
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



NASA
Technical Memorandum 83854

Estimating Ocean -Air Heat Fluxes
During Cold Air Outbreaks by Satellite

(NASA-T14-83854) ESTIflATING OCEAN-AIR HLAT	 N82-15781

yLU'jeS DURING COLD AIF CUT--BEAKS BY
SATELLITE (NASA) 52 p HC A04/MF A01

CScL 043	 Unc1.a s
G3/47 1637u

Shu-Hsien Chou and David Atlas

NOVEMBER 1981

^XN

Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics and
Space Administration



TM-83854

ESTIMATING OCEAN-AIR HEAT FLUXES

DURING COLD 
AI R OUTBREAKS BY SATELLITE

slut-lisic', Cl1otk

and

David Atlas

Goddard Laboratory for At Inoapheric Sciences

November 1981

NASAIGODDARD SPACE FLIGHT CENTER
Greenbelt, MarYltilld 20771



PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

Nomograms of mean column heating due to surface sensible and latent heat fluxes have

been developed from Stage and Businger's (1981a, b) boundary layer model for cold air out-

breaks over warm water. Mean sensible heating of the cloud free region is related to the cloud

free path (CFP, the distance fr,., . the shore to the first cloud formation) and the difference be-

tween land air and sea surface temperatures, e1 and 00 , respectively. Mean latent heating is re-

lated to the CFP and the difference between land air and sea surface specific humidities, q 1 and

q0 , respectively. Results are also applicable to any path within the cloud free region. Corres-

ponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed

in the boundary layer. The sensible heating estimated by the present method is found to be in

good agreement with that computed from the bulk transfer formula. The sensitivity of the solu-

tions to the variations in the initial coastal soundings and large scale subsidence is also investigated.

The results are not sensitive to divergence but are affected by the inital lapse rate of potential

temperature; the greater the stability, the smaller the heating, other things being equal, Unless

one knows the lapse rate at the shore, this requires another independent measurement. For this

purpose we propose to use the downwind slope of the square of the boundary layer height, the

mean value of which is also directly proportional to the mean sensible heating. The height of the

boundary layer should be measurable by future spaceborne lidar systems. The general behavior

x
of the mean -sensible heating, the potential temperature and the height of the boundary layer as

a function of downwind distance within the cloud free region and their relations to several ampor-

tant parameters are studied analytically in the Appendix. By-products include the finding that

the sensible (latent) heat flux is virtually linear with the contrast in land air and sea surface tem-

perature (specific humidities), thus providing a new kind of flux parameterization in lieu of the

claulcal bulk transfer formulas, The applicability of the results to lake-effect snowstorms is also

noted. J: Jmlly, the method can be used in reverse to check the validity of boundary layer models.
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k STIMA` ING OCEAN-AIR HEAT FLUXES

DURING COLD AIR OUTBREAKS BY SATELLITE

I, INTRODUCTION

Aim en interaction plays a very important role in it witle range of weather, climate, and

`	 ocean problems, There is increasingly persuasive evidence that anomalies in sea surface temper-

attire (SST) control both wgionr,l mitt global climatic anomalies (e,k„ i3Jerknes, 1966, 1969;
,

Namins, 1969, 1978}, .rile anomalous SST obviously affects the atmospheric circulation through

the ocean-air licait fluxes, For this reason much effort is going into the accurate paarameterixation

of the fluxes of licat, moisture, and monientum in GCM models, The occam to air heat fluxes

are also related to the prc>vailing synoptic pattern and naesoscale convective system (Kung and

Siegal, 1979; Simi and Agee, 1977; Warsh, 1970, These fluxes over tine warin water of the

Kuroshio current and the Gulf Anglin are generally known to have profound effects on cyclogen-

Isis and storm intensification, particularly on the development of the wintertime cyclones of time

Taiwan and Cabe Hatteras lows (Agee and Howley, 1977),

Air-sea lieat exchange obvit aiasiy has significant manifestations within the sett as well, For

exanitilc, Worthington (1977) has postulat d (hat the Gulf stream accelerates after a cold winter

as a result of the enhanced differential cross-stre im coaling and density gradient. On the other

hand Huh  has found that tine winter .lceat loss from the Gulf of Mexico lakes place episodically

#	 during cold air. outbreaks and that there is a virtual baluncc between the cooling. of the coastal.

waters and the heat }liven tit) to the atmosphere.

Possible approaches toward the iueasurement of ocean-air heat fluxes were treated at length

at the Jet I ropulsioo L.aboratoryIScripps .Institute of Oceanography Workshop on air-sea interne-

tion (NASA, 1980) and the Workshop on Ocean Surface 'EnZrgetics (Gautier, 1981). Oise of the

key conclusions of the former meieting was that the prospects for file measurement of the fluxes

'Private communication from Professor Oscar litih, Louisiana State University



of ill at, moisture, and momentum front space are not promising, This is title to the NO than

such fluxes depend upon file profiles of wind, temperature, and moisture in the atmospheric

boundary layer, or equivalently, oil 	 bulk transport equations, and there are no clear methods

or sensing; the required parameters remotely, Only slightly greater optimism wits expressed alt

the second workshop mentioned above.

On the rather hand, the fluxes of heat and moisture front seat to air often produce effects

which call be observed and which do provide some means of estimating these fluxes. 'Ilse most

obvious products of such fluxes are clouds, the growth of the convective boundary layer, and

the warming and moistening of` that layer (e.g„ Lenchow, 1973), Such effects are eslaccialiiy dra-

matic in the ,case of cold air outbreaks caviar warm waters along the east coasts of Asia and North

America (e.g,, Ninomiya, 1976, Ninomiya quad Akiyama, 1976). There the effects acre clearly

manifested in the t:orm of cloud streets, as shown in Fig= l . We .see that tht , tip%ti r jnd (i.e., near-

est the shore) edge or thus cloud streets is vir.:aaally it displaced image of the coastline, the dis-

placentent tieing along the wind dirc:tion. It appeared likely that this displacement or distance

between shore and the upwind edge of flu: cloud, here called the "cloud free path" or CFI', is

related to the heat and moisture fluxes Profit the coastal waters such that file greater tie fluxes

the smaller the CFP. This wits essentially our starting hypothesis. In this paper we show that

this is indeed Cite case and develop it method by which one may estimate the fluxes with the aid

of the CFI', the sea surface temperature and saturation wa ger vapor mixing ratio, and certain

other quaantities to be described litter.

While the limitations of this study to cold air outbreaks and regions within 200 to 300 km

of the coasts would appear rather restrictive, these Areas and periods include the major share of

the annual global ocean beat losses (Bunker and Worthington, 1976; Agee and Hawley, 1977),

Kung and Siegel further suggest that the heat transfer front warns water to the atmosphere

in these regions plays as distinct role in the Northern Hemisphere winter circulation,
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2. BACKGROUND

Henry and Thompson (1976) inadvertently provided a hint us to how one might use satel-

lite observations to estimate heat fluxes during cold air outbreaks, They used the radiosonde

temperature mad humidity profiles observed at the coast of the Gulf of Mexico near New Orleans

and 24 hours hater at Merida, Yucatan, Mexico to deduce the heat fluxes at various points of the

trajectory following the cold northerly now by budget calculation with sintple itaterpolation of

tentlicrature and humidity soundings, Well developed cloud streets were evident starting about

100 kilt south of the Louisiana coast, In their case,, the very cold land air of about -4 0C over

warm Gulf waters of about 20*C produced a total average heat .flux of 2400 Wm -2 in the first

110 km of travel to a point Glom! to the edge of the first clouds. This is a major flux and again

indicates why the problem is important in the previously noted contexts. We shall show later

that the fluxes of lienry and Thompson are probably overestimated,

'cite question at issue, however, is flow one can use satellite observations to estimate the

heat fluxes without monitoring the temperature and moisture of the air column at both ends of

the tnajectory as was done by Henry and Thompson, In a preliminary version of this paper, At-

las et al, (1981), hereafter referred to as I, tried several approaches. Their first approach was to

use the satellite observed cloud top temperature at initial cloud formation. This temperature

could be extrapolated down to near the surface adiabatically, thus providing an estimated sound-

ing which could then be differenced from that measured by radiosonde at the shore to give sen-

sible heating. Similarly, the temperature at cloud formation defines the saturation water vapor

mixing ratio which is also well mixed down to near the surface, Comparison to values at the

shore would thus provide latent heating, The key assumption in this approach is that the sound-

ing along the trajectory remains unchanged above the flax modified convective boundary layer so

that the satellite measured cloud top temperature could be assigned to a known altitude,

While the Clements of the concept are sound, its implementation is subject to excessive or-
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rocs clue largely to the small sire of the initial clouds relative to the I km dimension of the

AVHRR (Advanced Very High Resolution Radiometer) IR field of view on the TiROS satellites

and the indeterminacy of the temperature correction for unfilled fields of view, 'These errors

are compounded by the large verticol gradient of potential temperature at the inversion so that

small errors in determining the temperature of the initial cloud tops, assumed to be at the Inver-.

sion, translate to large errors in the deduced sounding and thus in net heating, While this method

sloes not work with existing observing Systems, it should be kept in n ►ind for pcossible future ap-

plication with higher resolution IR imagers and lidar sounders capable of independent cloud

height determination,

In l we also utilized the results of Stage (1979) who, with the aid of the boundary layer

model of Stage and Busingur (198Ia, b), computed the poteo?ti«tl temperature, vapor mixing ratio,

and the height of the convective boundary layer its it 	 of distance for cold air transports

over Lake Ontario, He also calculated the distance front shore to first cloud formation (i,e,, the

"cloud tree path" or CET), all as it function of varying hake temperatures. It was only necessary

then to estimate the sensible and latent heating dine to surface fluxes and, with the aid of certain

approximations, develop the desired relations to measurable parameters, Because Stage (1979)

had only run the Stage-Businger model for a single land Hair ten ► perature and lapse rate, and for a

limited range of hake water temperature, it was not possible to generalize the results in I to it suf-

ficiently wide range of conditions or to determine their limitations. In the present paper we re-

port the generalized results obtained by running the Stage•Businger mod ,.1 over a very broad range

of conditions and correct some of the erroneous inferences which were made in I on the basis of

more limited data,

In particular, we have developed generalized nomograms of mean column heating due to the

surface sensible and latent heat fluxes, The Sensible heat nomogram relates the niean sensible

heating to the cloud free path (CFP) and the difference between land air and sea surface temper-
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atures, 4 l and e0 , respectively. The latent heat nomogram relates the mean latent heating to the

C>FP and the difference between land air and sea surface vapor mixing ratio, q1 and qp, respec-

tively. The aim, of course, is to estimate the mean sensible and latent heating in the cloud free

region from the nomograms using (0 0 — 4 1 ), (q0 q i ) and CFP. The mean surface sensible and

latent heat fluxes may then be obtained by multiplying the mean sensible and latent heating by

the mean wind speed in the boundary layer.

The sensitivity of the solutions shown in the nomograms to the variations in the initial

coastal soundings and large scale subsidence is also investigated, The general behavior of the

mean sensible heating, the potential temperature and the height of the boundary layer as a func-

tion of downwind distance within the cloud free region and their relations to several important

parameters are analyzed in Vie Appendix.

3. DESCRIPTIONS OF THE BOUNDARY LAYER MODEL

The Stage and Bu$inger (1981x, b) model was developed for the growth and evolution of

the marine boundary layer during cold air outbreaks. This is a Lagrangian model. The equivalent

potential temperature and the total water mixing ratio are assumed to be well mixed in the

boundary layer and are predicted from conservation equations including fluxes from the sea sur-

face and entrainment across the top of the boundary layer, The entrainment rate is determined

from the turbulent kinetic energy budget. When clouds form, infrared cooling at cloud top and

heating at cloud base are also included. The reality of the model was tested against data gathered

during the International Field Year for the Great Lakes (IFYGL). Since our main interest in

this paper is the air-mass modification in the cloud free region, only the significant physical pro-

cesses in the same region are briefly discussed here. The reader is referred to Stage and Businger

(1981a, b) for details of the model.

The equations for the cloud _free boundary layer are given by

de/dt = (w'9' In + _WeAO)/zB	(1)
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dq/dt " (w' q' 10 + WeA q)/ZB 	(2)

dZe/dt = We + W l	 (3)

where 0, q, and ZB are the potential temperature, specific humidity and height of tile. boundary

layer, respectively, d( )/dt the rate of change following a column of air moving at the mean vel-

ocity of the mixed layer, w'0' 1 0 and w'q' 10 the surface turbulent fluxes, We the entrainment

rate, W f the lifting rate of the inversion base title to large scale convergence, and AO and Aq cor-

respond to the jumps in 0 and d across the base of tine inversion. Note that W l —DZ B , where

D is the large scale divergence and is a prescribed parameter in tile model. We shall see that W1

generally appears to have little effect oil 	 results. However, the entrainment rate, We, can

have considerable influence oil 	 boundary layer through the introduction of warm, dry air

from the inversion to the boundary layer.. Therefore, a proper determination of W. is crucial in

any mixed layer model. Here W. is determined from the turbulent kinetic energy budget,, i.e.,

the energy source for the entrainment, which works against buoyancy, is derived from the turbu-

lent kinetic energy of the boundary layer, and this in tarn is generated primarily by buoyancy

production. In the cloud free region, the surface sensible heat flux plays a very important role

in determining W..

The surface turbulent fluxes are parameterized according to the bulk transfer formula as

W'O' 10 = CT U (00 — 0)	 (a)

w 'q' 10 = C  U (q0 - q)	 (5)

where 00 and q0 are the sea surface temperature (SST) and the corresponding saturation mixing

ratio, respectively, U the mean velocity of the mixed layer, and C T and C  the bulk transfer co-

efficients for heat and moisture, respectively. Cq is taken to be equal. to CT . For the parameter-

ization of the unstable surface layer, the transfer coefficients are independent of wind speed and
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dependent only on the virtual potential temperature difference between the sea surface and the

mixed layer, This is because the transfer coefficients depend only on the ratio of surface rough-

ness to surface layer height, rnd both are proportional to wind stress. This has the helpful con-

sequence that the downwind profiles of 0, q, and Z B are independent of wind speed out to the

edge of the cloud (Stage, 1979); the wind speed determines only the travel time for the required

itr-mass transformations. Although somesome authors have shown transfer coefficients to vary with

wind speed, the variation is only slight for unstable conditions such as those under consideration

(Kondo, 1970.

4. SENSIBLE AND LATENT HEATING NOMOGRAMS

The mean sensible and latent heating between the shore and some downwind distance in

the cloud free region are defined as

x
S = pep x" i f CT (00 - 0) dx	 (6)

0
x

E = pL x"1 
Jr Cq (qp - q ) dx	 (7)0

where x is the distance from the shore along the surface wind direction, p the air density, cp the

heat capacity of air at constant pressure, and L the latent heat of condensation. It can be seen

from (6) and (7) that S and E are the mean heating of the air column by rile warm sea per unit

distance of travel as a result of the surface sensible and latent heat fluxes, respectively. It can

also be seen from (4) (7) that the mean surface sensible and latent heat fluxes are equal to SU

and EU, respectively. Combining (1), (2), (6) and (7), S and E can be expressed as

XS = ^P .? x-' f (I + AO )- 1 ZB d0	 (8)
0
x

E = pL x-1 0 (1 - AJI ZB dq	 (9)

where

AO = WeAO/w'0' to	 (10)
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A  _ -We Aq'w'q^ 10 1)

Here the entrainnicnt coefficients Ad and Ail are tine ratios of the sensible and latent heat fluxes,

respectively, at the top of the boundary layer to those at the surface. Without these cross-

inversion fluxes, the Beat and moistur; budgets of the boundary layer would be in gross error.

As noted earlier wind speed does not affect the CFP or the downwind profiles of 0, q, and ZB

In the cloud free region. It can be seen from (8) - 0 l) that S, G, A0, Aq , and the nomograms

of sensible and latent heating derived with the associated model are independent of wind speed.

In order to construct the nomograms for S and 13 , several numerical experiments correspond-

ing to the initial soundings shown in Table 1 and 0 0 = G, 8, .... , . 260C for nondivorgent flows

were performed using the Stage and Businger model. The initial soundings were mainly taken

from Stage, The relative humidifies (RH) shown correspond to those at the surface. If there is

an SST gradient, S and E can be determined from the nomograms using the mean SST of the

region of interest for 00.

Fig. 2 shows the mean column sensible heating (S) between the shore and 100 km (within

the, cloud free region) versus the land air-sea surface temperature difference (00 - 0 1 ) for non.

divergent flow with the initial surface relative humidity of 20% and 0 1 = 3°C# The initial poten-

tial temperature, lapse rate (1'0) is 3.8°C kin -1 . It can be seen that S is nearly linearly propor-

tional to (0 0 0 1 ). This suggests a new kind of parameterization, i.e., the mean sensible treating

is proportional to the horizontal difference rather than the vertical difference of temperature.

The slight nonlinearlty is mainly due to the weak dependence of CT on (00 - 0 1 ); the change in

CT is about 2 1yo per degree change in (00 - 0 1 ). This result, which was evidently overlooked by

Stage (1979) and Stage and Businger (1981a, b) because they were not concerned with heat

fluxes, lias important ramifications in measuring and modeling coastal air-sea interactions since it

depends on measurable parameters (00 0 1 ) rather than on vertical profiles which are often riot
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available, On. tine other nand, slave this finding is itself a result of a model parameterization, It

needs to be verified experimentally.

Similarly, Fig, 3 shows ti ►e paean column latent heating (E) between shorn and 80 km (with-

in the cloud free region) versus the land air-sea surface humidity difference (qa •- q 1) for non-

divergent flows. Tine solid line corresponds to (00 0 1 ) - I I°G, and the dashed line to (00 - 01)

x 7°C, both with r0 - 3.80C km- 1 It can be seen that F is linearly proportional to (qo q I )

and slightly dependen ► oil 	 - 0 1 ) through the Cq (- CT ) dependence, This result also suggests

a new parameterization in that the mean latent heating is proportional to the horizontal differ-

ence rather than the vertical difference of vapor mixing ratio. Similar comments apply here as

were made in connection with the temperature parameterization,

Following the ideas of Pigs. 2 and 3 and the analysis shown in the Appendix, the nomograms

for estimating the mean sensible (S) and latent. heating (l3) between shore and the downwind

cloud feee distance (x) under rlondivergent conditions are given in Figs. 4 and 5 (solid curves).

The solid curves of Fig. 4 show the relation of S to (0 0 - 0 1 ) and x, while those of Fig. 5 show

the relation of F to (eta- q I ) and x with weak dependence oil 	 - 0 1 ). The application of

Figs. 4 and 5 is straight-forward. To obtain the column sensible heating for the cloud free region

one enters Fig. 4 with the cloud free path (x = CFP), and the difference between the mean sea

surface temperature (00) and the initial shore surface air temperature (0 1 ). Tile SST is readily

obtained from the l l pm channel of the AVHRR on TIROS-N or the same channel on at geo-

synchronous satellites. In the usually dry cold air outbreaks, little correction is necessary for in-

tervening water vapor. If there is a gradient of SST along the wind direction one may use the

average SST between shore and the cloud edge since the heating is essentially linear with (00 - 01).

The value of 01 may be obtained from conventional ni ,!asurements at the shore or from lR mea-

surements of the grou p ) skin temperature empirically corrected to shelter level air temperature.

Since the nomograms are produced with a specific value of ro(= 3.8°C km "1 ), a correction is
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also required for other temperature lapse rates at the shore, which should be obtainable from

conventional measurements. This correction is discussed in Section S, Note th at Flof>^ 4 and S

can also be applied to any region with x < CFP provided that 0 0 is the mean SST for the region

concerned,

The use of Fig. S for latent heat is analogous to that of Fig. 4. Mere q0 is the saturation

mixing ratio at the SST of 00 . Care must be exerted here in the event of a gradient in SST with-

in x because of the non-linear relation between q 0 'wd 00 , The humidity of the initial shore

surface air (q t ) call be obtained either from direct measurements or from the dashe i curves of

Fig. 4, which is to be described shortly, As noted earlier, E depends slightly oil (00 - 01)

through the C  dependence (Fig, 3). Therefore, a correction is required for E to account for

the (00 - 0' 1 ) dependence. This correction factor ►nay be written as

E = EN (l + 0,02 60)	 (12)

60 -- (00
 " 

0 f )obs (00 - 01)N	 (13)

where (lie subscripts N and obs denote, respectively, the nomogram and observed values. Tile

heat fluxes for the cloud free region may be obtained simply by multiplying the column heating

by the average mixed layer wind speed in the cloud free region. The latter may be estimated by

near surface measurements at the shore.

The dashed curves of Figs, 4 and 5 correspond to the CFP for various relative humidities of

the initial shore surface, air temperature of 3°C, Although large scale subsidence and the initial

lapse rates of temperature and humidity at the shore also affect the CFP, the dashed curves of

Fig, 4 suggest that, to a first approximation, CFP and (00 0 1 ) can be used to determine q1

for a known 0 1 . As mentioned above q 1 is required in using Fig, S to obtain the latent heating

if one does not have a direct humidity measurement. Indeed, because of the notable errors in
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radiosonde measurements of humidity, this approach may turn out to be more accurate once the

theoretical results are validated experimentally,

Note also that the cloud free path should be measured by a gcosynchronous satellite either

1
	

In the visible or IR because it varies diurnally with the land air temperature (see Section 6). Both

Figs, 4 and 5 are valid only for x within the cloud free region. While Fig. 4 shows that sensible

heating is not especially sensitive to x (tire variation in S is about 10% per 100 kill uncertainty

in x for a consWit (6 0 - 0 1 ) curve), one needs the CFP to determine the average SST (0 0) in

the cloud free region when there is an tsST gradient.

An examination of Figs, 4 and 5 shows the following key features within the cloud free

region;

(I) For constant x, S increases essentially linearly with increasing (0 0 - 0 1 ) and E with

((lo - q 1),

(2) For constant (00 -- 0 1 ), S decreases by 30 to 35% for x ranging from 0 to 300 km.

For constant (00 - 0 t ) and (qu - q 1 ), E also decreases with increasing x. As the dry cold air

travels over a warmer sea with a constant SST, the air becomes warmer and wetter and the local

air-sea temperature and humidity differences are gradually reduced; hence S and E decrease

gradually,

(3) For the same initial temperature and humidity soundings, an increase in SST causes an

increase in S and E but a decrease in CFP; i.e., fluxes increase and clouds form sooner.

(4) For constant 0 1 and 0o,, a decrease in the relative humidity of the initial land air causes

all 	 in CFP and E of the cloud free region but a decrease in S of this region.

Although the nomograms are generated with 0 = 3°C, its generality can be seen from the

analysis shown in the Appendix and the ;,numerical solutions shown in Fig. 6, The solid curves of

Fig. 6 show the downwind variation of the mean sensible heating, the local vertizai air-sea tem-

perature difference, and boundary layer height for the case of 20% RH with 01 = 3°C, (0 0 - 01)



0 11"C laud 1.'p a OT lclti-I * For thi s ease, the cloud five p ►tilt is w$Q kill. 'I'he symbols 111011a

the curet show values of S, (0 0 - 0), and ZII alt the cloud coge for other initial tcmperat ►irc ami

lamataidily conditions of i1 ►c. land lair but Willi the sa ►nie value,s of (00 w 0 1 ) alnd 1'p. We note that

the iniliaal temperature soundings for the 80% , mid 609f, RIi eases 1111(1 the Initial humidity s01111c1-

Ings liar the Cases* of Q I p10* tend t) 1 - -7T ti ne the same as Ihose liar the emsic of 20%, RII mid

01 X*C.

It cam be Sven that the profiles cif (00 ^ ti), S and Z11 ill the ciciucl free regicat ► are virtually

indclacmde,nt of tic iiaittal tvinperattive land Immidity sokmdings provided Owt (00 - 0 1 ) and Vo

are fixed. (The effects cat' PO are discussed it1 Section S), llowevea; the ctotid free path i ulic;tated

by file position of the varioaas symbols is highly sensitive to the initial soundings, i.e., clouds 1,01.111

sooner al Iai,gher Rit, This colatirliis our previous liladings,111m11cly 11111t tlae maul sensible hetitinit

for the cloud free reSion is mill;uely determined by (Oti " 0 t ), 1'0 , and C P.. we shalt sec thiat

this is also comsislcnt voitlt the a11alysis ill 	 Ammidix. `l C fact that the boundary Myer ttrowili

111 the cloud five reglon is 111111081 totally Controlled by tlae surface sensible heat flux, auad l aas

ialso by (00 - 0 1 ) and Vjl, is also silmificaant, since the boundary layer height is it laarameter which

should iaiso he inealsurable from space. Indeed, other things being equal. the growth stile of tile,

boillidaary lawyer and scaisible lcatimh may be used its proxies for one another, l?,ci, (AlS) ill

AIII)clWN shows tht the sensible lielkling is directly proportional to the average, valme, of d(Z li', )j

dx in ti ►e Cloud free region. we slaatll discuss this further below.

Our 1uu11y 'ses also Indicated ti ► at the meaaa ltllelat heating for tlae cloud free regioia may be,

tie te rill ined nvarly uniquely from it ktiowlv(lgc* of 41 0 - (I 1 ), (0 0 - 0 1 ), 170 and CF P- For it fixed

(00 -1,1 1 ), (q0 -- (I I ) and 1 O, the meals bitent ,hentint ill the cloud fi vee region vas found to be

slightly dependent oil 	 initial iauuiidity lapse tale, r (I , However, file effect is very 81111111, as

can be seeta from Table 2, which shows the percentage errors Ill and 1> at 100 loin froi11 the

coast (tile to error", in various fttetors. The percentage errors ill and E due, to till error of i°C
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in (00 0 1 ) and of I g kg-1
 in (q0 - q, )  arc smaller for larger (0 0 - 0 1 ) and ((10 q1), respective-

ly, They amount to about 11% in S for (0 0 - 0 1 ) = 9 - 11°C and 15% in E for (q 0 - q 1 ) - 6 -

8 g kg 1. A 10 km uncertainty in CFP causes about a 1% and a 0.5% error in S and E, respec-

tively. A 10-5 s" i uncertainty in the divergence causes about a 0.2% and a 0,03% error in S and

E, rr:spectively. This suggests that the nomograms (Figs. 4 and 5) generated from the nondiver-

gent flow may generally be used to estimate S and E for divergent flows,

5, EFFECTS OF INITIAL POTENTIAL TEMPERATURE LAPSE RATE

For a constant 0 1 , an initial I,t+nd air column associated with a large C 0 is warmer than that

with a small CO , After modification from below by warmer water the former tends to maintain

a warmer temperature in the boundary layer and thus produces a smaller driving force for the

sensible heat flux. In spite of the smaller sensible heating with larger ro the boundary layer al-

ways remains warmer because of its shallower depth as compared to that with small Co, There-

fore, for a fixed (0 0 - 0 1), S decreases with increasing CO . Similarly, for a fixed (0 0 - 0 1 ) and

((10 - q 1 ), E also decreases with increasing P0.

For 170 greater than 3.8°C kin -1 , the sensible heating nomogram (Fig. 4) overestimates the

sensible heating and thus requires a negative correction factor, and conversely. According to our

analysis, the Z B -normalized correction factor for the mean sensible heating may be approximated

as (see Appendix)

(AS/S)/Z B = -0.25 [(1 + Ae)/(l + 2A0)l [(re 3 .8 )/(00 - 0 1 )]	 (14)

Here ZB is the boundary layer height at the downwind edge of the region 'in which S is computed,

and A0 the entrainment coefficient of potential temperature defined in (10) as the ratio of sensi-

ble heat flux at the top of the boundary layer to that at the surface. The value of A O computed

from Stage and Businger's model is generally about 0.3 in the cloud free region for (00 - 01)
i

7°C. Note that the entrainment coefficient of virtual potential temperature is equal to 0.2 in the
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same model, These two entrainu nt coefficients are in reasonable agreement with those obtained

in other studies (e,g„ Temaekes, 1973; Willis in d Deardorff, 1974; Randall, 1980), Figs, 7 and 8

show the Z11-normalized correction factors for the mean sensible heating, (AS/S)/Zh , and the

mean Intent heating, (AC /r)/ZB versos F'0 for various (0 0 - 0 1 ) Its derived from the results of

munerical experiments, it call 	 seen that Fig, 7 is consistent with (14) and that the ZB-nortnal-

,.,	 x	 I	 w	

i

i`/.ctf errors Increase with Increasing deviation of C'0 from 3,8 C kilt' , and decrease with increas-

Ills (00 r 0 1 ). The correction factors (AS/S) and (Ala/R) for the clout) free region may be ob-

tained by multiplying the ordinates by Z 11 (kill) tit the cloud edge. The boundary layer height

may be measured by it variety of ground baser) remote sensor,+ such as lidar or sensitive micro-

wave radars, fn the future, it should be measurable by a spaceborne lidar scattering off tlae sea

salt ac^rosols at the (oil 	 the convective boundary layer,

Ac or( ing to our analysis, the boundary layer slope within the cloud free region under non-

divergent conditions may be written as (see Appendix)

dZ )(Ix = [(I + 2AO)(00 - 0 1 )/(1'0 Z11) - 0 + Ap)1 CT	(lS)

For large (0 0 - 0 1 ) and small r0 and ZE1 , ( IS) may be approximated its

dZh 2 /dx = 2(1 + A0 )CT (00 - 0 1 ) /rO	 (16)

1 1, (I6) suggests that 1 o may be estimated from it knowledge of d(Z Ij 2 )/fix and (0 0 -0 1 ), fig,

9 $flows cite slope of Z 11 2 versus ro for various (0 0 0 1 ) under nondivergent conditions as de-

rived from the results of the numerical experiments. Here d(Zh 4 )/dx is determined from the

first SO kill within the clout) free region (or from the cloud five region if the CFP is smaller than

SO kill), It can be seen that d(Z Ij 2 )/dx increases with. increasing (0 0 - 0 1 ) and decreases with

increasing P0 , which is consistent with (16). For nondivergent flaw, the potential temperature

lapse mate for the unmodified air (i.e,, above the convective boundary layer) at tine t, -y0 (t), is

the siame as than of the initial sounding, 1'0 » For divergent flow, ,y0(t) is gradually increased by
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the divergence and may be given as (Carson, 1973)

yp (t) - f o exp (Qt) 	 (17)

where D is the divergence, Therefore, divergence tends to decrease Z 11 	 increasing the poten-

tial temperature lapse rate. However, the effects of divergence oil 	 are expected to be

very small for the first 50 kilt or the first hour of travel.

G, OBSERVATIONS

Fig, 10 shows a TIROS-N AVHRR IR image for a cold air outbreak bn 17 February 1979

at 1941 GMT, The cloud streets are aligned essentially along the wind direction, from the north

and northwest, as seen front the winds at the three buoys its sown in Fib, 11. Initial cloud for-

ntation typically occurs about 100 km off the nearest upwind shore so that the boundar y of the

clouds is virtually an image of the coastline, South of Long Island, New York, the image shows

surface water temperatures increasing front about: -1,5 0G at the shore to 2°G about 50 kill south.

Approximately 500 kilt south of Long Island (36)N latitude), the clouds become solid and are

extremely unifortu in the east-west direction over a distance of about 1100 km. Note that the

coldest cloud top temperatures of-2l°G (dark green) occur at latitude 38°N where the clouds

remain in tte form of streets. Although it is almost certain that the cloud tops continue to brow

southward of the coldest point, the top temperatures grow progressively warmer, This is due to

the growth of the clouds into the inversion layer so that higher clouds are associated with warmer

temperatures,

Fig, I I shows the surface weather inap at 1500 GMT (1000 EST), about 5 hours earlier

than the time of TIROS-N AVHRR picture (Fig, 10), A high pressure system centered in the

Great lakes area dominates the entire east coast of North America, Cloud street: orientation is

generally observed to be along the mean wind in the planetary boundary layer and About 15" to

the left of the surface geostrophic wind (Lentone, 1973). This is also consistent with the case of
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17 February 1979, Fig. 121 shows the weekly mean SST for the period of 14-21 February 1979.

The temperatures are seen to be slightly warmer than the AVHRR IR brightness temperatures

for the cloud free coastal region, Note that the air flows across the SST isotherms for the region

from Maine to Long Island, where the cloud streets are best organized. Further south, the air

flow is nearly parallel to the SST isotherms. Also note the moderate snowfall (Fig. 11) reported

at Cape Hatteras, the snow quite Obviously having originated in the low level clouds formed over

the relatively warm sea,

In order to examine the present method the case of 1.7 February 1979 was fully analyzed 	 w

and the sensible heating derived from the nomogram (Fig. 4) was then compared to that com-

puted from the bulk transfer formula. A buoy located at about 75 km downwind from the Long

Island shore (40,1 0 N, 73°W) and several coastal stations provided hourly air (T a) and sea surface

temperatures (Ts) and wind speed (U) for the computation of sensible heat flux (SH) with the

bulk transport formula, which is

SH = pcp CH (Ts - Ta) U	 (18)

Here CH is the bulk transfer coefficient for the sensible heat flux, and is taken to be 1.5 x 10-3

(Kondo, 1975) for the diurnal ranges of temperature and wind in this case. Note that this value

of Cli is consistent with that of CT generated in Stage and Businger's model, which is about 1.5

'v 1,6 x 10-3 for this kind of situation ((00 - 0 1 ) ti 15 190C). The sensible beat fluxes at the

shore and at the buoy were computed from (18). The mean sensible Beating was then computed

by dividing the mean sensible heat flux by the mean wind speed between the shore and the buoy.

The cloud free path, averaged over about 120 kin wide coastal region south of Long Island,

was measured manually from the hourly GOES-2 IR cloud pictures. Because tite mean sensible

heating for the cloud free region discussed in Section 4 is the average along the trajectory in a

t	 Iangrangian sense, and the manually measured CFP is fairly subjective, a three-point running mean
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was applied to all the data (CFI', U, Ts and TO ). In order to estimate the mean sensible heating

for Cite cloud tree region front 	 nomogram, we need both (00 - 0 1 ) and the CFI'. Since it

takes time for the initial land air to form the first cloud downstream, we used values of 0 1 ob-

served at the shore at tinges earlier than the cloud observations differing by the travel time from

shore to cloud edge corresponding to the mean wind speed between the shore and the buoy. The

mean SST for the cloud free region, 0 0 , wits determined front the CFP anti the coastal SST field,

which was estimated front (lie SST tit the coastal station and the buoy. The coastal SST field

was found to have a gradient of about 0,07°C km " I anti was rather steady.

Fig. 13 shows lite diurnal variations of cloud free path (circles) and the associated 11101111 scn-

sible heaiting for the 17 February 1979 cold air outbreak south of the Long Island, New York

coast. 'rite solid curve is the mean sensible heating between the shore and the buoy (75 kin)

computed front the bulk transfer formula, while the squares represent the mean sensible heating

between the shore anti the cloud edgc (60 to 120 kin) estimated front 	 sensible heating nomo-

grain (i.e., Fig. 4). Note that the errors in the nomogram estimates due to divergence and the

initial potential temperature lapse rate (h0) are probably fairly small because of the small diver-

Bence (1.5 x 10's sec-I ) and large values of (00 - 0 1 ) (about 15 - 19T for most of the data)

and the small deviation of i"0 from 3,8° knt`I (170 is about 1.3 - I VC kni' I ).

We see than the results obtained front the present method are generally in very good agree-

ment with those front the bulk transfer fornnila. Since there is no diurnal variation it the coast-

tit SST field as evidenced Both at the shore station (Fire Island) and the buoy, the variation in

the mean sensible heating betweetl the shore and the buoy is clue manly to the variation in the

initial shore su1'face air temperature (0 1 ). The initial shore surface air temperature varies front a

minimum of -18*C around 0700 EST to a maximum of -10°C near 1500 EST. Note that the

maximum of S (between shore and the buoy) generally corresponds to the coldest land air tern-

perature and vice versa. On the other hand, there is it slight diurnal variation in the incan SST
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over the cloud free region (00 varies froth 1.2 to 3,8°C) because of the gradient of SST (about

0.07°C km-t ) and the variation in CFP, This is due only to the fact that the varying cloud edge

is Cite outer limit over which 0 0 is averaged. In short, the variation In S in the cloud free region

is due to the variation in the initial shore surface air temperature, 01, and the change in the ef-

fective SST, 00 . For a CFP smaller than 75 km, S of the cloud free region (squares) is generally

smaller than that of the region between the shore and the buoy (solid curve), because the effec-

tive 00 is smaller in the former than in the latter. For CFP larger than 75 kin, the reverse is

true. This accounts for most of the difference between the present and the conventional methods

of estimating heat flux.

The daily averages of S and SH computed from the bulk transfer formula are about 25 J m"3

and 249 W mr2 , respectively, with the observed daily mean wind speed of a mit 10 ms -1 . These

values agree almost identically with the average values obtained from the nomogrtun. Although

Fig, 13 indicates that S is overestimated after 1200 GMT for the reason noted above, these were

balanced by the underestimates prior to that time, thus giving excellent agreement for the daily

averages.

The present method was also applied to the case of the cold air outbreak analyzed by Henry

and Thompson (1976). The values of 0 0 , 0 1 , q0 , q I , CFP, and U were chosen to be 20°C, -4°C,

14.5 g kg-t , I g kg"'t , 100 km and 10 ms-1 , respectively. The corresponding sensible and latent

heat fluxes estimated from the nomograms were 400 and 600 W to' 2 , respectively, for the cloud

free region with a travel time of about 3 hours. These values are much smaller than those ob-

tained by Henry and Thompson. The sensible and latent heat fluxes are about 27% and 72%,

respectively, of their corresponding values. Since the temperature and humidity soundings near

the cloud edge used by Henry and Thomason were estimated, not observed, it is likely that the

estimated soundings were too warm and too wet, thus producing excessive apparent sensible and

latent heat fluxes. Also, the heating and drying effects of entrainment through the top of the
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boundary layer, which are important in the heat and moisture budgets, are not included in the

Henry and Thompson budget calculation. This is surely another major cause of the discrepancy.

7, CONCLUSIONS AND DISCUSSION

In the present paper we have shown how the sensible and latent heating of the atmosphere

due to surface fluxes is related to the downwind distance offshore at which clouds first form

during cold air outbreaks over the Harmer coastal waters, This distance, the so-called cloud free

path or CFP, and the mean sea surface temperature, both of which are measurable from space,

along with the temperature and moisture content of the initial shore surface air, both measurable

by conventional means, are all that are required to utilize the nomograms (Figs. 4 and S) devel-

oped here. Other things being equal, the greater the land air-sea surface temperature contrast,

the greater the heat and moisture fluxes and the closer to shore the clouds will form.

The results are not sensitive to flow divergence or to initial lapse rate of humidity at the

shore, but are dependent upon the initial lapse rate of potential temperature, re. If this is not

known from conventional soundings at the shore, it may be deduced from the downwind slope

of the square of the boundary layer height (Z B2 ) which is proportional to the land air-sea sur-

face temperature difference and inversely proportional to re The mean slope of (ZB2 ) is also

directly proportional to sensible heating so that it may be used as a proxy for the iatter. The

slope of the boundary layer height may be measured by a variety of ground based remote sen-

sors such as lidar, acoustic radar, or sensitive microwave radars, In the future, we expect that it

will also be measurable by spaceborne lidar scattering off the sea salt aerosols at the top of the

convective boundary layer. Another important future step is to extend the present approach fur-

ther from the coast beyond the cloud edge because it is clear that significant heating continues

to occur after clouds have formed (Henry and Thompson, 1976),

Within the cloud free region, the profiles of potential temperature, water vapor mixing ratio

and the height of the boundary layer along the wind direction were found to be independent of
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wind speed. This also makes the downwind profiles of the mean sensible and latent heating in-

dependent of wind speed, The generality of these results needs to be investigated further through

the comparison with other models (e.g., Brost, 1976, Randall, 1980, Moeng and Arakawa, 1980)

and empirical studies, The various :models may have different values of the entrainment coeffic

cents, Theoretical analyses (see Appendix) suggest that the growth and Beating of the boundary

layer within the cloud free region are not sensitive to the variation in the entrainment coefficient

(AO ) so long as it is within a reasonable range, if the parameterization of the turbulent transfer

coefficients through the air-sea interface is similar to that in Stage and Businger's model, it is

expected that the model dependency of the nomograms will be very small. Nevertheless, we rec-

ommend validation experiments and fine tuning of our results before they are applied more

broadly,

The method was tested in two cases: The first one showed good agreement in sensible heat-

ing as compared with that computed from buoy measurements and the bulk transfer formula.

However, a major discrepancy was found in our comparison to the case reported by Henry and

Thompson (1976) due to factors discussed earlier.

There are some interesting by-products of this work which are worth noting. First of all,

the model results indicate that the sensible heat flux is almost linear with the land air-sea surface

temperature difference, and that the latent heat flux is linear with the land air-sea surface vapor

mixing ratio difference, the latter with a small correction for the temperature difference; This

suggests the possibility of a new kind of flux parameterization for the convectively unstable case

which depends upon the horizontal differences across the coast instead of upon the vertical dif-

ferences as in the classical bulk transfer equations.

Another interesting aspect of the present work is that it appears that the method can be

used in reverse to check the validity of some of the basic assumptions and features of boundary

layer models. For example, it would be useful to determine whether or not the CFP and the
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other parameters (A, q, ZS , S and E) on which it depends are indeed independent of the wind

speed as the Stage and Businger (1981a, b) model suggests. In addition, observations such as

these should permit an indirect determination of the overall validity of models such as that used

here, While it may not be possible to separate the effects of various processes or parameters in

the boundary layer model, the position of the first cloud formation should provide fairly sensi-

tive tests of its overall performance

Finally, it is evident that the physical processes and results discussed here are related to the

lak"ffect snowstorms observed on the leeward side of lakes during cold outbreaks (Lavoie, 1972;

Passarelli and Braham, 1981). It seems likely that our method should be adaptable to the now-

casting of such snowfalls since the snowfall rate is related to the net moisture flux, or the differ-

ence between that coming from the lake (ocean) surface and that transported across the inversion,

It is of interest that both these important moisture supply and loss terms are automatically in-

corporated in determining the cloud free path,
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APPENDIX

Analytical Formulation for the Cloud Free Region

The hcat budget equation for the cloud tree boundary layer may be written as

do/dt = (w'0' 10 + WO AO)/ZB	 (AD

where 0 and ZB are the potential temperature and height of the boundary layer, respectively, t

time, w'0' 1 0 the surface turbulent flux of potential temperature, We the entrainment rate, and

A0 the jur ►p of 0 across the inversion base, For nondivergent conditions (dZB /dt = We), (Al)

may be rewritten as

dO/dZB = f 0 + A0)/AO I (A0/Z B )	 (A2)

where the entrainment coefficient is given by

AO = We AO/w'0' 1 0	(A3)

The jump in potential temperature at the inversion base may be given as

A0 = 0 1 + r0 Z B 0	 (A4)

where 0 1 is the initial surface potential temperature at the shoze and r0 the initial potential

temperature lapse rate. Using (M), (A2) may be rewritten as

de/dZB = f (I + A0)/AO I fro - (0 - 0 1 )/ZB I	 (M)

which may be integrated to give

0	 O(0)M -1, 0 1 (1 M) + [ (1 + AO )/(1 + 2AO) I r0 [Z B - ZB (0) M l	 (AG)

M = f ZB /ZB(0) ] - f (I + AO)/AO l
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where 0(0) and Zh (p) are the initial potential temperature and height of the mixed layer, respec-

tively, Note that the initial temperature sounding Is generally stable and Zg(0) is very small. For

the convectively unstable boundary layer, A0 is generally about 0.3 In the cloud free region and

Zg is generally much larger than ZO(0). Therefore (A6) becomes

	

0 e 01 + [ 0 + AO)/ 0 + 2AO) I JO Z 11	 (A7)

Eq. (A7) is a :linear relationship between the potential temperature and height of the convective

boundary layer in the cloud free region.

Eq, (At) may also be written as

dO/dt = 0 + AO ) w`0' 1 0 /ZS 	(A8)

where

w'0' Io = CT U(00 - 0)	 (A9)

CT is the bulk transfer coefficient, U is the mean wind speed in the boundary layer, and Oo is

the sea surface temperature,

Combining (A8) and (A9), results in

dO/dx = CT 0 + AO ) (00 - 0)/ZB 	(A10)

Where x is the distance from the shore aloj-ig the wind direction.

Combining (A7) and (A10), results in

dZB/dx = [ (1 + 2AO) (00 - 0 1 )/(POZg) — (1 + AO ) I CT 	(At 1)

For large (00 — 0 1 ) or small l~0 and Zg, (At 1) may be approximated as

	

dZg/dx CCT (1 + 2AO) (00 0 1 )/(rO Zg)	 (Al2)
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which may be integrated to give

	

Zg2 _X8 2 (0) + 2 CT (I + 2AO ) (00 — 0 1 ) X/ 170	(A13)

where

x
CT	 x-1 f CT dx	 ..

0

The mean sensible heating between the share and some downwind distance In the cloud free re.	
t

gion is defined as

x
S - pep x' 1 f CT (00 - O)(I x	 (A 14)

0

Using (A7) and (A 10), (A14) may be expressed as

x

	

S = pcp X-1 

b 
msro/(1 + 2AO)I fdz$ 2 /dxl dx	 (A15)

Eq. (A15) indicates that the sensible heating in the cloud free region is directly proportional to

the average value of d(Zp 2 )/dx in the same region, This supports the earlier statement that the

sensible heating and the growth rate of the boundary layer are proxies for one another, Using

(A11), (A15) may also be expressed as

S = pep CT (00 - 0 1 ) 0.5 pep C-

	

T rO ZR 0 + A©) / 0 + ZAO )	 (A16)

From (Al l) and (Al 6) we see that S can be uniquely determined by (00 - O 1 ), PO and x. Note

also that the second term of the R.H.S. of (A16) is generally much smaller than the first term.

Using (A 13) and (A16). the fractional error in S due to the change in PO may be approximated as

	

(as/arO ) /s ti -0.25 f (1 + AO) / (1 + 2AO)1 VB /(00 - 0 1 )] 	(A 17)

As mentioned earlier, AS computed from Stage and Businger's model is generally about 0,3 in

the cloud free region for (00 - 0 1 ) > 7°C. It can be seen from (A7), (A13) and (A16) that an
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increase of Ad from 0,2 to 0,4 causes a 13% increase in Z B , a 3% increases in (0 - 0 l ) and a 3%

decrease In [S — pcp CT (00 — 0 1 A - This suggests that our results are insensitive to AO and that

the model dependency of the nomograms is almost completely controlled by the parameterixa-

tions of the turbulent transfer through the air-sea interface, particularly upon the transfer coeffic-

ients,
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FIGURE CAPTIONS

Figure 1. Cold air outbreak on 3 January 1979 as seen by GOES-2 visible channel. Note that

shoreward edge of clouds is nearly an image of the coastline.

Figure 2.	 Mean column sensible heating (S) between shore and 100 km versus land air-sea sur-

face temperature difference (00 - 0 1 ) for an initial surface RH of 20% with 0 1 =

3°C and initial potential temperature lapse rate (170 ) of 3.8°C km-1.

Figure 3.	 Mean column latent heating (E) between shore and 80 km versus land air -sea surface

humidity difference (qp - q 1 ). Solid fine corresponds to (00 - 0 1 ) = 11°C, and

dashed line to (00 - 0 1 ) = 7°C. All for the initial potential temperature lapse rate

(1,0 ) of 3.8°C km 1. Symbols in legend correspond to various initial soundings.

Figure 4. Mean column sensible heating (S) between shore and downwind cloud free distance

(x) versus x for various land air-sea surface temperature differences (00 - 0 1 ) under

nondivergent conditions and initial potential temperature lapse rate of 3.8 °C km-1

(solid lines). Dashed lines correspond to the cloud free paths for various surface

relative humidities (RH) and initial shore surface air temperature (0 1 ) of 3°C. Each

cross indicates a numerical experiment.

Figure 5. Sames as Fig. 4, except for the dependence of mean column latent heating (E) on

land air-sea surface humidity difference (qp - ql ) and land air-sea surface tempera-

ture difference (00 - 0 1 ). Equation at bottom shows corrections in E due to values

of (00 0 1 ) not plotted on nomogram (see text).

Figure 6. Mean sensible heating (S) between shore and downwind cloud free distance (x),

local vertical air-sea temperature difference (00 - 0), and boundary layer height (ZB)

versus x for 20% relative humidity (RH) with 0 1 = 3°C (solid curves as marked)..
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Symbols correspond to other initial shore conditions as shown in legend, All for

(00 _ 0 1 )= 11 °C, and l'0 = 3.8°C km'
l
 ,

Figure 7.	 Z13 -normalized correction factor for mean sensible heating (AS/S)/ZB versus the in-

itial potential temperature lapse; rate (t'0 ) for various land air-sea surface temperature

differences (0 0 - 0 1 ). ZS (km) is the boundary layer height at the downwind edge

of the region in which S is computed.

Figure 8. Sames as Fig. 7, except for Zg-normalized correction factor for mean latent heating,

(AE/E)/ZB

Figure 9.	 Slope of ZB 2 versus the initial potential temperature lapse rate (17 0 ) for various

(0 0 - 0 1 ) under nondivergent conditions.

Figure 10. Cold air outbreak on 17 February 1979 as seen by Tiros-N AVHRR IR channel at

1941 GMT. Brightness temperatures are color coded according to color bar at bot-

tom in steps of 1,8°C. Abscissa and ordinate are marked in longitude and latitude.

Coastal waters in pink, red, and purple from Maine to Chesapeake Bay are in range

of -1.5°C to 5.5°C, Northermost cloud edges appear stippled because clouds are

broken. Cloud streets appear clearly in green south of Long Island and Connecticut,

and in blue or green southeast of coast of Maine. Coldest cloud temperatures are

green (-21°C) along 380 latitude.

Figure 11, Surface weather map of 17 February 19' 19 at 1500 GMT. Note snow at Cape Hat-

teras and winds at three buoys.

Figure 12. Weekly mean sea surface temperature for the period 14-21 February 1979.

Figure 13. Diurnal variations of cloud free path (circles) and the mean sensible heating between

shore and cloud edge (solid curve and squares) for l; February 1979 cold air out-
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break off coastal area of Gone Island, New York, Solid line is computed from the

bulk transfer formula and the squares are estimated from the nomogram, both using

data at shore and buoy.
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Figure 1. Cold air outbreak on 3 January 1979 as seen by GOES-2 visible channel.
Note that shoreward edge of clouds is nearly an image of the coastline.
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Figure 10. Cold air outbreak on 17 February 1979 as seen by Tiros-N AVHRR IR
channel at 1941 GMT. Brightness temperatures are color coded accord-
ing to color' w at bottom in steps of 1,8°C. Abscissa and ordinate are
marked in longitude and latitude. Coastal waters in pink, red, and pear-
pie from Maine to Chesapeake Bay are in range of -1.5°C to 5.5°C.
Northermost cloud edges appear stippled because clouds are broken.
Cloud streets appear clearly in green south of Long Island and Connect-
icut, and in blue or green southeast of coast of Maine. Coldest cloud
temperatures are green (-21°C) along 38* latitude. 0
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