
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



February 1982

ROM
National Aeronautics and
Space Administration

NASA Technical Memorandum 81339

A Numerical Method for Solving the
Vlasov Equation
Nobuyuki Satofuka and Koji Morinishi

(NA5A —T6-81339)	 A NUMERICAL ELTHOD F - R	 N82-15985
SULYINU THE VLASUV EQUATICN (NASA) 23 p
HC A02/8F A01	 CSCL 2JI

Uuclds
G3/75 09191

M'-

yY^.

?vim



NASA Technical Memorandum 81339

A Numerical Method for Solving the
Vlasov Equation
NObUyukr Satotuka, Ames Research Center, Mottett Field, California
Koji Morrnrshr, Kyoto Technical University, Kyoto, Jap,rn

Rk

Ames Research Center
I iol ' ^ "1111orni,i'r•1t1,^

A
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ABSTRACT

A numerical procedure is derived for the solution of the Vlasov-Poisson system
of equations in two phase-space variables. Derivatives with respect to the phase-
space variables are approximated by a weighted sum of the values of the distribution

function at properly chosen neighboring points. The resulting set of ordinary differ-
ential quations is then solved by using an apprGeriate time-integration scheme. The
secv:.e y of the proposed method is tested with some simple model problems. The
results for the free-streaming case, linear Landau damping, and nonlinear Landau
damping are investigated and compared with those of the splitting scheme. The
proposed method is found to be very accurate and efficient.

1. INTRODUCTION

It is well known that the Vlasov equation adequately describes the nonlinear
evolution of collisionless plasmas. Since knowledge of the nonlinear behavior of

plasmas in two and three dimensions is indispensable in understanding the plasma
physics of controlled thermonuclear fusion, the numerical integration of the Vlasov

equation has been studied intensely during recent years (refs. 1-13). However, little
proi,.ress has been made on the development of fast and accurate integration schemes

for the Vlasov equation in two and three dimensions for a magnetized plasma. A split-
tin¢ scheme by Cheng and Knorr tref. 12), in which the Vlasov equation is integrated
in the original phase space by splitting the convective and acceleration terms in such

a way that the overall scheme is second-order accurate in At, has been successfully
applied and is one of the most promising schemes today. In two and three dimensions,

however, the interpolation methods used in the scheme become more and more complicated
and time-consuming, especially for magnetized plasmas (refs. 13 and 14). Development
of new, accurate and efficient methods is still needed before the Vlasov equation can
he solved for three-dimensional magnetized plasmas in reasonable computation time.

In this gaper a new numerical method called the M,oaifted Differential Quadrature
(M.D.Q.) method, is proposed to integrate the Vlasov equation. The new method is an

extension of the Differential Quadrature (D.Q.) method proposed by Bellman et al.
(ref. 151. In the present method, derivatives of the distribution function with

respect to the phase-space variables are approximated by a weighted sum of the values
of the distribution function at properly chosen neighboring points to generate a set
of ordinary differential equations in time, whereas in the original O.Q. method,
these are approximated by using values at all mesh points in the computational domain.

*NRC-NASA Associate



As a result, computational efficiency is significantly improved with the M.D.Q.
method. By changing the weighting coefficients, the spatial derivatives can easily
be approximated with as much accuracy as desired. The resulting set of ordinary dif-
ferential equations in then integrated by using an appropriate time-integration
scheme. This solution process gives a very accurate and flexible method which is
simple and straightforward to program. The present method has the feature that it is
accurate to arbitrary order in space by changing the weighting coefficients and •,.-
in time by choosing a suitable time-integration scheme. Although in this paper, the
method is presented only in one dimension in order to illustrate its basic elements
clearly, its extension to two and three dimensions is straightforward.

Section 2 describes the M.D.Q. method for the Vlasov equation and Section 3
describes the procedure for determining the weighting coefficients. In Section 4 we
demonstrate the accuracy and efficiency of the present method through numerical
experiments on simple model problems. In Section S we present the numerical results
obtained for the free-streaming case, linear Landau damping, and nonlinear Landau
damping. These results are then compared with those obtained by the splitting scheme.
Section 6 presents the conclusions.

2. MODIFIED DIFFERENTIAL QUADRATURE METHOD

The system of equations under consideration consists of the one-dimensional

Vlasov equation for the electron distribution function f(x,v,t)

of + v of - E of 
0	 (1)

ar	 ax	 av

and Poisson ' s equation for the electric field E

3E	 1 - f f dv	 (2)1x a

These equations are written in dimensionless form. The basic units of time t

and velocity v are the reciprocals of the so-called electron plasma frequency w

and the electron mean thermal velocity v t , respectively. The dis'ance x is meaR-
ured in units of the Debye length A D , A periodic boundary conditiin in x is
assumed. A rectangular mesh will be used to represent the x - .v phase space with the
computational domain R - i(x,v)10 = x < L, M S Vmax), giving the set of points

(iAx, ,jAv) E R where L is the spatial periodic length and Vmax is the cutoff
velocity, while i a N and J - 2M designate the number of mesh points used along the
coordinates x and v, respectively.

if the distribution function f satisfying Eq. (1) is sufficiently smooth, we

can write the approximate relations

N

aX ^- F a ik f (k..))
	

i - 1,2, . . . N
	

(3a)

k-1
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2M
of 

av	
F, ajkf(i,k) , j - 1. 2,	 2M
kLL.

-1

where index i stands for x i , and j for vj . In this paper we have modified the
approximate relations, Eqs. (3a) and (3b), to use the values of f at the nearest
Ng and Mp mesh points centered around x i and vj, respectively, instead of using
those at all mesh points in the computational domain, as is the case in the original
D.Q. method (ref. 15). By doing this, the number of arithmetic operations to be per-
formed for every point is significantly reduced and, moreover, in the case of a uni-
form mesh, the weighting coefficients aik and ajk become independent of the indices
i and J. Therefore, the approximate relations, Eqs. (3a) and (3b), can be written as

N
of i	

sakf (i + 'K - a, j)	 (4a)
ax

k-1

M
,If (i	 a	 akf(i,j + k - 6)	 (4b)

av	 -1

where a  - a ak, a - (Np + 1)/2 in Eq. (4a) and ak - a W B - (Mp + 1)/2 in
Eq. (4b), respectively.

Substitution of Eqs. (4a) and (4b) into Eq. (1) yields the set of Nx2M ordinary
differential equations in time

N
dfd(	

- F xi,vj	akf(i + k - a,j),	 akf(i,j + k - B), E(f), t	 (5)

-1	 K-1

The numerical solution of such a system, Eq. (5), is a simple task using a standard
scheme for ordinary differential equations. In the present paper, we tested three
schemes, namely, leapfrog, corrected leapfrog, and Stetter's method (ref. 16). All of
these schemes are second-order accurate in time. As applied to Eq. (5), toe schemes
take the following forms:

1) leapfrog

fn+1 - fn-1 + 20tF
n	(6)

2) corrected leapfrog

fn+1 - fn -1
 + 2QtFn

(7)

fn+1 - fn + 4t(Fn + F°+1)/2

(3b)
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f(0) • fn + Ate

f(1) . fn + At(F (0) + Fn) 12
(8)

f(2) . fn + At(F (1) + Fn)/2

fn+1 a Af (1) + (1-9)f (2) ,	 0 < 0 < 1

where the superscripts n and n+l refer to time t and t+At, respectively, and the
subscripts i and j are omitted. The electric field E is computed by a standard
direct Poisson solver technique from f by Eq. (2).

3. DETERMINATION OF WEIGHTING COEFFICIENTS

In order to appropriately determine the weighting coefficients in the approximate
relations, Eqs. (3a) and (3b), the test function is taken to be the following form, by
analogy with Lagrange's interpolation formula,

Pk(x) - P(x) /[(x - xk)P'(xk)]	 (9)

where P(x) is a polynomial of degree N

P(x) = (x - x 1 )(x - x 2 ) . . . (x - xN )	 (10)

It follows that Pk(x) is a polynomial of degree N-1 such that Pk(xi) _ `ski and
P(x i ) = 0. If the values of a function g(x) are known at N mesh points
X = x 1 , x21 . . . xN, the polynomial of degree N-1, g(x), which coincides with g(x)
at these collocation points can be written as

N

	

S(x) _	 Pk(x)9(xk)	 (11)
=1

By differentiating Eq. (11) with respect to x, we have the relation

N

	

g'(x) -	 p'(x)g(xk)	 (12)

KC=••1

Using the fact that such a relation as Eq. (3a) is to be exact for f(x) - p k (x), we

see that

	

aik = P'(xi)/[(xi - xk)P'(xk)] I	 1 f k	 (13)

W
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For the case i - k, use of 1'Hospital's rule gives

akk- P " (xk)/[2P'(xk)]
	

(14)

In their r.Q. method, Bellman at al. have chosen as P(x) the shifted Legendre
polynomial of degree N, PN(x), selecting x i to be the roots of Pp(x) and

determining aik explicitly (ref. 15). In this paper, as described in the previous

section, we have modified the approximate relations to make use of appropriately cho-
sen neighboring points instead of using those at all mash points, and have adopted a
uniform mesh spacing to make the weighting coefficients aik independent .f index i.

The weighting coefficients a k are computed and stored once and for all at the begin-
ning of the calculation.

4. NUMERICAL RESULTS FOR MODEL PROBLEMS

Before application to the Vlasov equation, the present method was applied to some
simple model problems to demonstrate its accuracy and efficiency. First we checked
the effects of the order of approximation to spatial derivatives on the accuracy of
computed results. Using the test function of the form

f - 1 + A cos mx	 (15)

in which A - m - 0.5, we calculated 2f/,ax by the approximate relation, Eq. (4a),
for several values of Np. The spatial computational domain was of periodic length
1. - 47t, and the total number of mesh points N was 16. The results are displayed in
Table 1 in which the error is defined to be

ERROR -	 Di I N
i-
 
1

where D i is the difference between the analytic solution and the numerical solution
at the mesh point x i . In Table 1 we can see that as N 	 increases, the error
decreases significantly, as expected. In particular, the error for N  - 7 is at
least 3 orders of magnitude smaller than for No - 3, while the difference between
N a11 and N - 15 is negligible due to the accumulation of roundoff errors in
32	

p
-bit, single-precision arithmetic.

The present method was then applied to the following simple linear model equation

ac + c f - 0	 (17)
ax

with c - r/4. The initial condition was

(16)

f(x,0) - 1 + A cos mx	 (18)

5



ORIGniAL PAGE IS
OF POOR QUALITY

with A - m - 0.5. The analytic solution of Eq. (17) is known to be

(19)f(x,t) - 1 + A cos m(x - ct)

which gives a means*. -of checking the accuracy of the numerical
tional conditions are the same as for Eq. (15).

Results are presente0for,htwo measures of the accuracy.
fundamental cosine mode of I 'i ,.time t, defined as

results. The compute-

One is F(0.5), the

L
F(0.5) 

L f f cos mx dx
+++o

and the other is the LZ error of f defined by Eq. (16). Both are shown in
Figs. 1-3 for the period from t - 32 to t - 48. The analytical solution for F(0.5)
is shown as a solid line, and the numerical solutions by symbols. The L 2 errors
of f from the numerical solutions are also shown by symbols with the scale along
the right ordinate.

Figure 1 compares the results obtained with Np - 15 for three different time-
integration schemes described in Section 2. Although the three schemes produce vir-
tually the same results for F(0.5), Stetter's scheme gives the most accurate result
for L2 error. Therefore, we decided to adopt Stetter's scheme as the standard
time-integration scheme hereafter in this paper. The results with Np - 3, 7, 11,
and 15 are compared in Fig. 2, which shows the effects of order of approximation to
the spatial derivatives. Figure 2(a) shows the results for Np - 7, 11, and 15; no
significant difference can be seen for F'(0.5), while L 2 error tends to decrease as
Np increases. The difference between Np - 11 and Np - 15 is again negligible due
to the roundoff errors. Figure 2(b) shows results for the case of N - 3, which
corresponds to the usual second-order, centered, finite-difference appro ximation to
3f/3x. In this case the result for F(0.5) shows a large phase error from the ana-
lytic solution, which shows the need for using a higher-order approximation for spa-
tial derivatives. The results of the present method with Np - 15, Stetter's time-
integration scheme, and those of the splitting scheme of Cheng and Knorr (ref. 12)
are shown in Figs. 3(a) and 3(b). Although the curves for F(0.5) obtained by the
two methods agree very well with the analytic solution, the L 2 error of the present
method is much smaller than that of the splitting scheme.

5. RESULTS FOR THE VLASOV EQUATION

In this section we will present the results of integrating the one-dimensional
Vlasov equation and demonstrate the accuracy and efficiency of the present method.
As described in Section 2, we will use a rectangular mesh to represent the x-v phase
space with the computational domain R - ( (x,v)10 < x < L,'v) 1 Vmax ). Throughout
the following examples, the cutoff velocity, Vmax, is taken to be 5.0. The symbols

N and 2M designate the number of mesh points used along the x and v coordinates,
respectively, while Np and Mp denote the degree of M.D.Q. in each direction, cor-
responding to Np - 1 and Mp - 1 order of accuracy, respectively.

6
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In the first example we show results for the free- streaming case with E(x,t) - 0
in Eq. (1). The initial condition is

f(x,v,0) - fo(v)(1 + A cos mx)	 (20)

with A - m - 0.5 and fo(v) - ( 2n) Iexp(-v2 /2). The analytic solution corresponding
to this initial condition is given by

	

f(x,v,t) - fp(v) C1 + A cos m(x - vt) 1 	(21)

Here we define the density as

p(x,t) - f
-

f (x,v,0dv, 	 (22)
m

Equation (21) combined with Eq. (22) leads to the following expression for the
density

o(x,t) - 1 + exp(-m 2 t 2 /2)A cos mx	 (23)

Numerical calculation of Eq. (22), on the other hand, gives the following expression
for the density

	

p(x,t) - AV E fp(vj ) [1 + A cos m(x-vj t),	 (24)

J-1

The numerical results are shown in Fig. 4 where the computed densities at x - 0
(curve A) and x - L/8 (curve B) are plotted against time. As can be predicted from
Eq. (23), p -1 as t - -, and the curves in Fig. 4 tend asymptotically to 1. The
right-hand side of Eq. (24) is the sum of periodic functions of time, which results
in a quasi-periodic behavior for p(x,t) called recurrence. In the present calcula-
tion with A - m - 0.5, Amax - 5.0, N - 8, and M - 20, the predicted recurrence time
is TR - 2n!(mAv) - 49.00. The numerical results presented in Fig. 4 agree very well
with this value.

The second example shown in Fig. 5 tests linear Landau damping for the same
initial condition as Eq. (20), but in this case, the electric field E is retained
in Eq. (1). We used A - 0.01, m - 0.5, N - 8, M - 20, and At - 1/8. The abscissa
is the time nondimensionalized by wpp-1 and the ordinate shows the first Fourier
mode E(0.5) of the electric field E. The solid curve in Fig. 5 has been obtained
by the present method with Np - 7, MP - 7, and Stetter's scheme for time integration,
while the dashed curve has been obtained by the epliLting scheme. In this case the
electric field decays exponentially and agreement of the numerical results with
Landau's theory is quite good up to t Z 40 wp- 1 , except for & slight deviation in
the dashed curve shortly after t Z 32 mp- 1 . The recurrence effect occurs at

7



t - 46.63 wp
-1
 in the present method and at t^ 46.50 wp-I in the splitting

scheme, and the times are comparable to the theoretical value T r - 49.00 obtained
for the free-streaming case.

The third example tests nonlinear Landau damping. The effect of a strong non-
linear perturbation, A - 0.5, is shown in Fig. 6 for m - 0.5, in which the evolution
of the first three Fourier modes of the electric field E is shown. This problem
has been solved by many authors (refs. 6, 10, and 12) and, therefore, is appropriate
for evaluating the present method. We used N - 16, M - 64, and at - 1/8. The solid
curve and the dashed curve in the figure show the results of the present method and
the splitting method, respectively. In this case we used the present method with
Np - 15 and Mp - 7. Initially, the first mode damps much more than predicted by the
linear theory while the second and third modes damp much less than Landau's theory.
After t - is Wp-1 all modes grow exponentially until t - 40 W -1 , where satura-
tion occurs. The resultri of the first and second Fourier modes obtained by the pres-
ent method are both qualitatively and quantitatively equal to the results obtained by
the splitting scheme, except for a slight difference after t = 50 0For the
third mode	 0 wl the results show considerable differences between t - 1p -1 and
t - 30 wp	 We can see, however, that the overall behavior of the t;,-ee Fourier
modes by the present method is still the same as that of the splitting enheme.

With the mesh points used in this case, total time of execution (CPU time) was
55 sec using a Fujitsu FACOM M -200 computer. In order to demonstrate the accuracy
and efficiency of the present method, we compare the results obtained by the presen*
method with those of the splitting scheme with twice as many mesh points in each
direction. In the former method we used N - 16 and M - 64, while in the latter,
N - 32 and M - 128. The initial conditions as well as the other parameters are the
same as in Fig. 6. The time evolution of the first Fourier mode of the electric
field, E ( 0.5), is plotted in Fig. i, in which the solid curve shows the result of the
present method and the dashed curve shows that of the splitting scheme. Although the

difference between the two curves at times later than t - 50 wp-1 is slightly
larger than that noted in Fig. 6, the agreement can be judged as excellent. Actually

the difference in Fig. 7 is much less than that existing between the splitting method
itself with N - 16, M - 64, and N - 32, M - 128. We can see from Fig. 7 that with

the present method, results with nearly the same accuracy can be obtained using half

the number of mesh points along each direction. Although the present method requires
slightly more computation lime per mesh point per time step, we can conclude that the
present method is more efficient than the splitting scheme even for the one-

dimensional case. For multi-dimensional cases, the present method requires less
computation time than the splitting scheme with the same number of mesh points.

6. CONCLUSIONS

In the present paper we have developed a numerical procedure, based on the
modified differential quadrature method, for the solution of the one-dimensional

Vlasov-Poisson system of equations. The derivatives with respect to the phase-space

variables in the Vlasov equation are approximated as a weighted sum of the distribu-
tion function at properly chosen neighboring points. The weighting coefficients are

determined similarly to Lagrangian interpolation. As a result, the approximation to
phase-space derivatives can be of arbitrary order of accuracy by changing the number

of mesh points used in the approximating relations. The time integration of the dis-
tribution function is performed as in the case of ordinary differential equations.

8



We have shown some examples that demonstrate the accuracy of the present
numerical method. The results for strong nonlinear Landau damping are in excellent
agreement with those using the splitting scheme. Using half the number of mesh points
in each direction, we have found that the present method is as accurate as the split-
ting method. The important feature is that the computation time is not only quite
luw, but also that accurate results can be obtained with a fewer number of mesh points
due to the high accuracy of approximation to the spatial derivatives.

Although we have shown the accuracy and efficiency of the present method only in
one-dimensional problems, the extension to the two- and three-dimensional Vlasov equa-
tion is simple and straightforward. Compared with the splitting scheme, the present
method is more efficient in multi-dimensional problems. In fact, for the two-
dimensional Vlasov equation, we have obtained accurate solutions in less computation
time than the splitting scheme with the same number of mesh points. The results will
be presented in a forthcoming paper.
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TABLE 1 L2 ERRORS OF THE M.D.Q. METHOD WITH N P • 3. 7. 11. and 15 for ?/ax OF THE

FUNCTION EQ. (15)

N? 3 7 11 15

Error 0.45087E-2 0.46223E-5 0.55815E-6 0.52457E-6
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streaming case, and for the initial condition in
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A - m - 0.5, N - 16, M - 64, N  - 15, M p - 7, and At - 1/8.
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(b) Second Fourier mode, E(1.0).

Fig. 6 Continued.
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Fig. 6 Concluded.
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Fig. 7 Comparison of results for the first mode of electric field. Solid
curve: M.D.Q. method with N - 16 and M - 64; dashed curve: splitting
scheme with N - 32 and M - 128.
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