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Abstract 

A new conservative flux difference splitting is presented for the 

hyperbolic systems of gasdynamics. The stable robust method is suitable 

for wide application in a variety of schemes, explicit or implicit, 

iterative or direct, for marching in either time or space. The splitting 

is modeled on the local quasi one dimensional characteristics system 

for multi-dimensional flow similar to Chakravarthy's nonconservative 

split coefficient matrix method (SCM); but, as the result of maintaining 

global conservation, the method is able to capture sharp shocks correctly. 

The embedded characteristics formulation is cast in a primitive variable 

the volumetric internal energy (rather than the pressure) that is effec­

tive for treating real as well as perfect gases. Finally the relationship 

of the splitting to characteristics boundary conditions is discussed and 

the associated conservative' matrix formulation for a computed blown wall 

boundary condition is developed as an example. 

The theoretical development employs and extends the notion of Roe 

of constructing stable upwind difference formulae by "sending" split 

simple one sided flux difference pieces to appropriate mesh sites. The 

developments are also believed to have the potential for aiding in the 

analysis of both existing and new conservative difference schemes. 
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I. Introduction 

RESEARCH REPORT 

CONSERVATIVE SUPRA-CHARACTERISTICS 

METHOD FOR SPLITTING THE HYPERBOLIC 

SYSTEMS OF GASDYNAMICS 

FOR REAL AND PERFECT GASES 

by 

C.K. Lombard 

For many years, Morretti 1,2,3 (see also Pandolfi and Zanetti 4) has 

advocated and demonstrated the physical content and accuracy available 

in the nonconservative primitive equations of gasdynamics and particularly 

the characteristics formulation of those equations, especially at bound­

aries. Following closely upon the Morretti II ~ scheme ll Chakravarthy5,6, 

et ~ came forth with a simplified multidimensional, quasi one dimensional 

method based on eigenvector sp1ittings of the coefficient matrices of 

the nonconservative Euler equations. Chakravarthy emphasized the cor­

respondence between stable upwind differencings of the split equation 

pieces and the transformed quasi one dimensional characteristic 

relations. Getting generally very attractive results including very sharp 

captured shock transitions, Chakravarthy encountered only one substantial 

problem, that of unreliable shock location. 

On the other hand, a theorem of Lax and Wendroff7 that a finite dif-

ference scheme in conservation law form can realize the Rankine-Hugoniot 

jump conditions automatically has led to a long line of development fea­

turing such popular schemes as those of MacCormack8,9, Beam and Warming10 , 
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and Briley and McDonald11 . However, such conservative shock capturing 

schemes have been found deficient in resolution, tending to smear the 

transitions over several mesh points, and are subject to stability 

'plaguing overshoots and undershoots and nonphysical solutions all of 

which must be controlled by the addition of ad hoc artificial dissipa­

tion terms. Finally the artificial dissipation coupled with indiscrimi-

nant directional differencing has led to excessive smearing of contact 

discontinuities. 

Recent recognition of these drawbacks has led to the introduction 

of directional signal propagation information in conservative schemes. 

The principal lines of development appear to be flux splitting intro-

duced first be Steger and Warming12 ,13 and more recently flux difference 

splitting, put forth by Enquist and Osher14 , Osher and Solomon15 , and 

by Roe16 . Most recently Reklis and Thomas 17 have presented an upwind 

control volume centered method that appears to be a hybrid of flux split­

ting and flux difference splitting. With the exception of the latter, 

these methods have been surveyed and appraised by van Leer18 and by Harten, 

Lax and van Leer19. Flux splitting suffers from the flaw that it fails 

to provide consistent directional signal information where it is most 

needed, namely in the vicinity of a change in eigenvalue sign. Flux dif­

ference splitting on the other hand admits a greater generality than flux 

splitting and can be taylored to a variety of signal propagating philos­

ophiesor requirements as partially expressed in the works to date and the 

present report. 

The approach taken in the present work is to unify in so far as pos­

sible the virtues of the signal propagation of the characteristics method 

with simple conservative upwind finite difference schemes in a way that 

2 

.{, 

.'\1 



" 

.... 

$" .' 

." 

permits both explicit and implicit numerical methods. Among motivations 

for choosing the characteristics based splitting presented here is the 

belief that it is the natural and most numerically robust linearization 

of the gasdynamic equations since it supports the physical directional 

propagation of sound waves. This belief also seems to be supported by 

various gedanken experiments performed on numerical flow simulation pathol­

ogies conceived out of past experience with conservative methods. 

In the characteristics interpretation and approach, the present method 

is closest to Chakravarthy; and in the development of general conservative 

upwind schemes out of one sided differences, follows Roe. Explicitly, 

reliance is placed on Roels property U which the new matrix shares with 

his, though they are very different both in detail and concept of construc­

tion. The principal feature of property U for admitting Rankine-Hugon;ot 

satisfying shock transitions is 

-6F :: A 6q (1) 

where 6F expresses the flux difference on either side of the transi­

tion and 6q is the corresponding jump in the conservative variable 

vector. We find it more than mildly interesting that conservative methods 

based on this matrix, namely, 

-oq + A 6q = a (2) 

are in the same form for method of solution as in their linear stability 

analysis. 
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II. Conservative Supra-Characteristics Method 
-Our method for constructing A rests on the observation that dif-

ferences of nonlinear quantities such as pu appearing in the conservative 

equations can be expressed exactly as 

~ pu = p ~u + u ~p (3) 

This fact was recognized by Roe but the tougher triad terms evidently 

caused him to take a different ad hoc approach which he noted was 

generalizable to other hyperbolic systems. The key to sorting out how 

to construct a splittable A from simple end point averagings (--) of 

quantities across an interval is to analyze in detail how the charac­

teristic equations are formed of the nonconservative primitive equations, 

on the one hand, and how the conservative equations are formed out of 

the primitive ones, on the other. The results will be sketched below 

but the cumbersome details are left to the Appendix. Here, we only 

remark that A is definitely not A ,which van Leer has tried and 

regards as too dissipative19 . 

Conservation And The Elemental Interval Equation 
-Before describing the present A further, we introduce some relevant 

background material. The first item is the general discrete quasi one 

dimensional simple interval difference equation as an element of a multi-

dimensional globally conservative numerical procedure. This concept is 

regarded as central to Roels approach but is not introduced by him in 

this way. In the text figure below we see a bounded one dimensional 

computational domain divided up by interior mesh points into N-l simple 
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intervals. We place data on the computed boundaries which are treated 

naturally with characteristic boundary conditions by this method, as will 

be described in a later section. 

(1 ) (2) , (N-1) 

1 2 3 N-l N 

The simple (j)th interval equation whose splittings form the building 

blocks of the nodal point difference equations is then 

* (J ($ q). + (l:.e-F). = 0 
or J. ." J 

(4) 

Here J is the volume of a slab from a computational topological cube 

bounded by all the adjacent mesh points to one at the center and isolated 

by passing a ~ constant coordinate surface through the center point. 

In one dimension J is just l:.X j . In multi dimensions the "cube" (area 

in 2-D) is bisected into slabs for each of the general curvilinear coor­

dinate directions. For each slab and coordinate direction there exist 

elemental equations of the form (4) * In the equation the term ($ q. 
or J 

is a measure of the change in the conservative variable q vector over 

the interval l:.~ in the slab as a result of the bounding inviscid 

flux difference l:.~F. (Note the discrete computational flux F~ 

contains the associated slab face area S~. For a discussion of 2-D 

and 3-D discrete finite volume formulations of the conservative eq~ations 

in generalized curvilinear coordinates on a finite difference mesh see 

Lombard, Davy, and Green20 and Thomas and Lombard21 . ) When such equa-

tions (4) are summed over all mesh intervals in all coordinate directions, 
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all the interior flux terms cancel identically ,and there results the 

discrete approximation to the global conservation law for the computational 

domain 

Iv q dV * I J<5q =-I 
l' 

F • n ~ - If F·n dS 
~a ~ a 

(5) 

Thus, when difference equations are constructed among split pieces of the 

elemental difference equations (4), global conservation requires only 

that the weighting functions for the distribution of each piece among 

the nodal difference equations should sum to one for each elemental equa-

tion. 

While Roe focused his attention exclusively on just the flux term 

of equation (4), it is true that all discrete quasi-one-dimensional con­

servative numerical methods can be constructed from the elemental dif-

ference equations (4). WithJn this context, the difference between methods 

resides not just in the treatment of the flux term V~F but also in 

* the definition of the unsteady term <5 q. For example for all methods 
L 

* constructed of simple one sided differences, q can be represented as 

q)" = a q " + (1 - a) qJ" + 1 
J J 

(6) 

In MacCormack's method, for instance, a = t. We will see presently 

that the way methods treat characteristic information is, or ought to be, 

reflected in the weighting function a . 

Stable Scalar Convection Equations 

The second item is the scalar convection equation which is well 

known to admit stable explicit and implicit numerical schemes when 
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backward or forward differenced according as the sign of the eigenvalue 

is positive or negative as below 

o u. + A V u· = 0 
'[ J ~ J 

A > 0 

(7 ) 

o u. + A 6 U. = 0 , A < 0 
'[ J ~ J 

Supra-Characteristics Matrix Splitting 

To continue with the discussion of the matrix that linearizes the 

flux difference equation (1), we are able to express A as 

A = M T 0 T- 1 M- 1 

Here the matrices M, T and T- 1 bear considerable formal corre­

spondence to the matrices of, flux splitting12 ,13 but M- 1 is very 

(8) 

different from the inverse M- 1 Specifically, M- 1 is the matrix 

operator that constructs the right hand side (spatial) difference vector 

of the nonconservative primitive equations from the associated con­

servative variable vector differences. The matrix T- 1 is the operator 

that transforms the primitive equations into the scalar characteristic 

equations. Indeed, with reference to equation (4), we can write the 

1-0 elemental characteristics equations that underlie the present 

conservative method as the set 

-1 -1 * -1 --1 JOT M QTq +'0 T M 6~q = 0 (9) 

In these equations, the diagonal matrix 0 is not the eigenvalue 
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matrix but a truth function which for a complete set of eigenvalues is 

the identity matrix. This formulation permits treating all the differ-

ence terms of the primitive equations exactly without source terms and 

has led us to conceive the nomer conservative "supra(above, akin to)­

characteristics" method (CSCM). To effect stable upwind difference 

methods the elemental characteristics equations are divided up for the 

jth interval according to partitioning the truth function D for positive 

and negative eigenvalues into 0+ and 0- with complementary ones and 

zeroes on the diagonals. In analogy with equations (7) the stable one 

sided first order splittings of equations (9) are 

( + -1 -1) (+ -1 -_1 ) 
J D T M j 0Tqj+l + D T M 6~q j_ = a 

(10) 

(J D - T-
1 

M-
1

) JOT q j + (0- T-
1 M- 1 6~q)j = a 

Note for the elemental interval j the forward difference 6~qj is 

equal to the backward difference v~qj+1 . 

The stable conservative elemental difference equation pieces for 

the interval j are derived from equations (10) by multiplying by the 

matrix product M T. These, respectively from the right, serve to 

transform characteristics equations to primitive equations and primitive 

equations to conservative equations. The resulting splitting of equation 

(4) can be written 

:::+ 
(J A ) j 0Tqj+l + -+ 

(A 6~q)j = a 

(11 ) 

(JA-).oq. + 
J T J 

(A- 6~q)j = a 
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Comparing these with equations (4) makes it evident that for a character­

istics based splitting the elemental interval measure of the conservative 
* . variable vector qj for the unsteady term is defined (see (6)) as 

* -- =+ q. = A q. + A q.+1 J J J 
(12) 

With equations (11) as the basic stable elements and in analogy with 

Roels prescription for "sending" the flux difference pieces A+ ~q and 

A- ~q ,a host of stable conservative upwind methods can be constructed. 

In particular, a stable first order difference equation based on 

the elemental interval splitting (11) is 

~+ = -+ -
[(J A )j-1 + (J A-)j] 0Tqj + (A ~~q)j-1 + (A- ~~q)j = 0 (13) 

Equation (13) is amenable t~ both explicit numerical methods involving 

a block diagonal matrix inversion and fully implicit methods involving 

block tridiagonal matrix inversions. Similarly a stable second order 

difference equation is 

:::+ ::+ :: -
![-(J A ). 2 + 3(J A ). 1 + 3(J A-). - (J A-) ·+1] 0 qJ. J- J- J J T 

-+ -+ - -
+ t[-(A ~~q)j-2 + 3(A ~~q)j-1 + 3(A- ~~q)j - (A- ~~q)j+1 = 0 (14) 

Equation (14)· is also amenable to explicit numerical methods and to 

implicit methods involving either block pentadiagonal inversions or block 

tridiagonal inversions, if the implicit convecti~e terms are treated 

first order as in equation (13). Appropriate explicit and implicit 
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numerical methods and their stability for eigenvector split schemes 

have been discussed in references 12 and 13. 

For the elemental difference intervals adjacent to boundaries the 

distribution of the splittings (II) of the elemental interval equations 

to form stable interior nodal point difference equations such as (13) 

leaves pieces 

{J A-)lo.q1 + {A- A~q)l = 0 

(15) 
-+ -+ 

{J A )N-1 o.qN + (A A~q)N_1 = 0 

unused. These elemental equation pieces which embody the outrunning 

characteristics to the left and right boundaries respectively can be 

used as natural elements to construct dissipative boundary point dif-

ference schemes that satisf~, with our interior point schemes, suf­

ficiency conditions for stability of the coupled discrete initial boundary 

value problem, 01iger22 . It is physically satisfying that the inclusion 

of these residual elemental equation pieces (15) for boundary point 

difference approximations is also necessary to close the global con­

servation property of the set of elemental difference equations to the 

computational boundaries. 

The use of various akin space-time extrapolations from the interior 

has been discussed and analyzed for stability with different interior 

point schemes by Oliger and Sundstrom 23 and Gustafson and 01iger24 . 

Yee25 , in a report with a recent extensive survey, sketched an approach 

based on flux splitting that is similar to the method we now present. 
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III. Natural Characteristic Boundary Conditions 

The diagonal matrices for interior nodal point difference equations 

such as (13) and (14) have a complete set of independent eigenvectors 

corresponding to the complete set of stable characteristics equations 

potentially available from either the right or left of the so)ution 

point depending on eigenvalue sign. At a computational boundary nodal 

point, however, only the stable subset of characteristics differenced 

from the interior and with negative eigenvalues for a left boundary 

and positive eigenvalues for a right, are applicable. Then, if there 

are N dependent variables in the conservative variable vector and 

only M stable characteristic relations available from the interior, 

we must specify N-M auxiliary boundary condition relations among the 

dependent variables. Such numerical auxiliary boundary conditions reflect 

in number and kind the natural boundary conditions for the POE. To extend 

the approach of Kentzer26 t~ a conservative matrix method such as we have 

here, auxiliary boundary relations are time differenced and included in 

the NxN block matrix of the diagonal to replace the unavailable exte­

rior characteristic relations A+ for a left boundary and A- for a 

right boundary. Without the introduction of these auxiliary boundary 

condition relations the split matrices A± are singular. 

The method is illustrated for an isothermal wall boundary with pre­

scribed blowing. Experience has shown it is most natural to introduce 

the auxiliary boundary conditions at the level at which the characteristic 
_l 

equations are formed nam~ly at the T matrix level. We specialize the 

construction to 2-D with a lower wall boundary which we assume is an n 

constant curvilinear coordinate line. 

11 



From the Appendix, the matrix T-1 for the full set of characteristic 

relations is 

1 0 0 1 -P yp 
A n" ~ a x a 
PC pc 
"'l<" 

~ a Tl~ 1 
pC pc yp 

a ~~ -~ 1 
pc pc yp 

In the formulation this matrix isto be multiplied by the primitive equa­

tion time difference (column) vector (op, p aU, p oV, oP)+. 

(Here for generality and applicability to real gas flows P is not the 

pressure p but the related -E-1 .) The resulting characteristic vari-
y-

able differences are by row: (1) the entropy, (2) the tangential velocity, 

and (3) and (4) are the p+ and P- normal pressure velocity compati­

bility relations "respectively. The eigenvalues associated with these 

characteristics are WTl, WTl, WTl + nC, Wn - nC. For subsonic blow-

ing (inflow) only the latter of these is negative and is associated with 

a stable difference relation from the interior. Thus, the first three 

characteristic difference relations associated with the first three rows 

of T- 1 need to be replaced by auxiliary boundary conditions. Such 

boundary conditions do not involve differences to the interior but only 

relations which serve to constrain the mutual variations of the dependent 

variables at the boundary. 

Fo~ consistency and global conservation with the interior point 

procedure,the boundary point computational procedure having the properties 

just described can conveniently be represented as 

12 
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J M T(O-T-1M-1 + O+T~M~)loq1 + (M T D-T-1M-1A~q)1 = o. (16) 

Here for simplicity, first order differencing of the P- characteristic 

has been assumed from the wall. The auxiliary boundary conditions are, 

quite evidently, embodied in the matrix O+T~M~ where 0+ is the truth 

function complement to 0-, T~ is the matrix in which the'boundary 

conditions are formulated, and M~ permits the formulation to be flex­

ibly constructed among either the primitive variable differences, the 

conservative variable differences, or more commonly a combination of the 

two. 

Not too surprisingly it has been found that appropriate (stable) 

auxiliary boundary conditions have T~ matrix representations row by 

row quite similar to the matrix rows of T-
1 

they naturally replace. 

Indeed for good matrix conditioning in the coupled difference equation 

boundary condition procedure, it is highly desireable that the corre­

spondence be as close as possible. Consequently, in the following we 

elucidate the properties of T~ in terms of the rows of T-
1 

that 

are naturally replaced. 

The first row of T-1 (multiplied by the primitive variable vector 

differences) can be seen to represent a logrithmic differential relation 

of a thermodynamic function the entropy. Indeed, a viable auxiliary 
~ 

boundary condition that can be applied is constant .entropy (0 In(~) = 0), 
p 

i.e. no wall heating, in which case row one of T-1 could be used intact 

for T~. A more general thermodynamic relation at the wall is the poly­

trope law P ~ pa which can be logarithmically differenced with the matrix 

coefficients 

1 
p 

o 

13 

o 1 
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For a = y this is the isentropic wall and for a = 1 this is the 

isothermal or constant temperature wall. 

The second row of T-1 
, for the tangential velocity equation, 

involves the direction cosines for the local tangent to the n constant 

coordinate lines. Thus at the wall the condition that blown flux enter 

the flow normal to the wall can be expressed as the inner product (the 

tangential velocity component) ny u - n~ v = O. When differentiated 

this relation yields the same matrix representation for T' as the 
-1 . -1 + second row of T . The thlrd row of T ,for the P pressure 

normal velocity compatibility equation, contains in columns two and 

three the direction cosines n' and n' for the local normals to the xy 
n constant coordinate lines. Many ablators of current and potential 

use sublimate at a nearly constant temperature, and the mass flow rate 

is proportional to the heating rate with a coefficient weakly dependent 

on the pressure. For convenience the pressure dependence can be described 

locally logrithm;~ally. Then the auxiliary boundary condition for the 

mass flux can be written as a variation about a local reference heating 

state as 

1 . 1 1 • - am - - oP = .. oQ 
rh SP Q 

Here m = n; pu + n; pv = pWn and the left hand side takes the T 

matrix representation 

o 
A~ ,..~ 

nx 
PW' 

14 

~ 
PWn 

1 
SP 

(17 ) 
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Row one of T' is written for the primitive variable differences 

op and oP ,while rows two and three are for the conservative variable 

differences o(pu) and o(pv). The fourth row of T' is immaterial 

since it is not selected by the D+ truth function and in fact need not 

be programmed at all. The M' that constructs the above desired com­

bination of primitive and conservative variable differences from the homo­

geneous conservative variable difference vector can be chosen as 

IV. Results 

1 

a 

a 

u2 + v2 

2 

a 

1 

a 

-u 

a a 

a a 

1 a 

-v 1 

An indication of the potential effectiveness of the CSCM method can 

be found in the results of two model problems. 

The first model problem is the scalar Burgers equation ramp wave 

with inflow boundary condition and computed outflow. Here the single 

eigenvalue corresponding to A of a system is simply u and the equa­

tion solved is 

ou. + u. ~ V.u = a for u > a 
1 1-"2" 1 

( 18) 

In Figure 1a. the computed solution (boxes) is shown at three times 

(0.67, 1.33, 2.0) on the interval .5 2 x < 1 for initial conditions 

u = x on the interval. The exact solution u = l~t plotted in 

15 



triangles connected by solid line has been given by Vee, Beam, and 

Warming27 with computations that can be compared Figure lb. The solu­

tion obtained with the present method was run explicitly at a Courant 

number of 0.8 and can be seen to be effectively exact. In particular 

there is no evidence of disconnectedness on the expansion indicating 

the method possesses a desirable degree of natural numerical dissipation. 

The second model problem is Shubins hyperbolic tangent nozzl~ prob­

lem with supersonic inflow and subsonic outflow. The author is indebted 

to Warming and Vee for assistance in this problem by providing Shubins 

data and a code in which the method for the quasi 1-0 Euler equations 

could conveniently be incorporated. Solution (Figures 2b. and 2c.), for 

this problem with different methods have been published by Yee25 and 

by Vee, Beam, and Warming27. In Figure 2a. a solution is shown at 1000 

steps from an explicit calculation made with the present method at a 

Courant number of 0.8. For practical purposes the solution was obtained 

in 400-500 steps. The results, shown in boxes, can be seen to correspond 

to Shubins effectively exact solution to within the resolution of his 

data, shown connected by solid line. Again no difficulty is found with 

the expansion but also no noticeable smoothing of the jump transition is 

apparent. 

A comment on accuracy, the graphs have been labeled IIfirst order 

upwind" after the finite difference convention of simple one sided dif­

ferences employed for these results. However, owing to the fact that 

the method's eigenvalues are effectively centeree (the averaging proce­

dure), the CSCM method is second order from a method of characteristics 
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* point of view, Rakich. In any case, within the remarkable framework 

of Roe, the present finite difference method is extendable to any order 

of finte difference accuracy based on Taylor series. 

v. Summary 

A new conservative quasi one dimensional flux difference splitting 

has been presented for the hyperbolic terms of multidimensional gas­

dynamics. The splitting based on local linearizing combinations of non-

conservative primitive difference equations for one curvilinear coordinate 

direction is akin to a 1-0 unsteady method of characteristics. In this 

respect the method is philosophically in accord with the split coefficient 

matrix method of Chakravarthy. But, unlike Chakravarthy and in accord 

with Roe, emphasis is placed on developing a method that maintains the 

global conservation property available in methods based on simple one sided 

conservative flux differences. To this end and extending the theoretical 

foundations of Roels method, an elemental simple interval difference equa­

tion is defined out of which any globally conservative finite difference 

method can be constructed. Akin to how the conservative PDEls are con-

structed from the nonconservative primitive equations, a matrix transform 

of a discrete set of primitive difference equations is constructed to 

realize identically the conservative elemental interval equations. For 

application to real gas as well as perfect gas flows, the volumetric 

internal energy is chosen as the basis of the primitive equations repre­

sentation rather than the pressure. 

* private conversation 
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Neither the primitive difference equations nor their transform, the 

characteristic equations, are solved but are only constructed conceptually 

in the matrix splitting of the conservative elemental interval equations. 

The split pieces of the latter, for which the characteristic equations 

may be regarded as eigenfunctions, are the basis of the nodal point finite 

difference equations that are solved in the conservative variables. Fol­

lowing the approach of Roe, stable nodal point difference equations are 

constructed by choosing split elemental interval equation pieces that 

provide upwind differencings according to the eigenvalues of the associated 

characteristic equations. 

For application to direct implicit matrix methods it is necessary, 

in the delta form, to at least express the time difference of the spatial 

difference of the fluxes in terms of the spatial difference of the time 

differences of the conservative variables. In flux splitting as the result 

of the homogeneous property the flux can be expressed as the product of 

the Jacobian matrix and the conservative variable vector. The delta form 

follows. In the present work a further matrix transform has been found 

that exactly expresses the elemental interval primitive difference equa­

tions in terms of differences of the conservative variables. Thus with 

the conservative transform of the primitive equations, it has been pos­

sible in the present method to express the flux difference as a matrix 

transform of the primitive variable differences, hence the nomer flux 

difference splitting and the delta form also follows. 

Finally the split elemental interval equation pieces corresponding 

to stable upwind characteristic equations to the boundaries are used 

in conjunction with auxiliary boundary conditionso~ccording to the 
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approach of Kentzer to form stable boundary pOint difference relations 

that are wholly consistent with the interior point conservative formulation. 

Results of two model problems for which computations have previously 

been reported in the literature have been presented. The solution for 

the first problem, the Burgers equation ramp expansion, found effectively 

the exact solution with no evidence of oscillation or disconnectedness 

(expansion shocks) developing. The solution for the second model problem, 

Shubin's nozzle with supersonic inflow and subsonic outflow has also been 

found to be effectively exact including the shock location. 

VI. Conclusions 

A stable conservative finite difference method has been constructed 

that supports approximately the correct wave propagation and domain of 

dependence of characteristic methods. The splitting is sufficiently 

general to lend itself to a variety of numerical schemes, explicit or 

implicit, iterative or direct, for marching in time or space for the 

compressible Euler and Navier-Stokes equations. Based on preliminary 

results of model problems the upwind split method has the potential for 

both improved robustness and accuracy relative to the present generation 

of unsplit methods. 

19 



.. ' 



,'. 

1 

~.-

L 

References 

1. Moretti, Gino, "Importance of boundary conditions in the numerical 
treatment of hyperbolic equations," Physics of Fluids, li, Supple II, 
pp. 11-13-20, 1969. 

2. Moretti, Gino, liThe A-scheme,1I Computers and Fluids, I, pp. 191-205, 
1979. 

3. Moretti, Gino, "A physical approach to the treatment of boundaries 
in gas dynamics," Numerical Boundary Condition Procedures, NASA 
Conference Publication 2201, 1981. 

4. Pandolfi, M. and Zannetti, L., IIA physical approach to solve numerically 
complicated hyperbolic flow problems," Seventh International Conference 
on Numeri ca·l Methods in Fl ui d Dynami cs, Lecture Notes in Phys i cs, 141, 
pp. 322-327, 1981. -

5. Chakravarthy, S.R., Anderson, D.A., and Salas, M.D., liThe split 
coefficient matrix method for hyperbolic systems of gas dynamic 
equations,1I AIAA Paper 80-0268, 1980. 

6. Chakravarthy, S.R., "Inviscid analysis of dual-throat nozzle flows," 
AIAA Paper 81-1201, 1981. 

7. Lax, P.O. and Wendroff, B., "Systems of conservation laws," Cornm. 
Pure and Appl Math., 11, pp. 217-237, 1960. --

8. MacCormack, R.W., liThe effect of viscosity on hypervelocity impact 
cratering,1I AIAA Paper 69-354, 1969. 

9. MacCormack, R.W., IIA numerical method for solving the equations of 
compressible viscous floW," AIAA Paper 81-0110, 1981. 

10. Beam, R.M. and Warming, R.F., "An implicit finite-difference algorithm 
for hyperbolic systems in conservation-law form," J. Compo Phys., 
22, pp. 87-110, 1976. 

11. Briley, W.R. and McDonald, H., IIS0 1ution of the multi-dimensional 
compressible Navier-Stokes equations by an implicit method," 
J. Camp. Physics, 24, pp. 372-397, 1977. 

12. Steger, J.L. and Warming, R.F., "Flux vector splitting of the inviscid 
gasdynamic equations with application to finite difference methods," 
NASA Technical Memorandum 78605, July 1979. 

13. Warming, R.F. and Beam, R.M., liOn construction and application of 
implicit factored schemes for conservation laws," SIAM-AMS Proceedings, 
vol. 11, 1977. 

14. Enquist, Bjorn and Osher, Stanley, liStable and entropy satisfying 
approximations for transonic flow calculations," Preprint, U. of 
California, Los Angeles, 1981. 

20 



15. Osher, Stanley and Solomon, Fred, "Upwind difference schemes for 
hyperbolic systems of con~ervation laws," Preprint, U. of California, 
Los Angeles, 1981. 

16. Roe, P.L., liThe use of the Riemann problem in finite-difference 
schemes," Seventh International Conference on Numerical Methods 
In Fluid Dynamics, Lecture Notes in Physics, 141, pp. 354-359, 
1981. 

17. Reklis, R.P. and Thomas, P.O., "A shock capturing algorithm for 
the Navi er-Stokes equations, II AIAA Paper 81-1021, 1981. 

18. van Leer, Bram, "Upwind differencing for hyperbolic systems of 
conservation laws," ICASE Internal Report, Doc. No. 12, 1980. 

19. Harten, Amiram, Lax, P.D., and van Leer, Bram, liOn upstream dif­
ferencing and Godunov-type schemes for hyperbolic conservation 
laws," Preprint. 

20. Lombard, C.K., Davy, W.C. and Green, M.J., "Forebody and base region 
real-gas flow in severe planetary entry by a factored implicit 
numerical method-Part 1," AIAA Paper 80-0065, 1980. 

21. Thomas, P.D. and Lombard, C.K., liThe geometric conservation law -
a link between finite-difference and finite-volume methods of flow 
computations on moving grids," AIAA Paper 78-1208, 1978. 

22. Oliger, J., "Constructing stable difference methods for hyperbolic 
equations," Seymour Paster, ed., Academic Press, 1980. 

23. Oliger, J. and Sundtrom, Arne, "Theoretical and practical aspects 
of some initial boundary value problems in fluid dynamics," SIAM J. 
Applied Mathematics 35, pp. 419-446, 1978. 

24. Oliger, Joseph and Gustafson, Bertil, liStable boundary approximations 
for implicit time discretizations of Ut = ADou ," to appear in SIAM 
J. on Scientific and Statistical Computing. 

25. Vee, H.C., "Numerical approximations of boundary conditions with 
applications to inviscid equations of gas dynamics," NASA Technical 
Memorandum 81265, March 1981. 

26. Kentzer, C.P., "Discretization of boundary conditions on moving 
discontinuities," Proceedings of Second International Conference 
on Numerical Methods in Fluids Dynamics, Lecture Notes in Physics, 
8, pp. 108-113, 1971. 

27. Vee, H.C., Beam, R.M. and Warming, R.F., liStable boundary approxima­
tions for a class of implicit schemes for the one-dimensional 
inviscid equations of gas dynamics," AIAA Paper 81-1009-CP, 1981. 

28. Davy, W.C., Lombard, C.K. and Green, M.J., "Forebody and base region 
real-gas flow in severe planetary entry by a factored implicit 
numerical method - part II: equilibrium reactive gas," AIAA Paper 
81-0282, 1981. 

21 

'.' 

-) 



.~ 

.:0 

) 

Appendix A 

Supra-Characteristic Matrices 

We couch the discussion in terms of the 2-D axisymmetric 3-~ flow 

equations which embody as elements the essential mathematical richness 

of all other cases of interest, i.e. 1-0, quasi 1-0, 2-D and 3-~. For 

a fixed computational mesh based on general curvilinear coordinates, 

the discrete finite volume difference analog of the maximally, conserv­

ative partial differential equation can be written 

S 0tq -: O~(pW~) + 0ll(pWll) = 0 

j 0tPU + O~( P U w~ + ~p) + 0ll(p U Wll + ;xp) = 0 

(Ai) 

j 0tPV + O~( P v W~) + ~y O~p + 0ll( P v Wll) + ~OllP = 0 

J 0tE + o~((E + p)W~ + 0ll((E + p)Wll) = 0 

where E = ~ + ~p(U2 + v2) • 

In the equations W~ = ~xu + ~yV ,and Wn = ~xu + nyv , are the cell 

face area weighted, contravariant velocity components, and the metric 
A y"'2 A A y"'2 A 

quantities ~x = on 2' ~y = - y 0nx , nx = - o~ 2' ny = Y o~x 

are the x and y projections of the mesh cell face-areas, and 

J = oE;~ ~y + 0n~ ny is the volume of the associated computational 

cell. We note here the v momentum equation does not admit a strong 

Ai 



conservation law for the pressure; and we see no reason to introduce 

a weak one with the associated source term that may compromise numerical 

stability. 

It is interesting that the quasi 1-0 stream tube equations also 

have the same property of failing to admit a strong conservation law 

for the pressure term of the momentum equation. Indeed a valid repre­

sentation of the latter set of equations can be obtained from the set 

Al by dropping the n coordinate differenced terms and the u terms 

including the entire u momentum equation, then replacing v by u 

and ~y by ~x in the remainder. Of course the pure 1-0, 2-D, and 

3-D flow formulations admit strong conservation laws like the u momen­

tum equation of AI, for all the momentum equations of their respective 

sets. 

The gasdynamic equations Al are valid for equilibrium and nonequi­

librium real gases as well as perfect gases so long as the times for 

relaxing internal atomic and molecular degrees of freedom are short com­

pared with local residence and reaction times and a local thermodynamic 

equilibrium may be considered to exist. Such real gases (Reference 28) 

are subject to a gas law 

p = p R T (A2) 

derived for a mixture of ideal gases of the real gas composition, 

and the appropriate y for such a system is the specific enthalpy to 

internal energy ratio ~. In order to preserve the real gas capability 

of the conservative gasdynamic equations Al in the supra-characteristic 

splittings of derived primitive equations, it is most natural to express 

A2 
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Al and the derived equations in the primitive variable P = -E-I rather 
y-

than the pressure p. 

Now with the realization fostered in the body of the report that 

we can maintain global conservation while treating each curvilinear 

coordinate direction autonomously, we will restrict the remainder of 

the discussion to splitting the flux difference terms for the- n coordi­

nate direction. Then the corresponding relations for the ~ coordinate 

direction can be obtained trivially by replacing the n super or subscripts 

by the appropriate ~ assuming the associated metric relations. 

With the introduction of the primitive variable P defined above, 

it can be verified by straightforward algebraic manipulation that under 

the matrix multiplication M a vector of primitive equation elemental 

interval differences ~ f can be found to identically satisfy the elemental 
n 

interval flux differences of the conservative equation ~ F. The trans­
n 

forming matrix M in question is 

I 0 0 0 

-u I 0 0 
(A3) -v 0 I 0 

u2 + v2 - - I -2 - u v 

The right multiplying vector of primitive equation elemental interval 

differences ~ f is 
n 

A3 



p l::. wn + wn l::. p 
n n 

p w% u + l::. (~X(y-l)P) 
n n 

(A4) 
n v 

p W nl::. v + I l::. (( y-l) P) 
n v n 

y P nxl::. u + ~ l::. nyv + U l::. (nxP) + vn l::. P 
n n n Y n 

and the corresponding vector of elemental interval maximally conservative 

flux differences l::. F is n 

l::. p Wn 
n 

l::. p u Wn + l::. (nx(y-l)P) 
n n 

A n v 
l::. p V W n + J.- l::. (( y-l ) P ) 
n v n 

l::. (y P Wn + !(u 2 + v2 )p wn) 
n 

(AS) 

In the relation and as described in the body of the report, the bar over 

quantities represents the simple average of the values 'of the quantities 

at either end of the elemental difference interval, (K, K + 1) for n. 

The primitive variable time differences associated with A4 are given by 

* the (column) vector J (OtP , POtU, p 0tV , 0tP) (A6). These multiplied 

by A3 can be seen to provide measures of the conservative variable time 

differences. 

A4 

• 04 

. ., 



,~ 

" 
'~ 

, . 

..•. 

Elemental difference supra-characteristic equations can be formed 

of A4 and A6 by multiplying by the matrix T- 1 which is 

1 0 0 1 
p yp 

" ... 

!i n" 
0 

x 
0 pc pc 

(Al) ..... n" 
0 

nx J.. 1 
pc pc yp 

- -
-n~ -n" 1 0 x J 
pc pc yp 

Here the primed averaged metric quantities are the averaged quantities 

divided by the square root of the sum of their squares or the averaged 

cell face area. In fact, see section III, the primed quantities as 

used in columns 2 and 3 above provide respectively the x and y direc­

tion cosines of the tangent (row 2) and normal (rows 3 and 4) to the local 

mean n constant coordinate surface. Based on the natural normaliza-

tions of the primitive equations, the transformation A7 linearizes the 

quasi 1-0 elemental difference equations into near orthogonal combinations 

of variables that approximate with first order truncation error scalar 

difference equations. It is well to emphasize here that the intent is 

not to solve such equations in characteristic variables but only to use 

the resulting near orthogonality as an intermediate step to obtain a well 

conditioned matrix formulation in the conservative variables. By row, 

the intermediate equations resulting from A7 support the quasi one dimen­

sional propagation of local variations in entropy, tangential velocity, 

and the p+ and P- pressure-normal velocity compatibility relations • 
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The eigenvalues associated with the approximately scalar transformed 

equati ons are by row Wn , Wn , Wn + ~c , Wn - nc In the method 

(section II) these eigenvalues remain embedded in the spatial difference 

terms of the primitive equations which are treated exactly. Only the 

sign of the eigenvalues is tested to determine where (forward or backward) 

split pieces of such terms should be "sent", in the sense of Roe, to 

form stable nodal difference equations. 
_1 • 

The inverse T of the matrix T 1S 

£. £. - p 0 2 2 

£.£ ""7:" .. pc -:::- .. 
pen; - - n 0 2 nx 2 . x 

(A8) 

pc -:::- .. pc ""7:" .. __ "', 
- - n 0 - pCn "2ny 2 y x 

- yp yp 
0 0 "2 "2 

the primitive variable spatial difference terms be expressed in terms 

of spatial differences of the conservative variables. This end is accom-
- -

plished exactly by the matrix transform M(~n)q = ~nf with M(~n) 

given in Table A1. Then with the identity ~ F = M~ f , the splittable 
n n 

linearizing formulation sketched in relations (1) and (8) of the body 

of the report follows by 

~ F = M M-1(~ )q = M T 0 T_1M-1(~ )q 
n n n 

(A9) 

where recall 0 = 0+ + 0- = I , the identity matrix. 
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Table AI. Conservative variable transform for elemental primitive equation spatial difference terms 

o 
I 

I1nnx I 
-I-~ 

- I pwn 
A n~ S 2 

A ( 1 ) -=- 11 -pW U 11 - -2 11 n Y- I P n - n n x p 

. I 
(Y-l )pnX _2 I 
--=--- S 11 I 

p n __ 

-(Y-l )pnxu 
---=--11 

p 

- 1 ~ -2/1 v ) 
-pwllV 11 - ~ -1_ 11 (y-l 1 

n 

p n 2 V n 1 

) n v _2 
(y-l p ::.L S 11 I 

I 

) n v _ 
-(Y-I p ~ u I1n 

p v 
- n p v 

-yPnx - YPn" v 11 --.. UI1 - - y n - n p p 

- _2 52 
nyv (S - 2" )l1n 

A _2 _ S2 " 

nxp U S I1n - u 2" I1nnx 
p 

-I ypi\ 

1 p I1n 
1 

I 
I 
I 
1 

1 

1 

" -nyv u I1n 

-n P -2 11 
~ u n 
P 

Note S2 = u2 + v2 and S2 = u2 + v2 

I 
I 

A 

I1nny 
I 
I 

-+-­ ---+ 
I 
I 
1 

1 

--.l 
1 

1 

1 

I 
I 

"I 
I 
1 

1 

1 

1 

1 

1 

1 

A 

-(Y-l)pn
x 

_ 
- v I1n p 

pwn 
-=-- 11 p n 

) n v _ 
-(Y-l p ::.L v 11 

p V n 

yP " -- 11 P nny 

" -nyv v I1n 

-nxp --V 11 -=- U n p 

I 
I 
1 

1 

--.l 
1 

1 

1 

I 
1 

"I 
1 

1 

1 

1 

I 
1 

1 

1 

o 

I1nnx(Y-I) 

" v 
ny /). (y-l) 
v n 

Ul1nnx 

" nyv I1n 
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Finally the specification of A , defined in the body of the report r 

'. 
for the unsteady terms (see equations (10) and (11)) by 

A = M T D T-1M-1 , (Ala) 

is completed here with the matrix inverse of M. The inverse M-
1 

is 

1 a a a 

--u 1 a a 

--v a 1 a 

_2 _2 --

U + v -u -v 1 

- Hu2 + v2
) 

, . 
• I 
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Figure la. Burgers equation solution shown in boxes for the ramp 
expansion by present CSCM method. Exact solution in 
triangles connected by solid line . 
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