q j . The translational energy of the molecule has

been left out of the kinetic energy expression. Complete definitions of the terms used here

can he found in several plac--%0-6). It is assumed that the potential V can he written solely

as a function of the normal coordinates Q j . In the limit of small vibrations only terms in

Qj 2 will appear in the potential.

The quantum-mechanical Hamiltonian has been derived from the classical expression

by Wilson and tloward(4) . Darling and 1)ennison( 1 ). and more recently by Watson( 8). Its

derivation from the classical Hamiltonian is non-trivial because the na momentum terns is

not conjugate to any coordiizate. The rather complicated original expressions for the rota-

tional Hamiltonian in references(4) and (7) have been considerably simplified by Watson to

give

f
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H = 'i ; ( ja - na) µas (10 - RS) + %A E ( Pi2 + V (Qi )) + U	 (II-3)
i

where Ja . Ila , Pi are the quantum mechanical momentum operators corresponding to the

previously given classical quantities. The extra term U = a - 1/8 µa 0 is a function only

of coordinates and not momenta and therefore can be considered as part of the potential

energy.

As written. this Hamiltonian is too complicated for any practical calculations of mole-

cular vibration-rotation energy levels. It is customary to simplify it by expanding the

potential V and the effective inverse moment of inertia tensor µ as about equilibrium values

as a Taylor series in the normal coordinates Qi. For reasonably rigid molecules this series

converges fairly rapidly. For light asymmetric top molecules such as H,S and H2O, though,

this series converges relatively slowly because some components of µ as diverge for large values

of the bending mode normal coordinate. A perturbation calculation can then be made by per-

forming a aeries of contact or unitary transformations on the expanded Hamiltonian to make it

diagonal in vibration quantum number to the required degree of accuracy( 4.9 ). This results in

an effective rotational Hamiltonian for each vibrational state, so that we can write H = HR + HN,

where the rotational parameters in HR will depend on the vibrational state of the molecule.

From now on we will write HR as just HR . remembering that this H R is for a particular

vibrational state. The zero order term for HV is

	

0	 3Nb ?	 I

	H 	 = 'ii 2: (Pi - 	 Xi Qi ).	 (I I-4)
i

which represents a set of uncoupled harmonic oscillators with energy eigenvalues

3 b

I
where the vi are the 3N-6 normal vibrational mode frequencies given by v i =	 , the ni =

0, 1, -', 3, ... are the vibrational quantum numbers, and h is Planck's constant. If there are no

resonances between vibrations one then need only be concerned with diagonalizing the rota-

tional Hamiltonian in order to calculate the rotational energies. In this work we are mainly

7



concerned with rotational structure within a given vibrational band and will not be further

concerned with the details of the purely vibrational terms in the Hamiltonian. Approxima-

tions to HR will now be discussed for the specific case of an asymmetric rotor which has

three unequal principal moments of inertia.

The lowest order approximation for H R in a given vibrational state is

HR a Hrigid =	 1; 	 Ja Js	 (11-6)
a

where the µas are constant effective values for the inverse moment of inertia tensor. These

µas come from irtegrals of the µas over the vibrational wavefunctions. If the molecular

axes are rotated so they are identical to the principal axes of inertia then µas is reduced

to diagonal form giving H rigid = X 1J x2 + Y'J y2 + Z'J z2 where X', Y', Z' = 1/2I x , 1/2Iy,

1/21 Z and Ix , l y , I z are the principal moments of inertia expressed in proper units. If the

angular momentum operators Jx, Jy, Jz are written in units of h= h/2v then X', Y', Z' will

be defined to be in units of wavenumbers (cm- 1 ) so that all energies in this work can be ex-

pressed in this convenient unit. Infrared transition frequencies and molecular constants

will also be given in the cm- 1 unit, remembering that to obtain the true fr2quency one must

multiply the quantity given in wavenumber units by the speed of light. Microwave transi-

tions and molecular constants will be given in MHz, as is normally done.

The next order approximation to HR, derived by Wilson and Howard (4) , is

H R = ''/2a: µas Ja JS + V. 
a,s y,S rastiS Ja JS J 1 J S	 (11-7)	 -

where the rasy5 are given to a very good approximation by(10)

rasyS = -'4 E µa'^ (F-1)ij µ-rb
i.i

The indices i and j run over some set of 3N-6 internal displacement coordinates Ri which are

used to evaluate µa 0 = (aµas/aRi)e, where the a stands for evaluating aµas /aRi at equilib-

rium. F- 1 is the inverse force field matrix written in terms of the coordinates Ri. The

8



t

t'
equation for rapl'S assumes a harmonic force field and that higher order terms in the ex-

pansion of µap are negligible. The dependence of the Tap-YS on the inverse of the force

oonstant matrix is physically reasonable since the smaller the force constants of the

molecule th ° more it will distort at higher rotational states, and therefore the bigger the

rap-f6. For a general asymmetric rotor there are 21 non-zero 
rapY6 

which together take

on only nine distinct values. The rest of the 
rap YS 

are zero due to symmetry. The nine

'	 distinct r	 are r	 , r p - r	 r	 = r	 = T	 = T	 for ct S=
apyS	 gaga as p - ^3paa apap	 appa - papa - paap

X, y, Z.

It was later shown by Kivelson and Wilson( 11 ) that by use of the angular momentum

commutation relations the HR given by Wilson and Howard can be written in the more

simple form

	

HR	 XJx2 + YJyI + ZJz2 + 1/° 
a. Taapp JO" Y(II-8)

where rxxxx = TxxxxI ryyyy = ryyyy, rzzzz = rzzzz

rXxyy = rxxyy + 2rxyxy

TyyZZ = TyyZZ + 2TyzyZ

TXXZz	 TXXZz + 2rxzxz

X = X' + %4(3rxyxy - 2rxzxz - 2Tyzyz)

Y = Y' + '/s(3ryzyz - 2rxyxy - 2rxzxz)

Z = Z' + '/.(3rxzxz - 27-xyxy - 2Tyzyz)-

By use of the commutation relations it has been shown that there are really only six inde-

pendent distortion constants for a general asymmetric rotor and also that the quadratic

coefficients depend upon the original quartic coefficients.

For a planar asymmetric top molecule such as H 2S, Dowling( 12) has shown that the six

independent r' coefficients reduce to four independent coefficients. His relations between

the quartic coefficients are only strictly valid for a harmonic approximation to the force

9



field and for the equilibrium coefficients, not vibrationally averaged ones that are observed

in practice. If the observed energy levels of a molecule are extremely accurate then the use

of these relations in the Hamiltonian can lead to a poor fit of the data because of these two

approximations. The relations obtained by Dowling are given in Appendix A.

It is important to know how many independent sets of constants there are in HR be-

cause only the independent constants (which may be combinations of fundamental mole-

cular constants) can be derived from a molecular spectrum. When accurate rotational energy

levels of a non-planar asymmetric molecule were fit with Kivelson and Wilson's H R , the

quartic distortion constants were found to be indeterminate, although the observed energy

levels could be accurately reproduced with the constants obtained in the fit. Watson(13)

showed that the matrix elements of the six Kivelson and Wilson's distortion operators were

linearly dependent on each other, therefore leading to their indeterminant value in the least-

squares fitting process. In doing so, Watson developed w general method for developing rota-

tional Hamiltonians to high orders in angular momentum operators that insures independence

of the matrix elements of the effective operators. This enables a unique set of distortion con-

stants to be determined. The Hamiltonians developed by Watson were used in this work since

they can be easily expanded to the high orders of angular momentum required to fit light

asymmetric rotors. A summary of Watson's development of the rotational Hamiltonian will

now follow. This summary will go into some detail on those points important for the inter-

pretation of the fits performed in this work on H A S rotational data.

II. B. Watson's Reduced Rotational Hamiltonian

Watson developed a procedure to deal with the problem of indeterminate distortion co-

efficients by systematically making use of the fact that the eigenvalues of H R do not change

when it is transformed with some arbitrary unitary operator. By choosing the unitary op-

erator to be a power series in angular momentum operators, the transformed Hamiltonian

becomes a power series like the original on,- but with different coefficients for the angular

momentum operators. One can then choose the arbitrary parameters specifying the unitary

10



operator to eliminate as many terms as possible from the transformed H R , resulting in what is

called a reduced Hamiltonian. Alternative methods of reducing H R result in different individ-

ual coefficients but not in independent combinations of coefficients for operators, which are

always the same. The remaining terms are then the maximum number that can be determined

from the rotational energy levels. It should be remembered that since an arbitrary unitary

transformation of the Hamiltonian does not change the eigenvalues; only those combinations

of coefficients not dependent upon the arbitrary parameters in the unitary transformation

are determinable.

The steps required to obtain the reduced Hamiltonians used in this work will now be out-

lined. The following discussion will concentrate only on the effects of the unitary transfor-

mations on the quadratic and quartic coefficients for simplicity. The transformation of

higher order coefficients and subsequent reduction of the Hamiltonian is analogous to that

of the lower order ones. For detailed discussions of this theory one can refer to papers by

Watson(3,13,14)

If there are no vibrational degeneracies or resonances present for a particular vibrational

state of a molecule, then the effective rotational Hamiltonian, H R , for that state is a power

series in components of the total angular momentum operators Jx, Jy, and Jz. Watson has

shown that if one takes the angular momentum commutation relations into account. H R can

always be written in the so-called standard form

H R = p y .^ hpgr ( Jxp Jyq Jzr + J zr J yq J x p)	 (II-9)

where p, q, r = 0, 1, " ... and the hpqr are constant coefficients. This expression is con-

strained by the fact that H R must be Hermitian and time reversal invariant. This requires the

sum p + q + r to be equal to an even integer and the hp qr to be real. For molecules with

orthorhombic point group,, a number of the hpqr can be shown to equal zero. For a general

(non-orthorhombic) molecule, Watson showed that the H R of equation I1-9 can be trans-

formed to look like the HR of an orthorhombic molecule, which when written up to sixth

power in angular momentum, is given by



HR = XJx2 + YJy2 + ZJz2 + a2: Tao Ja 2 102

+ a ^aaaa Jab + aZ o maa o (Ja4 Joe + 
J02 j0,4)

t	
i 

Oxyz (1x2 Jy2 Jz2 + Jz2 1y2 1x2 ).	 (I1-10)

The coefficients Tp in this equation are related to Kivelson and Wilson 's parameters by Tao =

'/a rao, 00. Note that at this point there are six quartic and ten sextic coefficients. This

series can be written to higher powers in J if necessary. The transformed H R is given by

HR = U- 1 HR U	 (II-11)

where Watson chose

U =	 iS3 eiss e`S7 ...	 (I1-12)

with

S3 = s111 (Jx Jy J z + Jz J  J x) and

S5 = s311 (J x3 1 y J z + 1 z Jy ix 3
)

+ S 131 (J x Jy3 1 z + j  J y 3 Jx)

+ S113 (Jx J y J z 3 + Jz3 1  ix)	 ( II-13)

and so on so that U is unitary and time reversal invariant as required. If we write H R = H2 +

H4 + H6 + ... where Hn contains terms to the n th power of angular momentum and write

HR = U- 1 HR U = H2 ' + H4 ' + H6 ' + ...	 (11-14)

then the transformed H R terms are given to first order by0)

12



13

H2 ' = H2

H4, 
= H4 + i [ H2, S31

H6 ' = H6 + i[H4 1 S3 1 - 'h[ [H2 , S3 1, S3 1 + i[H21 S51	 (11-15)

where [A, B ] = AB-BA. The relations given here for the H .' only contain terms from

the transformation that are the same order of magnitude as the untransformed Hn terms,

any smaller terms have been dropped. The transformation has been carried out using the ap-

proximation An ;:t 1 + iSn which is unitary to order Sn . This is a relatively accurate proce-

dure if the parameters s l 11. s311 • s l 31 , s l 13, etc. are chosen to be small enough. When HR is

re-written in the standard form previously introduced by using the commutation relations on

each of the H si ' expressions, terms of lower degree than A n ' may be produced. The resulting

terms of similar magnitude can be collected together again to give HR = H2 + H4 + H6 +

In order for H R to converge as well as HR the unitary transformation parameters should be

chosen so that sl i l	 T/B and s131 , s311 , s l 13 - O/B where B, T, and 0 are on the order

of the untransformed quadratic, quartic, and sextic coefficients in HR . The transformed

quadratic and quartic coefficients are, frufii equation 11-15,

X = X+ 4 (Z - Y) sill

Y = Y + 4 (X - Z) sl 11

Z = Z + 4 (Y - X) sl 11

Txx = T xx , Tyy = Tyy, Tzz = Tzz

Tyz = T yz + 2 (Z - Y) sill

Txz = T xz + 2 (X - Z) sill

T xy = Txy + 2 (Y X) sill.	 (11-16)

It should be noted that the relative changes in the quadratic coefficients are much smaller

than those in the quartic coefficients. A typical transformed sextic coefficient is



^YYZ = OYYZ + 2 (Z _ Y) s131 - 4 (T YY - 
Tyz) s l 1 I

+ 4 (Z - Y) sl i l •	 (I1-17)

All the transformed sextic coefficients are given by Watson (14) and the higher order contri-

butions for the quadratic and quartic coefficients are given by Typke( 1 5).

A set of quartic coefficient combinations that do not depend, to a very good approxima-

tion, upon the unitary transformation parameters are

Txx, T y}„ T ZZ , T I = Tyz + TXz + Txy , and

T2	 XTyz + YT Xz + ZTxy .	 (I1-18)

These quantities can therefore be chosen as a set of determinable quartic coefficients. This

choice for the determinable coefficients is only one out of an infinite number of possibilities,

but any other choice for a set of determinable combinations can be expressed in terms of

those given above. For the sextic part of H R there are seven determinable combinations of

coefficients. In general there are n+I independent terms in H R of degree n.

We now wish to write HR in a form convenient for calculation by using the operators

J '-, Jz, J± = J x t i1y instead of Jx. J y , and J 7 . This is normally done for the calculation of

asymmetric rotor energy levels due to the algebraic complexity of the matrix Elements of HR

if the operators Jx, Jy, and J z are used. In terms of these operators, H R has the form

HR = B 2001
2
 + B020 J z' + B00r (J+2 + J 2) + T400 14 + T220

12 Jz2

+ T040 1z4 + T20212 (J+ 2 + J_2 ) + 'Y2T022 1 J z2 (J+ .. + j_1)

+ (J+2 + J?) J Z2 1 + T004 (J +4 + J 4) + higher order terms. 	 (I1-19)	 '

The relationship between these coefficients and the previously used ones in H R are given by

Watson( 3 ). The subscripts of the coefficients refer to the powers of 1 1 1, J z and 4 in the

operator for each coefficient. For example, the quadratic coefficients in this. form are re-

lated to the original ones by

14



B200 = V2 (X + Y)

B002 = ya (X - Y)

B020 = Z -'/2 (X + Y).	 (11-20)

A
The transformed quadratic and quartic coefficients in HR for this form are

B200 = E1200	 + 4 B002 sill

B020	 - B020 - 14 B002	 '1 11

B002	 - B002	 + 2 B020 s111

T40 = T400 - 2 B002 s111

T 202 - T202

T 220 - T220 + 12 B002	 sill

T022 = T022 - 2 B020 s111

T040 = T040 - 10B002 s i l l

T004 = T004 + B002 sill•	 (11-21)

s l I I can now be chosen to reduce the quartic terms in H R from six to five. The most

commonly used reduction, called the AS form, is obtained by setting

T004	 4R6

slll = -	 _	 (II -22)

8002	 (Y-X)

where

R6 = 1/ 16 [Txx + Tyy -- 2Txy J .	 (11-23)

This choice for si a makes T004= 0 so that the operator U +4 + )!) is dropped from

HR and is not included in fitting the observed energy levels to H R . Similarly, three

A
operators in the sextic part of H R can be dropped with proper choices of s l31 , s311, and

s l 13. The resulting Hamiltonian, written in the most commonly used notation is

HR5 = HAS + H 'S + HAS + ...	 (11 -24j

M.
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where

H S 
= '/3 (XIS + YAS ) ^ 2 + [ ZAS - '/2 ( XAS + YAS)[ 

J z2

+ 1/4 (X AS - YAS ) (J+2 + J_ 2 )

HAS = -,4J ^4 — '6JK ,,1, 2 J z2 — OK J z4 `
 

611 
2

J12 (J+i + J 2)

-'/I E K 1J z2 (J+2 + J2) + (J+2 + l2) Jz2 1

HAS = H  16 + HJK 14 J z2 + HKJ ,1,2 
Jz4 + HK Jz6

+ hJ ,1,4 ( J +2 + l 2) + '/2hJK j 2 [ I z2 ( J+` + J?)+ (l+ 4 . J?) J z2 ]

+ '/2 hK [J z4 (J+2 + J2 ) + (J+2 + ,T2) iz41

H 8 S = L J ^^ + LJJK ^6 J z- + LlK 
)4 J

z4 + LKKJ 12 J z6 + LK J z8

+ QJ .^6 (J+2 + l^) + '/: RJK _ [ J zZ (J; 2 + J2)+ (J+ + J2)Jz21

+ '/: 2 K 
12 [J z4 (J+2 + J_ 2 )  + (J +2 + J -2 ) Iz41

+ '/s Q  13z  (J+ 2 + J- 2 )  + (l+2 + J _ 2 ) Jz61.

This is the most commonly used reduced Hamiltonian because of its relative ease of calcula-

tion, which will be discussed in Section ll-C:.

Another possible reduction of H it , that is sometimes used is called the NS form ( 3 ) re-

sults from setting

	

S ill
	 T022 =	 RS	 —	 (11-25)

	

111	
2B020	 Z-'h(X-Y) '

where

	

RS = - 1/8 (Txx -Tyy IT 	 + 2Tyz).	 (11-26)

16
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This choir: for s 111 sets T02` = 0 so that the term with the operator ^ [J Z2 (J+2 + J?)

+ (J+` + J-2 ) J Z2 1 is dropped fiom H R . The equations for s l31 , s311 , and s113 for both

the AS and NS reductions art giver by Watson ( 3 ). The NS reduced Hamiltonian can be

written

HNRS = H
NS + H4

NS
+ H6

NS
+ ...	 (II-27)

where

HNS = , Ẑ (XNS + YNS) ^2 + fZNS _ V.,(XNS + 
YNc)) 

JZ2

+ '/4 
(XNS YNS) (J

+2 + J_2)

NS	 4	 2 2	 4
H4 = -D1 J -D1K J J Z -DKJ7

+ 81 i2 (J+ 2 + J-` )	 (J+ S, +4 + J4)

HS = H7 
1 6 

+ HJK J 4 J Z2 + Hk1	
J,4 

+ HK 
Jz6

+ h1 ^4 (J+` + J_2 ) + 111 J 2 (J+4 + J4)

+ h3 ( J +6 + j - 6)

l.Is S
= L j .1 R + L1JK 6 J z, + LJK J 4 J z4 + LKK1 i 

J z6

+ L^ J Zx + Q 1 ^2 ( J +` + J_2 ) + Q2 , 4 ( J +4 + J_4)

+ Q3 1' ( J +6 + J- 6 )  + Q4 (J+S + J_8 ) .

These two forms for HR were used in this work. The H,S pure rotational spectrum in

the microwave spectral region was fit by Helminger et al.(16) using the AS from written in

terms of powers of the operator J x 2 - J y 2 instead of J + 2 , which results in some slightly

17



different operators in H6 S and HAS . Tile microwave data as well as rotational line frequencies

in the ?v,, v 1 , and v3 bands of H,S have been fit by Gillis and Edwards( 17) to a reduced

Hamiltonian developed by Typke( 15 ), which is very similar to the NS form. Typke also em-

ployed powers of the operator J x 2 J y 2 instead of J t ,) to write H R , which again leads to

slightly different higher order operators in HR.

11. C.	 C':, culation of the notational Energy Levels

In this section the calculation of energy levels from H R will be discussed as well as the

molecular symmetries which affect this calculation. Unlike a symmetric rotor, the energy

levels of an asy mmetric rotor, given by H R I ^ > = E i I 1 >, cannot he written in closed

form, even in the rigid rotor approximation. To obtain the E i , the Hamiltonian matrix is

computed in some basis set and is then numerically diagonalized with a computer.

A eorivenient basis set consists of the symmetric top wavefunctions I1,K>. 'I he M de-

pendence of these functions, where M represents the quantum number corresponding to the

'-J + I orientations of the total angular momentum in the space fixed coordinate system, is not

shown because field free rotational energies do not depend upon it. Since the Hamiltonians

we have discussed are diagonal in J, the only matrix elements required for the calculation of

the h; i are < J, K' j H k I J. K > . The Hamiltonian matrix is block diagonal in J and can

therefore be diagonali/ed separately for each 1 value. The only non-zero matrix elements for

a rigid rotor are

<J.K I tirigidll,K> _ '.(X+Y)J0+ I) + (1.	 ^ , :(X+Y)I K'

< J, K±2 I Hrigidl J. K > = !.(X	 Y) II1(J+1)	 K(K3 1)I*

I1 (J + 1)	 (K 3 I) (K t 2)11 !i . 	 (11-28)

so that Hrigid is in tri-diagonal firm.

The numerical diagonalization of H R is facilitated by taking into account the synime-

tries of asymmetric rotor wave functions, which belong to the four-group V(a, b, c) defined

by the three rotation operators C', a , C, I', C, c and the identity operator E. The labels a, b,

3

It
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a

I
r
I

c denote the molecular :aces and are defined by the requirement that the principal mo-

ments of inertia satisfy the relation l a < l b < l c. As shown in Figure ll- 1, the planar H;S

molecule lies in the ah plane, with the b axis having 2 fold symmetry. C', a , for example,

represents a 1800 rotation of the molecule about its a :axis. The a, h, c axes of the molecule

can he identified with the x, v, i. molecular axes used tip to now in the six ways shown in

a

H	
y`0

c axis 1 to page
rH-S - 1.33 A

Figure ll-1 : li 2 s GeYmaetry, ('enter of Mass at Origin

Table 11-1. The character table for V(a, h, 0 is given in Table Il 	 with a +1 representing

a symmetric wavef unction for the given operation and it 	 an antisvnunetric wavefunction.

TABLH II-1
Coordinate Representations

I 	 lir	 111r	 It'	 11^'	 Lill

{	 x	 h	 r	 a	 r	 a	 h

v	 c	 a	 h	 h	 c	 a

t
f	 ^	 a	 h	 :	 a	 h	 c

t

1 q



TABLE 11-2
Character Table for V(a, b, c)

Symmetry Species	 Operation

K-1 K+1	 Type	 E	 C 
2 

a	 C 
2 

b	 C2c

ee A I I 1 1

eo Ba 1

00 Bb 1 -1 1 -1

oe Bc 1 -1 -1 1

It was observed by Wang( 18 ) that the I J, K > symmetric roto ,- basis functions do not trans-

form as a representation of the four-group V(a, b, c), while the linear combinations of these

functions

I J,O+ > = I J,O>

IJ,K+ > = 1W2- 11J,K> + 1J, -K>}	 K>O

IJ,K- > = 1 2 11J,K>-- IJ,-K >} 	 K>O	 (11-29)

do have this property. For the IJ. K > basis functions J 21 J, K > = JO + I ) I J, K > and

J Z I J, K > = K I J, K >, where the z subscript refers to the molecule fixed z axis. If

HR is set up in this basis, it can be factorized for each J (except J = 0 or 1), into four inde-

pendent tri-diagonal submatrices. This can be done because the matrix elements connecting

1 J. K+ > and I J, K- > vanish as well as those connecting even and odd K. For a given J

we have

HR = E+ + O+ + E- + O-	(11-30)

where E and O refer to the evenness or oddness of the K values in the matrix elements and

the + and - refer to the matrices with only I J, K+ > or I J, K- > matrix elements. This

factorization of H R is called the Wang transformation. Although the Wang transformation

10
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is not necessary for the computation of the F. i , it does reduce the size of the matrices that

must be diagonalized from 2J + 1 by 21 + 1 to approximately J/2 by J/2, which can be a signifi-

cant reduction in computer memory, especially for high J values. The diagonalization of the

four :Wang submatrices gives 2J + 1 energy levels for each J value, which in general are non-

degen,!rate.

The behavior of the : nergy levels can be described using the parameter K, where K =

(211--A-C)/(A-C) and A, B, C = 1/21a, 1/21b, 1/21c in the proper units. If the moments of

inertia of an asymmetric top are varied from the limiting prolate symmetric top (B = C) to

the limiting oblate symmetric top (B = A), K will vary from -1 to +1, the most asymmetric

top having K=O. For H2S K ^ +0.5 and thus it is a fairly asymmetric rotor. The asymmetric

rotor energy levels are generally designated by JKa KC• where Ka is the K value of the limiting

symmetric prolate top level (K = - 1) with which the asymmetric top energy level connects

and KC is the K value of the limiting symmetric oblate top level (K = + 1) with which this

same asymmetric top energy level connects. For a given J the asymmetric top energy levels

do not cross, except in extreme cases which were not encountered in this work (21) making

this labeling procedure possible. The identification of Ka , KC values with the eigenvalues of

the Wang subntatnces for a given J can be found in a number of references( 19,20) and is

easily incorporated into computer programs that calculate asymmetric rotor energy levels.

This JKa KC notation also conveniently gives the symmetry of the rotational wavefunctiors

from the parity of Ka and Kc, as shown in Table 11-2.

For the previously discussed AS form of the Hamiltonian the only non-zero matrix

elements are

<JKIHAS,JK> and <1Kt2 ► HASIJK>

so that the calculation of the energy levels is identical to that for a rigid rotor, the only

modification being the addition of higher degree terms to each matrix element. For the NS
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Hamiltonian there are non-zero matrix elements for AK = 0, t2, t4, and t6. Still, the

Hamiltonian matrix can be Wang factorized and line identifications assigned as for the rigid

rotor. The required matrix elements for both the AS and NS Hamiltonians have been

tabulated by Kirshner(21).

11. D. Vibration-Rotation Line Strengths of an Asymmetric Top Molecule

To interpret the vibration-rotation spectrum of an asymmetric top molecule a knowl-

edge of the transition strengths (and selection rules) as well as the molecular energy levels

is required. If the approximation is made that there is no interaction between vibration

and rotation, the calculation of the relative line strengths within a vibration-rotation band

is straightforward. The relative line strengths obtained using this approximation, which is

called the rigid rotor approximation, often agree with experimentally observed line

strengths to 30% or better. The v 2 band of H2S, when observed under low resolu-

tion (-5cm-1)(22), exhibits an intensity profile very different from a rigid rotor pro-

file. The H 2S intensity profile, which is characterized by the P branch region being about

1/5 as intense as the R branch region of the band, was studied by Emerson and Eggers,0 )

who showed that the intensity anomaly is caased by centrifugal distortion of the nonrigid

H2S molecule. In this section we will discuss the fundamental relations for the vibration-

rotation line strengths and also the rigid rotor approximation for these strengths. The

approach taken by Emerson and Eggers to include some of the effects of centrifugal dis-

tortion in the line strengths will also he summarized.

The line strength is defined to be the integral of the absorption coefficient, k(v),

over the line,

S = J k(v) dv.	 (11-31)

over the line

In terms of fundamental molecular quantities, the line strength is given by(19)

8a3 v Ngi a Ei/kT

S =	 (I - e-hp/k7') I< 11 >12 	 (11-32)
3hc Q
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where N is the number of molecules/ cm3-atin, v is the frequency of the transition,

the lower state energy of the transition, gi is the statis,ical weignt or degeneracy of the

lower state energy level Ei, Q is the vibration-rotation partition function, and 1<µ>1 2 is

the square of the transition dipole moment matrix element. The partition function is

given by

Q = Egg a E)/IT	 (11-33)
J

where EJ are the molecular vibration-rotation energy levels.

The square of the dipole moment matrix element is given by

1<µ>12 =	 E	 i<i IAF If>1 2	(11-34)
F=X,Y,Z

where µF is the component of the dipol° moment along the X, Y, or Z space-fixed axes,

and ii> and If > are the initial and final states of the transition. In the absence of any

external fields the X, Y, and Z components of <p> all have the same value so that only

one component (the Z component for example) needs to be evaluated, giving

I<p> 12 = 31 <i I µZ1 f> 1 2 .	 (I1-35)

The component of the dipole moment along the space-fixed Z axis can be related to the

dipole moment relative to the molecule-fixed axes with the direction cosines, %oFg by

(1I-36)µZ	 g=a b,c 'PZg µg'

where g is summed over the three molecule-fixed axes, a, b, and c.

The v2 vibration of H2S studied in this work is illustrated in Fig. 1I-2. For this

vibration µi and pc do not change, so that only µb needs to be included in equation

11-36 for NZ . The permanent dipole moment of H 2S is also along the b axis, and gives

rise to the pure rotational spectrum of H 2S. Since H2S is a planar molecule p c = 0.

The only time µa is not zero is during the asymmetric vibration v 3 . We can now

write the dipole matrix element for the v 2 vibration as

	

I <p > 1 2 = 31 < i l -pZb µb l f > 1 2 .	 (I1-37)

At this point, the approximation that there is no interaction between vibration and

rotation can be made. This means that µb does not depend on rotation coordinates and
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a

b

c axis 1 to page

Figure 11-2 The v2 Vibration of H2S

that I i> and I f> can be separated into vibrational and rotational parts I V> and I R>, so

that now I <p>12 can be written as

I<µ>1 2 = 31<R i lwZb IRf >1 2 1 <ViIAb IVf >1 2	(11-38)

where

Ii> = IRi>IVi> and If>=IRf >IVf>.

This is called the rigid rotor approximation in this work, although the dependence of I Ri >

and I Rf > on the average centrifugal distortion within each vibrational state is included

when evalt.ating <R i I 'PZb I Rf > in Ch. V1 for comparison to the observed v 2 band line

strengths. The dependence of <Ri kPZb I R f> on the vibrationally averaged centrifugal distor-

tion in each state is obtained by using one of Watson's high order reduced Hamiltonians to

generate I Ri> and I Rf>. In the usual rigid rotor approximation, I Ri> and I Rf> are generated

from the rigid rotor Hamiltonian given in equation 11-6, using the same rotational constants

for both the lower and upper states. The direction cosine matrix elements in the IJKM> rep-

resentation are given in many places( 19.23) and are used to evaluate <Ril'PZb I R f> since the

asymmetric top rotational eigenfunctions are calculated in terms of IJKM> basis functions.

In the rigid rotor approximation the total band intensity of the vibration-rotation band

is determined by the <ViipblVf> matrix element. If the dipole moment is expanded about

the equilibrium value as a Taylor series in the normal coordinates Q i , we can approximate

µh by
?4



I% =

	

	
bµb +Qi + ... ,	 (I1-39)

i=1(!a,—Qi)Qi=o

where µb is the permanent dipole moment of H 2S. For the v2 band the vibration quantum

number n 2 given in equation 11-5 changes 0 to I. On"y Q2 is non-zero for this vibration, giving

	

<VilµblVf> = aQb <V;IQ2 Ivf>.	 (11-40)

since <Vi I;ib I Vf> = 0 for a rigid rotor.

The selection rules for changes in Ka and Kc for the v 2 vibration can be determined

using Table I1-2. For the direction cosine matrix element to be non-zero, the product of

the characters of the representations of the initial and final rotational wave functions and

of the dipole moment change must be +l for all of the group operators. For the v 2 vibr-.-

tion, the change in the dipole moment belongs to the type Bb symmetry species, so that

the selection rules for Ka and K c are

ee t-+ oo, eo t-+ oe.

This constrains the changes in Ka and Kc to be tl, t3, t5, ... Generally transitions with

changes of ±f in Ka and Kc are the strongest. The dipole selection rule jnJ = 0, tl

also holds. The vibration-rotation transitions will be denoted by J'K'a K'c - JKaKc in this

work, with the primed tipper state values of J, Ka and K c given first, followed by the

lower state values of these numbers. It should be noted that gi, the statistica! weight

factor. is three times larger for the co and oe levels than for the oo and ee levels of the

same J due to the nuclear spin statistics of the two identical protons n H,S.

To take into account the effects of centrigual distortion on the line strengths.

Emerson and Eggers( I) used vibrational wavefunctions having coordinates which include

centrifugal distortion displacements of the atoms from their rest equilibrium positions.

They calculated the shift in the Q f and Q, normal coordinates from their rest equilibrium

1.

	

	 positions in both the upper and lower rotational states of each transition. This was done us-

ing classical expressions for the molecular distortion, which depend upon the rotational

energy and the square of the angular momentum about the a, b. and c axes. The rotational

15



energies and angular momenta were determined by Emerson and Eggers using the rigid rotor

Hamiltonian given in equation 11-6. Using these new shifted coordinates in harmonic oscilla-

tor vibrational wavefunctions, they evaluated <ViIµbIVf> and obtained a first order correc-

tion to the rigid rotor line strengths,

S = Srigid (1 +"µb/(alab /aQ2))2• 	 (11-41)

where

6 = OQf — AQ'2

is the difference between the centrifugal distortion of the normal coordinate Q2 in the

final state and the initial state, and 7 is a factor that depends upon the P 2 vibrational

frequency.

By choosing µb and aµb /aQ2 to have the same sign Emerson and Eggers were able to

obtain qualitative agreement between the observed spectrum and a spectrum calculated

using their strength correction term, showing that centrifugal distortion was indeed respon-

sible for the observed intensity anomalies in this band. Since 6 has the same magnitude

but a different sign for the transition J'KaKc ~ J KaKc compared to its reverse JK
aKc ~

J'K •aK 'c , one branch of the band is enhanced while the corresponding branch on the other

side of the band center loses intensity. The intensity perturbation is also dependent on

the ratio µb/( POQ2 ), which is very large for H 2 S compared to other molecules because

aµb /aQ2 is so small. The small size of aµb /aQ2 is illustrated by the fact that the P2 band

of H2S is roughly 130 times weaker than the P2 band of H2O.

The magnitude of the line strength perturbation is denoted by the F factor, which is

the ratio of the observed line strength to the calculated rigid rotor line strength. For the

H 2S lines observed in this work, the F factors were experimentally found to vary from

about 0.06 in the QPR branch to greater than 4 in the QRP branch. (The branches

are designated using the convention W AK A ,U c.) A discussion of the observed F fac-

tors can be found in Ch. VI.

Perturbations of H 2O line strengths by centrifugal distortion have also been observed

and several theoretical formulations have been devised to take these effects into

26



account (24-26) Although the F factors for H 2O lines are much closer to unity than these

for H 2S for the same transitions, lines in the v2 band of H2O involving very high energy

rotational states have been observed, with F factors ranging from 0.07 to 3. Generally,

the above referenced theoretical strength calculations were able, by least squares adjust-

ments of free parameters, to fit the observed line strengths in the v2 band of H2O to

INc-201Ic. which is approximately the accuracy of the H 2O line strength measurements.

It is hoped that the H2S v2 band line strengths measured in this work will be useful

for a stringent test of existing theories developed for H 2O. The H 2S line strengths should

be ideal for this purpose due to the wide range of F factors observed and to the high

accuracy of the line strength measurements made here.
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CHAPTER III

DIODE LASER SPECTROMETER AND DATA ACQUISITION

111. A. Introduction

The tunable diode laser spectrometer, constructed as part of this work, was used to

measure all of the line strengths and the majority of the line frequencies of H2S reported

here. The use of semiconductor diode lasers allows almost Doppler limited spectra to be

taken in continuous segments about 0.5 cm- 1 to 1 cm- 1 wide. Diode laser fabrication

technology has been developed to the point where spectral studies extending over 100 cm-1

are practical using a single diode laser, so that rather complete studies of even light asym-

metric top absorption bands can be made with these lasers.

The laser spectrometer was constructed so to meet several experimental requirements.

These include: monitoring the relative frequency tuning of the laser simultaneously with

the gas absorption signal; having a relative frequency calibration capability close to the

accuracy of the best frequency standards (x 0.0004cm' 1 ); being able to produce sample

pathlengths from several meters to greater than 50 meters in order to detect the rather

weak and variable strength H 2S absorption lines at low pressure; and recording the data in

digital form because of its large volume and information content. In this chapter the laser

spectrometer will be described as well as procedures used to obtain a spectrum with this

instrument. Several examples of spectra will be shown and discussed to illustrate the

capabilities of this technique and to show typical characteristics of the spectrum of H2S.

A number of the line frequencies in the R branch region of the v2 band of H2S

were measured with a high resolution (0.04 cm- 1 ) grating spectrometer at the National

Bureau of Standards (NBS).( 27 ) A short summary of the experimental work performed

with this instrument will also be given.
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111. B. Experimental Apparatus

The Pb-sah (Pb S, _x Sex , Pb t .x Snx Se) tunable diode lasers used in this work were

fabricated by Laser Analytics Inc. Laser action in these semiconductors results from

stimulated emission across the energy gap between the conduction and valence band. A

population inversion is achieved by applying a forward bias current to the diode and

thereby injecting charge carriers across the p-n junction. The recombination of these carriers

provides the gain mechanism for laser action. The end faces of the laser crystal, made by

cleaving along natural crystal planes, form the laser resonator. Pb-salt diode laser crystals

are typically 400µm long and have cross sections of 200µm by 200µm. Pb S l .x Sex

lasers can be made to operate from about 2500cm- 1 to 1200cm- 1 and Pb l .x Snx Sc lasers

from 1200cm- 1 to 300cm- 1 by controlling their chemical composition (x) during

fabrication.

The output frequency of any one diode laser can be tuned 20cm- 1 to 200cm- 1 by

changing the laser temperature from IOK to greater than 60K. The laser can be fine-tuned by

varying its bias current, which changes the amount of 1 2 R heating of the laser and its electrical

contacts, and therefore the operating temperature. While the overall tuning of the laser comes

from the variation of the band gap energy with temperature, the fine-tuning within one mode

is dominated by cavity mode shifts due to the decreas; in the index of refraction of the laser

material with increasing temperature.

Most diode lasers oscillate in several simultaneous modes separated in frequency by the

cavity mode spacing of several wavenumbers. A single mode will usually continuously tune

0.5 cm- I to I cm- 1 . Diode laser linewidths have been measured by a number of worker428.33)

and can vary from less than I MHz to greater than 20MHz FWHH. The diode laser linewidth

will be discussed in more detail in Ch. IV. Single mode power levels range from several tests of

microwatts to greater than one milliwatt for diode lasers. A PbSSe laser was used for the

H2S R branch region measurements and a PbSnSe laser ►or the P branch region measurements.

A second PbSSe laser was used for the H1 study. Several reviews of Pb-salt tunable diode

lasers can be consulted for details of their fabrication and operation ( j4, 35 )
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A layout of the diode laser spectrometer is given in Fig. 111-1. The laser is kept in a

Cryogenics Technology Inc. closed cycle gaseous helium refrigerator that has an ultimate

temperature of about IOK. The laser is mounted on a cold : -%er with a large thermal

inertia that is vibration isolated from the rest of the refrigerator. The heat sink tempera-

ture can be varied with a small heater that is feedback controlled using a silicon diode

temperature sensor. The heat sink can be varied in temperature from about IOK to

greater than I OOK and can be held stable to less than 0.3 mK. The refrigerator and tem-

perature control system are available commercially from Laser Aralytics Inc.

The laser radiation is collected with a f/I KRS-5 lens. The beam is then focused

onto the entrance slit of a SO cm focal length grating monochromator to select a single laser

mode. A 400Hz tuning fork chopper at the entrance slit modulates the beam for phase-

sensitive AC detection. The peak resolution of the grating monochromator is about 0.25 cm-1

and the wavenumber accuracy is about 0.5 to 1 cm-1.

The radiation emerging from the monochromator is collimated with a 5cm diameter,

30cm focal length off-axis parabola. This results in a maximum beam width of about 2.5 cm.

The collimated beam is split approximately fifty-fifty with an uncoated piece of germanium,

wedged slightly so not to produce interference fringes. One beam then passes through a 7.65

cm long solid germanium etalon for relative frequency calibration and is focused onto a 1 mm

square HgCdTe liquid nitrogen cooled detector with a 5 cm diameter. 15 em focal length off-

axis parabola. The second beam traverses a I meter base path multiple pass absorption cell

(White cell(36) ) and is focused onto a second 1 mm square HgCdTe detector with a I.') cm

focal length lens. The two lenses marked L 2 and L3 in Fig. 111-1, as well as the White cell

windows, are made of BaF 2 . Lens L2 has a 27cm focal length and focuses the collimated

beam to a point coincident with the front surface of mirror M t .

The optical design of a White cell has been discussed in many referelue4 36) and will not

be repeated here in detail. Spherical mirrors M t (10 X 6em), M 2 (9 X 7em), and M 3 (9 X 7

cm) all have a 100cm radius of curvature. M l is separated from M 2 and M3 by their common

radius of curvature so that the beam is always focused when it hits M t , irrespective of the
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number of passes, and no radiation is lost due to vignetting. The top half of M t is notched in

the usual manner for passage of the entrance and exit beams. By adjusting M Z about a vertical

axis, the beam can be made to traverse the cell from 4 to approximately too times in multiples

of 4 passes, the only power hiss coming from mirror refection losses or from absorption by

the teas in the cell. All three mirrors are gold crated tier high reflectivity throughout the infra-

red. The White cell housing is a 9 inch ID glass pipe. Aluminum end caps sealed to the pipe

with "O" rings held the three mirrors. A rotary vacuum feedthrottgh near mirror M i allows

adjustment of the number of passes  while the cell is under vacuum. The White cell path-

length is given by

L z 99.855 M N + 28.840cm	 (111-1)

where N is the number of passes the radiation makes in the cell. This cauation for the path-

length was obtained from careful measurements of the cell dimensions and is accurate to

about 0.31X. The cell temperature is monitored with a thermocouple attached to the cell wall.

The cell is evacuated with a 21 cfm mechanical pump via u liquid nitrogen trap. This

pump call 	 tile• cell to several millitorr in a few minutes. A pure Etas sample is achieved

by filling the cell once with H)S, pumping the call to several millitorr, and then refilling it a

second time with H-,S. Three MKS Baratron capacitance pressure gauges with full scVfe ranges

of 1000 tort, 10 tort, and I tort monitored the cell pressure. Over the operating range of each

gauge the accuracy is stated to he 0.08% of the pressure readin g, if the gauge is terocd properly.

To get an accurate zero setting the gauges can be valved off from the large White cell vohmie

and puniped with a diffusion puuop to obtain a high vacuum. IntercYompariscros of the three

gauges indicate that their accuracy is at least a factor of two worse than the stated 0,0R% of

reading figure. Care was taken to not allow the I tort gauge pressure te e so above about 10

tort without it bein g re-zeroed again, a procedure that takes several hours. If this gauge is let

up to atmospheric pressure its zero reading usually changes a significant amount. In any case,

leaks in the White cell (or outgassing of cell components) suggests it maximum uncertainty of

11,V for the Ii .,S gas pressure, well above the inherent uncertainty of the pressure gauges. The

I tort full scale gauge, used for almost all the pressure measurements here, was calibrated
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to a quoted accuracy of less than 0.08% by the manufacturer just before the start of

this work.

The H2S gas was supplied by Scientific Gas Products and had a stated purity of

99,9991,. Two lecture bottles of H2S were used in the course of the experiment. One H2S

line strength was measured using samples of H 2S gas from each lecture bottle. Both meas-

urements gave the same line strength within the precision of the experiment.

The solid germanium etalon has a free spectral range of about 0.0 1 b cm - 1 and pro-

vides relative frequency calibration. Unfortunately, the index of refraction of germanium

is very sensitive to temperature, resulting in large shifts of the etalon fringe peaks as the

room temperature flucuates. M. 61—Sherbiny et a1.( 37) reduced the magnitude of these

shifts by racing their etalon in a copper cylinder whose temperature was stabilized by

flowing water from a temperature controller through the cylinder walls. They achieved

a stabilization of better than 0 .008K, for time periods up to one hour, which corresponds to

a fringe drift of 0.0008cm' 1 , since for a germanium etalon

dpPaak
LOS X 10-4p (cm' l /K).	 (111 •:'r

dT

dpfeak
The dependence of	 on the thermal expansion of the etalon is negligible.

dT

We have followed this approach by placing the etalon in a copper cylinder as shown

in Fig. 111	 where the top half of the cylinder has been removed for viewing. Water

from a Thermomix 1480 temperature controlled water bath is circulated at a rate of

about 10 liters per minute through four channels drilled in the copper. The inner surface

of the cylinder was hand lapped to achieve good thermal contact between the copper and

the etalon. The water bath temperature was set at 303. 2 5K, about 7K above room temper-

ature and was kept constant to about i0.004K. At 1200cm 
dv^ak

- 1 
d'I	

° 0.12cm - 1 /K so the

.+0.004K variation in temperature translates into t0.0005cm- l . The copper cylinder is rela-

tively massive, providing thermal inertia to help keep the frequency drift of the fringes

below 30.0005cm- 1 over the time scale of a diode laser scan (= to 20 minutes). An extremely

slow tuning, and therefore very stable, diode laser was available to test the etalon
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stability. Over a period of one nall' hour the frequency separation of a fringe peak and a gas

absorption line next to it was measured six times. The average fringe peak drift between meas.-

urenteitts was lound to be only 0.0001 cnr l , and the maximum drift over the whole one-half

hour time period was 0.0002cnr l , an acceptable amount considering other error sources in

I he measurements.

A block diagram of the diode laser spectrometer electronics is shown in Fig. 111-3.

The laser is tuned by varying the injection current with a Laser Analytics Model LCM cur-

rent controller. A SOHz to I kHz AC current ramp can be applied to the laser for real

time display of the detector signals on an oscilloscope. Digitized data is recorded by ex-

citing the laser with a slowly ramped DC current, mechanically chopping the radiation,

and using lock-in amplifiers for AC phase sensitive detection. A switching unit allows

the outputs of the lock-in amplifiers to be digitized sequentially at a combined rate of

up to 70 samples per second. The readings from the 3-1/2 digit voltmeter are stored in a

Hewlett Packard 9825 computer during the spectral scan. The digitized absorption

spectrum and the etalon fringes can then be examined on a CRT display and stored on

magnetic tape. Housekeeping information such as gas pressure, temperature, cell path-

length, laser temperature, etc. are input by hand to the computer and are also stored on

magnetic tape.

Each spectrum consisted of 4000 points for both the absorption spectrum ar a etalon

fringes. Although this many points were not required for most of the shorter scans, keeping

this number constant made operation of the data recording and analysis programs simple.

Only the scan time desired (always 110 seconds or greater) and housekeeping information

(if it changed) need be entered to the computer to start a scan. The outputs of the lock-in

amplifiers could also be recorded on an analog X-Y-Y recorder when optimizing the experi-

ment parameters before digitization.

Ill. C. Operation of the Diode Laser Spectrometer and S ample Spectra

The laser spectrometer optics were aligned with a He-Ne laser and a white light source.

The etalon was purposely mis-aligned to prevent hack reflections of the laser radiation off
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the etalon from re-entering the exit slit of the grating m onochronlator and feeding hark to

the la..er. Both detector dewars Here also tilted slightly so reflections of the laser radiation 	 i

from the detectors cmuld also not travel hack to the diode laser. Without these mis-align•-lents

composite optical cavities are formed that can set up laser modes that may broaden the ap-

parent linewidth of the laser and increase the noise level.(=U1

Final allgnnlenl of the laser spectrometer is performed by obser\mg the dcteclor signals

from the diode laser radiation on a dual trace oscilloscope. By reducing the grating m ono-

chromator sht\\idths and adlustulg lens L l . the image from i single laser mode is focused at

the center of the exit slit. The entrance slit is then open-.-d very wide to prevent reflections

oft the slit jaws from returning to the laser. The Il.lt mirror before the etalon and the para-

bola 11 , are adjusted too obtain etalon fringes with the highest finesse possible. Care was taken

so that these adjustments did not a l lo\\ back reflections from the etalon to re-enter the u.11-

In;_ nuonochromator or tilt the etalon too much rclatl\e to the collimated heam. The Iincsse

of I hr ctalon fringes \vas also improved h\ masking off about 1 /3 of the I Inch diameter

t,l;alon. This impio%emcnl C Ould be a consryuetice of' poor optical Llu;llit\ of p,lrt of the ct.l-

Ion or nose\ he from the Clfccts of un\\.Intcd reflected radiation In the optical system. Also.

a 3l4 111011 dI.1MOCr Iris dl;lphrlglll pl.lced Illst before lens L. im:reased the abs-orptlon be;llll

alliplllllde Mabllity Gild prevented a slight amount of ridl;ltloll reflected from the claloll beam

from reachlllg tilt .lbsorl't1on beam dctek'toi 	 1 his Iris diapllr.lglll decreased the absorption

beam sigiml \er\ little.

HIC previous altgnlncnl t\roceduR`. dId not need to be repeated very often. I aril new

lxwl mode could ti ' ll.ill\ he .aligned by adluslfing fens I I . the grating angle, fens L .I . t11t, \% 1111k,

cell mirror NI	 Mid the	 P,. \\ 1111 c.ale..unhlll ode Utter of tilt , User signal Caused b\

Isle refrigerator vibrations could be kept b;low 0.1`.. l;Ctore recording the SpCrtrtim the grat-

ing was %C;IIIned to be sllrC Ill.11 Ilie older laser Routes were slit Iiimitly far a" a\ Ill fiCtILIC1IC\

front the mode To eing used	 I he .Ihdity to observe the absorption signal and tilt- etalon

fringes together in real tune during; the :alignment process was imaluable. Very often the
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gas absorption spectrum would appear to be of high quality while Ilie etalon fringes would

indicate a node hop or frequency instability.

Atiei theseaLljustnlrntswerr made, the chopper was turned on ; nd the laser slowk

ramped with a DC current for detection with the lock-in amplifiers. A time constant ul 0.I

second on the outputs of the lock-in amplifiers was al"ays use]. To he certain 111;1' the ab-

sorption fines exhibited no distortion, the laser scan rate was set so that the gull width at half

height of' a line was scanned ill time period approximately equal to twenty time constants

(_' seconds). For the strength measurements the gas 
ill 	 White cell was allowed Io collie to

equilibrium for a period of at least 1 5 nimules alter filling. Whenever possible the gas pres-

sure was kept below 0.3 torr and the pathlength chosen to give a peak absorption of 50',-f to

70";. 1 he optimuiu peak absorption for determining Isle strengths from the peak absorption

coefficient. as was done here. is 113''; . 01" Slit widths equivalent to about 0.4cn1- 1 %sere used

to separate the Llser modes as coniplelely as Ixossible. US11.111\ 3 digitirrd :cans e:lch of an ab-

sorption line at 3 different pathlcngths were made. A shutter was placed ill 	 laser bean) for

a short pciiod during etch scan to detcrnune the 100 1 '; absorption lc\el. Also, ill 	 cases

a scan of each mode was made with at least one absorption line saturated (i.e. absorbing 100";

of the incident iakhation at lute center) to test for node purity. To check for non-luleanlics, etc.

in the arhat.Itus a set of scans was taken with a constant pressure and 13 difterent palllengths.

Another set of scans \kith a constant pathlcngth and W dil * feicn( gas pressures was also re-

corded for the ,.In g e reason. l , he line.' ••1 19th, oht.1111ed 110111 these scans using file methods

described in l'h. IV :homed no evidence of non-hne.iritics 
lit 	 ultensit\ scale or in the pres-

sure reading, greatel 111.111 the 1Ieasurenle11t precision of about 1%.

To measure th:• H,S IIIte frequencies, a calihratton gas was mmcd \%iih the II,S ni the

11 fide .ell ('allhr•Itton gases included ('O.. N_O, and Nll; (see ('It. IV 1m •.,rtails oil cali-

hiation Imes). Usu.Ill\ three. and ,onictimes tip to seen, scan, were 111.Ide fur each I-e1l'len%.\

mc,isuicnlc11t for these scan, the grating 111011ochronlator slit, were opened n1u:h okIdrl

111.111 in the line strength ,cam to -1110" the 1 011-1 wide mode, to be recorded williMll large

, h.Inges in laser lxmer across the spectrum.
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The general procedure in the search for good laser nwdes was to start with ImA laser tem-

peratures and currents and then slowly increase both of these parameters to find new modes.

This was done since laser tallllrt• is much more likely at high temperatures and currents. B\

systematically varying the laser temperature, current, and the grating angle all useable modes

Were foetid, so as to achieve as compIcIe a spectral coverage of the 11,S spectrum as possible.

Also the laser cheat sink) temperature was kept as high as loossibie and the injection current as

lo\\ as possible Wllell working With a gi%'en mode. This usually resulted ill 	 stable (but

^%caker) laser emission and also reduced the number of nodes at other trequencies.

A number otdiodr laser spectra of I1 _S are shown in Figs. III-4 to 111-18. Most sit the

spectra shown are calibration scans since the y are longer than the strength scales and better

iiiusirate the spectrum of 11 IS. Most of the strength .cans include only a single line over a

spectral region of live or six fringes. Lines not identitird ill 	 spectra are due to cahbra-

Lion gas absorption lines other than the calibration line itself'.

Figs. III-4 throu g h III-10 shoal spectra containing two or more calibration lines per

mode. These spectra and others were used to test the accuracy of the relative frequency cal-

ibrations performed here. which are discussed ill 	 IV. High signal-to-noise ratios were

obtained for most of the spectra, even at pathlengths as long as 48 meters as call be seen ill

Fig. III-4. The baseline variations seen ill the spectra are due to laser Ik,\ser sariations. the

Slit tllllet1011 of the grating nionochromator, and other causes. It should he remembered that

as the laser is scanned its Image is translated ill the focal plane of )lie monochromator.Ihereh\

producing baseline variations.

I'hese figures show that man gy modes of the laser used for the 1' branch Measure-

merits were at least I cm- 1 long. The mode in Fig. III-10 isgreater than I .5cm- 1 long. Fig.

III-1 i is a scan more than 2cm - 1 long that is part of a >em -1 mode. the longest one for this

particular laser. UntOrttmatel\ this mode contained vcr y fcw H,S lines. The scarf shown here

was used to t,amter a calibration from the H -'S O34 -" 25 hne to .in Isotopic II,S hne. The

(1 34 -7, 5 line was calibrated %ith a NO line ill the Itmer frequency Ixortion of this mode. The

iuotopie line was tile,, used ► o calibiatc the blended tltiuhlet 707 -8 18 . 717-1408 at I I()I 0h0ent'I

39



E
U

w.
A

z
0Nz
b

N
w
4.
O

U ^Z
W

d
W Ncr	 ev
LL	 «^

v
b
O_
D

v

ao

U.

cc C
CC
Cf=..

e^ n

NOIld60SSV ---p-

40



cc
CE x

cc

0 o a
M ^ ^
C C W
Z2	 tt	 W
S Z
CL 0- 00

0

z
oz 

_ � 	 N
ON

N011dWOS®d —^



ac =
oc Q

0
CG crW
C
zt ^

cc
0
qcT

N
tz

►Z

LLOZ
J

U
O.
0

O
V)

LLJ

0
w
0

T

Z
W

0
W

LL

E
CA

vO

mv
z
0N
z
b
C
e0

N

4.
O

u

v

D

J V
U
O

I	 Z
cp

r '^ v I

^_ r

i.z.

I

^ uS

LL7

J V
U
O
Z^

cc

v

O

0^
Q OC =

NOI1da0S8d ---b-

42



U
M
P1

ca

z
O
Nz
7
N

0

v.Q
.Q
O

r

e4

LL

UzW
0W
LL

rto
N
Co

r
Oo

cc
a:	 Q0 0 a

cc
Ln ltd W

O G W
11 It CC

N 0 C

a. C

Nr
Lr)

1

M
N

d'

MU

t0
^ Jo;

H
cc
V)
LL

Z
^0
N J

Ul) Q

w E

Q M_

U `On
ON
nN

Z

I

J
U
0 Na N
Z ul

MNrr

00
N

00

N011dUOSGV —10,

^I

43



g

roaz
0Nz
G
A

N
Z

U Ez a
W .^

D y

W N¢

LL
u

D

u
00

Irr

IF•!

O	

.tee _^'O Q0 H a
N W	 M
OO H	 ^--
fl 11 UJ
v^ O
^ N

aa^

o
CV)

0
Nz

J ^
U C14

0 Q0
N (^7z

MV

t0
r
O

O	 O
N	 t2

N
U

z
0	 0
N

z	 Q
LU

s_•

I'	 N011dkIOSBd ---*-

as



J E
U ^Q
O ^̂5

z^^

/	 22

u- E
z

dip	 i (
M
U)
t0 \

l
1	

t
o S

uv T

J E

U ^-
O
z

}
UzW
d
LL

E
rn

z
0Nz

xw
0
E
0
U
to

v

a^

0
G1

o^

eo

U.

r

e

W

z
J

N
TNi
U
CL
O

crca°
0 CL

1 W

o ^ Oz	
o

CL Of

NOIlddOS9V --^

45



r4L-=^-

NOildHOSBV --►



N

a:
N0

L)

N
0
U

1= cc0 0
H H
•- N
a ui

VJ	 ~
N O
Z U
CL d

EQ

vi
O^
d

vz
N0

V

c

N

w0
E
h
u
a^

RHr...l
a)

Im

V

2
F^
Q
CL

Wr
W

2
N
M

Uz
w
D
0
WMM
LL

N011dHOSSV --0-

47



NOUdHOS®d — ►



L

2
Ci cc f--

0 0 CL

CO N ujC w
tt it

N
N 0
= U N

CL CL M

0
0

z
N

Q
U
T3cm
CA
N

w
O

E
} P

U
Z a
w

d a
w
ocLL O

0
ri

v

co

9 

OZ

N

O
U

NOIldNOSGV --lo-

49



cc
CC C
0 CC0 CL

O W

tin
02

az~ Z c.4M

MU
^Or
O
C

LL
O
J
Q

W

E
kn
ON

4.
cd

z
0N
z

V)
N

O
E

U

0
A

V

NOIldHOS9V ---o-

50

r
Ai

g^
z
w?^
zz
Q^
U

UZ
W

0
W
cc
LL



EU
O^

O

w
ea
Nz
N

U 8
Z V̂
LLJ

d ^
LU	 '^

LL .^

^v
.Q

W)

o^

3
ao

LL.

N011dWOS8d —►

51



U

^^	 o

U)

	

Li ^
	 O	 r

Lu

^-

°°z	^ 	 r	 a

	

I	
^i	

w

cc ^ W

	

n a ^^	 o

	

^^	 ;LUW V	 ^	 O c
o

	

aw Q	 g	 y
a	 I

	

a	 ^^	 E

	

t0 ..^	 ^	 U `r',

NW
d `°W ^
c

N U.
O W o

v

	

--	 3 N

Ln

I

o o

0
0 0	 0 0

NOISSIWSNVUI

S2

.v



cr

O QCL
Ir
W

O
tt W
to

S O
CL N

> Eus ^

L N
M

NO

,

V ,,

,E

M

12

cc

cn

z^O^J
Q ^^ O
W C

°.p
W.

O

W0
O E

all

U

M
N

U
z

w
0
E

U
Q
d
R
H

b
0
a

2

}
L)zWD
dW
LL

CL
O
W
O
2

=t	 NOildHOS6d ---^

53



N E

iM UV ^

mQo
N $

U-) is
N

N V

f^
^ N
^p n
M ^

N

r	 c

E
0

N
tG

o0
tt

L
LL

z
OJ
F-W

a rE
N V

Lo $
,^ o

CD LoN

W.

U
W
CIW
LL

E
V
r
h

v
z
N
tv

w
O

w

vvn

(N(Q^

0

LD

00

IF

cc _O a

W
o F-

tt	 LJJ

N

a

E
U

NM
01 co

Nv

r

a E

U? n

LA tn
N

^Ea^

N nM
LA j
N

E

a nn
Ln g
i^ Ln
N Ln^ N

NOIlda0SSV ---w-

54



DWI-

in the high frequency portion of this same mode. This was the only time a H 2S line was cali-

brated in an ind irect manner and over such a long frequency interval.

Whenever possible, CO2 lines in the very accurately measured 9.6µm band were used as

calibration standards. Some of the spectra using CO2 standards are shown in Figs. III-1 1

through III-13. Since the CO 2 lines used here are at the far end of the CO 2 R branch,

relatively large optical depths of CO 2 were required. The weakest CO 2 line used was the

R(58) transition for which a 52 meter path and 10 torr of CO2 was required. Large opti-

cal depths of H 2S were sometimes used to bring out weaker lines in the spectrum while

saturating other lines, as can be seen in Figs. III-4 and III-6.

Another feature of the H 2S spectrum is absorption lines due to isotopic H 2S. The

natural abundances of the sulphur 34 and sulphur 33 sotopes are 4.2% and 0.157 re-

spectively. Isotopic lines are indicated in the spectra shown in Figs. 11I-6 and 111-9.

Fig. 111-14 is an example of a spectrum not used for any measurements due to insta-

bilities in the frequency scale. These frequency non-uniformities are evident in the

etalon fringes and illustrate the importance of recording the etaion fringes at the same

time as the absorption signal. Subsequent scans of the same laser mode showed no evi-

dence of frequency instabilities.

Some examples of spectra used for line strength measurements are given in Figs. I11-16

through 111-18. A number of scans at different pathlengths of the same transitions are

superimposed in Fig. 111-16. Also shown is a scan with the gas pressure and pathlength

increased enough to saturate one transition for the determination of the 1007c absorption

fevei. The spectra shown here have been normalized to correct for a slightly sloping back-

ground. These spectra, as well as those in many of the other figures, show H 2S doublets char-

acterized by 3 to t intensity ratios which result from the effects of the nuclear spin

statistics on the lower state rotational energy level populations.

Fig. 111-18 is an example of the lowest signal to noise ratio obtained for any of the

spectra recorded. This is also the most dense spectrum recorded for H2S. This spectrum

has the only IAK t 1 I = 3 line observed in the v 2 band, the 541 - 5 14 transition.
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Fig. 111-17 shows the shortest laser mode used in this work. This spectrum and those in

Fig. 11-16 are representative of the signal-to-noise ratio for the majority of the strength meas-

urements. The appearance of two H2S lines in the mode shown in Fig. 111-17 made the line

assignments possible.

111. D. Grating Spectrometer Measurements

About forty percent of the H2S line frequencies. were measured with a high resolution

grating spectrometer at the National Bureau of Standards. This work was performed before

completing the construction of the diode laser spectrometer. Only a portion of the more

strongly absorbing R and Q1t.P branches from 1 180cm- 1 to 1250cm- 1 was recorded. High

resolution measurements of the weaker P branch region could not be made since only a

60cm long absorption cell was available. With a continuous spectrum 70cm- 1 long in the

R branch the first quantum number assignments in the band could be easily made and an

initial band fit obtained before the diode laser study. The molecular constants from this

fit were used to generate a calculated spectrum of the v 2 band of H2S. This spectrum en-

abled the line assignments in the diode laser spectra to be made quickly and easily. The

grating spectra were also taken since the frequency measurements made with this instru-

ment are more accurate than the calibration line frequencies available for use with the diode

laser spectrometer from 1220cm- 1 to 1235 cm-1.

The spectrometer, which has been described in detail elsewhere( 27 ), has an Ebert opti-

cal design with a 3.81 meter focal length and a 40.8 cm wid . , echelle diffraction grating. It

was not practical to measure any line strengths with the grating spectrometer due to poor

signal-to-noise, low resolution, and non-linear 100% transmission levels.

The H 2S spectra were taken at a resolution of 0.04cm- 1 and a signal-to-noise ratio of

about 70 with a 1 second time constant on the output of the lock-in amplifier. The

60cm long gas cell contained about 20 torr of H 2S. The spectrum from 1180cm' 1 to

1250cm- 1 was scanned and recorded on magnetic tape three times. It was calibrated by

the standard method of inserting well known CO absorption lines appearing in other orders
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of the grating into the H 2S spectrum every 4cm- 1 . A computer peak finder program found

the line centers and computed a quadratic or cubic polynominal calibration curve from

which the H2S line center frequencies were calculated. The reported frequencies are aver-

ages of the three trials. The calibration lines could generally be fit to better than 10.001

cm- 1 and the overall error in the measured frequencies is believed to be about t0.002cm-1.
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CHAPTER IV

EXPERIMENTAL RESULTS — DETERMINATION OF THE H 2S LINE
FREQUENCIES AND STRENGTHS

IV. A. Introduction

The determination of the H 2S frequencies and strengths from the diode laser spectra

will be discussed in this chapter. This will includt a brief description of the computer

analysis of the raw digital data. Errors in the line center frequency measurements from

using solid germanium etalons to determine the relative frequency scale will be analyzed

and tests of the overall experimental accuracy presented. The method of measuring the

line strengths from the line center absorption at low pressure and the errors associated

with this method will be discussed in detail. These errors include the effects of laser line-

shape and pressure broadening on the line center absorption. Corrections to the measured

line strengths for either a Lorentzian or Gaussian laser lineshape will be presented.

A total of about 1200 spectra were recorded with the diode laser in the course of

this work. A total of 126 line frequencies were measured, distributed as 32 P branch, 25 R

branch, 14 QPR branch, and 55 QRP branch lines. Of these lines, 77 wera measured with the

diode laser spectrometer and `9 with the grating spectrometer. All 49 lines measured with

the grating spectrometer were in the R and Q RP branches between 1081 cm - 1 and 1250cm-l.

A total of 94 line strengths were measured ( all with the diode laser), distribute) as 32 P

branch, 16 R branch, 13 QPR branch, and 33 QRP branch lines. All of the lines measured

here fell between 1081 cm- 1 and 1260cm-1

The H 2S line assignments were made using a spectrum calculated with the molecular

constants obtained from a fit of the grating spectrometer data. This spectrum, along with

the known frequency setting of the diode laser mode selecting grating monochromator and

with the H iS and calibration gas line patterns in the spectra allowed the assignments to be

made with ease.
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IV. B. Frequency Meas;arements and Error Analysis

The H2S line center frequencies were determined by measuring the frequency difference

B	 between a well known reference absorption line and the H,S line. The relative frequency

scale was derived from the etalon fringe peaks using a calculated free spectral range for the

etalon. A total of 65 lines was calibrated relative to N 2O lines, 7 relative to CO2 lines, and

4 relative to NH 3 lines. The N20 calibration stand , -,-As(39) were either from the v l band

centered at 1284.9cm- 1 or from the 2v2 band centered at 1168.1 cm- 1 . The errors quoted

for the N 2O line frequencies range from ±0.0018 cm- 1 to ±0.00098 cm- 1 for the v 1 band and

from ±0.0018 cm-1 to ±0.00035 cm- 1 for t%e 2v-) band. The CO2 calibration line frequencies(40)

are known to better than 0.00001 cm- 1 , well within the precision of this experiment. The NH3

lines have been measured with a high resolution grating spectrometer (41) to an accuracy of

about ±0.005 cm-1 . The average uncertainty in the calibration line frequencies used here was

t0.0010 cm-1.

The digitized absorption spectra and etalon fringes were analyzed with a computer pro-

grant to obtain relative line center frequencies, line center absorptions, linewidths, and etalon

fringe peak positions. A least squares fit of the 100`7 transmission, region surrounding each

absorption line to a cubic polynominal was used to determine the 100% transmission level

across the line. The line center frequency, line center absorption, and linewidth were deter-

mined from least squares fits of portions of the line profile to a cubic polynominal.

Cubic polynominals were chosen for the fits to the line profile rather than a single fit to a

Doppler lineshape for reasons of computing speed (a desktop computer was used and over

1 100 spectra were analyzed) and hecause of possible deviations of the true lineshape from

the Doppler, especially at higher pressures. The etalon peaks were also determined from

fitting the region around each peak to a cubic polynominal. Since most of the line

strength spectra were only 0.1 cm- 1 to 0.2cm- 1 long, the line profile fits usually included

30 to 60 points. For the longer frequency calibration scans the number of points per line

fit ranged from 6 to 12.
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The fringe peak positions were fit to cubic spline functions for interpolation between

fringe peaks. In most cases the fringe separations were constant enough that linear interpola-

tion between peaks would have sufficed. The HZS line frequencies and widths were then

converted to wavenumber units using the free spectral range of the etalon and the calibra-

tion tine frequency.

It is of utmost importance to use an accurate value for the etalon free spectral range.

For example, a 0.5 cm- 1 separation between the calibration line and unknown line trans-

lates into about 30 etalon fringes. If we wish to measure this frequency difference to

0.0002 cm- 1 the etalon free spectral range must be known to 6.7 x 10 {' cm- 1 or 0.0470.

The free spectral range of an etalon is given to a high degree of accuracy by

1
APFSR	

do
2t n+ —A

C	 dA

where n is the index of refraction of germanium at the wavelength X and t is the etalon

thickness. To calculate APFSR accurately very good values for n(X) and t are required. A

careful measurement of the etalon length gave t = 7.65048 ± 0.00038 cm, accurate

enough so to not introduce large errors into the calculated free spectral range. Fortunately,

the index of refraction of germanium has been measured at eleven wavelengths between

2.551im and 12.361im to an accuracy of 0.01570( 42 ) A cubic spline fit to this data was

used to interpolate between the measured values of the index of refraction and to deter-

mine do/dX. The cubic spline coefficients for this fit are given in Table IV-1. Before cal-

culating the free spectral range, the room temperature values for the index of refraction

obtained using Table IV-1 were corrected to T = 303.3K, the temperature at which the

etalon was stabilized.

There are several other errors associated with the use of etalons in relative frequency

calibration. One of these, fringe pattern fluctuations from etalon temperature drifts, was

shown in Chapter III to have a maximum value of ±0.0001 cm- l . Another possible cali-

bration error conies from angular misalignment of the etalon relative to the collimated

60



Table IV-1

Spline Fit Coefficients for Index of Refraction of Germanium

(a)Wavelength, Xi
(µm) (b)Index, n i B C D

2.554 4.06230 -2.6322 x 10-2 -3.3061 x 10- 1 1.0568

2.652 4.05754 -6.0672 x 10-2 -1.9902 x 10-2 1.0568

2.732 4.05310 -4.3565 x 10-2 2.3374 x 10- 1 -9.5556 x 10-1

2.856 4.04947 -2.9676 x 10-2 -1.2173 x 10- 1 7.2885 x 10-1

2.958 4.04595 -3.1760 x 10-2 1.0130 x 10- 1 -2.6202 x 10-1

3.090 4.04292 -1.8714 x 10-2 -2.4617 x 10-3 3.2369 x 10-3

4.120 4.02457 -1.3483 x 10-2 7.5404 x 10-3 -2.1275 x 10

5.190 4.01617 -4.6538 x ! 0-3 7.1115 x 10-4 -4.1458 x 10-5

8.230 4.00743 -1.4794 x 10-3 3.3305 x 10-4 -1.0377 x 10-5

10.270 4.00571 -2.5008 x 10.4 2.6955 x 10-4 -1.0377 x 10-5

12.360 4.00627

and ni are experimental values from ref. (28) for T = 197K.
(b) n(A) = ni + B(A - y + C(A - Ai )2 + D(X - X03 , le i < X < Ai+1 .

laser beam. Since the mode selecting grating monochromator is before the etalon in this

experiment, the laser beam angle will shift as the laser frequency is scanned (the grating

angle is kept fixed during the scan). This ch p nging angular misalignment will produce an

observed free spectral range different from the one calculated using equation IV-1.

.Flicker et al ^ 43 ) have shown that this can result in large calibration errors when an air-

r	 gap etalon is used in conjunction with a high dispersion monochromator and a short focal

length collimati.ig element before the etalon. This error, defined to be the actual separa-

tion between two lines minus the observed frequency separation, was calculated using our

experimental parameters and was found to equal +0.00006 cm- 1 for a 0.8 cm- 1 measure-

ment. It should be noted that the large index of refraction of germanium permits rela-

tively large angular mis-alignments of the etalon to be made without introducing
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significant changes in the observed free spectral range. The etalon errors are summarized

in Table IV-2. The total error due to the etalon in the relative frequency measurements

should range from approximately +0.0002 cm- 1 to —0.0001 cm-1.

Table IV-2

Etalon Errors

Error Source	 *Error (cm-1)

Index of Refraction ±0.00012
Eta!on Thickness ±0.00004
Scanning Error +0.00006
Temperature Drift ±0.00010

*Assuming a 0.8%m- 1 measurement, except for the Temperature Drift, which is independent
of the frequency range measured.

Fortunately, a total of seven laser modes were recorded that contained two calibr; -

tion standards, separated by about 0.8cm- 1 , which could be used to test the accuracy of

the frequency difference measurements. The frequency separation of the calibration

standards was always very well known compared to the precision of our measurements.

The results of these tests are given in Table IV-3. The measured frequency separations

are averages of three to five trials and the assigned error is the standard deviation of

these trials.

The average deviation between the actual frequency difference and the measured dif-

ference was —0.00004cm- 1 , well below the precision of any one measurement. This indi-

cates that there are no significant systematic errors in the calculated values for the etalon

free spectral range or in the data. Also, the average assigned experimental error of

0.00047 cm- 1 is close to the standard deviation of the measured frequency separations from

the correct values. Because of this agreement, and since any systematic errors appear to be

very small, the experimental error in the line frequencies was taken to be the standard

deviation of the trials used in the measurement of each line. This error is probably domi-

nated by random laser frequency fluctuations and etalon temperature drifts.
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Table IV-3

Diode Laser Calibration Accuracy Tests

Approx. Frequency Assigned
Separation - A Calc A - Meas 0 Experimental Error

Lines Used (cm-1) (cm-1) in A (cm-1)

CO2 - CO2 1.00 -0.00078 0.00037

•	 N2O - N,O 0.77 +0.00049 0.00033

N2O - N2O 0.77 -0.00036 0.00072

N 2O - N2O 0.77 +0.00001 0.00015

N2O - N2O 0.80 +0.00049 0.00064

N2O - N2O 0.80 -0.00018 0.00057

N 2O - N2O 0.80 +0.00004 0.00050

Average = -0.00004 cm-1 0.00047

*(±0.00042 cm-1)

*This is the standard deviation of the measured frequency separations from the true
separations.

The measured line frequencies are given in Table IV-4. The calculated error given in this

table is the root mean square of the measurement error discussed above and the uncertainty in

the calibration line frequency. The average calibration line error was ±0.001 Ocm- 1 and the av-

erage total error for the diode laser frequency measurements was ±0.0013 cm- 1 . The lines de-

noted with an asterisk in Table IV-4 were measured with the NBS grating spectrometer. The

average total error for all the frequencies given in Table IV-4 is ±0.0016 cm-1.

IV. C. Strength Measurements and Error Analysis

Only a small fraction of the studies made with diode lasers have been concerned with the

measurement of line strengths. Usually, the method of equivalent widths (44, 45 ) has been

used to determine the line strength from the observed absorption (46) The line strength can also

be determined from the line center absorption if the laser linewidth is negligible compared to
i

the width of the absorption line (37) Or, if the laser linewidth is not too large, the line
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Table IV-4

Measured Transition Frequencies in v 2 Band of H2S

Upper	 Lower

1'(Ka', Kc')-1(Ka, Kc)

Observed
Frequency

(cm-, )

Experimental
Error

(cm-1 )

(e)Obs-Calc
Frequency

(cm-t )

6(2,S)-S(1 0 4) 1257.0689 0.0040 -0.0004
6(i,S)-S(2,4) i2S7.0100 0.0034 -0.0016
S(4,1)-S(1 0 4) 1256.9713 0.00!5 -0.000S
5(2,3)-4(3,2) 1256.8985 0.0025 -0.0017
9(4 ) 6)-9(3,7) 1256.7848 0.0014 -0.0014
S(3,2)-4(4,1) 1256.7639 0.0016 -0.0007
9(3,6)-9(2,7) 1256.7313 0.0014 -0.0012
4(3,2)-3(2,1) 1253.4679 0.0010 0.0000
7(1 0 6)-7(0,7) *1249.2231 0.0020 0.0008
3(3,0)-2(2,1) *1248.3825 0.0020 0.0016
S(2 0 4)-4(1,3) *1247.5366 0.0020 -0.0006
5(1,4)-4(2 0 3) *1247.1994 0.0020 -0.0001
8(4,S)-8(3 0 6) 1246.0787 0.00i2 -0.0010
8(3,S)-8(2,6) 1245.8463 0.0011 -0.0010
6(1,6)-5(0,5) 1243.6170 0.0013 0.0001
9(6,4)-9(S,S) 1243.5780 0.0011 0.0010
3(3,1)-2(2,0) *1243.0679 0.0020 0.0010
7(:,,5)-7(2,6) 1242.5596 0.0011 -0.0013
7(2,S)-7(1,6) 1242.5022 0.0013 -0.0012
4(2,2)-3(3,1) *1241.3277 0.0020 0.0070
6(2,S)-6(1,6) *1239.3377 0.0020 -0.0038
B(S,4)-8(4,5) *1239.1324 0.0020 -0.0008
4(2,3)-3(1,2) *1238.3986 0.0020 -0.0008
9(5,4)-9(4,S) *1238.2410 0.0020 0.0021
4(1,3)-3(2,2) 1236.7275 0.0015 0.0004
8(4,4)-8(3,S) 1236.6533 0.0030 -0.0003
8(7,2)-8(6,3) *1235.706i 0.0020 0.0004
7(4,4)-7(3,5) *1235.3761 0.0020 -0.0022
8(6,3)-8(S,4) 1234.6136 0.0019 -0.0004
S(i,S)-4(0,4) 1234.SSS0 0.0019 0.0003
5(0,5)-4(1,4) 1234.5788 0.0019 0.0004
6(3,4)-6(2,5) *1232.1437 0.0020 -0.0020
7(7,0)-7(6,1) *1230.3327 0.0020 -0.0003
3(2,2)-2(i,l) *1229.8478 0.0020 0.0002
S(2,4)-S(i,S) *1229.3386 0.0020 0.0049
5(1,4)-S(O,S) *1229.2731 0.0020 -0.0013
7(6,2)-7(S,3) *1228.1318 0.0020 -0.0034
2(2,0)-1(1,1) *1227.S982 0.0020 0.0028
9(7,2)-9(6,3) *1226.3977 0.0020 -0.0021
9(6,3)-9(5,4) *1225.9818 0.0020 -0.0023
4(1,4)-3(0,3) *1225.4417 0.0020 -0.0015
6(4 0 3)-6(3,4) *1225.1607 0.0020 -0.0012
6(6,1)-6(S,2) 1224.3336 0.0048 -0.0005
3(1,2)-2(2,1) *1224.2611 0.0020 0.0019
8(5,3)-8(4,4) *1223.9543 0.0020 0.0006
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Table 1V-4 (Continued)

Upper	 Lower Observed Experimental (e)Obs-Cale
Frequency Error Frequency

J'(Ka', Kc')-J(Ka. Kc) (cm-1) (cm-1 ) (cm-1)

7(4,3)-7(3,4) *1222.9320 0.0020 -0.0022
6(3,3)-6(2,4) *1221.9920 0.0020 -0.0037
S(3,3)-S(2,4) *1221.8686 0.0020 0.0044
6(5 0 2)-6( 4 0 3) *1221.6799 0,0020 0.003S
S(2 0 3)-S(1,4) 1220.6479 0.0020 -0.0023
2(2,0-1(1,0) *1219.9S01 0.0020 0.0015
8(6,2)-8(5,3) *1218.6091 0.0020 O.00SO
7(6,1)-7(S,2) *1217.9880 0.0020 0.0011
S(S 0 1)-S(4,2) *1216.8640 0.0020 0.0029
S(4,2)-S(3,3) 1216.4365 0.0013 -0.0005
3(1,3)-2(0,2) 1216.2968 0.0010 -0.0004
3(0,3)-2(1,2) *121S.966S 0.0020 0.0007
7(S,2)-7(4,3) *1213.3871 0.0020 -0.0006
4(3,2)-4(2,3) *1212.4180 0.0020 0.0002
5(S,0)-S(4,!) *1211.1931 0.0020 0.0026
6(4,2)-6(3,3) *1210.4286 0.0020 -0.0005
4(4,1)-4(3,2) $1210.3639 0.0020 0.0013
6(S,i)-6(4,2) *1209.598S 0.0020 -0.0004
3(2,2)-3(1,3) *1209.S2S2 0.0020 0.0026
5(3,2)-S(2,3) 1209.0831 0.0006 0.0005
4(2,2)-4(1,3) 1208.S210 0.000S 0.0002
3(1,2)-3(0,3) 1208.0164 0.000S -0.0002
2(1,2)--1(0,1) *1207.4S08 0.0020 0.0012
2(0,2)-1(1,1) *1205.7807 0.0020 0.0026
3(3,1)-3(2,2) *120S.043S 0.0020 0.0003
S(4,i)-S(3,2) *1203.4497 0.0020 -0.0004
4(4,0)-4(3,1) 1202.8244 0.000S -0.0006
2(2,1)-2(1,2) *1201.0267 0,0020 0.0002
4(3,1)-4(2,2) 1199.5292 0.0005 -0.0003
1(1,1)-0(0,0) *1197.9709 0.0020 0.0037
3(2,1)-3(1,2) *1197.4967 0.0020 0.0007
2(1,1)-2(0,2) 1196.8217 0.0004 0.0001
3(3,0)-3(2,1) *1196.17SS 0.0020 0.0014
2(2,0)-2(1,1) 1191.5453 0.0006 -0.0001
1(1,0)-1(0,1) 1188.7735 0.0004 -0.0002
6(3,3)-6(4,2) 1171.4822 0.0007 -0.0006
1(0,1)-2(i,2) 1158.1694 0.0005 -0.0001
2(1,2)-3(0,3) 1149.7713 0.000S -0.0003
2(0,2)-3(1,3) 1149.4026 0.0008 -0.0004
4(0,4)-4(1,3) 1148.7198 0.0004 -0.0003
4(1,4)-4(2,3) 1148.4491 0.0004 -0.0001
1(1,0)-2(2,1) 1147.3581 0.0006 -0.0003
2(2,1)-3(1,2) 1144.2681 4.0008 0.0001
3(1,3)-4(0,4) 1140.1403 0.0006 -0,0007
3(0,3)-4(1,4) 1140.08SS 0.0008 -0.0004
1(1,1)-2(2,0) 1139.5982 0.0005 - 010001
2(1,1)-3(2,2) 1138.4452 0.0004 -0.0001
3(2,2)-4(1,3) 1132.8476 0.0004 0.0004
7(1 0 6)-7(2,S) 1132.7146 0.0007 -010000

65



Table IV-4 (Continued)

Upper	 Lower Observed Experimental (a)Obs-Calc
Frequency Error Frequency

]'(Ka', Kc')-AKa, Kc) (cm-t ) (cm-1) (cm-1 )

7(2,6) -7(3 0 5) 1132.6721 0.0007 0.0005
4(1,4)-S(O,S) 1130.S247 0.0005 0.0006
4(0,4)-S(1,5) !130.502 0.0005 0.0007
S(S 0 0)-6(4,3) 1129.1619 0.0003 010000
9(2,7)-9(3,,S) !128.5689 0.0011 0.0007
9(3 0 7) -9(4,6) 1128.5302 0.0013 0.0004
6(G,6)-6(1,5) 1128.3660 0.0012 0.0002
6(1,6)-6(2,S) 1128.3583 0.0013 0.0001
2(2,0) -3(3,1) i127.3454 O.PO07 0.000S
4(2,3)-S(1,4) 1123.2380 0.0010 -0.00OS
8(1,7)-8(2 0 6) 1123.0877 0,0013 -0,0007
8(2,7) -8(3,6) 1123.0794 0.0014 -0.0008
4(1,3)-5(2,4) 1122.8542 0.0011 -0.0007
S(0,S)-6(1,6) 1120.8093 0.0016 -0.0016
4(4,1)-5(3,2) ii20.S884 0.0016 -0.0025

10(2 0 8)-10(3,7) 1119.4978 O.00iB 0.0002
10:3 0 8) -10(4,7) iii9.4895 0.0019 0.0003

6(1,6)-7( 0 1 7) 11i0.9883 0.0050 -0.0022
6(2,S)-7(1,6) 1104.9311 0.0050 -0.0039
6(1,S)-7(2,6) 1104.9201 0.0050 -0.0035
S(4,2)-6(3,3) i104.3112 0.0050 - 0.0032
7(0,7)-8(i,B) 1101.0598 0.0010 -0.0001
7(!,7) -8(0,8) i101.0598 0.0010 -010001
6(3,4)-7(2,S) 1098.2698 0.0004 -0.0006
6(2,4)-7(3,S) 1097.9380 0.0005 - 0.0003
7(1 0 6) -8(2,7) 1095.6973 0.0003 0.0000
8(1,8) -9(0,9) 1091.0226 0.0001 0.0000
8(0,8)-9(!,9) 1091.0226 0.0001 0.0000
7(3,S)-8(2,6) 1089.6241 0.0002 0.0002
7(2,S)-8(3,6) 1089.SS70 0.0004 0.0003
8(2,7) -9(1,8) 1086.3629 010002 -0.0000
7(3,4)-8(4,5) 1082.0329 0.0003 0.0002

*Indicates that the transition frequency was measured with the NBS grating spectrometer.
(a)See Ch. V for details on the calculated frequencies.
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strength can be determined from the line center absorption and then corrected for the distor-

tion of the absorption line profile by the laser. For the reasons outlined below, this second

method (called the direct method) is expected to yield more accurate line strengths and was

used in this work.

One of the most difficult problems associated with any line strength measurement is

the determination of the 100% transmission level in the region of the line. This is especially

difficult for high pressure absorption when the line wing, described by a Lorentzian lineshape,

absorbs an appreciable distance away from the line center. To avoid this problem the gas

pressure was kept as low as possible in this experiment, usually between 0.15 and 0.25 torr.

Under these conditions, the lineshape is very nearly Doppler, so that the absorption in the

line wing goes to zero very rapidly.

In the method of equivalent widths, the line strength is determined from the integrated

absorption of the line, and is therefore independent of the laser lineshape. This method has

been used for most diode laser line strength measurements since the observed low pressure

linewidths in these studies were 8% to 40% wider than the Doppler width, indicating that the

observed absorption line profiles were significantly distorted. The accuracy of the equivalent

width method, though, is more sensitive than the direct method to errors in the 100% trans-

mission baseline( 47 ) and to slight frequency non—linearities in the laser tuning (37)

In our case, the observed low pressure linewidths were only about 1% larger than the

Doppler width. Therefore, it was possible to measure the line strengths using the direct

method, with corrections for distortion of the absorption line by the laser, and to avoid some

of the errors associated with the use of equivalent widths. Also, the H 2S data contained a num-

ber of blended lines with 3 to I strength ratios. The strengths of these blended lines can be

measared much more easily using the direct method than the method of equivalent widths.

Thr intensity, I(p), of a spectrum containing a single absorption line is given by Beer's

law,

I(p) = Io(p) e-k(p)X	 (IV-2)
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where 10(v) is the intensity if there is no absorption, k(v) is the absorption coefficient,

and X is the optical depth, which is equal to the pressure-pathlength product. For a

Doppler lineslw pe the absorption coefficient has the form

v-vo2
ln2 -1n2 

k(v) = —
S	

— e	 7D	 (IV-3)
71)	

Ir

where S is the line strength, vo is the frequency of the line center, and 7D is the Doppler

width and is equal to the half width at half height of the absorption coefficient. The

Doppler width is given by

2kT 1 n2
7D = vo

	

	 (IV-4)
,vlc2

where M is the molecular mass, k is Boltzmann 's constant, T is the temperature, and c is

the speed of light. From the line center transmission, To = I(vo )/Io (vp ), we can solve for

the line strength since

'YD in (1 /To)
SD=

/-En 2 	
(IV-•5)

PL 
n

The line strength calculated in this manner will be denoted by Sp since a Doppler line-

shape was assumed. This quantity was determined for each absorption line and was sub-

sequently corrected for the effects of pressure broadening and the laser lineshape on the

absorption line profile.

If a saturated absorption scan was available, the 100% absorption level in each spec-

trum was compared to the signal level recorded when the shutter was blocking the laser

beam. If the difference between the snutter signal and the 100% absorption level was

greater than a few tenths of one percent, the saturated absorption level was used instead

of the shutter zero as the Io (vo ) = 0 level. Saturated absorption scans were made for all

but seventeen of the lines measured. These seventeen lines are marked in Table IV-5.

which is a listing of the measured line strengths.

68

r^



Fifteen of these seventeen lines were in the P branch region since the H 2S absorption

is so much weaker on the low frequency side of the band. The saturated absorption

levels of all but two of the other P branch region lines were less than 1% higher than the

shutter zero, and averaged only 0.3% higher. The other two saturated absorption levels

were 1.9% and 1.6% higher than the shutter zero. These two lines were recorded with the

highest currents used with the P branch region laser, for which poorer mode quality and

separation can be expected. Since the lines for which saturated absorption scans were not

made occurred at lower laser currents, it is likely that the shutter zero is an accurate meas-

ure of the 1009o' absorption for these scans. Rather high error bars were assigned to most

of the strengths measured for these lines anyway since their spectra had to be recorded at

relatively high pressures.

Only two lines recorded with the R branch region laser could not be saturated to

check the shutter zero level. The shutter zero and the saturated absorption level were

within 3% of each other for all but four of the other transitions in this region. The satu-

rated absorption level was from 37c . to 9% higher than the shutter zero for these four transi-

tions. The two lines that could not be saturated in the R branch region were recorded

with low laser injection currents for which the agreement between the shutter zero and

the 100% absorption level was always better than 1%, when it could be measured.

Corrections to SD for the effects of any pressure broadening can be determined using

the Voigt lineshape, which is a convolution of the Doppler and pressure broadened

Lorentzian absorption line profiles. For 80% of the lines measured here the pressure was

less than 0.4 tort, so that these corrections are small, although not negligible when com-

pared to other error sources. The corrections for these low pressure lines were determined

in conjunction with corrections for distortion of the line profile by the laser and will be

discussed later. Eighteen lines were recorded with pressures ranging from 0.4 to 4 tort.

M.	
The pressure broadening corrections to these lines will now be discussed.
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The Voigt lineshape is given by(48)

ko y f 	 e-Y
2

kv(v) =	

00	

dt	 (IV-6)
V 	 y 2 + (x - t)2

where

S1 n2	 'Y	 v - v
ko = —	 y = —	 n.., x _

	

L	 01

'YD	 7r	 71)	 'YD )
VrTn

and

7L = -YOL P.

ko is the absorption coefficient at PO , the line center, for a Doppler lineshape. 'Y L is the half

width at half height of the pressure broadened Lorentzian lineshape, W is the pressure broad-

ening coefficient in cm- 1/atm, and P is the pressure in atm. At the line center kv(v = PO ) can

be considerably simplified( 48) to give

kv(vo ) = koeY 2(1 - erf(y)). (IV-7)

The line strength corre:ted for the effects of pressure broadening, denoted by Sp, is there-

fore given by

Sp =

	

	 2 
SD	

(IV-8)
eY (1 — erf(y))

For the pressures used here y is always less titan 1 so that erf(y) can be accurately calcu-

lated from the power series

2 fo Y 	 2 

00 

(—I )n y2n+ 1

erf(y) = 	 e- t2 dt = .	 (IV-9)
 N/ Tr n=0 n! (2n + 0

The correction to SD for pressure broadening as a function of y is plotted in Fig. IV-1.
f

For example, if a line with a Doppler width of 0.0012cm- 1 and a pressure broadening coeffi-

cient of 0.1 cm- 1 /atm was recorded at a pressure of 1 torr, Fig. IV-1 shows that the value of

SD found for this line must be increased 10°l to account for the decrease in the line center

•	 absorption due to pressure broadening.

If 'Y L is known, the correction to SD for pressure broadening can be calculated.

Olivero and Longbothum(49) have developed an empirical equation for the half width of the
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Yp

Voigt lineshape, Y V , as a function of YL and YD . This equation can be inverted(47) to

obtain

YL = 'IV (7.7254  - 6.7254 (l + 0.3195 (Yp/Y V )2 ) 1.	 (IV-10)

This relation was used to determine -IL and therefore YL from the measured halfwid ths of

nine of the lines, all recorded at pressures greater than 1 torr. The residual line broadening

of about 1% due to the diode laser linewidth was neglected since the observed linewidths

were 20% to 50% wider than the Doppler width.

For these nine lines, the measured pressure broadening coefficient was used for the

'	 correction of each line strength. The error in the IYOL values was estimated to be about

t0.02cm' 1 /atm. The uncertainty in the line strength correction from the uncertainty of

±0.02cm' 1 /atm in 70.L was included in the total error for these line strength measurements.
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The measured values of 7t ranged from 0.11 to 0. 19 cm- 1 /atm, the average being 0.15

cm-1 /attn. The lower state J values of these lines varied from J = 2 to J = 10.

The average value for 7. of 0.15 cm- 1 /atm was used to determine the pressure broad-

ening corrections for the icmainder of lines measured at pressures between 0.4 and I torr.

Errors corresponding to an uncertainty of t 0.05 cm- 1 /atm in 110.L 	included in the error

bars for these line strengths. This uncertainty of ±0.05 cm- 1 in the average value of 7t is large

enough to encompass all nine of the values of 7°L measured here.

The corrections to Sp for these 18 lines ranged from 7% to 60% and the resulting

errors in the line strengths from the uncertainty in these corrections ranged from 2% to

10%n.

A good estimate of the diode laser lineshape is required to determine its effect on an

absorption line profile. Studies(50, 51) of line profile distortions in diode laser st)er!ra have

assumed that the laser lineshape is Gaussian. Also, previous line strength measure mel.tP7)

using the direct method were not corrected for laser lineshape effects since the assumption

of a Gaussian shape led to a negligible correction.

In a review of the literature, six direct measurements of the lineshape and iinewidth

of a diode laser were found. (28-33 ) These measurements were all performed by heterodyn-

ing the output of a diode laser with a highly stable and very narrow CO 2 or CO laser line.

In all six cases the observed diode laser lineshape was clearly best described by a Lorentzkan

lineshape. The diode laser linewidths in these measurements varied from less than 2MHz to

greater than 20MHz fall width at half height. We therefore determined our corrections to

the measured line strengths using a Lorentzian lineshape for the laser emission p -ofile.

;o determine the effect of the laser lineshape on the iine prc.iile and to find correc-

tions for the measured line strengths a procedure similar to that used in grating spectroscopy

was followed .(47.52) The laser lineshape was convolved with a series of Doppler r.bsorption

line profiles for various ratios of the laser linewidth to the Doppler width. Using these

convolutions, corrections to the line strength can be determined either from the laser line-

width, it is known, or from the observed broadening of the line above the Doppler
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width, if this broadening can be measured accurately enough. Convolutions were per-

formed for both a Gaussian and Lorentzian lineshape. The Gaussian lineshape convolutions

were made for comparison purposes and to check our convolution routine since the results

of other convolutions of a Gaussian with a Doppler line profile are available in the

literature.(52 )

The convolved line profile, for a laser lineshape described by the function f(v - v') is

given by

AOBS(v) = f ATRUE(v') f(v - d) dv'	 (IV-11)

where AOBS and ATR.UE are the observed and true absorption of the line. For a Lorentzian

laser lineshape

1
f(v - v') _ —	

aDL	
(IV-12)

T (v-v')2+aDL

and for a Gaussian laser lineshape

v -v 2
I1 n2 -In2

f(v - v') _	 — e	 aD	 (IV-13)
aDL	 7

where aDL is the laser linewidth. The lineshape fun:tions have bee;- properiy normalized

so that

	

f(v - v') dv' = 1.	 (IV-14)

•	 The convolutions were performed nume,.ically with a desktop computer. The ratio of

the laser linewidth to the Doppler width was varied from 2% to 50% and the true absorp-

tion of the Doppler profile was varied from about 3% to 97%. To save computation time

the convolved profile • 4s only evaluated at line center and in the vicinity of its halfwidth

point, defined as the halfwidth of the effective absorption coefficient giving rise to this

convolved profile.

The results of these convolutions, in terms of corrections to the me"- ,.ured line

strengths, are plotted in Fig. IV-2 for a Lorentzian laser lineshape and in Fig. IV-3 for a
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Gaussian lineshape. In each of these figures, lines of constant observed absorption are

plotted as well as correction curves for a constant ratio of the laser width to the Doppler

width.

As one would expect, for a given laser linewidth the line center absorption is decreased

much more by the Lorentzian lineshape since its wings extend so far compared to the wings of

the Gaussian lineshape. For example, if the laser width is 20% of the Doppler width, the line

strength correction for a Guassian laser lineshape is 2% while the correction for a Lorentzian

laser Lneshape is about 23%. If the line strength correction is determined from the observed

increase in the linewidth the difference b-tween the two laser lineshapes is smaller. If the laser

lineshape is Gaussian and the absorption line is broadened by X%, the line strength correction

will also be about X c. If the laser linest ape is Lorentzian though. a broadening of X% in the

observed line indicates that o line strength correction of about 2X% is required.

Since the diode 13 ,̂ er linewidth could not be d irectly measured, the strength correc-

;ions were determined from the increase of the observed H ,)S linewidths over the Doppler

width. Since the Doppler width of li )S in the : ), band i^ only about 0.0012 cm- 1 , the

halfwidth meas,.;rem nt of a single line is not nearly accurate enough to use for the deter-

mination of the strength correction. Alse, even at pressures Maw 0.4 ton, pressur

broadenire, car. ^tst y t Inc line profile as nutc;i a^: the 1-er lineshape. Therefore, the aver-

age of a large number of low pressure lint-s id0i -i:°asureurcnts was us?d to determine the

combined line strength correction due to pr-ssure broadening and the laser iineshape.

A to* : ,' or X 13 low pressure linewidths from 66 different transitions were used !o

measure the average broadening. The average pressure for these litirwi ith mcasu,emeMs

was 0.24 torr and the average absorption was 45%. Care was ta'en Co exclude any

blended lines from the average. Several transitions recorded using laser modes with poor

frequency stability were als.) excluded. The mean ratio of the observed halfwAth to the

Doppler width foi these transitions was 1,013. The standard deviation of the average line-

width ratio for e; ch of the 66 transitions about the mean ratio was 170.021. This number is

believed to he ^, coaservative estimate of the amount of variation in the line broadening
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of these transitions since it may also contain a contribution from the rather large random

error in any one individual linewidth measurement. The probability that this estimate is

on the high side is supported by the fact that the mean ratio minus one standard deviation

is less than one, implying an observed width smaller than the Doppler width. The test re-

sults given in Table IV-3 show that there is no possibility of a systematic error in the line-

width measurements due to a poor relative frequency scale. The average linewidth ratio

obtained here should statistically be very accurate, since it was determined from 513 line-

width measurements.

The average linewidth ratio plus one standard deviation, or 1.034, was taken as the

upper limit of the observed line broadening. If due totally to the laser, this excess broad-

ening of 3.4% implies a IL :°r linewidth of 2MHz. This maximum ratio of the observed

halfwidth to the Doppler width implies a maximum correction to the measured line strengths

of 7%. for any combination of broadening due to the laser lineshape and the gas pressure.

The minimum possible correction to the line strengths was determined to be 3%n. This

minimum is the combined correction for a laser linewidth of 0.5 MHz, the smallest

linewidth usually observed for diode lasers, and for a pressure broadening coefficient of

0.07cm-1 /atm, which is one half the value of the average pressure broadening coefficient

measured for H 2S. Our best estimate for the low pressure line strength corrections is therefore

5% ± 2%. If the laser was assumed to have a Gaussian rather than Lorentzian lineshape,

the line strength co ►-rection was found to be 3% t 2%, 2% lower than the correction for a

Lorentzian lineshape.

As previously mentioned, the strength corrections were determined from a set of ab-

sorption lines whose average peak absorption was 45%. If the observed excess line broad-

ening was due solely to the diode laser linewidth, the correction to thc- line strength would

depend upon the peak absorption of the line being measured. In this case, a laser line-

width that results in a 5% correction at an absorption of 45% should be used for the calcu-

lation of the strength corrections. If the excess broadening was due completely to pressure

broadening, the line strength correction is not a function of the line center absorption.
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However, since the correction curves shown in Fig. IV-2 for different laser linewidths are

almost parallel as the peak absorption is varied, it is not necessary to know the relative

amounts of laser and pressure broadening very accurately. Also, because the vast majority

of the strength measurements were made using lines with peak absorptions between 30%

and 70%, the variation with absorption of any one of the ,-possible laser correction curves

is at most only ±0.6%. We could therefore use a constant correction factor of 5% for the

line strengths.

Eight of the transitions measured here were blended doublets whose lines have a

knows, strength ratio of 3 to 1. The frequency separation of the two lines in each doublet

can be calculated from the v, band constants, which are discussed in Ch. V. With a knowl-

edge of the frequency separation and the relative strengths, the strength of the stronger

line, S 1 , can be determined from the relation

S1 = — 
7D	 In (l/To)	

(IV-15)
F În  a

PL

where To is the minimum transmission of the blended doublet. The factor a is given by

(
v -vl	 v-v2

a = e^
2
 \ 7 D 	 + - cam' 7D 	 (IV-16)

3

where v is the frequency at which the blended doublet profile has its peak absorption, and

v1 and v2 are the unblended line center frequencies of the stronger and weaker lines in the

doublet. The frequency differences v - v 1 and v - v2 were determined from a theoretical

calculation of the blended line profiles using a Doppler lineshape and the known strength

ratio and unblended frequency separation. All but one of the blended doublets were meas-

ured at low pressures. The doublet 1 '- , ,10 - 123,9 . 123,10 - 124,9 was measured at about

^.2 torr, but the error in using a Doppler instead of a Voigt lineshape in this calculation

should be small compared to other errors in the measurement of its line strength. S 1 for

each doublet was then increased by 5% to correct for the effects of the laser linewidth and

pressure. broadening. Two of the doublets were measured at line separations of less than
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0.00001 cm- 1 , while the other separations varied from 0.00015 cm- 1 to 0.00196 cm- 1 . Since

the line blending was very severe for all of these doublets, a always had a value close to 4/3.

The line strength measurements will now be summarized and the use of the direct

method in making these measurements discussed. The first step was to determine, if possi-

ble, the 100% absorption level from saturated absorption scans. Then the quantity Sp,

given in equation IV-5, was calculated for all the unblended lines with the assumption that

the line profile was Doppler. For all the lines measured at pressures less than 0.4 torr SD

was increased by 5^4 , to correct for the effects of pressure broadening and the laser line-

shape on the observed line profile. Three sources of error were considered in determining

the total error for these line strengths. The total error was taken to be the root mean

square of the 2% error in the combined correction for pressure broadening and the laser

lineshape, the 1% estimated error in the gas pressure measurement, and the standard devia-

tion of the individual strengths used to obtain an average line strength for each transition.

The uncertainty of ±0.Y7c in the gas cell pathlength was small enough to be neglected. The

average total error for these line strengths was 2.7^k.

Eighteen transitions were measured at pressures greater than 0.4 torr. Their strengths,

SD , were corrected for pressure broadening using equation IV-8. To calculate this correc-

tion one must know the pressure broadening coefficient, TL, for the line being measured.

Nine of these eighteen line strengths were corrected using the measured value of 70L

each line. The average value of T°. for these nine lines was used to calculate the correc-

tion for the other nine lines, which were recoiled at too low a pressure for their pressure

broadening coefficient to be measured. The resulting line strengths were then increased

another 3% for the effects of the laser lineshape on the line. profile. The 5% correction

used for the low pressure measurements was for both pressure broadening and for distor-

tion of the line profile by the laser so that increasing these eighteen lines by the full 5%

would result in a slight over-correction for pressure broadening. Therefore, an estimated

correction for the laser distortion alone of 3% was used, this being the lower bound of

full 5i^ ± 2% correction. An uncertainty of ±2% was also assigned to this 3% correction.
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In general, though, the total error in these higher pressure measurements was dominated

by the uncertainty in W . The errors in these eighteen strengths were determined the same

way as the errors in the low pressure strength measurements, except for an extra term

added to account for the error from the uncertainty in the values of 'Y O, used to calculate

the pressure broadening corrections. The average total error for these line strengths was

6.6%.

The averaged strengths and their experimental errors are listed in Table IV-5. Their

values have been normalized to 300K using the relation

Ei	 1	 1

T \ 5^2	
k (T	 T (1 -

S(To = 300K) - S(T) ( T	 e	 o	

e-hv/kTo)	

(IV- 17)
hv^kTTo	 (1 - e'	 )

which can be derived from equation 11-32 and the dependence of Q and N on temperature.

The partition function Q is primarily dependent on temperature through its rot:Ational

part, given in equation VI-2. N, the number of molecules/ cm 3-atm, is inversely propor-

tional to temperature. The listed strengths have also been divided by 0.9502 to account

for the naturally occurring abundance( 53 ) of the sulphur 32 isotope. The average total

error for all the line strengths in this table is 3.4%.

We have found the direct method of measuring line strengths to have an accuracy of

about 3%. However, the reiatively high accuracy of the direct method can only be re-

tained if the line broadening due to the diode laser is less then several percent. Also, the

gas pressure must be kept very low, or else the pressure broadening coefficient must be

measured for each transition if the highest possible accuracy is to be achieved. In other

line strength studies using diode lasers ( 46) low pressure linewidths 8 1/c to 40% greater

than the Doppler widths have been observed. To keep the error in the strength correction

for these li pes below 5% for example, their linewidths must be measured to an accuracy of

about 2%, which is difficult to achieve without a large number of measurements, especially

for heavy molecules with small Doppler widths. Also, the line strength correction factor

becomes more sensitive to the details of the actual laser lineshape and to the observed ab-

sorption level as the distortion of the line profile by the laser increases.
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Table IV-5

Measured Line Strengths in v 2 Band of H2S

Upper	 Lower Observed Experimental Calculated
Strength Error Frequency

J'(Ka', K c ')-1(Ka. K c ) (cm- I /atm-cm) 0) WF Factor (cm-1)	 (b)	 (c)

6(2,S)-S(!,4) i.62E-02 2.7 1.44	 v 1257.068
6(i,S)-S(2,4) 5.44E-03 3.1 1.4S 1257.010
St4,i)-S(1,4) 3.11E-04 3.9 4.71 1256.972	 X
5(2,3)-4(3,2) 1.13E-02 3.0 1.84 1256.899
9(4,6)-9(3,7) 5.41E-03 2.6 3.95 1256.783
S(3,2)-4(4,1) 2.34E-03 2.6 1.81 1256.764
9(3,6)-9(2,7) 4.31E-03 2.7 4.01 1256.729
4(3,2)-3(2,1) 1.85E-02 2.S 2.23 1253.468
8(3,6)-8(2,7) 7.50E-03 2.3 4.43 1252.874
8(2,6)-B(i,7) 2.45E-03 2.4 4.34 1252.862
8(4,S)-8(3,6) 6.56E-03 2.S 3.72 1246.076
8(3,5)-8(2,6) 2.29E-03 3.1 3.89 124S.843

D 6(!,6)-S(0,S) 1.66E-02 2.7 0.96 1243.617
* 6(0,6)-S(i,S) 5.54E-03 2.7 0.96 1243.616

7(3,5)-7(2,6) 3.09E-03 2.3 3.64 1242.SS7
7(2,S)-7(1,6) 9.11E-03 2.6 3.57 1242.500
4(1,3)-3(2,2) 5.03E-03 2.4 i.S2 1236.727
8(4,4)-8(3,S) 1.70E-03 3.4 2.92 1236.650
8(7,2)-8(6,3) 2.92E-03 2.8 2.61 1235.705
8(6,3)-8(5,4) 4.38E-03 2.6 2.64 1234.613
S(!,5)-4(0,4) 6.80E-03 2.4 1.14 1234.SSS
S(0,S)-4(1,4) 2.04E-02 2.4 1.14 1234.579
7(S,3)-7(4,4) 2.44E-03 2.8 2.71 1229.354
S(2,4)-S(i,5) 3.53E-03 2.6 3.14 1229.333
S(1,4)-S(O,S) 1.07E-02 2.4 3.18 1229.273
4(1,4)-3(0,3) 1.91E-02 2.8 1.13 1225.443
4(0,4)-3(1,3) 5.40E-03 3.0 1.14 1225.395
6(4,3)-6(3,4) 1.08E-02 2.4 2.65 122S.i6i
6(6,i)-6(S,2) 5.06E-03 3.6 2.45 1224.333
3(1,2)-2(2,1) 7.84E-03 2.5 1.46 1224.279
S(2,3)-S(1,4) 1.25E-02 3.2 2.49 1220.649
6(6,0)-6(S,i) 1.58E-03 2.4 2.22 1220.589
2(2,1)-1(1,0) 1.38E-02 3.6 1.46 1219.949
4(1,3)-4(0,4) 3.65E-03 2.4 2.59 1218.947
S(S,i)-S(4,2) 2.56E-03 2.4 2.26 1216.60
S(4,2)-5(3,3) 4.17E-03 3.3 2.38 1216.437
3(1,3)-2(0,2) 5.68E-03 2.6 1.23 1216.297
3(0,3)-2(1,2) 1.59E-02 2.9 1.16 12lS.96S
7(5,2)-7(4,3) 7.30E-03 2.6 1.96 1213.387
4(3,2)-4(2,3) 1.37E-02 3.0 2.24 1212.4iB
S(S,O)-S(4,!) 8.04E-03 2.7 2.11 1211.190
6(S,1)-6(4,2) 3.25E-03 2.S 1.94 1209.599	 X
3(2,2)-3(1,3) 3.76E-03 3.0 2.28 1209.523	 X
S(3,2)-S(2,3) 1.40E-02 2.7 2.08 1209.082
3(1,2)-3(0,3) i.iSE-02 2.3 2.25 t208.016
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Table IV-5 (Continued)

Upper	 Lower

1'(Ka', Kc')-1(Ka, Kc)

Observed
Strength

(cm- 1 /atm-cm)

Experimental
Error
(%) (a)F Factor

Calculated
Frequency

(cm-1) (b)	 (c)

2(1,2)-1(0,1) 1.2SE-02 2.3 1.29 1207.449
3(3,1)-3(2,2) 3.SOE-03 3.3 1.84 1205.043
4(4,0)-4(3,1) 3.79E-03 2.4 1.78 1202.825
4(3,1)-4(2,2) 5.86E-03 2.3 1.66 1199.S30
2(1,1)-2(0,2) 3.76E-03 2.4 1.68 1196.822
2(2,0)-2(1,1) 4.9SE-03 2.S 1.31 1191.S46
3(2,1)-3(3,0) SASE-03 2.-- 0.S6 1175.161
S(3,2)-5(4,1) 3.69E-03 2.6 0.47 117S.088
1(0,1)-2(1,2) 6.40E-03 2.3 0.78 11SB.169
2(1,2)-3(0,3) 9.OSE-03 2.6 0.81 1149.771
2(0,2)-3(1,3) 2.91E-03 2.S 0.78 1149.403
4(0,4)-4(1,3) 7.12E-OS 4.4 0.063 1148.720 X
4(1,4)-4(2,3) 2.01E-04 5.0 0.059 1148.449 X
1(1,0)-2(2,1) 3.06E-03 2.5 0.41 1147.359
2(2,1)-3(1,2) 2.39E-03 2.6 0.S6 1144.268
3(1,3)-4(0,4) 3.42E-03 2.S 0.80 1140.141
3(0,3)-4(1,4) 1.02E-02 2.4 0.80 1140.086
2(1,1)-3(2,2) 9.28E-04 2.S 0.41 1138.446
3(2,2)-4(1,3) 1.27E-03 2.4 0.53 1132.847
4(1,4)-S(0,S) 1.02E-02 2.3 0.80 1130.S24
4(0,4)-S(1,S) 3.39E-03 2.4 0.80 1130.517
S(S,0)-6(4,3) 1.32E-04 4.2 0.87 1129.162 X	 X
9(2,7)-9(3,6) 1.22E-04 4.8 0.17 1128.570 X	 X
9(3,7)-9(4,6) 4.34E-OS 8.3 0.18 1128.531 X	 X
6(0,6)-6(i,S) 3.76E-OS 9.4 0.062 1128.366 X	 X
6(1,6)-6(2,S) 1.04E-04 9.1 O.OS7 1128.359 X	 X
2(2,0)-3(3,1) 4.32E-04 5.S 0.16 1127.345 X	 X
4(2,3)-S(1,4) 3.95E-03 2.6 O.S1 1123.238
8(1,7)-8(2,6) ®.S2E-OS 10.2 0.22 1123.085 X
8(2,7)-8(3,6) 2.SiE-04 i0.1 0.22 1123.077 X
4(i,3)-S(2,4) 1.29E-03 2.4 0.50 1122.854

* S(t,S)-6(0,6) 3.06E-03 2.S 0.80 1120.813
D S(0,5)-6(1,6) 9.19E-03 2.S 0.80 1120.812

4(4,1)-5(3,2) 3.42E-04 6.3 0.39 112O.S91 X
10(2,8)-10(3,7) 6.08E-0S 6.9 OAS 1119.500 X	 X
10(3,8)-10(4,7) 1.72E-04 6.6 0.43 1119.491 X	 X

5(2,4)-6(1,S) 1.19E-03 2.6 0.51 1114.083
S(1,4)-612,5? 3.63E-03 2.4 0.51 1114.015

D 6(1,6)-7(0,7) 7.94E-03 2.9 0.82 1110.992
* 6(0,6)-7(1,7) 2.6SE-03 2.9 0.82 1110.992

S(2,3)-6(3,4) 1.OSL-03 2.6 0.24 1105.720
6(2,S)-7(1,6) 3.01E-03 2.7 0.51 1104.93S
6(1,S)-7(2,6) 9.92E-04 2.8 0.51 1104.923
S(4,2)-6(3,3) 1.1SE-04 3.4 0.18 1104.316 X	 X

* 12(2,10)-12(3,9) S.20E-OS 9.6 1.50 1101.248 X	 X
D 12(3,10)-12(4,9) i.S6E-04 9.6 1.S0 1101.248 X	 X

D 7(0,7)-8(1,8) 6.02E-03 2.7 0.80 1101.062
* 7(t,7)-8(0,8) 2.01E-03 2.^ 0.80 1101.062
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Table IV-5 (Continued)

Upper	 Lower Observed Experimental aiculated
Strength Error Frequency

1'(Ka', Kc ` )-1(Ka , Kc ) (cm- 1 /atm-cm) M (a)F Factor (cm-1) (b)	 (c)

6(3,4)-7(2,S) 1.01E-03 3.2 0.28 1098.270 X	 X
* 7(2,6) -8(1,7) 7.85E-04 2.3 0.S3 i09S.699
D 7(1,6)-8(2,7) 2.35E-03 2.3 O.S3 i09S.697
* 8(0,8) -9(1,9) 1.46E-03 2.4 0.80 1091.023
D 8(1,8) -9(0,9) 4.39E-03 2.4 O.K 1091.023

7(3,S)-8(2,6) 2.60E-04 3.7 0.29 1089.624 X
7(2,5) -8(3,6) 7.61E-04 2.4 0.28 1089.557 X

D 8(2,7) -9(1,8) 1.67E-03 2.6 0.52 1086.363
* 8(1,7) -9(2,8) 5.55E-04 2.6 O.S2 1086.363

7(3,4)-8(4,S) 1.74E-04 S.0 0.10 1082.034 X	 X

(a)Observed line strength divided by calculated rigid rotor line strength - see Ch. V1.
(b)An X is placed in this column if a saturated absorption scan was not available to deter-

mine the 100',`1 absorption level for the strength measurement.
(c)An X is placed in this column if the strength was measured at a gas pressure greater than

0.4 torr.
U-Denotes stronger line in blended doublet.
.- Denotes weaker line in blended doublet. This line strength is obtained by di . iding the

stronger line strength by three.
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In conclusion, this work has shown the feasibility of using diode lasers for wide rang-

ing (a 150 cm- 1 ) studies of infrared vibrational bands. Relative line frequencies were meas-

ured to an accuracy of about t 0.0004 cm- 1 with the diode laser spectrometer. Any sys-

tematic errors in the frequency measurements were shown to be very small. It was

demonstrated that line strengths can be measured to an accuracy of about 3% using the

direct method, if the diode laser linewidth is narrow enough. Corrections `o the measured

line strengths to account for the distortion of the line profile by the diode laser were cal-

culated and the importance of using the proper laser lineshape to determine these correc-

tions was shown.



CHAPTER V

ROTATIONAL ANALYSIS OF THE v 2 BAND OF H2S

V. A. Rotational Structure of the v2 Band and Line Assignments

In this chapter, a least-squares analysis of the observed v 2 band frequencies using

Watson's AS and NS reduced Hamiltonians will be presented. A large part of this discus-

sion will center on the characteristics of the AS Hamiltonian in the III r representation,

which was found to fit the transition frequencies about 100 times worse than the other

reduced Hamiltonians used in this work. First, the line assignments and some of the gen-

eral features of the v2 band of H2 S will be discussed.

In order to assign the observed transitions a trial spectrum of the v 2 band was calcu-

lated with a computer program written by Maki( 54), which uses Watson's AS reduced

Hamiltonian in the I r representation. This program also provides relative rigid rotor line

strengths as well as the transition frequencies. Initial values for the band center and for

A. B, and C in the upper vibrational state were taken from the work of Allen and Plyler,(2)

who performed the only previous rotational analysis of this band. They were able to

assign 55 transitions from 1080cm- 1 to 1257cm- 1 from a spectrum recorded with a resolu-

tion of 0.3cm- 1 . The ground state constants for this trial calculation were obtained from a

least-squares fit of the H 2S pure rotational frequencies 16) to the AS-I r Hamiltonian.

Terms up to sixth order in J were included in the ground state Hamiltonian. Although a

better fit of the pure rotationai frequencies -ould be obtained if higher order terms are

included in the Hamiltonian, these terms are not required for the purpose of making line

assignments.

With this first trial calculation about 20 line_ in the R branch spectrum taken with the

NBS grating spectrometer could be positively assigned. The measured frequencies for these

20 transitions were then fit to the AS-I r Hamiltonian to get approximate upper state values

for A. B, C and the five quartic constants. which were in turn used in a second trial
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calculation of the v2 band. This calculated spectrum was accurate enough to allow the

rest of the R branch grating spectrum to be assigned. Another fit to the AS-I r Hamilton-

ian was then made using all of the lines assigned in the R branch grating spectrum so to

determine as many upper state constants as possible. These constants were used to calcu-

late one last trial spectrum of the v 2 band in order to assign the H 2S lines observed in the

spectra taken with the diode laser spectrometer. Since the J values of the transitions ob-

served with the diode laser spectrometer were no larger than those ir. the R branch grating

spectrum, this calculated spectrum was sufficiently accurate for the assignment of all the

lines in the diode laser spectra.

Although the spectrum of 3 highly asymmetric rotor appears to be a somewhat random

collection of lines at first glance, there are some regularities in the spectrum which help with

line assignments. A number of sub-bands with fairly regularly space lines were identified in

the spectrum of H 2S. In the R and QRP branches, the six sub-bands

	

(J)1 , J-1 - (J)p,J
	

(J)2, J -1 - (J)1,J,

	

(J)1 , J - (J - 1)0,J -1
	

(J)p, J - (J - 1)),J-1,

	

(J)2,J-1 - 0 - I)I,J -2, 	 and	 (J)I ,J-. l - (J - 1)2,J_1.

were observed with 1 usually running from one to rout nine. As J increases, the two sub-

bands shown together on each line above converge. For intermediate values of J, this gives

rise to doublets in the spectrum from the two converging sub-bands. The assignment of the

lines in these doublets to the proper sub-band is easy because the spin statistics of H 2S require

the ratio of their strengths to be equal to either 3 to I or I to 3, depending on the value

of J. By J = 9 some of these converging sub-bands are separated by less than 0.0001 cm-I

so that only a single line is observed in the spectrum. Detailed discussions of the general

structure of asymmetric rotor vibration bands can be found in the book by Allen and

Cross .( 19)

A stick spectrum of only those transitions whose frequencies were measured in this

work is showii in Fig. V-1. Below the plot of these transitions is a calculated stick

spectrum for the v 2 band. In theca plots the length of the stick is proportional to
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the relative rigid rotor strength for that transition. This spectrum was calculated using the

AS-I r Hamiltonian to sixth order in angular momentum. The rotational constants for this

Hamiltonian were determined from a least -squares tit of the " hand and microwave pure

rotational frequencies of H,S. Though higher order terms in the ground state Hamiltonian

are required to fit the microwave rotational data to its experimental accuracy, any changes

to the stick spectrum from these terms would not be visible. These least-squares tits will

he discussed in detail later in this chapter. In Fig. V-'- the calculated spectrum of v^ is

again shown, but with the P, Q. and R branch lines displaced vertically from each other.

In this figure the M i j - (J - I )() . j -1 and (J)p,j - (J - 1) 1,j-I sub-hands are indicated to

illustrate two converging sub-hands. By 1 = h these two sub-bands are sepa.ated by only

0.0008cnr- 1 , less than the Doppler widths of the lines. The frequency difference between

adjacent tines in each of these s-ib-hands is about 9.1 cnt- 1 , and is equal to the line separa-

tions in the R(1, K = J) series of an oblate symmetric top molecule with AHP = BHA,

given by 2(BH2S - C142S) = 9.1 cm- 1 . The gap -* it 	 calculated spectrum at the band

origin ( PO ^ 11132.6cnr 1 ) and the relatively spread out Q branch are the two main features

that characterise this band as a type B asymmetric rotor band. When viewing the stick

spectra in Fig. V-1 and V	 it should be remembered that the line strengths shown are

for a rigid rotor while in the experimentally observed spectrum the R branch is much

stronger than the P branch.

As discussed in Chapter IV, the frequencies of 49 R and Q br: nch lines were meas-

tired with the NBS grating spectrometer and 77 P, Q. and R branch lines with the diode

laser spectrometer. The maximum values of J, Ka, and h e involved in these transitions

were 10, 7, and l) respectively. These line frequencies w.re fit to the AS and NS forms

of Watson'% rotational Hamiltonian in loth the I r and Ill r representations using a computer

program written by Kirshner.(21) Conventionally the I r (or I Q ) representation is used for a

prolate asymmetric top (-1 < K < 0) and the Ill r (or 110) representation for an oblate

asymmetric top (0 < K < I ). The representation is usually chosen in this way because as K

approaches -1 the off-diagonal matrix elements of the rigid rotor Hamiltonian become
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very small for the I r representation, and as K approaches + l they become very small for

the Iil r representation. Since K ft 0.5 for H2S, the two most recent studies of H 2S rota-

tional spectra used either the III r( 17) or the III Q( 16) representations. For a molecule as

asymmetric as HS, though, the choice of representation would appear 'n be somewhat

arbitrary. Since a program was available that could fit both reduced Hatniltonians in

either representation, fits were made using all four of the Hamiltonian forii} 	 AS -!r,

AS-111 r. NS-1r, and NS-illr.

To predict the v, band transition frequencies one needs both the ground and upper

vibrational state Hamiltonian constants. In this study the ground state constants  were de-

termined from the very accurate ( :z^;0.1 MHz) pure rotational transition frequencies reported

by Helminger et al.( i6 ) and from the ground state combination differences (GSCD) ob-

tained from the v2 band transitions. A ground state combination difference is the magni-

tude of the frequency difference between two lines in a vibrational band with common

upper states. ; h is frequency difference is equivalent to the frequency of a pure rotational

transition between the ground state levels of these two lines. The pure rotational micro-

wave transitions had maximum values of 1, Ka, 'uid K  of 9, 7, and 7 respectively. Best fit

ground state constants were determined for all four Hamiltonian forms. These ground

state constants were then used to calculate the lower state energy levels of the v, band

transitions in order to obtain the upper state energy levels required for the least-squares

fit of the tipper state Hamiltonian constants.

V. B. Least-Squares Fitting of the Rotational Hamiltonian

Least -squares fits of the rotational Hamiltonian to the transition frequencies were per-

formed with a computer program written by Kirschner( 21 ) and extended by Hillman .05) The

methods used in this program are discussed in detail by Kirshner and will only be summarized

here, stressing those points important for the interpretation of our results.

We wish to find the set of statistically significant constants, C j , that can most accurately

predict the mcasurM frequencies from the Hamiltonian H R _ Ci Opt , where Op' is an
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	 angular momentum operator. Since the calculated frequencies, p*, are not linear functions

of the C i, an iterative approach is used in the least-squares fitting routine. This is done by

making initial guesses for the C i and then finding the set of corrections, SC i , that best solve

the set of linear equations

yi = E xki SCk 	 (V-1)
i

where yi = vi - v^ ^C , xb = W"C/ack , and pobs is the observed frequency of the ith transi-

tion. In this equation i runs over the N transitions and k over the M Hamiltonian constants.

The best SCi , in a least-squares sense, are those that minimize the goodness of fit expression,

X2 = iE i wi(yi - k xki SCk )2 	(V-2)

where wi = 1 /v? is the weight of the i th transition, and of is the experimental error assigned

to that transition. When the best SCi are found, the original values of the Ci are corrected and

another set of corrections to these new Ci are found. This process is continued until the S Ci

satisfy the relation 15 Ci  1 4 10-2 v(Ci), where v(C i) is the standard deviation for the constant

Ci.

For a vibrational transition where the ground state constants are kept fixed during the

fit we have, for example,

a p s̀`i
NU = a

	

	
= (i IOpk Ii)	

(V-3)k

where I i ) is the ith upper state asymmetric top eigenfunction which satisfies

EUPPer = (i I HR I') = E Ck (i I OP  I i) .	 (V-4)
k

For a pure rotational transition we have

a Vc C

xki	 aC	
= ( i I Opk I i) - ( i' IOpk l i , )	 (V-5)

k

where the upper state energy is

EYPPer = ( i I H R I i )	 (V-6)
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and the lower state energy is

Eiower = (i I HR I i' ).	 (V-7)

To find the set of SCi that minimize X2 one usually generates the normal equations from
3

the condition aye /a(SCi) = 0. The normal equations are

Y = A SC	 (V-8)

where

Yk=Ewiyixik
i

and

Aki = E wi xjk xii .
i

The corrections SCi are found by invert.'ag the normal matrix A to give

SC = A- 1 Y.	 (V-9)

In practice, difficulties can arise in the inversion of A when a large number of SC i are

being determined, because the determinant of A can become very small. This can be due to

near linear dependencies in the independent variables (the expectation values of the angular

momentum operators) or from a lack of sufficient experimental data to determine some of

the SCi independently of the others. Even in cases where near linear dependencies do not

exist round-off errors incurred when inverting the normal matrix can be significant.

To overcome this difficulty Kirshner used an algorithm called ORTH(X 56) that avoids

the need for matrix inversions in the least squares calculation. We originally wanted to find

the SCi that best solve the set of equations V-1, which can be written

Y = XSC,	 (V-10)

but problems in the inversion of the normal matrix A arise from near linear dependences in

the columns of X, or between the vectors xj . To treat this problem, the set of M vectors xi

can be transformed to an orthonormal set of vectors b using the Gram-Schmidt orthono ►mal-

ization procedure. The transformation of X is given by E = XD. We now must solve the set

of equations
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M
GMDT = 7T (GFi/ENFi)2.

i=1
(V-14)

Z = e SC'	 (V-11)

to get

SC' = ET yam ,	 (V-1 2)

which can be written this way since they are orthonormal and therefore E T = E-1 . The

original corrections, SC, can easily be shown to be given by

SC = AET y.	 (V-13)

The SC' obtained tl is way are the best least-squares estimates for the SC'. Because the Ei

vectors are orthonormal, the SCi are their Fourier coefficients, which, it can be shown (56)

are identical to the best least-squares estimates for the SC!. Therefore a matrix inversion is

avoided and only the Gram-Schmidt orthonormalization matrix A and the vectors e i need be

calculated. The weighting of the yi can be accomplished by scaling the yi and x1d by

A natural product of the orthonormalization routine in ORTHO is information on the

orthogonality of the x i vectors, which indicates how independently the SCi can be deter-

mined from the measured transition frequencies. The quantity found by ORTHO is the ratio

GFi /ENFi where ENF i is the magnitude of the vector x i and GFi , called the Gram Factor of

the orthonormal vector !j , is the magnitude of the component of x; orthogonal to x  , x2,

In our case the vector x i is associated with the constant X, -, with Y, x 3 with

Z, xq with OJ or Dj , and so on in the order the constants are given i p equations 11-24 for the

AS form or 11-27 for the NS form. A small GFi/ENFi ratio indicates a near linear dependence

of x i on the previous i - 1 vectors while a GFi /ENFi ratio close to one means that x i is nearly

linearly independent from the previous vectors. The over-all degree of linear dependence in

the fit is given by the Gram Determinant,

Quantities determined for each fit were the best fit values for the Hamiltonian coeffi-

cients, Ci ; the standard deviation of the coefficients, a(Ci ); the correlation matrix, pik; the
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calculated frequencies, vlalc; the frequency residuals, vobs _vFaIc; the standard deviation of the

residuals, OR ; and the weighted standard deviation of the fit, a,.. The standard deviation o"

the residuals, hereafter often referred to as the standard deviation of the fit, is given by

1	 N	 1/2

O	
E (vc_ valc	 obs)2	 (V-15)

R - ( (N - M) i=1

O F , which will always be referred to as the weighted standard deviation of the fit, is given by

1/2

I	 N	 obs _ calc
OF -	 E wi(vi	 v1 )2	 (V-16)

(N - M) i=1

and for a perfect fit should equal one. For more rigorous definitions of the above quantities

see KirshneA 21 ) or the book by Hamilton (57)

In order to obtain the best least-squares fit for a given data set and Hamiltonian, the set

of constants (and their associated operators) included in the Hamiltonian were varied until all

statistically significant constants (Ci > 2o(Ci)) were used, and hopefully the standard devia-

tion of the residuals became approximately equal to the average experimental error. Gener-

ally, quite a number of fits (> 10), using different combinations of constants in the Hamil-

tonian, had to be made until it was clear that the standard deviation of the residuals could

not be lowered by adding another term in the Hamiltonian that would in turn be statistically

significant.

V. C. Results of Least-Squares Fits for the Rotational Constants of the v2 Band

The standard deviations of the residuals for the best ground and upper state fits are

given in Table V-1. Also included in this table are the standard deviations for fits that only

included terms in the Hamiltonian up to second, fourth, and sixth power in angular momen-

tum. The fitting program used here contains all Hamiltonian terms up to eighth power for

the AS form but does not contain the off-diagonal eighth power terms for the NS Hamil-

tonian. The program was not modified to include the eighth order off diagonal terms in the

NS Hamiltonian because good fits of the data were obtained with the AS-I r Hamiltonian.

No eighth order terms were required for any of the upper state fits.
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In Tables V•-2 through V-9 the best fit molecular constants for all four Hamiltonian

forms, for both the ground state and the first excited state of the v 2 vibration are given. The

microwave transitions were weighted using the uncertainties in their frequencies given by Hel-

minger et. al (58) The weights for the GSCD and the infrared transitions were determined from

the experimental errors given in Table IV-4 for the infrared frequencies. The errors quoted for

the molecular constants equal twice their standard deviations, which corresponds to 95% confi-

dence intervals. From Table V-1 we see that fits with standard deviations comparable to the

experimental errors were obtained for the ground state with the AS-I r Hamiltonian and for

the upper vibrational state with the AS-I r , NS-I r , and NS-IIIr Hamiltonians. The weighted

standard deviations of the fit for these three upper state Hamiltonian forms were all close to

one. It is not surprising that the microwave frequencies could not be fit to the experimental

accuracy of about 0.2 MHz with the NS-I r and NS-III r Hamiltonian forms since they did not

contain any eighth order off-diagonal terms. These terms had to be included in the AS -11

Hamiltonian to get a fit comparable to the accuracy of the data. If the Hamiltonian is trun-

cated to sixth order, the NS-I F and NS-III r forms fit the microwave data as well as the AS-I1

form, so there appears to be no fundamental inaccuracy in the NS form Hamiltonians.

It was very surprising though, that the fits using the AS-111 r form had such large stand-

and deviations. When all four forms are truncated to fourth power, the standard deviation of

the residuals is about 13 times greater for the ground state AS-III r Hamiltonian and about 21

times greater for the upper state AS-111 1 Hamiltonian than for the other three ground and

upper state Hamiltonian forms. When the Hamiltonians are extended to sixth power the

standard deviation of the AS-111 1 form fit is greater than the standard deviations for the other

three forms by a factor of 68 for the ground state and 94 for the upper state. The best eighth

order ground state fit using the AS-111 1 form has a standard deviation about 100 times larger

than the experimental accuracy of the microwave data. For the upper state fit, where only

terms up to sixth order were found to be statistically significant, the standard deviation of

AS-III r form fit was again about 100 times larger than the accuracy of the infrared frequen-

cies. As would be expected, the standard deviations of the AS-111 1 Hamiltonian constants
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Table V-2

Molecular Constants for Ground State, AS Form, Ir ,Representation

a 

Constant (MHz) 2a (MHz)

AAS 310590.038 0.032

BAS 270357.131 0.038

CAS 141825.442 0.030

A'J
19.5708 0.0025

AJK -68.3542 0.0089

AK 111.0269 0.0086

SJ 8.8627 0.0015

S K -3.9769 0.0052

Hi x 103 8.038 0.061

HJK rp -45.17 0.25

HK J pt 35.55 0.84

HK
pr 43.37 0.88

hi " -4.159 0.051

hJK -14.71 0.13

hK 36.96 0.34

LJK x 106 71 10

LK K J	

pf

-108 13

RJ -3.29 C'-N

RJK 35.35 0.83

RKJ -93.2 4.1

RK 31.2 2.1

Standard Deviation of Microwave Transitions = 0.15 MHz
Standard Deviation of GSCD = 84 MHz

,.
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Table V-3

Molecular Constants for Ground State, AS Form, 111 r Representation

Constant (MHz) 20 (MHz)

AAS 310192.7 2.4
BAS 270875.0 2.2
CAS 141706.2 2.1

Aj 50.51 0.30

AM -160.79 0.30

AK 113.07 0.41

6 1 6.056 0.024

6 K -256.63 0.40

Hi x 103 99 13

HJK -351 24

HK1 " 675 48

HK
it

30

hi 4.31 0.94

h' K -170 16

hK -2003 60

Li	x 106 -1558 182

Ll]K	
If

1260 132

Ri	
If

8.0

'KJ	

if
1600

RK
	

of
2400

Standard Deviation of Microwave Transitions = 14.6 MHz
Standard Deviation of GSCD = 2572 MHz

I

i
I ]

^i

1
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Table V-4

Molecular Constants for Ground State, NS Form, I r Representation

Constant (MHz)	 20 (MHz)

AN S 310583.521 0.084

•	 BN S 270367.70 0.12
OS 141820.05 0.077

•	 DJ 20.8654 0.0073

DJK -76.239 0.011

DK 117.717 0.016

6 1 -8.8658 0.0044

6 2 0.6433 0.0013

H'J x 103 10.33 0.13

H'JK " -90.01 0.33

H'KJ 154.0 1.1

H'K
of -33.1 1.4

h l 2.83 0.13

h2 " -1.014 0.032

h3 " 1.187 0.026

L'J x 106 -6.9 2.1

L` JJK 62.9 5.9

L'JK
to -196 22

L'KKJ 282 21

L'K -175.0 9.1

Standard Deviation of Microwave Transitions = 0 49 MHz

Standard Deviation of GSCD = 84 MHz
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*5

Molecular Constant) fogQrgund Stats.1BEOft, UP	 tion

Constant (MHz) Ur (MHz)

ANS 310667.57 3$

BNS 270331.55 0.42
OS 441789.59 0."

Di 33.130 0A3I

D1K -50.1 ,0.021

DK 27.831 0.032

6 1 4.2617 0.0049

62 -8.3348 0.0018

)3'Ix IV 13.92 0.58

WX " -48.62 OA6

HIM It 57.9 2.S

D`K " -23.3 L0

h i 5.185 0

h2 6..819 0.066

113 0.928 0.010

Standard Deviation of Mme Tralaftaft * 2 AS JJM

Standard Deviatim of G" = NEz
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Table V--6

Molecular Constants for tlpp,:r State of P .) Band, AS Form,
Ir Representation

L	 (

Constant (CIII-1)

AAS 10.72212

*AS 4.22436
(,AS 4.668966

A,	 X 1 ()4 7.550

-27.35

45.56

3.457

-0.144

0. 37 7

-1.90

1.10

lia 2.30

hi 0.158

hit

hk 1.756

V()	 118 1 . i7()Q()

8hm*Iw,d Deviation of Residuals = 0.0018 cm-1.

2a (cm-1

0.00022

0.00014

0. O(X)O(-. 2

0.033

0.14

0.11)

0.017

0. (161

0.034

0.18

0.34

0.-,Io

0.016

0.082

0.080

0.00043
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Table V-7

Molec!dar Constants for Upper State of v, Band, AS Form, Ill'

Representation

Constant (cm- t ) 20 (cm -I )

AAS 10.696 0.012

BAS 9.268 0.011

CAS 4.6445 0.0090

Aij x 104 2.`..9 3.2

A!K -89 11

1AK 49.6 8.2

"61
" 0

6 K -136 24

H i x 106 6.9 2.1

M HJK " 0

HKJ -119 21

H K 97 21

• hj 0 -

hJ K -76 21

hK Pt -171 41

PO 1182.583 0.057

'These constants were not statistically significant when included in the tit
and were set equal to zero in the fit for the constants given above.

Standard Deviation of Residuals = 0.170 cm-1.

5,
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Table V-8

Molecular Constants for Upper State of v,, Band, NS Form, l r Representation

Constant (cm - 1) 20 (cm -1 )

ANS 10.72208 0.00019

BNS 9.22444 0.00013
OS 4.668764 0.000062

DJ	x 104 7.633 0.030

DJK x -27.96 0.17

DK x 46.17 0.20
6 1	x -3.480 0.016
S,	 x 0.0524 0.0084

H J	 x 106 0.368 0.030

HjK x	 " -3.35 0.22
HK J x 5.67 0.42
HK x -0.62 0.34
h 1	 x 0.138 0.015
h,	 x -0.028 0.011

h 3	x 0.0539 0.0020
vp 1 18 2.5 7703 0.00042

I#

Standard Deviation of Residuals = 0.0018 cm-1
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Table V-9

Molecular Constants for Upper State of v 2 Band, NS Form, IIIr Representation

Constant (cm-1 ) 20 (cm 1)

ANS 10.72538 0.00019
BNS 9.22311 0.00013
OS 4.667511 0.000058

DJ	x 104 13.594 0.036

DJK x " —25.805 0.072
DK x " 12.814 0.058
6 1	 x id —2.842 0.040
62	x Ij —3.292 0.015

HJ	 x 106 0.725 0.040

H1K x " -2.65 0.10
HK J x 3.26 0.12
HK x -1.345 0.048
h 1	x 0.291 0.052
h2	x 0.326 0.028
h3	x  0.0477 0.0056

vp 1182.57694 0.00041

Standard Deviation of Residuals = 0.0018 cm"1
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are much larger than those for the other Hamiltonians. Also, the off-diagonal

stants and all higher order -onstants in the AS-111 1 form are, on the average, larger than the

corresponding constants in the other forms. These AS—III 1 fits are so poor that errors or

numerical problems in the fitting program were at first suspected to be responsible for these

results. The inability to obtain a good upper state fit is also accentuated by using such poor

ground state constants to calculate the lower energy levels of the vibrational transitions.

Later we will show that these results can be related directly to the unitary transformation used

to obtain the AS—II11 Hamiltonian. Before discussing causes for the poor AS-111 1 form fits

some observations on the fitting results in general will be made.

The rigid rotor Hamiltonian was, of course, unable to fit the data even close to the ex-

perimental accuracy because of the large centrifugal distortion corrections required for the

higher J transitions. The rigid rotor fits were identical for all four Hamiltonian forms, as they

should be, since Hngid is symmetric in X. Y. and Z and has the same form for hoth the AS and

NS reduced Hamiltonians. When centrifugal distortion terms are included in H R the accuracy

of the fits varies among the Hamiltonian forms. For a given reduction, variations with repre-

sentation, are expected since the set of operators in each order is not symmetric in X, Y, and

Z. Also, the reduction of the Hamiltonian transforms varying amounts of the original coeffi-

cients to the new higher order coefficit`nts depending upon the value of sl 11 • whose value in

turn depends, upon both the representation and the particular reduction ,being used. There-

fore, if the Hamiltonian is truncated to a given power of angular momentum, it will not fit the

data identically for different reductions and representations. If the Hamiltonian included

enough higher order terms, the fits for different Hamiltonian forms would be identical

since all the effects of lower order coefficients transformed to higher order coefficients

would then be contained in the calculation, In our case, excopt for the ASAI .Ir form, the

standard deviations of the fits for different forms with the Hamiltonian truncated to a

given order are about the same. This indicates that the effects of the unitary transformations

performed oil 	 original Hamiltonian for these three reduced forms are very similar.
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The ground state Hamiltomans were fit using both the microwave transitions alone and

this data combined with the ground state combination differences from the v, band. The

GSCD had very little effect on the eighth order tits, usually changing constants obtained from

a fit to only the microwave data by less than their standard deviations. This was due to the

low weights assigned to the GSCD compared to the microwave transitions and because the 1,

Kai and Kc values of the GSCD were about the same as those for the microwave transitions.

In fact, the 51 GSCD derived from the v, band contained only eleven energy levels not al-

ready present in the microwave data. The microwave pure rotational frequencies are about

500 times more accurate than the GSCD and were therefore weighted a factor of (500)=

2.5 X 10^ times heavier than the GSCD. As seen in Table V-1 the standard deviations of the

residuals for the GSCD are about equal to their experimental uncertainty, except for the

AS-lil y Hamiltonian. This means that the microwave measurements and the w band GSCD

are consistent with each other lo at least the accuracy of the GSCD.

The weighted standard deviations of the fit are greater than one, as expected, for all the

best ground state fits except the AS-i r form. When both the microwave transitions and the

GSCD are used in the fit of this Hamiltonian form the weighted standard deviation of the lit

is 0.84. This figure is somewhat misleading since it is dominated by the residuals of the GSCD,

which contribute very little to the determination of the ground state constants. If a fit is per-

formed with the AS-1 1 form using only the microwave transitions the weighted standard devi-

ation of the tit is reduced to 0.45. Therefore, the fit is "better" than it really should be con-

sidering the quality of the data. Since the microwave data set contains only 39 transitions,

which are used to determine 21 statistically significant rotational constants, there are only

N - M = 18 degrees of freedom in tha., fit. ]'his small weighted standard deviation of the fit

coupled with so few degrees of freedom suggests that the tit for the higher order constants

is somewhat paramet ric in nature. This is probably also true when the GSCD are added to

the data set, since they are weighted so lightly and affect the constants so little.

Still, including the higher order statistically significant constants in the tit is believed to

be reasonable since they provide corrections to the energy levels that cannot be handled by
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the lower order terms in the Hamiltonian. if these corrections are left out of the Hamiltonian,

the fitting process will minimize the standard deviation by trying to fit the higher order be-

havior of the Hamiltonian with lower order terms. This will 'lead to less accurate lower order

constants than if the higher order behavior of the Hamiltonian is handled by these higher

order constants, even if the result is a parametric type fit yielding values for the higher order

constants that do not have physical significance. These comments should be kept in mind

when interpreting the standard deviations of the constants obtained in these fits. To improve

the molecular constants given here any further, transitions with higher values of J and Ka

must be included in the fits.

The correlation tables for the ground and upper state fits are given in Appendix B. As

is usually the case for fits to a large number of Hamiltonian constants, there are a number of

high correlations between constants. The best ground state fit, which used the AS-1 1 Hamil-

tonian, had a total of 15 correlations with I p ig I> 0.9, ranging in magnitude from 0.902 to

0.986, with an average value of 0.94. There were fewer high correlations among the

upper state constants. The AS-I r form had only 3 correlations between upper state constants

with I pij i>0. 9 , and none of the forms had more than 5 of these high correlations. The AS-Ir

form grournu state had 1 1 high correlations among the sixth and lower order constants com-

pared to 3 high correlations among all the upper state constants. The upper state probably has

fewer high correlations because more transitions were used in the fit for this state than for the

ground state, making it easier to determine all the upper state constants independently. Some

high correlations are also expected due to the approximate validity of the planarity relations

among the guartic and sextic constants.

Comparisons of our AS-III' form ground state fits to others will be made in the next

section. The only other fit of the H, S microwave data not using the AS-III' form was by

Gillis and Edwards( 17) , who used Typke's Hamiltonian to sixth order in the 111 r representation.

They included both the microwave data and GSCD from several vibrational bands in their fit

to obtain the constants given in Table V-10. As previously discussed, Typke's Hamiltonian is

very similar to Watson's NS reduced form. The main differences between them will be
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a,

Table V-10

Molecular Constants for Ground State,Typke's Hamiltonian, 111 r Representation -

From Gillis and Edwards ( 17)

Constant (MHz)	 6v (MHz)

A' 310630.0 9.3

B' 270292.9 8.7

C' 141837.8 3.9

D'J 32.98 0.24

D'JK -58.92 0.39

D'K 27.79 0.24

6'J -6.25 0.29

R6 8.33 0.21

H'J x 103 12.7 2.8

HPJK
R -46.0 7.8

H'KJ 56 10

H'K
ft

-22.6 4.5
H

I S
if 9.7 3.9

H 16
PI

26.5 4.8

H'16 7.2 2.1

Standard Deviation of Microwave Transitions = 3 MHz

Standard Deviation of GSCD = 90 MHz
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noticeable in high order (sixth and greater) off-diagonal constants, as can be seen by compar-

ing our NS-III' form ground state constants in Table V-5 to their constants. The standard

deviations of 3 MHz for the microwave data and 90 MHz for the GSCD obtained by Gillis

and Edwards are very similar to our values of 2.1 MHz and 77 MHz for these quantities using

the NS-111' form Hamiltonian.

We conclude that the best rotational constants for both the ground and upper state of

the v2 band of HS are those associated with the AS-i r Hamiltonians. The observed v 2 band

transition frequencies mivus the frequencies calculated with this Hamiltonian are given in

Table IV-4. The AS-I r form ground and upper state constants given in Tables V-2 and V-6

were used to calculate these transition frequencies. Even though three of the upper state Ham-

iltonian forms could tit the infrared data to experimental accuracies, the AS-I r form constants

should be more accurate since this form had the best ground state constants. The AS-Ill r Ham-

iltonian, though, was found to produce fits 10 to 100 times worse than the other three forms.

Since this form was used by Helminger et. al. in the original fit of the microwave frequencies

and because the III' (or III Q ) representation is considered to be the natural representation to

use for H,S, it is important to understand why this Hamiltonian produced such poor results.

The following section will discuss the AS-III' fits in detail and the cause for their poor

behavior.

V. D. Characteristics of the AS-111 1 Hamiltonian

In this section, our results for the AS-111 1 form ground state fits will be compared to

those of Helminger et al.( 16) and Gillis and Edwards( 17) to see if they are consistent in order

to help rule out the possibility that program errors are responsible for our poor AS-111 1 fits.

Then the determinable quadratic and quartic constants for all four Hamiltonian forms will

be compared to search for any obvious errors in the AS-111 1 results. We will also show that

the AS-Ill 1 determinable constants are converging to their correct values (taken to be the

determinable constants for the AS-1 1 Hamiltonian) as higher order terms are added to the

Hamiltonian. Further evidence will then be given to support the conclusion that the poor

109



performance of the AS-III r Hamiltonian is due to its very slow convergence. This will in-

clude a quantitative study of the unitary transformation that produces the AS-IIIr

Hamiltonian.

Helminger et. al. fit the AS-111 2 Hamiltonian to the 39 microwave transitions with a

standard deviation of 0.38 MHz. They used a total of 24 constants in the Hamiltonian, in-

cluding 5 tenth order ones, which are given in Table V-11. See reference (16) for the defini-

tions of the tenth order constants given in this table. As expected, their eighth and lower

order constants had standard deviations somewhat lower than ours for the AS-illr

form, but much larger than the standard deviations of our AS-I r form constants. Since the

standard deviations of our fits to the AS-III r form improve rapidly as higher order terms

are added, our results appear consistcnt with those of Helminger et. al.

Gillis and Edwards also fit the 39 microwave transitions along with a large number of

GSCD from several vibrational bands to the AS-III r Hamiltonian. The constants from their

fit are given in Table V-12. Their fit had a standard deviation of 180 Mliz for the microwave

data and 330 MHz for the GSCD when using sixth order terms and lower in the Hamiltonian.

This can be compared to our standard deviations of 136 MHz and 3241 MHz for the micro-

wave data and GSCD respectively for the AS-III r Hamiltonian truncated at sixth order. Gillis

and Edward's GSCD had a much lower standard deviation because they were weighted only

60 times lighter than the microwave transitions, while ours were weighted 2.5 X 10 5 times

lighter than the microwave data. Gillis and Edwards weighted their GSCD about 1000 times

heavier than the experimental accu,..cy would suggest because they fit so poorly when

weighted properly. These heavier weights resulted in a better fit to the CSCD but at the

same time led to a poorer fit to the microwave data. Therefore it is not surprising that their

GSCD had a lower standard deviation than ours and their microwave transitions a higher

standard deviation. This arbitrary weighting scheme, while improving the fit to the GSCD,

still results in a standard deviation for the microwave data 100 times worse than the experi-

mental error. Tnis highly unsatisfactory situation, resulting from their weighting scheme,

indicates that a different approach should be taken to either improve the tit or understand
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Table V-1 1

Molecular Constants for Ground State, AS Form, 1W Representation — From

Helminger et. al.06)

Constant (MHz) 2a (MHz)

AAS 310182.24 0.60

BAS 270844.05 0.51

CAS 141705.88 0.51

AJ 49.851 0.038

Acn -159.696 0.069

AK 111.851 0.068

6J -6.0191 0.0050

6 K 262.17 0.21

Hi x 103 28.13 1.05

HJK it -228.3 2.7

HKJ it 459 16

HK
if -276 14

hi
it -5.841 0.081

hJK 242.8 5.2

hK 287.0 39

LKKJ x 106 2199 1190

LK -2343 1260

R KJ -5327 990

QK " -41648 1900

PKJ x106 -304 70

PKKJ  803 180

PK -515 114

PJK -12.3 5.2

PKKJ " 130 13

Standard Deviation of Microwave Transitions = 0.38 MHz

i
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Table V-12

Molecular Constants for Ground State, AS Form,11j r Representation — From

Gillis and Edward417)

Constant (MHz)	 60 (MHz)

A AS	 310172	 48
BAS	 270826	 42

CAS	 141672	 23

OJ 48.6 1.1

AJK -161.6 3.3

AK 115.8 2.5

61 5.6 1.0

6 K -241.3 1.5

Hi x 103 17 14

HJK -708 78

HKJ 2042 130

HK -1357 66

hi 7.3 6.0

hJK -298 57

11K 305 63

Standard Deviation of Microwave Transitions = 180 MHz

Standard Deviation of GSCD = 330 MHz
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its behavior. Since the other Hamiltonian forms can fit the GSCD so much better than the

AS-ill r form while using the proper weights, a different weighting scheme for this Hamil-

tonian cannot be justified.

A direct comparison of the quadratic and quartic constants obtained for each Hamilton-

ian form can be made by transforming them into the determinable constants which are, to a

good approximation, independent of Hamiltonian form. The relations for the determinable

constants in terms of the AS and NS form constants have been derived by Watson( 3) and

are given in Appendix A. The quartic determinable constants were introduced in equation

11-18, where they are written in tertus of the T ap coefficients. The calculated determinable

constants for the best ground and upper state fits are given in Tables V-13 to V-15. Table

V-1•'- gives the upper state determinable constants in cm- I , while Table V-15 gives these same

constants in MHz so they can be directly compared to the ground state determinable constants

given in Table V-13. As expected, the agreement amont-, the determinable constants for the

AS-1r, NS-1r, and NS-Ill r forms is much better than. between these constants and the AS-Illr

determinable constants. For the more precise ground state fits the AS-Ill y determinable con-

stants are in much better agreement with the others than tot the upper state fits. Since a

higher order fit to more accurate data leads to better deter.inable constants in the AS-Illr

form, it is unlikely that the relatively poor fits using this firm are a result of program errors.

If the AS-111 r Hamiltonian converges more slowly than the other Hamiltonian forms, though.

this result is understandable.

Also supportive of our conclusion that the AS-Ill r Hamiltonian converges wore slowly

than the other Hamiltonian forms are the GF/FNF values calculated for each fit performed

in this work. Their values, along with the Gram Determinants, are given in Table V-1 b for

the ground state and in 'Fable V- ► 1 for the upper state fits. The Gram Determinant, which

is an ever-all measure of the linear dependence of the Hamiltonian terms, is about eleven
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Table V-13

Determinable Constants for Best Ground State Fits

Hamiltonian Form
Constant	 —

AS, Ir 	AS, IIIr 	NS, Ir 	NS, 1I1r

AD 310629.18 310635.46 310629.11 310628.83

B D 270318.15 270315.98 270318.02 270317.86

CD 141806.00 141808.52 141805.85 141805.84

T aa -62.24 -62.80 -62.34 -62.32

Tbb -37.30 -38.59 -37.31 -37.28

Tcc -1.845 -2.894 -1.847 -1.826

T I 9.642 8.662 9.784 9.753

#T2 5.683 x 10' -0.4733 x 105 5.701 x 105 5.761 x 105

*Units for T 2 are (MHz) 2 , all others are in MHz.
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Table V-14

e
Detenninabie Constants for Best Upper State Fits

Hamiltonian Form

Constant AS, Ir (&)A... Ill r NS, Ir NS, I, jr

AD 10.72364 10.71948 10.72364 10.72363

BD 9.22247 9.23708 9.22250 9.,,250

CD 4.66831 4.63948 4.66821 4.66825

Taa (x 103 ) -2.577 -2.590 -2.585 -2.586

Tbb (x 103 ) -1.447 -2.590 -1.449 -1.449

Tee. (x 105 ) -6.450 135.0 -5.687 -6.033

T t (x 104) 4.668 11.3 4.743 4.772

( b)T,(,\ 103 ) 1.895 4.916 1.876 1.921

(3) Note that for the AS-ill r form the yuartic constant 6 1 = 0.

(" )Units for T, are (cm-1 )`, all others are in cm-t.
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(a)Table V-15

Constant

Determinable Constants for Best Upper State Fits

Hamiltonian Form

AS, I r	(b)AS, Illr	 NS, I r NS, 1IIr

AD 321486.7	 321362.0 	 31486.7 31486.4

BD _176482.7	 276920.7	 276483.6 276483.6

CD 139952.4	 139088.1	 139949.4 139950.6

Taa -77.26	 -77.65	 -77.50 -77.53

Tbb -43.38	 -77.65	 -43.44 -43.44

cc —1.934	 40.47	 —1.705 —1.809

T 1 13.99	 33.9	 14.2' 14.31

WT, 1.703 x 106 	4.418 x 106 	1.686 x 106 1.727 x 106

(a)This table is identical to Table V-14, except that the constants in this table are given in
MHz.

tb)Note that for the AS-Ill r form the duartic constant 5 1 = 0.
(OUnits for T, are in (MHz) 2 , all others are in MHz.
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Tattle V-16

GF/ENF Factors Best Ground State Fits

AS Form
AS, I r AS, lll r NS, I r NS, [iIr

NS Form
Constant Constant

XAS 1.0 1.0 1.0 1.0 XNS

Y AS 0338 1.0 0.38 0.93 YNS
ZAS 0.32 0.022 0.33 0.13 ZNS

OJ 0.36 0.36 0.35 0.36 D!

AJK 0.49 0.050 0.49 0.041 DlK
A K 0.20 0.059 0.20 0.059 p K
Sl 0.060 0.021 0.060 0.39 51
6 K 0.23 0.021 0.67 048 67
Hi 0.057 0.052 0.058 0.057 Hj

HJK 0.25 0.010 0.25 0.0067 HjK
H K J 0.62 0.0031 0.062 0.0032 HKJ
HK 0.070 0.0016 0.070 0.0016 HK

Ili 0.011 0.30 0.011 0.22 111
hJK 0,013 0.013 0.041 0.13 112
hK 0.016 0.0030 0.015 0.31 113
L ! 0.0040 0.0026 L j

LJJK 0.0017 0.055 L JJK
Ll K 0.070 0.015 LJ K

LKKJ 0.011 0.0085 LkKJ
LK 0.025 Lk
vi 0.0036 0.099 Q 1

"JK 0.0077 Q,

Q K J 0.0080 0.0015 Q 3
Q K 0.075 0.00082 Q4

G M DT 1. I x 10"48 6.6 x 10 -66 1.1 x 10-45 1.2 x 10-31
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Table V-17

GF/ENF Factors - Best P2 Band Fits

AS Form

Constant
AS, I r AS, III r NS, I r NS, IIIr

NS Form

Constant

vo 1.0 1.0 1.0 1.0 vp
XAS 0.66 0.62 0.66 0.63 XNS

YAS 0.38 0.38 0.38 0.36 YNS

ZAS 0.34 0.37 0.34 0.37 ZNS

0J 0.064 0.064 0.064 0.064 Di

`AJK 0.13 0.027 0.13 0.027 DJK

OK 0.24 0.034 0.24 0.034 DK

b J 0.031 0.03: 0.24 51
6 K 0.14 0.096 0.10 0.66 5,

Hi 0.027 0.027 0.027 0.027 Hj

H J K 0.031 0.030 0.0072 HJ K
H K J 0.032 0.0076 0.032 0.0034 HK 1
HK 0.009 0.0065 0.069 0.0066 HK

hi 0.0088 0.0088 0.063 h 1

hJK 0.027 0.053 0.019 0.16 h,

hK 0.12 0.042 0.23 0.5 2 113
GMDT 1.5 x 10-33 _'.1 x 10-30 1.3 x 10-33 3.2 x 10'34
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orders of magnitude smaller for the AS-Ill r forth ground state than for the other Hamil-

tonian forms.* The upper state GF/FNF factors are also smaller for the AS-Ill r form,

though its Grain 	 is not smaller since the AS-1111 form fit contains three less

constants tl m 't a ("Ors. Ute lH%w b	 t diapendencies ar,>mi ag the AS-III r form Hamil-

tonian terms are consistent with it -14nng a mare 	 1?y u	 eqliag	 iasv l Ime

individual coefficients. It is well known, for example, that a power series approximation

using orthogonal polynomials, will have smaller coefficients and will converge more rapidly

than one using non--orthogonal polynomials.

	

The convergence properties of the AS-111 1 form call 	 be studied by examining the

unitary transformation that leads to this form. The poscible poor convergence of some re-

duced Hamiltonians has been previously recognized only for nearly symmetric asymmetric

rotors. For the almost svmmetric rotors (F, (K = 0.9798) and SO, (K = -0.942), Carpenter(5")

found that the AS form Hamiltonian converged very slowly in the I11 r representation for CF,

and in the 1 1 representation for SO,. He then calculated sl l l given in equation II-22, for these

different representations and found that the slow convergence of the Hamiltonian was related

to a relatively large value of si 1 l • This is expected for a nearly symmetric prolate or oblate

top in the l r and Ill r rep.-esentstions, respectively, because sl 11 in the AS tornm is proportional

to l /(Y-X), which becomes very large as Y 	 X in these particular symmetric top limits.

Since the transformed Hamiltonian contains terms like sl I 1 (X-Z) in its quartic coefficients

and like si 11 (Z—Y) and sl 1 I ( I yv, - -I in its sextic coefficients we see that, ill a

bigger s 1l I will transform a lar ger part of the original lower order coefficients into the new

higher order coefficients. This will result in larger transformed coefficients and make the

Hamiltonian power series converge more slowly. One would expect this type of behavior.

though, to he noticeable only ill 	 symmetric asymmetric top moleculcs.

*The ground state Gram Determinants compared here oniv included G F/t•:NF factors for constants up to
sixth order so they would be directly comparable to cacti other.
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A similar calculation of sl l 1 was performed here using equations II-22 and II-25 for

the AS and NS forms respectively, to see if it is much larger for the AS—III 1 form than for the

other three Hamiltonian forms. Unfortunately, s 111 cannot be calculated directly from the

coefficients in a reduced Hamiltonian unless the planarity conditions for the quartic constants

are i	 gb the q aortic phire6ty relations are not strictly correct, the errors in-

traduced by using them in the calculation of s1 I I were found to be small compared to the

variation of s 1 I I with Hamiltonian form. All the untransformed quartic coefficients, and

therefore s 111 , can also be approximately calculated from the harmonic molecular force field

if it is known. This calculation gives equilibrium distortion constants and not the vibrationally

averaged ones observed in practice. For H 2S, a molecular force field obtained solely from

vibrational band centers is available.( 60 ) Therefore, the sl I I values calculated with this

method will contain no input from H,S rota t ional frequencies or from the fitting routines

used in this work and can serve as a check on the other calculations of s 11 I .

To -calculate s111 from the coefficients obtained in the least—squares fits, the two planar-

ity relations
T	 T	 Tcc,I,ac — - A2` 2	 as — bb +	

( V-17)
A4	 B4	 (-4

and
T	 T	 T

Tbc = - B2(,2 — A4 + B4 + C4	
(V-18)

 ]

were used along with the equations for the determinable coefficients T 1 and T2 given in equa-

tion II-18. The planarity relations given above are written in terms of the T ao constants since

mace = r;cc = 4 Tac and rbbcc = rbbcc = 4 Tbc . Note that the third planarity relation for raabb

given in Appendix A cannot be written using the Tao notation because Tubb = raabb — ` rabab #

Tab . With the values given for the determinable constants T aa , Tbb , and Tcc in Tables V-13

and V-14, Tac and Tbc can be calculated using the planarity relations. If only Tac or Ti.c is

alculated using these relations, the other constant as well as T ab can be obtained by solving

-te relations for T I and T2 simultaneously. The procedure used here was to calculate the

-quired coefficients twice, each time using a 3ifferent planarity relation along m
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equations for T 1 and T2 . There are a number of additional ways to calculate s l l l using these

equations, but they should all give roughly the same results, as was tested by using our two

different methods for calculating s ll 1. The determinable constants A D , BD , and C D were

used in equations V-17 and V-18 as (very good) approximations for A, B, and C. The results

of these calculations are given in Table V-18 where sl 1 1 - I denotes the sl 11 value calculated

using equation V-17 and the relations for T 1 and T-,, and sl 11 -'- denotes the s 1 1 1 value cal-

culated using equation V-18 and the T 1 and T, relations. The best fit values for the quartic

distortion constants were used in all cases.

To calculate s 1 11 from the harmonic force field the following relations for the quartic

distortion constants derived by Kivelson( fi1) for a planar triatomic molecule were

used,

- 
Taaaa R = I 

F-1 + tan 2 0 F„ -'- f' tan 0 F -1	 (V-19)A= - 11	 12

Tbbbb R
B2

	

— = ? F^ +cot'- 8 F;; + ? f? cot 8 F1 2 	(V--'0)

Tubb R

	AB = ` F11 - F;; + ^ (cot 0 - tan 0) F1 1,	 (V-21)

Tabab R	 ' MIII _
- AB — = m 0 +1 my sin` 6) ` F 3 1	 (V-'2)

IN	 x

where

r2 X 1 0-20

h

0 is '12  the bond angle for H,S = 46.070 , M = atomic weight of H .)S = 34 amu, inv = m hydrogen =

1 amu, mx = M sulphur = 32 amu, and r = H - S bond length = 1.3518 A. The inverse force

field matrix F- 1 was calculated from a force field matrix given by Cook et. al.(60) . which

was derived solely from the vibrational hand centers of H,S. The non-zero elements of these

matrices are

e
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Table V-18

s t t t Parameter Calculations

Type of Hamiltonian 5111-1 51 11-2 5111-FF OStandard Deviation
of Fit

Data Form (x 10-6 ) (MHz)

MW AS (I r) 62 70 56 1.96

MW AS (11I r) 837 849 729 136

MW NS (I r) 90 82 82 2.91

MW NS (III r) -24 -17 -17 2.09

( a) MW AS (III Q ) 864 861 729

( b) MW AS (111 r) 770 812 729

IR AS (I r) 69 91 53 54

IR AS (III r) 1554 962 661 5100

IR NS (I r) 93 75 75 54

IR NS (III r) -37 -17 -16 54

(a) From MW fit of Helminger et al.06)

(b) From MW fit of Gillis et al.( 17)

(c) Standard deviation obtained when Hamiltonians include terms only up to sixth power in
angular momentum.

i22
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F t 1 = 4.2731 and /A

F22 = 0.4250 and /A
(V-23)

F33 4.2960 and /A

F 12 = F21 = 0.064 and /A

and

F-1 = 0.23455 (md/A)-t

F-1 = 2.3582 (md/A)-122(V-24)

F33 = 0.23278 (md/A)-t

F12 = Fz1 = -0.03532 (md/A)-f

The rest of the required distortion constants were calculated using the planarity relations and

the equations given in 11-8 relating the raaQQ constants to the raaOP = 4 T.0 constants. The

values for s 111 calculated using the molecular force field are denoted by s1 I 1 - FF in Table V-18.

Another general check on the accuracy of the quartic planarity relations when applied

to HS was made by evaluating the planarity relations derived by Watson.( 62) These relations

are stated directly in terms of the AS and NS Hamiltonian constants, and are given in Appendix

A. equati +n A-4. They involve four terms, composed of products of quartic and quadratic

rotational constants, whose sum should equal zero if true equiiibrium constants are used.

These relations were evaluated for each of the four Hamiltonian forms in both the ground and

upper vibrational states. A measure of the accuracy of these relations is the deviation from

zero of 'he sum of the four terms divided by their average magnitude. Using this measure, the

planarity relations were found to be accurate to within 1 1I to 5 17( for the gic and state constants

and 5`7( to 40`7 for the upper state constants. These results indicate that any errors in the cal-

culation of s 111 due to the planarity relations should be small compared to the variation of

sl11 with Hamiltonian form observed in 'Fable V-18.

From Table V-18, we see that s 111 is about 12 times larger for the AS-111 r form in the

ground state and about 25 times larger for this form in the upper vibrational state than for
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the other three Hamiltonian forms. The rather good agreement among the three calculated

values for s l 11 for each form gives us confidence in the methods used for these calculations.

Also, since the values for sl I I calculated from the distortion constants are always close to

those calculated from the molecular force field, it would have been possible to predict the

poor performance of the AS-III 1 Hamiltonian ;n fitting the transition frequencies without

performing the least-squares fits. The similarity of these two calculations is also another

strong assurance that the AS-111 1 form fitting routine does not contain any program errors

or numerical problems. It should also be noted that the values calculated for sl 11 from the

constants of Helminger et. al. and Gillis and Edwards are very close to our value for s l 11 for

the AS-II1 1 form. Considering the fact that molecular rotational data is usually only fit to a

single, somewhat arbitrarily chosen reduced Hamiltonian, our results show the usefulness of

performing a calculation of sl 11 before choosing a Hamiltonian form for the least-squares

fit of the. data. sl 11 - FF was also calculated for the AS and NS forms in the 11 1 representa-

tion and was found to equal - 55 X 10- 6 for the AS form and - 31 X 10- 6 for the NS form.

Both of these values for sl l l are close to those obtained for the AS-1r, NS- I r , and NS-1111

Hamiltonians, and therefore fits made using the 11 1 representation will probably be no better

than those already performed.

To illustrate how much the unitary transformation for the AS-II1 r form can alter the

rotational constants, we can evaluate the quartic coefficient T 022 , which corresponds to -6k,

and part of the sextic coefficient X0601 which corresponds to H k . From equation II-21 and

the ground state AS-111 1 form constants we have

- 6 k = 257 MHz = T022 = T022 - 2 B020 s 1 11 =T022 + 238 MHz	 (V-25)

where the AS-111 1 form values for B020 and sl 11 have been inserted. Using the formula for

0060 in Table 2 of Ref. (3) and the value found for H k in the AS-111 1 ground state fit we have

Hk = 0.42 MHz = mo60 = X060 + 14 Bolo 5111 +other terms

= 0060 - 1.3 MHz + other terms
	 (V-26)

124

L^



where the AS-111 1 form values for B020 and s 111 have again been inserted. We see that the

AS-IIIr unitary transformation contributes 238 MHz to S k , which can be compared to a con-

tribution of only - 13.2 MHz to S k calculated for the AS-I r form unitary transformation.

Similarly, the AS-III r transformation contributes - 1.3 MHz to H k from tite B020 sj 1 I

term while the AS-I1 transformation only contributes 0.0058 MHz to 4 1, from this term.

We can also calculate T022 from equation V-25 to obtain T022 = 19 MHz. Therefore the

AS-III r unitary transformation changed T022 by more than an order of magnitude, illustrat-

ing the poor characteristics of this particular Hamiltonian form. The large contributions to the

higher order transformed constants from the original lower order ones for the AS-III r form,

combined with the already large centrifugal distortion corrections required to accurately cal-

culate the H 2S rotational energy levels. results in a power series for this reduced Hamiltonian

with extrem-ly slow convergence.

It is possible to understand the poor behavior of the AS-III r Hamiltonian in a more

qualitative manner. Because of the geometry of H,S, the rotational constants A and B are

sensitive to the value of the bond angle, while C is not. As the bond angle goes to 180°,

for example, the A rotational constant diverges. Also, the force constant F 22 , which is

associated with changes in the bond angle, is very small. Consequently, rotation of the

molecule about a and b axes can significantly alter the bond angle and cause large changes

in the instantaneous A and B rotational constants. Rotation about the c axis, though,

orly causes a small amount of bond stretching. which affects A, B, and C very little.

Therefore, the centrifugal distortion constants that go with terms in the Hamiltonian con-

taining the operators J. and 1b will be large relative to those constants that go with terms

containing only J c . For example, from Table V-13, it can be seen that the quartic distor-

tion coefficients Taa and Tbb arc about 25 times larger than Tcc.

It' the operators present in the four reduced Hamiltonians used here are ex-

amined (see equations 11-24 and 11-27), a striking difference between the AS-Ill r Hamil-

tonian and the other three Hamiltonian forms is ;kpparent. To ,any order, the highest
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powers of Ja and Jb that ever appear in the AS-Ill r Hamiltonian are J a and 4. The other

three Hamiltonian forms, though, when expanded to the n th power of angular momentum,

contain at least one of the operators Ja or J^', or the product jnJ2 Jb/2 . Since the opera-

tors with the largest distortion coefficients have been dropped from the AS-Ill r Hamilton-

ian, it is not surprising that it fits the transition frequencies so poorly compared to the

other three Hamiltonian forms. As has been shown, the AS-Ill r Hamiltonian must be

taken to higher orders of angular momentum than the other three Hamiltonians to make

up for its lack of terms with high powers of Ja and Jb.

In conclusion, a very satisfactory fit of the measured v 2 band frequencies has been

made to the AS-I r form reduced Hamiltonian for the upper vibrational state. It should

be mentioned that th- use of the AS-I r constants to predict transition frequencies involv-

ing states with J or Ka grater than about 9 (roughly the maximum value of J or Ka used

in the least-squares fits) will vesult in errcrs higher than those indicated by the statistical

uncertainties in these constants. The AS-III r ;educed Hamiltonian fit the measured fre-

quencies very poorly due to its very slow convergence. This unexpected slow conv,-.rgence

could have been predicted by the large value of the Hamiltonian transformation parameter,

s t t t , calculated using the molecular force field constants. In most previous studies of

asymmetric rotor spectra, a single and somewhat arbitrary choice for the Hamiltonian

form has usually been made. Our re,alts, though, illustrate that in some cases, it can be

very important to choose the proper Hamiltonian form and representation, even when

fitting rotational data for very asymmetric tops.



CHAPTER VI

LINE STRENGTHS IN THE v2 BAND OF H2S — COMPARISON
TO RIGID ROTOR LINE STRENGTHS

In this chapter the results of the H 2S line strength measurements will be discussed

and compared to calculated rigid rotor line strengths. Since a number of doublets in the

v 2 band of H2S hav^ lines with on intensityintensity of 3 to I due to nuclear spin statistics, a par-

tial check of the internal consistency of the measured litre strengths will be made by com-

paring the observed line strength ratios to the known ratio of 3 to 1. Some general obser-

vations will also be made on the dependence of the line strength perturbations on 1, Ka

and Kc.

The line strength ratios in twelve doublets, all measured at low pressures, were com-

puted for comparison to the expected ratios of 3 to 1. The expected deviation of any of these

strength ratios from 3 to I due to centrifugal distortion or other causes should be small

since the doublets were split by only 0.01 cna- I to 0.1 cm- f . The standard deviation of the

observed ratios from a 3 to 1 ratio was found to be I.81I,. Since both lines of each doub-

let were always in the same diode laser scan, any errors in their strengths due to uncertain-

ties in the gas pressure or due to distortion of the lines by the laser lineshape should be

the same. Therefore, the experimental errors in the observed line strength ratios were

determined solely from the standard deviation of the measurements used to obtain an

average line strength for each transition. The average experimental error calculated in this

manner for the twelve ratios was 1.87(, the same as the standard deviation of the observed

ratios from a 3 to I ratio. This indicates that the strengths measured within one laser

mode were internally consistent.

The line strengths measured here were compared to calculated rigid rotor line strengths

in order to determine the magnitude of the centrifugal distortion perturbations. To calcu-

late the rigid rotor line strengths the total band strength So , which is the sum of all the
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line strengths in the band, is needed. Since S' cannot be determined directly from our

measured line strengths, the band strength value of S^°, = 2.17 cm- 1 /atm-cm measured by

Emerson and Eggers( 1 ) was used for the rigid rotor calculation. In terms of the total

band strength, the rigid rotor line strengths are given by

S° v gi a-Ei/kT
S = v _	 (1 - e4wl kT ) I <'PZb > 1 2 .	 (VI-1)

i	 v QR

This equation can be derived from equation 1I-32 and the definition S o . v is the band

center frequency. In this approximation, S °̀, is proportional to the vibrational part of the

dipole moment matrix element, which is given in equation 11-40.

The usual approximation was made in equation VI-1 that the partition function Q

can be separated into a rotational part, Q R and a vibrational part, QV , which is included

in S°̀,. QR is given approximately by(63)

_ a(kT)3 1 i 2

QR

	

	
(VI-2)

ABC 

w:, , .e A, B, C are the ground state quadratic rotational constants. The accuracy of equa-

tion VI-2 was checked by comparing the value it gives for Q R for H2O to the more accurate

value of QR calculated by Camy-Peret and Flaud( 24 ) using equation II-33. These two

values of OR for H2O were different by only 2.3%. This uncertainty of about 2%- in OR

and the quoted uncertainty of 5% in the total band strength were the main contributors to

any errors in the rigid rotor line strength calculation.

The lower state energy levels, Ei , and the direction cosine matrix elements < `PZb >

were calculated using a computer program written by Maki. (54 ) This program uses a

Watson AS-I r Hami;tonian to calculate the rotational energy levels and eigenfunctions required

to determine these matrix elements. Since only terms up to the sixth power of angular

If 
momentum were included in the ground and upper state AS-I r Harailtonians for these cal-

culations, our best fit rotational constants for the same ground and upper state Hamilton-

ians were used here. It should be noted that by using quartic and sextic terms in the rotational
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Hamiltonian in this calculation, the average centrifugal distortion within each vibrational

state is included in the rotational part of the total wavefunction. The vibrational part of the

dipole moment matrix element, though, is kept constant for all the individual line strengths

calculated for the band. The final rigid rotor line strengths calculated using equation VI--1

were divided by 0.9502 to correct for the naturally occurring abundance("- ) of the sulphur

32 isotope. Since Emerson and Eggers made no mention of isotopic impurities in their

measurements, we have assumed that their quoted value for SY includes contributions

from all the sulphur isotopes.

The calculated rigid rotor line strengths and the observed line strengtbs are plotted as

a function of frequency in Figure VI-1. The experimental F factors (the ratios of the ob-

served to calculated line strengths) for each line are listed in Table IV-5. Also, the F

factors are plotted as a function of frequency in Figure VI--'. The Q branch plots have

been separated from the R and P branch plots in this figure for clarity. It should be

remembered that only the H,S transitions measured with the diode laser spectrometer are

shown in these figures. There are a number of other H,S absorption lines in the 1080cm-1

to 1260cm- 1 region th were no! measured and do not appear in Figures VI-1 and VI-2.

As expe-ted from the low resolution measurements of this band, the R and QRP

branch r- factors are greater than unity, and the P and Q PR branch F factors are almost all

lef,, than unity. the F factors range from as low as 0.057 on the P branch side of the hand

center to as high as 4.71 on the R branch side. The maximum values of J. K a , and Kc

observed for the measured transitions were 12, 7, and 10, respectively. It is also evident

in Figure VI-1 that in all the branches it is the weaker lines whos_^ strengthF differ the

most relative to their rigid rotor strengths,

rile strong fines in Figure VI-I , whose strengths differ from the rigid rotor fine

strengths by only 10`7( to -'0';, belong to the four sub-bands 1J)p j - 0-1) l-I , (J-f ) 1,1-1 -

IJ)p .1 ,IJ) 1,1 -1J-1)p.1-l, and 0-1)p .] _ l -(J) l,t . Tile rotat ional energy levels involved in

these transitions always have one state with Ka = I and the other with Ka = 0. The K. values

are always equal to J for each energy level, the maximum possible value allowed. This
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corresponds classically to rotation almost exclusively about the c axis of the molecule in both

the upper and lower states of the transition. To a large degree, rotations about the c axis

stretch the H-S bonds but do not change the bond angle. Centrifugal forces:trising from ro-

tations about the a and b axes, though, will alter the bond angle. Since the H 2S force con-

stants( 60) involving bond angle changes are so much smaller than those involving bond stretch-

ing, rotations about the a and b axes distort the molecule more severely and therefore affect

the dipole moment the most. Thus it is not surprising that the transitions with K. at a maxi-

mtun in both the upper and lower rotational states have line strengths close to rigid rotor

values.

It is also expected that lines with a large chaage in Ka and K c would have F factors

very different from unity. Unfortunately lines with "Ka and AKc greater then one are al-

ways very weak and hard to observe. Our only example of a line with both AK a and

AK, greater than one, the 5 41 -5 14 transition, had a F factor of 4.71, the largest one

observed. For this transition, the rotational angular momentum about the a axis is much

greater in the upper state than in the lower state. Therefore, the bond angle is smaller in the

upper state. This difference in the molecular geometry between the upper and lower states

results in a much larger change in the dipole moment for this transition relative to a rigid rotor

transition.

The largest and smallest F factors were usually for the Q RP and QPR lines respectively.

This is partially because the observed Q branch lines had higher values of J and K a than the

observed R and P branch transitions. Since the distortion of the molecule is proportional

to the square of the components of the total angular nontentunt, the difference in the

distortion between two states with high J and Ka values is greater than the difference in the

distortion between states with low values of J and Ka. In general, this leads to more

strongly perturbed line strengths at high J and Ka values.

As mentioned in Ch. 11, it is hoped that the line strength measurements presented here

can serve as a severe test of the presently existing theories of centrifugal distortion in asym-

metric rotor line strengths. The combination of the large strength perturbations present in
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the v 2 band of HS with the high accuracy of these measurements should make these line

strengths very useful for that purpose.
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CHAPTER VII

NUCLEAR QUADRUPOLE? HYPERFINE STRUCTURE IN THE INFRARED

SPECTRUM OF HYDROGEN IODIDE.

V11. A. Introduction

Nu,.lear quadrupole hyperfine structure in the 1-0 vibration-rotation hand of hydrogen

iodide near 4.5 µm was observed using a tunable semiconductor diode laser( 64) Hyperfine

structure arising from nuclear quadrupole interactions is commonly seen in microwave rota-

tion spectra with splittings ranging from less than I Mliz to several hundred MHz for mole-

cules containing iodine. In vibration-rotation transitions. nuclear quadrupole splitting, have

been observed only in the past severai years using the sub-Doppler resolution techn ,ques of

laser saturation spectroscopy in studies of methyl halide spectra.( 155) In the case of hydrogen

iodide however. its extremely large nuclear quadrupole moment and molecular weight com-

bine to give relatively large hyperfine splittings with small Doppler widths. This ;allows reso-

lution of some by perfine structure in the low J transitions of hydrogen iodide with Doppler

limited spectroscopy. Several  Lid 	 Oft he 1-0 hand of the HI molecule have been made

with grating spectrometers with resolution too low to observe any hyperfine structure. The

grating spectra were used in locating the transitions studied in the present work with the

diode laser.(("'- W)

V11. B.	 Nuclear Quadrupx)le Interaction Theo

Nuclear quadrupole splitting, arise through the interaction of the nuclear electric quad-

rupx ► le moment with the electric field gradient of the molecular electron cloud. This inter-

I.	 action couples the nuclear spir. I (if 1 > I ) to the rotational angular momentum 1 to form

the total angular momentum F = 1 + J and splits each rotational level into 21 + I levels for

J > 1 or 2.1 + I levels for I > J. These new levels each have different values of total angular

M,

134



momentum denoted by the quantum number F, which varies from I J - I I to I J + 1 I in

steps of one.

The interaction energy is given by(S)

I11
Q6

	Vij Qij (VII-1)

where

Qij =	 p(r) [ 3r i rj - ri 8 1 ] dr,	 (VII-')
nucleus

is the nuclear quadrupole moment tensor and

a 2V 	 aEi
V ij =	 = - —	 (V11-3)

ar i arj 	 arj

is the molecular electric field gradient at the nucleus. p(r) represents the nuclear charge den-

sity and the r i are space-fixed Cartesian coordinates. The dependence of the interaction

energy on the rotational state of the molecule was originally derived by Casimir (68) using

first order perturbation theory, and Can be found in several texts ( S • 69) Casimir obtained

<iJFIFIQ IIJF> = 	eQq]
1	 ^3/4 C(C + l) - 1(1 : 1) JO + 111 	 (VII-4)

1(_'t-1)J(^J-1)

where

C	 F(F+1)-1(1+l)-JO+I).	 (VII-5)

eQ is called the "quadrupole moment of the nucleus" and is defined in the limiting Case of

Mt=Ias

cQ = < 1, M I = I I p(r) (3r2 - r = ) 11, M t = I >.	 (V11-0)

Similarly, q] is defined as the value of the molecular electric field gradient in the z direction

averaged over the state I J. M ] = 1 >, or

q] = < J, M ] = J I V„ I J, M] = J >.	 (VII-7)

For a diatomic molecule

-qJ
q] = (2.1 + ^)	 (VII-8)
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where q is the field gradient along the molecular bond axis. The rotational level splittings

for a diatomic molecule can then be written as

AEQ = < I J F I HQ I I J F > _ - (eQq) Y(l, J, F) 	 (VII-9)

where

YO, J, F) = 
3/4 C(C + 1) - i(I + 1) J(J + 1) 	

(VII-10)
21(21-1)GJ-1)(2J+3)

The combined constant eQq is called the nuclear quadrupole coupling constant. The ob-

served splittings in a vibration-rotation transition will be given by

w = (eQq) „ Y(l, 
J", F") - (eQq)' Y(l, V, F^) (VII-1 1)

where a double prime indicates the upper state and a single prime the lower state of the trans-

ition. Though Y(l, J, F) in general varies for each hyperfine component a pd rotational level,

eQq will only vary with vibrational state.

The relative intensities of the various hyperfine components within a given vibration-

rotation transition are as follows (70)

1
F r(F) Q(F - 1) AF = 1

2F 
+1 P(F) Q(F) LF = 0	 (Vil-12)

F(F + 1)

FP(F) P(F - l) AF = ± 1

where

P(F) = (F+J)(F+J+I)-1(1+1)
(V11-13)

Q(F) = 1(1+1)-(F-J)(F-J+1).

The top sign on OF is to be used for d.J = + 1 (R Branch) transitions and the bottom sign for

dl = - 1 (P Branch) transitions.

The 1,11 nuclear spin of 5/2 and microwave determined ground vibrational state eQq

of - 1828.4 MHz(7 t) for hydrogen iodide give line splittings in the pure rotation spectrum as

large as 800 M,4z. Splittings in the hydrogen iodide vibration-rotation spectrum will be very

similar to the rotational splittings, modified slightly due to any dependence of eQq on the

vibrational state of the molecule. The selection rules of Al = 0, AF = 0, ± I gives 3 lines for
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R(0) and P(1), 9 lines for P(2), and 14 lines for P(3). Stick spectra for P(1), P(2), and P(3)

calculated using the known ground state eQq and the first excited vibrational state eQq value

measured in this work are given in Figure VII-1. Only 12 lines are shown for P(3) because

two pairs of lines are degenerate to first o ► der, although they are split by about 1.5 MHz, due

to nuclear magnetic hyperfine effects,( 71 ) which is too small to be shown in Figure VII-1 (c).

VII. C. Experimental Considerations

The R(0) through P(3) lines, which fall in the region from 2190 to 2242 cm- 1 , were re-

corded using a PbSSe diode laser. The experimental apparatus was almost identical to that

described in Ch. III except for the use of a one meter single pass cell instead of the White

cell. Also the germanium etalon was not thermally stabilized during this work, which should

not adversely affect the splitting measurements since the splittings are so small.

The gas cell pressures used ranged from 3 to 7 torr. The small strength of the Hl transi-

tions( 72 ) and the somewhat impure gas sampleb used required these relatively high pressures in

the I -meter cell. This resulted in linewidths generally 30% greater than the Doppler width

of Hl. It is unlikely that pressure shifts could introduce any systematic errors since all hyper-

fine levels in a given transition should have very similar pressure-shift coefficients.

The line centers, or minima within the hyperfine structure of a line, and etalon peaks

were found digitally by least squares fitting the data to a cubic polynomial as described in

Ch. IV. The splittings were determined using the calculated free spectral range for the etalon.

Errors in the calculated free spectral range are negligible in this experiment since the split-

tings measured were so small. Random laser frequency fluctuations between fringe peaks was

the main source of error, giving standard deviations of 3 to 10 MHz in the measured splittings.

VII. D. Results

Figure VII-1 (a) gives the observed and calculated profiles of the P(1) transition. The

triplet structure due to splitting in the ] = 1 rotational level is fully resolved. Since only the

ground vibrational state is split in this transition, the infrared data can be directly compared

to microwave measurements. The microwave value for eQq was used to generate the
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138



calculated profile in Figure VII-1 (a). A Voigt tine shape (see Ch. IV, equation IV-6) was

used, arbitrarily scaling the line strength to closely approximate the observed absorption.

The overall agreement, both for splittings and relative strengths, is very good. The splittings

were corrected for slight blending by determining the amount of line shift due to blending in

the synthetic Voigt profile. The calculated splittings also included small corrections for mag-

netic hyperfine contributions, averaging about 1.5 MHz, which is somewhat below the stand-

ard deviations of the measurements. Second order nuclear quadrupole hyperfine contribu-

tions were negligible (69) Seven runs of the P(1) line were made and their scatter about the

mean is the main contributor to the stated errors. Table VII-1 gives results for the measured

splittings. Both splittings were measured relative to the strongest hyperfine component,

F = 7/2 -► 5/2. They are compared in Table VII-1 to those calculated using the well known

microwave determined ground state eQq. Agreement is within experimental error for both

splittings.

The R(0), P(2), and P(3) transitions all involve rotational level splittings in the first ex-

cited vibrational state, allowing a determination of eQq in that state. As J increases, the

intensity of AF = AJ transitions become dominant over AF = 0 and AF = - AJ transitions,

and the spectra condense to the unperturbed line center. This causes an extreme amount of

line blending, especially for P(2) and P(3), so that quadrupole coupling constants could not

be d irectly obtained from the observed absorption features. In order to convert measured

frequency intervals between minima in the spectrum of each line to an eQq value for the

upper vibrational state, simulated Voigt profiles were made for each :otational line, keeping

the ground state eQq constant while slightly varying the upper state eQq about the ground

state value. From these profiles the change in observed splitting per unit change in upper

state eQq was generated. Splittings analogous to those given by A l and A2 in Figure V11-1

(a) for P(1) were measured in R(0) to obtain a value for the upper state cQq, while the

splittings identified by A's in Figure V11-i (b) and Vll-1 (c) were used for the P(2) and P(3)

measurements. These spectral features were a combination of lines exhibiting the least

amount of blending and greatest sensitivity to upper state eQq value. The theoretical spectra
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Table VII-1

Observed Splittings in P(1) of HI

Calculated -
Splitting (MHz)* 	 Observed (MHz)

Al - 159.9 t 3.2	 2.6

62 =
335.5±6.5	 -0.3

*7 Trial Average

shown in Figure VII-1 (b) and VII-1 (c) were generated in the same manner as for P(1), using

both the microwave derived ground state eQq value and the measured eQq in the first excited

vibrational state. As with P(1), the overall agreement is very good for these transitions. ;*ote,

for example, the close agreement between the calculated and measured curves for the widely

split but weak lines in P(3). The R(0) profile, which is not shown, appears identical in form

to P(1) except reversed in frequency.

Table VII-2 gives the measured differences in eQq between the ground and fu-st excited

vibrational state using the method described above along with the first excited state eQq values

themselves. The average value for the difference was found to be very small, as expected, not

much larger than its standard deviation. Estimates for the standard deviations of the two

weighted averages in Table VII -2 were derived from the standard deviations of the four indi-

vidual measurements and not from the spread of these values about the weighted average.

This was done because the uncertainties in the individual eQq values were larger than their

spread about the mean. The last column in Table VII-2 illustrates the sensitivity of the meas-

ured splittings to the upper state eQq value, showing that P(2), for example, has the most

sensitive splitting measured. In order to reveal any systematic ertors in the splittings the

measured difference in the ground state eQq from the much more accurate microwave value

is also given in Table VII-2. This observed difference was determined from the P(1) transi-

1.	 tion. Its value, which lies less than one standard deviation away from 0%, indicates that there

are no large systematic errors contributing to the upper state eQq determination. The meas-

ured difference between the ground and first excited vibrational state eQq of 1.2 s: 0.7% is
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Table VII-2

Observed Difference in Quadrupole Coupling
Constant from Ground to I st Excited Vibrational State

s1 Transition No. of Trials
Excited State eQq

(MHz)
eQq Difference

M

Change in
Splitting for
1% Difference
in eQq (MHz)

R(0) A l 5 -1854 t 27 1.4 x 1.5 1.8

62 -1853 t 48 1.4 t 2.6 3.8

P(2) 4 -1851 t 16 1.2 t 0.9 5.8

P(3) 3 -1830' 44 0.1 t 2.4 1.6

Weighted Averages: -1850 s 13 1.2 t 0.7 (-22 t 13 MHz)

P(1) 7 -0.6 t 1.3'

'Measured Difference in Ground State eQq from Microwave Value

comparable in magnituJe to the vibrational dependences found for eQq in methyl iodide(65,73)

using laser saturated absorption experiments, where eQq was found to change for various vi-

brational modes froin -.3% to +1.5% per unit change in vibration quantum number.

In summary, nuclear quadrupole hyperfine structure has been observed in the vibration-

rotation spectrum of hydrogen iodide. The measured splittings are in good agreement with

microwave measurements of Hl. The relative intensities observed for the hyperfine compo-

nents were shown to be reproduced very well using the theoretical expressions for the relative

strengths. Also, some evidence for a slight increase in the quadrupole coupling constant from

the ground to first excited vibrational state was found.
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APPENDIX A

PLANARITY RELATIONS AND DETERMINABLE CONSTANTS

A number of approximate relations can be derived for the rotational constants of a

planar asymmetric rotor. It can be easily shown that the equilibrium quadratic constants

obey the relation

Ae Be
Ce At + Be

Ic e = la  + Ibe .	 (A-2)

These -elations, which are only strictly valid for the equilibrium rotational constants (denoted

by the superscript e), are approximately correct for the vibrationally averaged constants

that are observed in practice. For example, equation A-1 is accurate to about 2% when the

observed ground state rotational constants of H2S are used.

Similar planarity relations can be derived for the equilibrium quartic constants by util-

izing the properties of the inertial derivatives of a planar molecule. These relations, originally

derived by Dowling( 12 ), are

L

T= I 
A" B2aabb

_ Taaaa _ 7bbbb + Tcccc

2 A4 B4 C4

= 1 
A2C2

Taaaa Tbbbb + Tccoc
T aacc	 2

—
A4 B4 C4

T	
_ I	 132C2

bb cc —
_ Taaaa + Tbbbb Tcccc+

A4 B4
C4

racac = Tbcbc = ()•

Therefore for a planar molecule, the nine quartic coefficients are reduced to four independent

coefficients. In the above relations the superscript denoting equilibrium coefficients has been



These quartic planarity relations ,;an also be applied to the quartic distortion constants 

in Watson's AS and NS reduced Hamiltonians to obtain a single relation among the fine re-

duced quartic constants. The relations for AS and NS Hamiltonians in the Ir and IIlr repre

sentations are( 62) 

AS-Ir: 4C6J - (8 - C)6J~~ - 2(2A + B + C)~J + 2(B - c)6K = 0 

AS-lIlf; 4C6J + (A + B + X')6JK + 2(A + B)6K + 2(A - B) (~J + 6K) = 0 
(A-4) 

NS-If: 4(,DJ - (B - C)DJK + 2(2A + B + C)~I - 4(4A + B - 3(')~2 = 0 

NS-IJIf; 4CDJ + (A + B + 2C)DJK + 2(A + B)OJc - 2(A - B)~ 1 = O. 

Again, these relations are only strictly true for equilibrium quadratic and quartic constants, 

but should be approximately COrrt~ct wh~n the observed rotational constants are used instead. 

A set of quadratic and quartic determinable constants in terms of the AS and NS re

duced form constants have been derived by Watson(3), and arc as follows. 

AS Form 

XD = XAS + 26J + 6JK - 26J - 26K 

yD = VAS + 26J + 6JK + 26J + 26K 

ZD = ZAS + 26J 

Txx = -6J - 21)J 

Tyy =-6J+26J 

Tll. = -6J -6JK -6K 

T\ = -36J -6JK 
I 

T2 = - (X + y + Z)6J - -;-(X + Y)6JK + (X - Y)(c5J + 6K) 

NS Form 

XD = XNS + 20J + DJK .,. 26 1 + 462 

yD - yNS + 2DJ + DJK - 26 1 + 462 

~D ::: ZNS + 2DJ + 615: 

T fY = - DJ - 21) 1 + 262 

T1.1. = - DJ - DJK - DK 
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T t = - 3DJ - DA - 66,)	 (A-6)

T = - (X + Y + Z)D t (X + Y)D	 (X - Y)b 6Zb	
cont.

2	 J' ,	 JK'	 1'	 2•

The X, Y, Z constants in the above relations for T t and T,) correspond to the X, Y, Z con-

stants in equation 11-10. In this work XD , yD , and ZD were used in place of X, Y, and Z.

This should not introduce any errors in these relations larger than any already present.
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APPENDIX B

CORRELATION TABLES FOR MOLECULAR CONSTANTS OF
GROUND AND P 2 = I EXCITED STATES OF H2S
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