
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



NASA
Technical Memorandum 838,57

(NASA-TM-83857) ON TEE THEORY OF GAMMA ULY	 N82-20111

AMPLIFICATION THROUGH STIMULATED
ANNIHILATION RADIATION (GEPS AR) ( NASA) 36 P

HC 103/AF A01	 CSCL 03B	 Unclas
G3/93 16371

On the Theory of Gamma Ray
Amplification Through
Stimulated Annihilation
Radiation (GRASAM)

R. Ramaty
J. M. McKinley
F. C. Jones

J

V ^

Ims_ , <.

NOVEMBER 1981

National Aeronautics a.-d
Space Administration
t3odd^rd Spm FlW t Carr
Greenbelt, Maryland 20771



ON THE THEORY OF GAMMA RAY AMPLIFICATION

THROUGH STIMULATED ANNIHILATION RADIATION (GRASAR)

R. Ramaty

J. M. McKinley*

F. C. Jones

Laboratory for High Energy Astrophysics,

NASA/Goddard Space Flight Center,

Greenbelt, Maryland 20771

Accepted for publication in the Astrophysical Journal

*Also at Oakland University, Rochester, Michigan 48063 and the University of

Maryland, College Park, Maryland 20742



z

Abstract

The theory of photon emission, absorption and scattering in a

relativistic plasma of positrons, electrons and photons is studied.

Expressions for the emissivities and absorption coefficients of pair

annihilation, pair production and Compton scattering are given and evaluated

numerically. The conditions for negative absorption are investigated. In a

system of photons and e+-e" pairs, an emission line at - 0.43 MeV can be

produced by grasar action provided that the pair chemical potential exceeds

1 'IeV. At a temperature of - 10 9K this requl^-er- a pair density > 10 30cm-3 , a

value much larger than the thermodynamic equilibrium pair density at this

temperature. This emission line could account without a gravitational

redshift for the observed lines at this energy from gamma ray bursts.
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I. Introduction

The Nmission and absorption of photons in cosmic sources are governed by

many processes. At temperatures of the order 109 to 1010K, typical of gamma

ray burst sources, two of the most important ones are pair production and

annihilation (e++e- + -f+-y) and Compton and inverse Compton

scattering (e+y F e'+y'). Arguments based on the observed photon intensities

of gamma ray bursts and the likely distances and sizes of their sources, lead

to the conclusion that the source regions of at least some of the bursts are

optically thick (Cavallo and Rees 1978, Schmidt 1978).

Photon absorption in rir pair production has been discussed in the

literature (Gould and Schreder 1967), but no calculation has included the

effects of the stimulation of the annihilation or the suppression of pair

production due to large photon or particle occupat`on numbers. When these

stimulation and suppression effects are taken into account, the possibility

exists for negative absorption (Varma 1977). The condition for this is a

population inversion, which in the present context is a pair density that

exceeds the thermodynamic equilibrium density.

A recent review of gamma ray burst observations has been given by Cline

(1981). Of particular interest for the present paper is the .-xistence of an

emission line seen from several gamma ray bursts in the energy range from 0.40

to 0.46 MeV (Mazets et al. 1979, Teegarden and Cline 1980, Mazets et al.

1981). These lines are probably due to a +-e- annihilation radiation. If so,

e+-e- pairs should be present in large numbers in the burst sources, and the

sources should be sufficiently hot to produce the pairs, but the source

regions should not be in thermodynamical equilibrium because no lines can then

be seen. We aim the calculations of the present paper to astrophysical sites

where such conditions might exist.
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We provide the basic analytic treatment in Section II, we give numerical

results in Section III, we discuss some astrophysical applications in Section

IV, and give our conclusions in Section V.

II. Emissivities and Absorption Coefficients in a Relativistic Plasma

We consider systems characterized by temperatures of the order of the

electron rest mass energy in which photon-photon collisions can produce much

larger pair densities than the ambient electron densities of the astrophysical

sites of interest. We therefe -F consider only cases in which the electrons

and positrons have equal densities. As convenient analytical expressions,

which allow both equilibrium and non-equilibrium situations, we use Bose-

Einstein distributions for the photons and Fermi-Dirac distributions for the

pairs (see Landau and Lifshitz 1958). The reference frame in which these

distributions are isotropic is designated as the plasma frame.

We assume equal temperatures for the positrons and electrons, T+ = T_ =

Tt , but allow the photon temperature, TY , to differ from Tt . Since the e+ and

e- dens i ties are equal, n + = n_ = nf , these particles must also have equal

chemical potentials, u+ = v_ = u t . The photon chemical potential, uY , is zero

for a blackbody distribution. We allow non-blackbody photon distributions,

but only zero or negative values may be assigned to u Y . The pair chemical

potential can be positive, zero or negative. If u t - 0 the pairs are in

t'iermodynamic equilibrium with blackbody photons.

In terms of these temperatures and chemical potentials, the photon and

pair densities can be written as (e.g. Landau and Lifshitz 1958)

n - (4w31i3 )-1 f dap n ,	 (1)

Is`
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where p is the photon or particle momentum and n is the occupation number.

These are given by

nY = { expl(EY-
uY )

/kTY J-1) -1	(2)

for the photons, and by

nt = (expl(E+-ut )/kTt J + W1
	

(3)

for the particles, where E  is the photon energy and E t is the particle total

energy (kinetic plus rest mass). Equation (1) counts both polarization states

for the photons and both spin states for the particles.

The blackbody (u. = 0) photon density is shown by the line Y in

Figure 1. This quantity has the simple analytic form N = 2;(3)T-2(kT/d)3,
where d3) - 1.2021.... The other curves in this figure show pair densities

for various chemical potentials u t . Pair densities corresponding to positive

or negative pt yield higher or lower pair annihilation rates, respectively,

than the pair production rate of blackbody radiation. The Fermi-Dirac

distributions (equation 3) tend to Maxwell-Boltzmann distributions in the

limit of large -ut.

We proceed to define the photon emissivity and absorption coefficient for

pair production and annihilation. In particular, we are interested in

obtaining a correct expression for stimulated annihilation which has not been

taken into account in previous treatments of absorption in photon-photon pair

production. Stimulated emission has, of course, been taken into account for

other processes (e.g. Bekefi 1966). But we cannot use the standard

expressions for emissitivies and absorption coefficients because pair
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production and annihilation do not fit the usual pattern in which photons are

emitted or absorbed singly and the matter has the same form before and after'

events. We therefore proceed as follows:

For two-photon annihilation and pair production, a++e-
 + Y1+Y2 the

transition rate in vacuum in either direction between the photon states in

d3 pl d3 p2 and the pair states in d 3p+d3p_ can be written as

w = (4v3113 ) -2 d3 p1 d3 p2 d3 p+ d3 p_ 64 (p l +p2 -p+-p_)X. 	 (4)

Here pl and p2 are photon momenta, p+ and p_ are momenta of the pair, p l , p2,

p+ and p_ are the corresponding 4-momenta, and X is proportional to the

squared matrix element of the interaction, summed and averaged over spins and

polarization.

To obtain the total annihilation and pair production rates we must

multiply equation (4) by an appropriate combination of the occupation

numbers. This can be obtained from energy conservation ( E l +E2 - E++E_) and

the equilibrium condition (ut - uY and Tt = T Y ) , where El and E2 are the

energies of the two photons. Equations (2) and (3) then yield

	

n1n2(1-n+)(1-n_) = n+n_(1+n1)(1+n2) .	 (5)

Multiplying both sides of this equation by the transition rate (equation 4)

and integrating over all four momenta, we obtain

	

1 ^n+d3p+ I n- d3p	 do
j4* ĵ U ill 3 dn

1 (1+n1 )(1+n2)C1ciPann

3	 3

	

n d P•	 ndPJ '11d P I j 2d 3P
2
- j W+(1-n+)( 1-n_)LIc do I	 (6)

pp

	

4^Y1"	 4^^fi"



The left-hand side of equation (6) is the total pair annihilation rate,

while the right-nand side is the total pair production rate. The invariant

product of the flux factor I and differential cross section do/do (Jauch and

Rorlich 1955) is obtained from X by integration over all final state variables

except the angles of one particle:

LIc do	 = fp I 2dPIfP22dP2fd"2 64(p l+p2-p+-p_ )X	(7)

LIc M pp	 IP+2dP+ jP_2dP_1 dA_ 64 ( p l +p2 -p+-p_)X.	 (8)

The factor 1/2 in equation (6) is introduced so that each distinct pair of

photons in either initial or final state is included just once. Note that the

annihilation is stimulated by the presence of the bath of photons, while pair

production is suppressed by the presence of the bath of pairs. However,

if ut 
= NY«0, the pair and photon distributions are reduced to

Maxwell-Boltzmann distributions and this removes all the stimulation and

degeneracy effects.

To define a photon emissivity and absorption coefficient it is necessary

to investigate the balance of reactions involving photons in an increment

d3pl . We proceed as in the derivation of equation (6), except that the

integration extends only over d3 P2, d ap+ , and d3p_. In this case, however, it

is no longer possible to express the left side in terns of the annihilation

cross section, because the necessary integration of equation (7) has not been

performed. But we can interchange the order of integration and use equation

(8) instead. The required balance is then given by

M_
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(1+n1)d3p1 

4^

 
d3 P2do

I	 I da+n+n_(1+n2 ) [Ic -Z pp
4 

3	 3	 j

n1--3 P3 j	 3IdR+n2(1-n+)(1-n_)L1c O pp.	 (9)
4x 11 =4 11

Collecting terms in %, we obtain

cn E 2 d do
dE 1 di2 1J^1E 1 1	 — 3 KYYtEl ).	 (lU)

4* 01c) 

where the rate of spontaneous emission, j yy ( E 1 ), and coefficient of linear

absorption, K
yy

( E 1 ), are given by

2	 3

^YY(E11 = U(
11c) 

Id_

4A 

p̂ 3 I 

dQ

+
n+n- (1+n2 )[I

 do

	
(11)

4A  	 fi

and

e3
K
7y

( E 1 )	 j 
p2 j 

do+Ln2 (1-n+ )ll -n_) -n+n_(1+n2 )JLI^J	 (12)

4*	 pp

In equation (11) the annihilation emissivity is expressed in terms of the pair

production cross section unlike the approach where this is done in terms of

the annihilation cross section (e.g. Ramaty and M@szaros 1981). In the

expression for the absorption coefficient (equation 12), the first term in the

brackets is due to absorption by the photon bath while the second term is the

contribution of induced annihilation. When the equilibrium condition (5) is

satisfied and u Y = 0, equations (11) and (12) yield Kirchhoff's law,

C	 E1
E1 '	 (13)

^ YY/K	 4*^c exp(E1/kT)-1 IB8 ` 
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where IBB is the blackbody intensity.

Equations (11) and (12) are valid also for nonequilibrium situations

provided proper nonequilibrium occupation numbers are used. In terms of

equations (2) and (3), the most general nonequilibrium distributions are

obtained if T Y*T* and uY*uf	 Wi'.,,h such distributions, the total

annihilation and pair production rates are not equal and, moreover, K YY can

become negative. While for Tf = T  and µf n 
vY, KYY 

is always positive, for

nonequilibrium conditions the contribution of stimulated annihilation can

exceed that of absorption provided an appropriate population inversion takes

place. By substituting equations (2) and (3) into equation (12) we find that

for Tt = T  such an inversion occurs if 2ut > vY• In this case KYY

negative for E1 < 2p i-11.

For the system to exhibit grasar action, however, it is necessary that

the total absorption coefficient be negative. For the system of photons and

pairs that we consider here, the only important process other than pair

production and annihilation is Compton scattering. We ignore the weaker

processes of bremsstrahiung and double Compton scattering. We note, however,

that synchrotron radiation could potentially be very important, but because we

are free to choose an arbitrarily low magnetic field intensity, we ignore

synchrotron absorption in the present discussion.

For Compton and inverse Compton scatterings (Y l+e ` Y 2+e') we proceed in

essentially the saute way as for pair production and ann'hilation.	 Using pl

and p2 for photon momenta and p and p' for electron and positron momenta, we

find the equation for the overall balance between inverse Compton scattering

and direct Compton scattering to be

ntd3p^ n2d3p2	 do2f—: 3̂ 4,:jfi3 dR 1 (l+nl )(1-nt 1EIc VC,
4v4*
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(14)
d3	d3

= 2 j n—#̂ --^f n	 4Rtl1+n11(1-r4)lic do
RjC

4w jr 4*

where the factor of 2 takes into account the contributions of both electrons

and positrons. Here again the invariant product of flux factor ind

differential cross section is given by integrating the appropriate squared

matrix element over all final state variables except the photon angles. For

the direct scattering we have

do
	

= 
j P22dP2j P^ 2dp ' jdtt'd4 (p l +p- p2 -p' ) X C .	 (15)

For the inverse scattering, designated by subscript C', the same form applies

with the substitutions p2 	pl and p' ` p'. Equation (14) is valid for any

choice of ut and uY as long as Ti z Ty.

To obtain expressions for the emissivity and absorption coefficient, we

again choose an increment d3 pl and integrate over the other three momenta. As

for pair production and annihilation, we must interchange the order of

integrations on one side in order to introduce a cross section. After the

appropriate manipulations we obtain the Compton emissivity and absorption

coefficient in the presence of the bath of photons and pairs

2

J C (E l ) _ — — 2j°3jdu2n2'(1-nt)[1B
U	

]C
4^ (ffc ) 

[Ic

(16)
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3
KC (E 1 ) = 2fP-jdat lnt '.i+n2 )tl-n1•n2n=1i-nt )][IJC .	 (17)

:ompton emissivity, equation (16), represents the scatterings of photons

the element dE l dai . For the absorption coefficient, equation (17), the

t term in the brackets is due to scattering of photons out of dEld0i,

e the second term represents the stimulated scatterings of photons 2 into

al . KC (E I ) can become negative and a necessary condition for this is T  >

In our sutsequent analysis, however, we Oall or7y consider systems with

TY = Tt fc.r which KC is always positive. In such cases .equations (16) and

(17) satisfy a modified Kirchhoff's law

2

ic(EOA C (E 1 )	 c--^1c)3, xpl(E 1 -11Y )AT Y )-1} -1 .	 (18)
4^ (1ic )

For the numerical evaluations shown below we have used Vie expressions of

Jauch and Rohriich (1955) for the flux factors and differential cross

sections. We must also express all quantities in terms of independent

variables of integration. For pair production from photons of energies E l and

E2 , the flux factor is given by

I pp = 1- rose 
12'
	 (19)

where 0 12 is the angle between the two photons in the plasma frame. In the

center-of-momentum frame (CM frame), the positron (or electron) has Lorentz

factor Y given by
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(Ymc2 ) 2 aIf2E 1 E2 (1-cose 12 ) .	 (20)

The Lorentz factor YCM for the tranformation between plasma frame and CM

frame is

YCM - (E 1 +E2 )1(2Ymc 2 ) .	 (21)

The velocity associj! •_cj ai %' + YCM i s ACM. In the CM f, ±+me the direction of the

positron is given by colatitude 9 from the direction of proton 1 and azimuth f

from the plane of ACM and photon 1. The electron direction is diametrically

opposite. The differential cross section is

[
do]
	

r  B 1-0 If Cos 4e+2Y-202si12e

pp 4 
y	

(1-8 cos 0)
 ^—

2	 ,

(22)

where ro is the classical electron radius (9.818x10 -I:3cm)and A - (1-Y-2)/2.

The angle el between photon 1 and BCM is given by

cose l
 - 0

CM-1 LE 1 (YCM
YmC

2 ) -1 -1],	 (231

and the angle e+ between the positron and ACM is

cose+ x cose Icose+si ne lsine cos4.	 (24)

Finally the energies of the pair in the plasma frame are given by

E ± Z YCM YMc 2 (I±eCM Acose+ ),	 (25)
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and the occu pation numbers are given by equations (2) and (3). Thus

everything needed to evaluate equations (11) and (12) has been found from E1.

E 2 , 812 , 8, and + . A Monte-Carlo technique was used to evaluate the four-

dimensional integrals over E2 , 8 12 , 8, and # .

For Compton scattering all quantities can be evaluated directiy in the

plasma frame, thanks to expressions given by Jauch and Rohrlich (1955). For

an initial pnoton of energy E 1 and an initial electron or positron of energy

E+ = Y+mc2 = mc2(1-Bt2) 112 ,	 (26)

the flux factor is given by

IC = 1-B+"osal ,
	 (27)

where al is the angle between electron and photon. The direction of the

scattered photon (photon 2) is given by colatitude 8 from the direction of

photon 1 and azimuth ^ from the plane of photon 1 and the initial electron.

The angle a2 between photon 2 and the initial electron is given by

cos a2 = Cos a1 cose + sine sine cost.	 (28)

The energy E2 of photon 2 is given by

E 2 -	 1-^+ Cosa1

- + 1 + -cose - g+cosa2	
(29)

T 

The differential cross section is
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ado	 1	
r 
o 
E 
2	 J2Ck1 + k2 + 2( mc2 mc2 ) +( mc2 _ me

F C 7 1 
-6tcOsal F2

1 	 crl_ -
 F2
	 cTl 
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where the invariants k i and k2 are

k i a El Y+ ( 1-83 Cosa, )

k2 = E2Yf(1-stcosa2).

The energy of the final electron is

.A

Ej = E* + E 1 _E 2	(33)

and the occupation numbers can be found from equations (2) and (3). Again

everything needed to evaluate equations (16) and (17) has been found in terms

of El , Et , ai , s, and m. A Monte-Carlo technique was used to evaluate the

four-dimensional integrals over E t , al , 8, and ®.

III. Numerical Results

We have evaluated equations (11), (12), (16) anI (17) for various choices

of Tt , Ty, ut and my
. As already indicated, we limit our discussion here to

cases with equal pair and photon temperatures, T t = T  = T. WE allow,

however, arbitrary values for yt and my.

We consider first the case of thermodynamic equilibrium, ut = uY = 0.

The emissivities and absorption coefficients for this case and T - 3x10 9K are

shown in Figure 2, where j t ° jYY + JC and Kt = KYY + KC . As can be seen, the

absorption coefficients are positive at all photon energies and Kirchhoff's

law is satisfied by all processes.

4

	 We next consider a ease of equilibrium between pair annihilation and pair

production by non blackbody photons. Numerical results for ut = my = -2 MeV



and T = 3x109K are shown in Figure 3. Because for these parameters both the

particle and photon occupation numbers are very small (<10 -3 ), the results of

Figure 3 closely approximate emissivities and absorption coefficients

appropriate for Maxwell-Boltzmann distributions. Indeed, the emissivity 3yy

shown in Figure 3 is essentially identical with the annihilation emissivity

calculated by Ramaty and Md szdros (1981) using a Maxwell-Boltzmann

distribution and the pair annihilation cross section. As discussed by these

authors, as well as Zdziarski (1981) and Aharonian, Atoyan and SurLvaev (1980),

the peak of the annihilation emissivity occurs at a higher energy than mc 2 =

0.511 MeV, because the annihilation photons must carry away the kinetic

energies of the pairs in addition to their rest mass energy. This effect is

very obvious in both Figures 2 and 3.

From the emissivity j yy of Figure 3 we can evaluate the full width at

half maximum (FWHM) of an optically thin annihilation feature produced in a

Maxwellian plasma of T t	We find that for this temperature the

FWHM (— 850 keV) is in excellent agreement with the calculations of Ramaty and

Meszaros (1981) who deduced the dependence of FWHM on T i for such plasmas.

The absorption coefficients of Figure 3 are positive at all energies.

law 1s not satisfied (because v y+0), the J's and K's of Figure 3

do satisfy the modified Kirchhoff's law (equation 18) for all processes.

We turn now to the study of cases with inverted populations.

the inversion condition is v 3 > u) /2.	 Since 
p  

c0, the inversion threshold

is at a value of u t that is higher than or equal to the value at which pair

production and annihilation are in equilibrium, u t = my . The two values are

equal for blackbody photons, m y = 0. When an inversion occurs, Kyy is

negative for E  < 2vt-Ny , but since Tt = Ty , KC is positive for all Ey.

Grasar action can occur only if K t n Kyy + Kc<0. Since KC is proportional t

(
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nt while the portion of KYY due to stimulated annihilation varies as n t2 , a

sufficiently large density is needed for -K
YY 

to exceed KC . This implies a

threshold for ut which is higher than the threshold required for just KYY to

be negative.

To investigate this threshold we have evaluated K t = KYY + KC as a

function of u* for given temperatures and NY . We have carried out

calculations in the temperature range 0 < T c 5x10 9K, where the lower limit

corresponds to fully degenerate electrons and positrons. We find that the

threshold for grasar action is close to u t = 1 MeV and does not depend

strongly on p  and T. As can be seen from Figure 1, this correspond% to a

pair density threshold of a few times 1030cm 3.

We show numerical results in Figure 4 for T - 3x109K, 
µY 

= 0 and Nt - 1.1

MeV. As can be seen, KYY is negative for E Y < 2u* = 2.2 MeV and positive at

higher energies. KC is positive at all energies and Kirchhoff's law (JC/KC =

I BB ) is satisfied for Compton scattering since 
uY 

= 0. In the energy range

from about 0.25 MeV to 0.7 MeV, - KYY exceeds KC and hence K t is negative. If

the source is optically thick and K t is negative over a sufficiently large

spatial region, then the radiation intensity has a sharp peak at a photon

energy at which -K t is maximal. The value of this energy, — 0.43 MeV from the

numerical calculations,is determined primarily from the energy at which -KYY

is maximum, shifted somewhat according to the slope of K C at that energy.

From Equation (12) we can also express K YY in the form

3	 3	 dap
(E )	 - 4* (^ 2
	

(E ) + f 4w	 do+n2(1-n+)(1-n_)[I 7	 (34)
"YY Y	

c^_ 
YY Y 4*	

PPY

Above the grasar action threshold, the first term, due to stimulated emission,
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is much larger in magnitude than the second term which is due to absorption.

As discussed above, jYY(EY) is broadly peaked at an energy greater than mc2,

reflecting the kinetic energy of the annihilating pairs. The division by E 
Y 
2

(from the factor of density of states) shifts the peak to an energy somewhat

less than mc2.

The most extreme case of population inversion arises when TY = Tt = 0.

The system then includes no thermal photons at all. The particle states are

fully occupied or degenerate (nt = 1) up to the Fermi momentum pF , and are

empty (nt = 0) above pF . The Fermi momentum is related to the chemical

potential by

cpF = (ut2 - m2 c4 ) 1/2 ,	 (35)

and to the pair density by

nt = (3A2 113 ) -1 pF3 .	 (36)

At TY = 0 there is no absorption term in KYY because there are no photons

in the bath. Therefore KYY can only be zero or negative and is proportional

to 3YY:

K (E ) _ _ 4w3 010 3
(E ).	 (37)

YY Y cE2 YY Y
Y

Both 
jYY 

and KYY are non-zero only between the kinematic limits

ut - cpF < E  < v+ + cpF .	 (39)

hese limits correspond to the annihilation of a pair with equal momenta of
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magnitude PF into one photon with momentum parallel to the pair momenta (upper

kinematic limit) and another photon with momentum antiparallei to the pair

momenta (lower kinematic limit).

Similarly, J 0 - 0 and there is no stimulated emission term in KO because

there are no photons present to be scattered to contribute these effects.

Only the absorption term in KC is present, so that KC is necessarily

positive. For small EY , only those particles with momentum near PF can

contribute to KC , because the particle can only be scattered into a previously

unoccupied state.

Numerical results are shown in Figure 5 for T = 0, 
uY 

= 0 and

ut - 0.85 MeV. Here the broadening of 
3YY 

is caused by the motion of the

degenerate particles even though their temperature T t = 0. We shall refer to

this effect as degeneracy broadening. By evaluating 
JYY 

for other values of

u3 as well, we find that the FWHM for degeneracy broadening is proportional to

the Fermi momentum PF, and hence proportional to n1/3 for both non-

relativistic (PF « mc) and relativistic (PF > mc) degenerate distributions.

It is given by

FWHM - (4.) x 10-8 keV) nt1/3
	

(40)

when nt is expressed in cm-3.

In Figure 5 the kinematical limits on 
3YY 

and KYY are quite evident, as

is the suppression of K C by degeneracy at low photon energies. The peak of

jYV is at about 0.75 MeV, but because of the EY-2 factor in equation (34), the

peak of -KYY 
is shifted to about 0.50 MeV. Because of the steep positive

slope of KC , the peak of -K t in Figure 5 is further shifted to about 0.42 MeV.

From the numerical calculations for other values of T and ut
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N4T4 bx1U9K, 0.84ut4 1.2 MeV) we find that the peak of At is invariably in

the energy range from about 0.40 to 0.47 MeV. When ut is close to the

threshold for grasar action, the peak energy of -KYY
 decreases with increasing

temperature, but the varying slope of KC resulting from the degeneracy tends

to cancel this effect. Thus, there is not much variation of the peak energy

of At with either T or ut. For the parameters considered, we have found no

case when the peak energy of A t equaled or exceeded 0.5 MeV.

III. Astrophysical Applications

Gamma ray burst sources are likely astrophysical sites where the results

of the present paper could be applied. The large photon densities expected

(Cavallo and Rees 1978, Schmidt 1978) in these sources should lead to high

pair production and Compton opacities. The observation (Mazets et al. 1979,

Teegarden and Cline 1980, Mazets et al. 1981) of an emission line in the

energy range 0.4 to 0.46 MeV, believed to be due to a +-e- annihilation

radiation, is evidence that a+-e- pairs do indeed play an important role in

the physics of gamma ray bursts. But it is not immediately obvious how a

relatively narrow emission line is produced in a hot and optically thick

source region.

Ramaty et al. (1980) and Ramaty, Lingenfelter and Bussard (1981) have

studied this problem and discussed an optically thin model for the transient

of March 5, 1979 (Barat et al. 1979, Cline et al. 1980, Evans et al. 1980)

from which an emission line was observed (Mazets et al., 1979) at — 0.43

MeV. In this model, the — 0.43 MeV line is formed at an energy > 0.511 MeV in

the last optical depth of the source region by the annihilation of a +-e- pairs

that have been cooled by synchrotron rad i ation prior to their annihilation.

The shift from above mc 2 to the observed energy is due to the gravitational

redshift of a neutron star. The observed upper limit on the
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width (FWHM < 0.2 MeV, Mazets et al. 1979, 1981) implies a temperature less

than 3x108K (Ramaty and Meszaeros 1981). The upper limit on the width also

implies an upper limit on the density because of de generacy broadening. Using

equation (40) we obtain nt < 7x1028cm-3 for the a+-e- annihilation region if

the line is produced by annihilation in the last optical depth.

The density nt can also be directly calculated (Ramaty et al. 1981) from

the observed line fluence (^ - 10 photons cm -2 , Mazets et al. 1979). Let

R/(nt ) 2 = 7.5x10-15cm3sec-1 be the annihilation rate coefficient at 3x108K

(Ramaty and MBszdros 1981), A the area of the emitting region, at the time

interval in which the observed fluence is produced and d = 55kpc the distance

to the source. Then if the line is formed in a layer of unit optical depth to

Compton scattering,

^ = 2R KC-1 Aat (4%d2 )-1
	

(41)

Since R varies as n t2 and KC-1 as nt-1 , * is proportional to nt . With the

above numerical values, KC from Figure 3, and nt < 1x1028cm-3 , Aat should

exceed 1.5x109cm2sec. This condition is well satisfied if the annihilation

line is produced over the entire surface of a neutron star, A = 1013cm2 , and

during the entire impulsive phase of the March 5 event, at it 0.15sec (Cline et

al. 1980). But the optically thin model would face considerable difficulties
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if future measurements should indicate that the Moe is narrower than 0.2 MeV,

or if Aet should turn out, for other reasons, to be smaller than 1.5x109cm2sec

(e.g. if the emitting area covers only a fraction of the polar cap area).

The advantage of producing the annihilation line by grasar action is that

a narrow line can form in a hot optically thick region. To illustrate this,

we have evaluated the photon intensity perpendicular to a slab of thickness L

in which the emissivity and absorption coefficient do not depend on position:

I = (j tAt M - exp[-K tLI)	 (42)

Using the j t 's and Kt 's of Figure 4 (T+ - TY - 3x109K, uY - 0, u+ - 1.1 MeV),

we show in Figure 6 the dependence of I on photon energy E. and slab thickness

L. As can be seen, grasar action can i!ideed narrow the line. For example, if

L>10-5cm, the width is less than 0.2 MeV. In comparison, the thermal width is

0.8 MeV in an optically thin Maxwell-Boltzmann gas at 3x10 9K (Ramaty and

M3sz3ros 1981, or see 
jYY 

in Figure 3).

The peak energy of the annihilation line formed by grasar action is in

the range 0.4 to 0.47 MeV, i.e. close to the observed peak energies. Thus,

the gravitational redshift of the line due to the compact object which

presumably produces the burst should be quite low, z < 0.1. This implies that

gamma ray burst sources with observed a +-e- emission lines could be objects

other than neutron stars, or if they are neutron stars, these stars should

have small masses (M < 0.6M o , Borner and Cohen 1973).

Returning to the results of Figure 6, we note that the photon intensities

at the centers of the narrow lines entail very large photon occupation

numbers. At 0.43 MeV, these numbers, given by n  - 4v31S3AY-2 I(EY ), are

nY - 200 and 8000 for L - 10-5cm and 2x10-5cm. The development of such high
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photon densities clearly should modify the 3's and K's used to calculate the

intensity of Figure 6, but we defer the investigation of such a nonlinear

system to a subsequent study.

Nevertheless, assuming that an inverted layer with parameters as in

Figure 6 did exist in the March 5 burst source region, the line fluence # can

be calculated as follows

4, - Aatd -2 j I (E Y WE.Y	(43)

Using the results of Figure 6 with L = 10 -5cm and	 a 10 photons cm'2,

equation (43) yields Aat - 1.2 x 10 6 cm2 sec. By comparing with the minimum

Aat deduced above for radiation produced in the last optical depth Mt > 1.5

x 109 cm2 sec), we see that not only can grasar action produce a narrow line

in a much hotter region, but that the observed line intensity and width are

consistent with a much smaller source and/or a much shorter line formation

time.

V Conclusions

We have carried out a fully relativistic treatment of pair production and

annihilation and Compton and inverse Compton scattering in a medium containing

photons, positrons, and electrons, with equal e + and e- densities. In the

calculation of the emissivities and absorption coefficients we have included

the stimulation of transitions caused by the Bose-Einstein nature of the

photons and the suppression of transitions due to electron and positron

degeneracy. We have shown that for systems in thermodynamic equilibrium the

calculations lead to an exact balance between pair production and pair

annihilation and between Compton and inverse Compton scatterings. This

balance can only be achieved if the above stimulation and suppression effects



23

are properly taken into account. For systems not in equilibrium, grasar

action is possible. We have evaluated, in particular, the absorption

coefficient for equal photon and particle temperatures and positive particle

chemical potential (u,>0). For this example of population inversion, the

total absorption coetficient can become negative due to the much larger

probability for stimulated annihilation than for Compton scattering and pair

production. This type of grasar action can produce a narrow emission line

peaked at an energy of about 0.43 MeV. This energy is lower than the peak of

the spontaneous annihilation emissivity, which occurs at energies greater than

0.511 MeV. This is caused by the enhancement of all absorption and stimulated

emission effects with decreasing energy by the smaller mount of available

phase space which leads to a larger occupation number for the same photon

density. In a bath of blackbody photons (u. - 0) and a*-e - pairs of

temperature equal to the photon temperature, the threshold for grasar action

is at ut . 1 MeV corresponding to pair densities — 10 30cai 3 for T . I.09K. A

temperature of — 5x109K is needed to produce this density in equilibrium with

blackbody photons.

We have applied our results to gamma ray bursts, in particular to the

March 5, 1979 transient from which an emission line at — 0.43 MeV % gas observed

(Mazets et. al. 1979). Similar emission lines have been seen from several

other bursts as well (Teegarden and Cline 1980, Mazets et.al . 1981). While

these lines could be produced in a cool skin layer of the source region

(Ramaty et al. 1980, 1981), grasar action has the advantage of being capable

of producing a narrow line from a hot and optically thick source and from a

source region of relatively small emitting area and short duration of line

formation. But if grasar action is responsible for the observed 0.4 to 0.46

MeV emission line seen from gamma ray bursts, then their sources cannot be a
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neutron star of mass much larger than about 0.6 M o. At the surfaces of such

neutron stars, the gravitational field would shift the line to an energ y lower

than observed.

There are several difficulties an4 shortcomings in our treatment. We

have not shown how the inversion (u±>0) is produced. It could in principle

result from the cooling of the pairs that is faster than their annihilation,

or by a rapid external supply of pairs without heating. Cooling by

synchrotron emissic^ has already been proposed for gamma ray burst sources

(Ramaty et al. 1980, 1981), but for the high densities that we consider here,

the required field (8>10129auss) seems to lead to synchrotron self-absorption

that could quench the grasr:r action. We have ignored other effects of a

strong magnetic field as a A) , by limiting our calculations to isotropic

distributions and by using plane wave functions instead of Landau functions.

This isotropic treatment also does not allow the study of beaming effects

which should be present in a gamma ray maser. Finally, we have not made any

attempts to study the spatial and temporal development of a system exhibiting

grasar action. We expect this development to be highly nonlinear.

We have indicated in the analytic part of the paper that Compton maser

action is possible if the photon temperature is higher than the electron

temperature and indeed in cases where the photons cannot be characterized by a

single temperature. Such maser action could lead to very interesting effects

in the 10 to 100 keV region which we have not yet fully explored.

As already indicated, gamma ray burst sources are possible astrophysical

sites where grasar action could occur. The most obvious observational test

for this would be the observation of a narrow (FWHM << 0.1 NO) emission line

at — 0.43 MeV.
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Figure Captions

1. Density of photons and pairs vs. temperature. The line labelled y

represents blackbody photons. The curves labelled by values of the pair

chemical potential ;:t represent pairs in a Fermi-Dirac distribution.

2. Emissivities and absorption coefficients vs. photon energy in a system in

thermodynamic equilibrium at 340 9K. The Compton emissivity (not shown)

is the difference between the total emissivity j t and the annihilation

emissivity jYY* The Compton absorption coefficient (not shown) is the

difference between the total absorption coefficient K t and the pair

production absorption coefficient K
YY
. The photon and pair densities in

these conditions are 5.5x1029cm-3 and 2.44029cm 3 respectively.

3. Emissivities and absorption Coefficients vs. photon energy in a system at

3x109K having equilibrium between pair annihilation and pair production by

non-blackbody photons with chemical potential -2.0 MeV. The curves have

the same significance as in Figure 2. The photon and pair densities in

these conditions are 2.Ox10 26cm-3 and 1.Ox1026cm-3 respectively.

4. Emissivities and absorption coefficients vs. photon energy in a system at

3x109K with blackbody photons and an inverted pair population described by

pair chemical potential 1.1 MeV. The curves have the same significance as

in Figure 2 except that the Compton absorption coefficient KC is shown

explicitly. Negative values of total and pair production absorption

coefficients are represented by dashed curves. The photon and pair

densities in these conditions are 5.54029 cm-3 and 7.3x1030cm 3

respectively.

5. Emissivities and absorption coefficients vs. photon energy in a system at

zero temperature with fully degenerate pairs described by chemical
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potential 0.85 MeV. The curves have the same significance as in Figure

4. The photon and pair densities in these conditions are zero and

1.4x1030cm-3 respectively.

6. The develooment of the intensity of the annihilation line with increasing

thickness of source. The system is the same as that for Figure 4. The

labels on successive maxima indicate the thickness involved, and the peak

energy and FWHM of the line.
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