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Abstract

Accurate approximations are presented for the self-similar

structures of nonradiating blast waves with adiabatic ions, iso-

thermal electrons, and equal ion and electron temperatures at the

shock. The cases considered evolve in cavities with power law

ambient densities (including the uniform ambient density case)

and have negligible external pressure. The results provide the

early time asymptote for systems with shock heating of electrons

and strong thermal conduction. In addition, they provide analytical

results against which two fluid numerical hydrodynamic codes can

be checked.
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Cowie (1977) and Cox and Anderson (1982, CA) have pointed out

that when non-Coulomb processes heat the electrons in the shock

front of a blast wave, strong thermal conduction at early times

leads to a nearly isothermal electron temperature distribution,

but that at these same early times [t << t eq = 5000

yr(E a/1051 ergs) 3/14(1 cm-3/no)4/7 for uniform external density]

Coulomb collisions are slow to exchange• energy between electrons

and ions and the ion flui.d remains essentially adiabatic.

In the present paper, we apply methods developed in CA to

this problem, utilizing an approximation scheme due to Kahn (1975).

In so doing, we find the early self-similar blast. wave structure

with adiabatic ions, isothermal electrons and equal electron and 	
i

ion temperatures at the shock. In subsequent papers, we shall pre-

sent the time development of the system away from this early time

form as Coulomb interactions become important and thermal conduction

fades in significance (Cox and Edgar, 1982, Paper II). In addition,

we shall complete the project begun in CA and Cox and Franco (1981,

CF) presenting the X-ray appearance of a large set of possible

explosions viewed from within, considering the possibility that the

soft X-ray background derives from our being within such an explo-

lion. (The appropriate parameters, from CA, appear to be n 0 ti 0.004 cm-3,

Rs ti 100 pc, t ti 10 5 years, for E  v 5 x 10 50 ergs.)

Apart from its role in furthering the project mentioned, the

present results will help to erase a certain parochialism sometimes

present in important discussions about the nature of shock fronts
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in the presence of strong thermal conduction. In addition it pro-

vides analytic results against which two-fluid numerical hydro-

dynamic flow codes can be checked.

Note that CA considered the effects of non-zero ambient

pressure on a blast wave. Those effects are neglected in the

present treatment, although for the soft X-ray background model,

the evolving remnant is in an extremely difficult regime for which

the external r ressure, thermal conduction, and both Coulomb and

non-Coulomb heating of electrons are all potentially of comparable

importance.

Turning to the problem at hand, the shock wave jump conditions

for zero external pressure , generalized in CA to include thermal

conduction flux FS arriving at the front are

PS	 xSpo

X -1
_ s

us	 v

x 
	

s

(1)

V 

2 xs-1

ps - P  s xs

FS = p0VS2(x^-1)(4-xs)

2x2
S

where p, p, and u are pressure, density, and mass velocity, respectively,

and the subscripts s and o denote post-shock and pre-shock values.
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In addition v s is the shock velocity and x is the normalized de

Taking Rs as the shock radius and assuming power law density be

havior, p o a Rs-w , the derivatives of the first three lines of

equation (1) with respect to R s can be written

P * = xs*-w

u s * = xs (x s-1) + vs*

p *
5 = Po	 S	 5*+ 2v *+x */(x

S
 -1)

where the asterisk is used to abbreviate the logarithmic deriva

fs * = dinfs/dknRS

In the present context, with a self-similar evolution, x.

constant and xs* = 0. In addition, 
FS 

s3 is constant so ps*

We shall retain the x  dependence of the equations in aoticipation

of Paper II but set p s * = -3, as this will assumed to remain nearly

valid even as the system evolves away from the early time asymptote

explored here. The second two lines of (2) can then be rewritten

x*

S

x*

v s *= 1w-3 - xs_ -1/2
s

When the equations of motion are expanded about the shock

position as in CA, the relations between the post-shock derivatives

of the variables (still assuming p s * = -3) are found to be:

i	 3

L
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k,.

U,

_ a inP
a - a RnR

alnu
x

° aInR (a P s*) xs - (2+ a)	 (5)

6 Un = -
2^,nR	

v	 xsus*

a 	 3 xs x s*	 3	 1	 1

= x-1 - 2 x— ST +2x	 2s --wxs[2-xs_l^
s

and

RsI,sx`= 
( B -3 a) +x 5 (3+3x s*-3 )	 (6)., vsps

where R = R2 aR R 2 F) is the divergence of the thermal conduction

flux. As can be seen by comparing equations (1) and (6), the jump

conditions are directly related to the thermal conduction flux

arriving at the shock, but the post - shock derivatives depend on

the divergence of F just behind the shock. Using the jump con-

ditions, the left hand side of (6) can be rewritten

2 Rsj's	 4 - xs RSIS

3 v s ps xs 	 3	 1 Fs

Knowledge of the parameter (R
s is

/Fs ) is essential to knowledge of

Vie post-shock derivatives, but cannot itself be known without

evaluating IR2 IdR over the entire structure.

(7)
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Ik,

The conservation of energy equation

Dt p 3	 3 p 3	 (8)

can be separated into its two fluid components

D	 p i 2	 h	
(ions)Et py/3 =- 3 p5/3

(9)

D PP 	 2 h-^
Ot p5/3 - + 3 ^%3	 (el c^ctrons )

where the energy exchange rate between ions and electrons is

(Spitzer, 1962; itoh, 1978; CA)

T - T

h = akn2 (T i- 	 Te)/TP3/2 = 1.1 akn 2 --	 a	 (10)

T
e

Here k is Boltzmann's constant, n = n  + nHe' a ^ tnA/153 cgs,

tnA = tn[l.2 x 105(T112TeA112)],nHe = 0.1 n  was assumed, T i is

the ion temperature, T  the electron temperature, and T =

(1.1 Ti + 1.2 Te ) /2.3 is the average temperature. Similarly, p i =

nkTi , Pe = (1.2/1.1)nkTe , p = (2.3/1.1)nkT.

These separated equations can be manipulated into a variety

of useful forms. For example, defining g - Te/T,

D^ =-2 t 2.3 	 +2223a 
n3	 1Dt	 3 p [1 .2 - g] 3 ^1 .2	 T/2 g -



3

3

l

-7-

The second term on the right side is the Coulomb heating and is negligible

for times small compared to the equilibration time mentioned earlier

(see CF for values when w # 0), unless the first term is also small.

The first term is conduction cooling and will be small at early times

either if the electron temperature is not equilibrated behind the shock

or thermal conduction is thoroughly quenched by a magnetic field.

Itoh's (1978) useful approximation to the electron temperature distributions

for adiabatic models follows from setting R = 0 and recognizing that

n/T3/2 is then constant for a parcel. The g's from the RHS of (11)

can be included in a total time derivative on the IHS which is then

constant. In the present study, a more useful result is

.3 _ 9 T} 
3/2	 1/2_	 2.3 2_3 _	 O- g) .2

1— 	 -a 1 .2l (1.2	 9	 (1 3/22	
(12)

-6 7t	 n	 J `	 J g

together with a slightly altered version of (8):

D 
E 3/2 

3 	 T3/2	 (13)
Dt n	 n	 p

In this form, two separate variables are identified, one of which is

sensitive only to Coulomb heating, and one of which is sensitive only

t0 R.

Since we are assuming that at the shock front, T  = T i = T, due

to non-Coulomb heating processes, and are interested in the similarity

solution for small times, we will neglect the RHS of equation (12).

Near the center of the structure, g will be very small so that it would

appear that this neglect is not entirely justified. But in this case
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equation (12) implies that D/Dt[!tn(T 3/2/n)] R n, which vanishes for

small R. so the approximation holds.

For t << t eq , then, a particular parcel of gas has two constants

of the motion which allow it to be located within the structure and partly

constrain its properties. One of these constants is M(R), the mass

enclosed by the radius through the parcel. The other is the dif-

ferentiated quantity in (12).

A convenient normalized mass coordinate is U = M(R)/M(Rs). Whea

a parcel of torrent mass coordinate U was first shocked, its temperature

was T s (R s )/u where Ts (R s ) is the current value of the post-shock

temperature (at U = 1). Since M(Rs ) a Rs 3-``', the parcel was originally

1

located and shocked at R i (;,) = 
U
3-w Rs . Its density at that time was

x s (R i ) n o (R i ) = x s (R i )(Rs /Ri ) w n 0 (Rs ). Since we are considering only

the early self similar form, x s (R i ) = xs (Rs ) = xs , and thus n s (R i ) =

x s n 0 ( Rs ) U-
w
/(3-W) . In addition, the value of g just inside the shock

was 1, so that the second constant of the motion can be written in terms

of U and current values of Ts and no,

[(

2.3	 2/3	 1.1 Ts	 -w/(3 -W)
 2/3

1.2 - g,T/n ]u 1.2 u /(xsno(Rs)t'

(14)

_ 9 -5W

_ 1.1	 Ts	 30-0
1.2 

(x n )2 U

s o
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We are furthermore exploring an example for which thermal conduction

is sufficiently rapid that T  a T s everywhere, making g - T s/T. Sub-

stituting this into (14), recalling x - n/n o , and solving for T,

2!3 _ 9-5w
T = 1_2 + 1_1x	 u 3(3-w-)
Ts 	2.3	 2.3 lxs

where x is the current normalized density at the location of the mass

element with present mass coordinate U.

By conservation of moss, au/ar = (3-w)r2x where r - R/Rs . With

this result, the local value of a can be derived from !quat.ion (13).

A number of steps are involved in the algebra, including expansion of

Dt	 at + u 8r
a nd use of the result u - [r - u/(r 2 x)] vs which follows

from mass conservation. The net result after several fortuitous can-

cellations is (with x' = ax/ar)

RFR	
2.3 4-x [(9-5w)x - 2-^ ].	 (16)

S	 s	 r 

1	 2Rs^t
A self-consistent solution requires ^ r [ F ]dr - 1 since Fs is the

s
integral of the divergence z. The first term in (16) is easily integrated

since	 r2 xdr = (3-w) -1 but the second term still requires a'complete

knowledge cf the structure.

Evaluating equation (16) at r - u = 1, x'/x s = a, however, provides

another relation between the post shock derivatives

Rs s W. 2.3 41x [(9-5w)x s - 201	 (17)
Fs	 s

(15)
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which, when combined with (5), (6), and (7) with x s * - 0 can be solved

for a, B, a and 
RsLs/Fs 

as functions of x  alone. (There are four

parameters and fou r equations, one each from conservation of mass and

momentum, and two from the separated energy equations.) There is then

a one parameter family of edge conditions only one of which will

correspond to a complete solution satisfying the integrated flux condition.

Thus far no approximations regarding the structure have been made.

Three possible approaches can be taken at this point. One is to put tr.e

exact equations of motion and boundary conditions on a machine and ask

it for the answer. A second is to 0-velop a method for finding a

reasonable approximation to ( Rs t /Fs ) from which all of the post shock

parameters and their first derivatives would follow automatically. A

third is to apply Kahn's (1915) technique to approximate the entire

structure, qiven x  and the parameters it determines, and then to

perform the flux integral as a function of xs , choosing the value of x 

which effects the flux normalization.

We have carried out the last two of these approaches, the second

because the estimate helps to understand the results, the third because

(i) Kahn's (1975) approximation technique has been shown to produce

extremely accurate results in the adiabatic problem, (see appendix to CF);

(ii) because the structure can be described analytically; and (iii)

because this scheme is used in Paper II to find the later behavior so

what we actually require for Paper II is the asymptotic behavior of the

approximation. The truth, of course, is that we have done the problem



we felt competent to solve, confident that the answers would be close

to correct and could be presented conveniently.

In attempting a first approximation to (R s ts/Fs ), we note that

all electrons have the same temperature at any given time, implying

that they all lose energy at an equal rate. If all losses were via

thermal conduction, s/p would be a constant, i s/p s . The flux normaliza-

tion integral can be written

1 r2 Ldr a F s = r r2 ! xdr - <-!> If r2xdr C	 <4
V

o	 x	 x o	 3-w x

or

RFss = xs(3-w)[xs/<X>].
s	 s

so we expect the quantity "gin square brackets to be of order unity, and

we have found a reasonable estima,C for R s ts /F s . Electrons also lose

energy by expansion, however, and these lasses are most severe near the

edge. Thus the edge electrons necessarily have L/p less than the mass

average in order to have the same total loss rate.

In order to obtain an estimate of the size of this effett, an analysis

similar in spirit to the oc presented here was carried out for a totally

(18)

isothermal blast wave, the solution to which has bi

Rappaport, and Buff (1975, SRB). Assuming that LsX
s

whereas SRB quote x s = 2.378, a difference of only

pen given by Sollinger,

_ J> led to x= 2.457
x	 s

3.3%. Using xs - 2.376

to solve for the ratio of edge to mass-:averaged I/p, Rsts /[Fsxs(3-w)],
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the result was 0.862. Thus the greater importance of expansion losses

near the edge leads to an 
As/ps 

only 14% lower than average.

Returning to the present investigations, when all the substitu-

tions are made to utilize the mass averaged R/p, the results can be

expressed as

Rs ^'s ss

Fs	 xs	 36[(6xs 2-llx -4) - Wx (4x - 7)]

XS -W	
J>	

-w -XS x s XS-

where some of the peculiar numbers result from the inc lusion of 10%

helium by number. For W - 0, the ratio equals 1 for x s = 3.3456 or 1.5176.

As W - -- (explosions in cavities have negative W), these values

approach x S = 2.3972 and x S = 1.779 respectively. fur the totally

isothermal case, the equation corresponding to (19) differs only in

that (91xs -160) in the de,,ominator is replaced by 36(x s -2) in which

case the two solutions for W = 0 and ratio 1 are x S = 2.457 and 1.

We have not explored the significance, if any, of the lower compression

possibilities, for example, whether or not they could correspond to

thermal waves. It is clear, however, that the higher compression

solutions of each pair are the analogs of the x s - 2.378 solution of

SRB.

Notice that there is no single value of x s , u., or other post

shock parameter which is always appropriate to shocks with infinite

thermal conductivity behind them. The 	 compression depends on
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the complete structure, here summarized by the w dependence. Notice

too that as pointed out by Cowie (1977) the SRB result exaggerates

the dtviatfons expected from the usual adiabatic structure if the

ions remain adiabatic.

As previously intimated, the results can be improved upon

considerably and the complete structure given by resortirg to Kahn's

(1975) approximation scheme for the structure, generalized as in

CA and CF. We first solve for a(x S ) using equations (17), (5). (6),

and (7) with x s * - 0 (again with nWc/n. = 0.1);

wx
((xs-1)[( 20.25 ) xs - 13.81 - —x [(17,9)xs-31.7])

C& 

t

. xs-	 (20)	 1

A second parameter required is

x (3+a) - (3-w)x 2
q	 s	 x _	 s	 (21)

s

which was derived by matching the form of the structure to the post

shock density slope, aE. The resulting structure is given by

u(r) _ [r5/2exp ((xs-5) 
rq-?)] 3 -w

(22)

x(r) _ [2 + ( V S -2) rg J
	

v(r)
r

with T(r) provided by (15). This form automatically conserves mass,

provides the correct post shock values of all parameters (when

supplemented by the Jump conditions) and g ives the correct post shock

73
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derivatives. i." also

the limit of small r.

value of xs.

In this approxii

becomes equivalent to

correctly matches logarithmic derivatives in

All that is required is to find the correct

nation, the normalization integral for the flux

Q(x s , w) = 1 where

_ 1.1	 1	 3 1-w 
+ 6I (23)

Q	 2.3 4--xs { 3-w 	
o -2 gI 1 },

I o =	 urr dr,	

-

and	 5 q	 (24)

I 1 = o {5 
x s -2 r	

-1 u(r., dr.
2 + x 

5

s _2 rq	 r

These integrals ha:^- been evaluated numerically for w = 0, -2, and -4,

varying x  until the Q = 1 condition was satisfied. The resulting

values of x s , a, q, and 
RskS/Fs 

are given in Table I.

Several cCiriparisons between the two levels of approximation are

in order before considering the complete structures associated with

these results. First we note that values of x  obtained by setting

equation (19) equal to 1 are 3.3, 3.1, and 2.6 per cent larger (for

w = 0, -2, and -4 respectively) than those in Table I, the same degree

of accuracy obtained for the isothermal case. Secondly, the values of

Rs Rs/Fs in Table I are very well approximated by x s (2.53 -w) while the

mass average is xs (3-w). Therefore, cases which we have not presented.

should be closely approximated by setting equation (19) equal to

1
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Finally, the density, pressure, temperature, and RsR/[Fsx]

(normalized UP) structures are shown graphically for w = 0, -2,

and -4 in Figures 1 through 3. They bear a strong resemblance to

the adiabatic structures. The central pressure plateaus are slightly

lower (raps = 0.26, 0.35, 0.39 for w = 0, -2, -4 respectively) than

when the same approximation is applied to the adiabatic case

(p/ps = 0.31. 0.38, 0.40). The edge densities are lower

(xs a 3.24, 2.91 , 2.77) than the x s = 4 for the adiabatic case, but

the density gradients are less so that the interior densities are

higher by factors of 1 34, 1.41, 1.44 for , , - 0.. --' , 	 4 .	 For to = 0,

the crossover occurs near R/R s = 0.9, x = 1.5. Dividing the pressures

by the densities implies that the edge temperatures are higher by

factors of 1.23, 1.37, and 1.44 for the same p  and p o , but the

central temperatures (local inean, T) are lower by I -actors of 0.62,

0.66, and 0.68 relative to the adiabatic structures. For given

total energy, R s , and p o t we shall see that p  differs by at most a

few per cent from the adiabatic case so these ratios are altered

very little.

In order to know the explosion energy represented by a,particular

solution, it is necessary to integrate the thermal and kinetic energies

over the structure and sum them. The thermal energy is

1
d

1



-16-

ET = ^s 4,rR2 (-2'P)dR

M Rs vs 2 (xs-1)(3-w)
=	 2	 [	 x	 ITi

s

= 2 Vsps[IT]

where I T - 3 
1 

r2 (p/p s )dr, and Vs = 4nRs3/3.

Similarly, the ki netic energy is

E	
s

K = o 41rR2p(u2/2)dR

M(R )v 2	 x -1 12

s

X -1

2 Vs p s [ x s 3-w) IK]

where I K = (3-w)	 r2x(u/us)2dr.

The results of numerical integrations of I T and I  for w - 0, -2,

and -4 are provided in Table II. Table I1 also lists E o/(3V s ps/2) for

these same value	 r w (where Ea - ET + F K ), as well as the corresponJing

values from CF for the completely adiabatic structures.

From these results and the jump condition for p s , the time

development can be found. For example with w = 0, p  = constant, x s = 3.2383,

ps = p ov s 2 (x s-1)/x s = 0.6912 p ov s 2 , 3V s ps 12 	4.343 
Rs 3po s2

= E o/0.6430 ( from Table II), or E  - 2.793 R s 3p ov s 2 . 0.441 Rs5po/t2

(since for w = 0, v s = 0.4 Rs /t). Thus, Rs = (2.238 Eot2/pu)1/5

The adiabatic result is similar, but with 2.238 replaced by 2.03.

Thus strong electron thermal conduction in the w - 0 structure increases

Rs and v s by only about 2% over an adiabatic system.

(25)
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In the approach taken in Paper II, it is necessary to make an

a priori choice for the behavior of p s *, after which a self-consistent

solution is found for the equations for motion (again assuming the

Kahnian density distribution). Any fault of the choice for p s * then

appears as a time variation of the systemic total energy.

We note that as the system evolves away from the early time

asymptote, it is evolving toward equilibrated electron and ion

temperatures and toward negligibility of the thermal conductivity

(e.g. CA). Hence (until radiative cooling becomes important), the

late time asymptote is just the adiabatic structure discussed in CF.

And the fact that the total energy inteyrals of Table I1 show very

similar values of E /(3V p 12) for the two asymptotes guarantees that 	 ^.
o	 s 

on average, p s * 	 ?enp s /atnRs = -3 during the transition. In addition,

major fluctuations in p s * seem unlikely since so little readjustment

is required in the density distribution. (Fluctuations in p s i' would

provide transient alterations in the pressure gradient, which in turn

cause transient accelerations which rearrange the mass distribution.)

The only possible difficulty may arise from the suddenness with which

the transition is made. Thus taking p s * - -3 throughout the transition

is a reasonable first step, although the transition structure must then

be examined for nonconservation of energy.

We summarize our results by way of example. For a particular

application, L' o , u, and p a for a particular value of R will be known.

If w is 0, -2, or -4, E o /[ 3V s ps / 2] • E o/Pril s 3 /ps ] is found from Table II,

which then is solved for ps (Rs ). For other negative values of w, the
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results can be interpolated to reasonable accuracy. Similarly, values

of xs , a, and q can be taken from Table I and substituted into

equations (22) and (15) to find the normalized density, temperature,

pressure [from p - (2.3/1.1)nkT], and mass coordinate distributions.

The jump conditions, (1), together with ps (R s ), p 0 (R s ), and x s , provide

vs (Rs ) which can be integrated easily to find R s M
 
M. Finally, the

electron tem p erature is everywhere Ts(Rs).

Again, for values of w other than those in Table I, x  can be

found by setting equation (19) equal to (2.53-w) /(3-w), after which x

and q follow from (20) and (?1). Tht,reafter solution proceed: as before.

The authors wish to thank Josd Franco for carefully reviewing

much of the algebra underlying this work. This research was supported

in part by NASA Grant NGL 50- 002-044 at the University of Wisconsin.
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TABLE I

w	 x a q Rsn/Fs

0	 3.2383 8.6044 8.2879 8.176

-2	 2.9121 13.8907 16.4663 13.212

-4	 2.7721 18.9004 25.4258 18.097

i



-20-

TABLE II

v, Present Case Adiabatic	 (CF)

I T IK Energya IT I 
Energy 

0	 0.474 0.735 0.643 0.470 0.740 0.655

-2	 0.473 0.800 0.578 0.465 0.773 0.581

-4	 0.434 0.844 0.511 0.464 0.790 0.549

a E o /f3Vs p y /2J = I T + (xs-1)IK/[x5(3-w)]
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FIGURE CAPTIONS

Fig. 1. -- Self-similar structi 4 re of a ^lastwave with p o = constant,

adiabatic ions, isothermal electrons, and T  = T i at the shock.

xs = 3.2383,

a) p/ps	and x/xs — — — — versus R/Rs

b) Rs1/[Fsxs]

T/Ts

Te/Ts_____

P/ps

x/xs ------

as functions of the relative mass coordinate P.

Fig. 2. -- Same as Fig. 1 but with p p a k' . x s = 2.9121.

Fig. 3. -- Same as Fig. 1 but with p 0 a Rs -4 . xs	2.7721.



-23-

Donald P. Cox and Richard J. Edgar: Space Physics laboratory, Department

of Physics, The University of Wisconsin, 1150 University Avenue,

Madison, WI 53706.



.9 1.0,

5

4

3

.2

.1

1.0 *

.8

.6

.5

.4

"M

I	 I	
7	 .8	 .9 1.07

, I , _I , I L-LA-L.LJ 0
.0.0	 .1	 .2	 .3	 .4	 .5	 .6	 . 

RADIUS



5.

2.

.1

5.

2.

.1

5.

 loe

i

10..0	 .1	 .2	 .3	 .4
	 .5	 1.0.s	 .7	 .8	 .9	 10.

	

2.	 2'

.01	 '01

	

.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0

MASS



1.0 
'0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.01

,4

.0	
I t l	 1 l 1 1 1 l 1. 1	 M	 t I I i A ll	 i t l

.0
.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0

.9

J3

.7

,6

.5

t

.4

.3

.2

.1

.9

.8

.7

.6

.5

.^4

.3

.2

.1

RADIUS



10..0	
.9 1.0.1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	

10.

.01 1 1 , I ► l ► I .	 .01
.0	 .1	 .2	 .3	 .4	 .5	 .6	 .7	 .8	 .9 1.0

MASS

I.

a

5.

2.

.1

s.

2.

5.

E&

s.

1.

5.

2.

.1

s.

z,



.0

.5

.4

.3

1.0

.9

.8

.7

^	 1.1	 ^	 •
i

i

.2	 .3	 .4	 .5

RADIUS



,4 --

MASS

2.

1.

5

5.

2.

x.01

5.

a;

1


	1982012088.pdf
	0012A02.JPG
	0012A03.TIF
	0012A04.TIF
	0012A05.TIF
	0012A06.TIF
	0012A07.TIF
	0012A08.TIF
	0012A09.TIF
	0012A10.TIF
	0012A11.TIF
	0012A12.TIF
	0012A13.TIF
	0012A14.TIF
	0012B01.TIF
	0012B02.TIF
	0012B03.TIF
	0012B04.TIF
	0012B05.TIF
	0012B06.TIF
	0012B07.TIF
	0012B08.TIF
	0012B09.TIF
	0012B10.TIF
	0012B11.TIF
	0012B12.TIF
	0012B13.TIF
	0012B14.TIF
	0012C01.TIF
	0012C02.TIF




