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PROCEDURES FOR THE COMPUTATION OF UNSTEADY 
TRANSONIC FLOWS INCLUDING VISCOUS EFFECTS 

ABSTRACT 

Modifications of the code LTRAN2, developed by 
Ballhaus and Goorjian1, which account for viscous 

effects in the computation of planar unsteady 
transonic flows are presented. Two models are 
considered and their theoretical development and 
numerical implemenation is discussed. Computational 
examples employing both models are compared with 
inviscid solutions and with experimental data. A 
description for use of the modified code is provided • 
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I. INTRODUCTION 

Solutions of planar inviscid unsteady transonic flowfields about thin airfoils 
are commonly obtained by time integration of the differential equation 
governinq the velocity potential function. This method is particularly 

attractive because it permits the treatment of nonlinear flow phenomena 
including irregular shock wave motion. Development of the LTRAN2 code by 
Ballhaus and Goorjian1 has made available an efficient time-implicit finite 
difference algorithm for obtaining solutions to the low-frequency small 
disturbance transonic potential equation. This code is currently employed for 
many unsteady applications and has evolved as a useful tool for performing 

aeroelastic calculations and flutter analysis. 

While the inviscid flowfields computed by LTRAN2 provide a reasonable physical 
description for a wide range of unsteady flow conditions, these results are 
not adequate when viscous effects are significant. Such situations can 
involve complex flow structures characterized by the following phenomena: 

1. Shock-boundary-layer interaction altering the shock strength and 
location, 

2. Effective camber modification due to differences in the 
boundary-layer displacement on the upper and lower airfoil surfaces, 

3. Displacement and camber effects of the near wake. 

A detailed description of these effects can be provided through use of .more 
exact equations governing the flow. It is not the purpose here to provide a 
complete description, but rather to account for viscous effects only as they 
impact upon the unsteady airfoil surface pressure distribution. The objective 
is to modify the basic LTRAN2 code in such a fashion that the aforementioned 

phenomena may be treated without seriously degrading efficiency. Inherent to 
this approach are several simplifying assumptions which are thought to prove 
adequate for aeroelastic applications. 

3 



It is postulated that the viscous boundary layer is in instantaneous 

equilibrium with the unsteady inviscid flow. A simple order of magnitude 
analysis indicates that this assumption is valid if the reduced frequency of 
the unsteady airfoil motion is smal1 2.As a consequence, a steady form of 
the viscous modelling may be applied in a quasi-steady fashion. 

The most complex aspect of viscous transonic flows is that of the 
shock-boundary-layer interaction. A number of calculations for both steady 
and unsteady flows 2,3 have indicated that this effect may be modelled by a 
simple computational artifice. This is accomplished by augmenting the surface 
geometry with a wedge-nosed ramp that is inserted at the base of the shock in 
an inviscid calculation. 

The ramp weakens the strength of the shock, usually displacing it upstream 
from its inviscid location, thereby simulating the effects of boundary-layer 
displacement. The ramp angle is chosen such that an empirically defined 
post-shock pressure is recovered. 

For many flows of interest, use of the ramp model alone will suffice to 
predict unsteady pressure distributions. When aft viscous effects are 

significant, the ramp is used in conjunction with an integral boundary-layer 
calculation over the rearward portion of the airfoil and the downstream wake. 
For this purpose "lag entrainment equations" 4,5 are employed, which have 

been found useful for the prediction of turbulent shear layers. In addition, 
a coupling of these equations with an inviscid algorithm has previously been 
used to compute steady transonic nowfields about airfoils, both with and 
without separated regions6,7 

The sections that follow will first briefly review the theoretical development 
of the governing equations used to modify the LTRAN2 code. Numerical 
implementation and details of the modifications·will be described. Finally, 
several computational examples will be presented and comparisons of the 

modified results will be made with inviscid solutions and with exp~riment. 
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II. THEORETICAL DEVELOPMENT 

The basic unsteady small disturbance perturbation potential equation treated 
by LTRAN2 may be written as 

2kM2 1_M2 m 
( co) $ xt = [( co) - (y + l)M $]$ + $ -;:zrs 6 ?H co X xx yy 

(1) 

where k = wc/U"" is the reduced frequency, y the ratio of specific heats, 
M the freestream Mach number and subscripts denote partial 

00 

differentiation. Here x and yare the streamwise and normal Cartesian 

coordinates normalized by c and c 6-
1/ 3 respectively, where c is the airfoil 

chord and 0 the thickness ratio. The time, t, has been normalized 

by (~-1, w being the circular oscillation frequency. The perturbation 
velocity potential function, ~, has been normalized by cU 6

2/ 3 where U 
is the freestream velocity and m is commonly taken to be 2. If the airfoil 

surface is defined by y± = o2/3 f ±(x,t) the flow tangency condition may 
be expressed as 

+ 
$y- = f ± 

x 
+ on y = 0 - for 0 < x < 1 • 

Across the trailing vortex wake the contact conditions 

[ $y] = 0 (continuity of slope) 

on y = 0, x > 1 

[ ~x ] = 0 (continuity of pressure) 

5 
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are applied where the brackets denote the jump in the enclosed quantity from 
above to below the vortex sheet. At the outer boundaries the following 
conditions are applied: 

~= 0 

~ = 0 y , 

~ = 0 x 

far upst~eam 

far laterally 

far downstream. 

Finally, the initial condition ~(x, y, 0) = I(x, y) is specified. 

A. Viscous Ramp 

(4)· ' 

(5) 

(6 ) 

The basis for development of the viscous ramp model is the observation 
in many steady experimental measurements that the post-shock pressure 
for turbulent flow over an airfoil corresponds approximately to that of 
the oblique shock produced by flow over a ramp with a wedge slope equal 
to the "detachment" angl e3• ,Thi s observati on has proven extremely 
useful as a simple computational artifice which accounts for the gross 
dominant effects of the shock-boundary-layer interaction. Computational 
results generated by inviscid codes which have been modified to 

incorporate the ramp model have been shown to correlate well with 
experimental data in steady, and more recently unsteady calculations 
where the quasi-steady assumption has been invoked2,8. 

The geometry of the viscous ramp model is depicted schematically in 
Figure 1. It consists of a short precursor over which the surface slope 
varies from zero to the given wedge angle followed by the main ramp body 
along which the slope varies quadratically. At the ramp leading edge 
the ramp height and slope are continuous, and at the downstream end the 

slope and curvature vanish. The ramp is positioned with respect to the 
local instantaneous sonic point location and affinely scaled with the 
shock strength as determined by conditions immediately ahead of the 
shock. As was:done in the steady ca'se3, the ramp leading"edge ;-s" 
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offset a distance Xo ahead of the sonic location in order to more 
fully influence the numerical shock profile. The leading edge is 
preceded by the precursor of length x which has been used in previous 
unsteady calculations2,B to moderate ~he passage of the sharp ramp 

leading edge across computational mesh points, thereby precluding 
spurious numerical instabilities. The main body of the ramp has a 
length of xR where the parameters xp' xo' and xR may be selected 
for each specific application. 

Augmenting the surface geometry by the ramp model results in the 
following modification to the tangency condition, Eq. 2: 

+ 
~y-

+ ± -f-+fR - x x on y 
+ = 0 - for 0 < x < 1 (7) 

If Xs is the sonic point location and e the wedge angle then 
~ is defined as follows: 

x 

f ± 
Rx 

= 0 for x < x - x - x sop (Ba) 

f ± [ x-x +x ] (Bb) = ± (~) 1 + ( s 0) for x - x - x < x < x - x 
Rx 15 X S 0 p- - s 0 

P 

2 
+ x-x + x 

e [ s o~ f - = ± (-) 1 - ( ) for x - x < x < x - x + xR (Bc) 
Rx 15 xR s 0 - - s 0 

f ± 
Rx 

= 0 for x > x s - Xo + xR • 
(Bd) 
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where 

The instaneous wedge angle a, corresponding to that for the maximum 
possible turning for an attached oblique shock is found from the 
following analysis. Consider a wedge of angle a with an oblique shock 

located at its vertex. Within the approximations of small disturbance 
theory it is easily shown from the tangency condition that 

o (,t> y2 - 4> yl) = tan a ~ a ( 9) 

where the subscripts 1 and 2 denote the upstream and downstream states 
respectively. We now write Eq. 1 in conservative form as 

2 
(a 4> ) t + (a 4> t + b 4> + c 4> ) + (4) ) = 0 • x x xx yy 

(10 ) 

For convenience the following definitions have been made: 

k M2 1 _ M2 
0) 0) 

a = - --;z]3 b = 2/3 
o 0 

(y + l)M2 
0) 

, c 2 • 
( 11) 

- -If it' ix, and iy are unit vectors in each of the coordinate 

directions, the following mass flux vector, <1, may be formed: 

-.. 2 ---. ----
q = (a 4> ) i t + (a 4> t + b 4> + c <j) ) i + (4) ) i x x x x y y. 

(12 ) 

Gi ven the uni t vector normal to the shock, n, the shock jump conditi on s 
are then defined by 

[qJ. n =0 (13) 

[ J = )2 - ( ) 1· . 

9 



Let us now assume that hs = x - g (y, t) = 0 describes the shock 

geometry. 
vh 

It follows that n is equal to
l
_ s, • 
vhs 

Eq. 13 then becomes 

- [a 4I x ]9 t + [a 4I t + b 4Ix + c ~/J - [4I y ] 9y = 0 (14 ) 

In a similar manner one may consider the jump conditions for the 

following relationships 

(41) - (41 ) = 0 
.Y x x Y 

(15a) 

(~ ) - (41 ) = 0 x t t x (15b) 

and thereby eliminate the shock geometry, i.e., 9t and 9y. Upon so 
doing, one arrives at the "Rankine-Hugoniot" condition corresponding to 
Eq. 1: 

2 
2a(4I t 2 - 4I tl )(4I x2 - 4I x1 ) + b (4I x2 - 4I x1 ) 

2 2 
+ c(ll x2 + 4I xl )(4I x2 - $xl) + ($y2 - 4I y1 ) = 0 • 

(16 ) 

r., 

Ii 

\. 

k 

H 
. For. maximum turnin9'~ = 0, a condition'which'is'obtai'ned from-'''' ' .......... , ",', 

x2 
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Eq. 16 as 

2b cjl xl ( 17) 
cjl x2 = - 3c --3-

u si r.g cjl t2 - cjl t1 = 0 • 

This relationship is now used in conjunction with Eq. 16 and Eq. 9 to 

find that 

~ = ± [ 4 ~lY + 
l

)M m cjl 5 ~ xl 
(y + 1)r~ m ' ~ 3 

2 
(1-~1 ex» 3/2 

2/3 ] L-
(18 ) 

Here the plus sign is taken for the upper surface and the minus sign for 
the lower surface. 

B. Lag Entrainment Equations 

The form of the so-called "lag entrainment equations" which will be 

considered here are those due to Green9• They are predicated upon the 
boundary-layer assumption that the normal extent of the viscous region 
is small when compared with airfoil or wake thickness, which necessarily 

applies to flows at high Reynolds numbers. By integrating the governing 
partial differential equations in the normal direction and suitably 

modelling the requisite relationships among the dependent variables, a 
system of three first order ordinary differential equations is 
obtained. Two of the equations result directly from continuity and 

momentum. The third evolves from the Bradshaw, Ferriss and Atwell 10 

turbulent kinetic energy equation but is formulated in terms of the 

entrainment concept originally proposed by Head11 • This yields a 
streamwise rate equation governing the degree to which the outer 
inviscid flow merges with the boundary layer. 

11 



The choice of an integral set of equations as opposed to a differential 
set is made for two reasons. First, integral techniques generally 

require considerably less computing time than differential methods. 
Second, differential methods have not as yet proven to be substantially 
superior for the computation of flows of practical interest. Since 
their original formulation the lag entrainment equations have proven to 
be a useful computational tool for performing compressible4,9 and 
incompressible boundary-layer and wake calculations, involving both 
separated5,7,12 and unseparated6 flow regions. 

For completeness, Green's lag entrainment integral equations are briefly 
summarized here. If a more thorough understanding of their development 
is required, the reader is referred to any of the ori9inal 
references4,5,9. It is useful to fi rst note someprel imi nary 
definitions: 

displacement thickness * IS 

co "U 
(1 - PeUe}d 11 = f 

o 

ex> pU .J! 
momentum defect thickness e = f P eUe (1 -Ue) d n 

o 

shape factor 

shape parameter 

entrainment coefficient 

H = 0* 
e 

1 00 U 
H=- f L (1 - -) dn • e o Pe Ue 

1 d 0 
C =- f b1 Ud 
E PeUe ct o P n 

12 
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(20) 

( 21) 

(22) 

(23) 
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In the preceding equations ~ and n are streamwise and normal physical 

coordinates respectively, P, the density and U the streamwise velocity 
component in the boundary layer. The subscript e refers to the 
boundary-layer edge denoted by n = obI. Within the confines of small 
disturbance theory and the boundary-layer limit, the edge conditions may 
be taken as those corresponding to the inviscid solution on the airfoil 
surface or the wake centerline • 

The primary dependent variables are taken as 6, H, and CEo Given 
their value at any streamwise station, ~, their distributions may be 
predicted by the following first order set of ordinary differential 
equations and subsequent parameters: 

de Cf 2 a dUe 
- ="2 -(H+2-M) U---;r.:­
~ e e ~ 

dH 1 dH [ Cf e dUe] - = (-) - { C - H - - (H + 1) - - } 
d~ 6 dH l E 1 2 Ue d~ 

dCE = (~) { (~) [(C )1/2 _ hC 1/2J + (~ dUe) 
~ e H+Hl T EQO T Ue d ~ EQ 

y-1 

dU [ (1 + """""2 rM 2 ] } _ ~_e 1 + 0.075 M 2 e 
U e dE; e 1 + 0.1 M/ 

(24) 

(25) 

(26) 

The following relationships are now used to complete the description of 
the governing equations: 

F c = [ 1 + (9) rM/] 1/2 ( 27) 

13 



2 
F R = 1 + 0.056 Me ' 

Rea 

Cfo = 

= peuea 

~e 

1- [ 0.01013 - 0.00075 ] ' 
Fe 109 (FRR ) - 1.02 10 ea 

(28 ) 

(29) 

(30) 

- t 1/2 
: = H{1 - 6.55 [(-¥-) (1 + 0.04 M/)]}, (31) 

o 

H -1 

{ 

Cfo 0.9 (- - 0.4) - 0.05 for wall boundary layers 
C

f 
= Ho 

o for wake shear 1 ayers, (32) 

H = nr'+ 1) [ 1 + (y ~ 1 
) rM/ J -1 

HI = 3.15 + (1.72) - 0.01 (H" _ 1)2 , 
11-1 

dH =_[ or-d]. 
Cl1f1 . 1.72 + 0.02 (H+1)3 

2 0.8 Cfo 0.02 C
E 

+ CE + 3 F = t 

0.01 + CE 

14 
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(34) 

(35) 

(36) 
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2 2 C, = (1 + 0.1 Me )(0.024 CE + 1.2 CE + 0.32 Cfo ) , (37) 

[ 

1 for wall boundary layers where secondary influence of 
A = streamwise wall curvature have been neglected (38) 

1/2 for wake shear layers, 

(~dUe) = (1.25) [~_ (H - 1 ~ (1 + 0.04 M 2)-lJ (39) 
Ue dE; EQ H 2 6.432 II e, 

[ 
Cf a dUe J 

(CE )EQO = H1 '2 - (H + 1) (U ~)EQ 
e 

(40) 

(CT1 EQO = (1 + 0.1 Me21[ 0.024 (CE1EQO + 1.2 [(CE1EQof . 

+ 0.32 efa } • 

2 -1 -2 
C = (C, )EQO(1 + 0.1 Me) A - 0.32 Cfo ' 

(e
E

) 
EQ 

_ C 1/2 
- (. ~ . n nnx1) - 0.01, 

e dUe [1 J [HI Cf ] 
(Ur)EQ = H (H + 1) -2- - (CE) • 

e 1 EQ 

(41) 

(42) 

(43) 

(44 ) 

Using the small disturbance approximation, edge qualities may be 

written in terms of the inviscid solution as follows: 

U 2/3 
e =1+6 ~x 

Ua> 
(45) 

15 



M = 11 { 1 + [1 + (1 -1) 11 2] {5 2/3 q, } 
e co -V- co .x 

p 2 
e = 1 - M 2/3 q, 

p co co 
{5 x 

The pressure gradient parameter may be approximated as 

1 
Ue 

dUe 
<t 

1 2/3 
- C {5 q, xx 

(46) 

( 47) 

(48) 

and the local Reynolds number based on momentum defect thickness by 

Rea 
= [(~ ) (: + ,2/3 ~X)(%)l R 

(~) eco 
II 

co 

(49) 

where R = P U e co coc 
co II 

co 

is the freestream Reynolds number based upon chord. 

The viscosity ratio ~ is now eliminated from Eq. (49) by noting that 
ll", 

T 2/3 2 
e = 1 - ( 1 - 1) {5 M co q,x (50) 

T 
co 
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and then employing the Sutherland viscosity law13 in the form 

~ 
(~) 
~CD 

Te3/ 2 
= (-) 

T 
CD [

1 + ~ 1 
Te So 
r+r 

CD CD. 

( 51) 

where So is a constant dependent upon the nature of the specific gas 

(So = 110oK, for air). It is noted in Eq.'S 26,27, and 33 that r is 
the recovery factor which is commonly chosen as a function of the 
turbulent Prandtl number Prt : 

r = (Pr ) 1/3 
t 

(52) 

With these specifications the lag entrainment equations are fully 
defined. Noting that the shape parameter H and the entrainment 

coefficient CE are already nondimensional, the equations are rewritten 
here in a form compatible with coupling to the inviscid solution: 

C 
~ (I!..) = ~ _ (H + 2 _ M 2) {,2/3 (!.) ~ 
dx c 2 e c xx' 

(53) 

- - C 
dH = ~ dH {C _ H [~_ (H + 1) {,2/3 (!.) ~ ]} 
dx (!.) dH 1 E 1 2 c xx ' 

c 

(54 ) 

C { U ~ = _F_ (2.8 ) [(C )1/2 _ >.C 1/2 ] + (~ ~) 
dx (~) H + HI "( EQO 1: Ue elf; EQ 

c 

17 



- 02/ 3 (~) <jl. [1 + 0.075 Me2 
c xx 

(1 + ? r r1e 2)J ) 
2 • 

1 + 0.1 Me 
(55) 

Given initial values of (~), H, and CE at the streamwise station x = xi' 
Eq.'S 53 through 55 may be integrated in the downstream direction for 
all x > x. to obtain the distribution of viscous parameters along the 

1 
airfoil surface and trailing wake. 

These are then used to modify the inviscid solution through use of the 
displacement thickness, 0*. An explicit dependence of the slope of 

the displacement thickness,~* upon the viscous parameters provided by 
the lag entrainment equations may be obtained by the following 
analysis. From Eq. 21 we write 

do * _ H cB + a dH r- ~ df (56) 

Differentiating Eq. 33 results in the expression 

~~ = [1 + (Yt-)r Me2] ~ + (y-1) r Me (H + 1) d~ • (57) 

Now, using the isentropic relationship13 

U e a = Me [1 + r-1) M 2 ] -1/2 
o T e 

(58 ) 

where a is the speed of sound at the stagnation condition, it may be o . 
shown that 

dU 
dMe = M [1 + (Y -1) M 2 ] (1 _e ) 
~ e T e U; dE: • (59) 
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Upon substitution of Eq. 59 into Eq. 57 to obtain 

dH _ [1 (y -1) M 2J dH 
(ff- + -yr e «" 

. dU 
2 [ y-1) 2J(1 e) + (y-1)r Me (11+1) 1 + ( r Me . TIe ~ (60) 

and subsequent use of Eq. 60 in conjunction with Eq. 56 results in 

~ * = ~ + e {[ 1 + (Y~) r Me 
2 

] ~ 

+ (-v-I) r Me
2 (11 + 1) [1 + (X2"l) Me 2 ] (tfe-~)}. (61) 

Finally. the derivatives on the right-hand side of Eq. 61 are eliminated 
by employing Eq.'S 24 and 25 to arrive at 

c C 
do* =.!L!. + [1 + (y-1) r r~ 2 ] (C _!!j.) 
dE; 2 2 e E Co 

+ { [ 1 + r-: 21 ) r Me 2 ] HI (H+ 1) gl 

2 - ] 2 + (y -1) r M (H+l ) - H (H+2 - M )} 
e e 

19 

(~ dUe) 
Ue dE; 

(62) 



By nondimensiona1izing Eq. 62 and 3pp1ying the small disturbance 
assumption, we can transform this relationship to a form compatible with 
the inviscid equation as 

d 0* ax (U-) = F1 + F2 4lxx 

where for convenience we have defined 

F = 
1 

c C 
H....f + [1 + (Y-:!.) M 2 ] (C _ ~H 0- 1 
2 2 r e E 2 ' 

(63) 

(64a) 

F2 = { [ 1 + (Y~}r M/][H1 (H+1) ~ + (y-l)r Me2 (H+l)] (64b) 
1 

_ H (H+2-M 2)} IS -1/3 (~) e c . 

The form of Eq. 63 was first inferred by East5 et. a1. who noted several 

interesting properties. For unseparated flows, IF2 4lxx 1«IF1 I 
so that Eq. 63 represents a stiff equation for ~ {~:} 

Thus, the displacement is relatively insensitive to the pressure 
gradient, 4l xx • On the other hand, for fully separated flows 

IF21» /FJ. In this case Eq. 63 may be rewritten as 

-[ d 0 * ]-1 
cJ> xx - dx (u) - F 1 F 2 ' 

. which is a stiff equationfor.t xx • Eq. 63 is now used to provide 

the coupling between the inviscid and viscous solutions. The original 

20 
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surface boundary condition, Eq. 2, is modified by the viscous 

displacement thickness to yield 

+ + * ± + ~ - = f - + (}-) on y = 0- for 0 < x < l. 
y x uc X 

Using Eq. 63 this is written as 

+ + + + 
~ y - = f x - + (F 1 + F 2 ~ xx)- on y = 0- for 0 < x < 1 

(65) 

(66) 

in order to exhibit the dominant explicit dependence of the displacement 

upon the velocity potential. 

Downstream of the trailing edge, the viscous wake generates an effective 
displacement afterbody. Due to its presence, a discontinuity in the 

slope of the potential is now permitted such that the wake condition Eq. 
3a must be replaced by 

[ ~ y] = [F 1 + F 2 ~ xx ] on y = 0 for x > 1 . (67) 

21 



III. NUMERICAL METHOD 

A. Viscous Ramp 

Given the velocity potential distribution ~(x, y, t n) over the 
computational domain at time level tn, the viscous ramp model is 

implemented in the following manner in order to extend the solution to 
time level tn+1 = t n + ~t. First, the sonic point, xs ' defined as 
that location where the surface pressure attains the critical value 
(C p*)' is located based upon ~(x, y, t n). A simple linear 

interpolation between mesh points is employed for this purpose. Next, 
the condition ~x1 is evaluated where the upstream location is taken 

to be that position which lies two mesh points upstream of the first 
subsonic point. The first subsonic point is that mesh point immediately 

downstream of xs. With ~x1 now known, the value of the ramp angle 
is calculated from Eq. 18. Given this value and the sonic point 
location, the ramp geometry is computed according to Eq. 8. Finally, 
the modified boundary condition, Eq. 7, may be applied and the solution 
advanced to the new time level tn+1. 

The ramp geometric parameters xp' xo' and xR can be adjusted for 
specific applications to provide desired computational results. This is 

often a matter of trial and error and it is suggested that comparisons 

with steady experimental pressure distributions, if available, be used 
for this purpose. The modified LTRAN2 code will accept these variables 
as input parameters. In addition, the following program default values 
have been proven adequate for a wide range of both steady and unsteady 
calculations: 

xp = 0.02, 
Xo = 0.02, 
xR = 0.10. 
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B. Lag Entrainment Equations 

The coupling of the lag entrainment equations with an inviscid solution 
algorithm can be an especially sensitive procedure. This is 
particularly true in the transonic regime where it is in general 
necessary to integrate the integral equations through the numerical 
shock profile. The transition from supersonic to subsonic flow regions 
can often produce numerical oscillations, instabilities, or other 
anomalous behavior. In addition, the structure of the shock profile is 
typically determined by the numerical techniques of the shock capturing 
method rather than a strict modelling of the physical processes 
involved. For example, the use of backward and centered streamwise 
differencing in the supersonic and subsonic regions respectively 
generally produces a shock profile with a streamwise extent of two mesh 
intervals. Thus the nature of the solution in this region is very much 
dependent upon the mesh distribution unless it is exceedingly fine. 
Although these deficiencies are not serious enough to degrade the 
accuracy of the results for aeroelastic applications, any rigorous 

coupling of the viscous and inviscid solutions through the shock profile 
is necessarily superfluous. 

For these reasons, use of the viscous ramp model is maintained in 
conjunction with the lag entrainment equations. As was done previously, 
it is assumed that the solution ~(x, y, t n) at time level t n is 
known over the entire computational domain. It is consistent with the 
quasi-steady assumption, then, to use this solution to integrate the lag 
entrainment equations and extend the potential distribution to the next 
time level t n+1 = tn + 6t. An initial upstream position, x., is 

1 
selected as a location ahead of the shock. It is assumed that upstream 
of xi the effect of the boundary layer will be negligible. 
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Initial values for the quantities (~), H, and'CE at station x. are c 1 

obtained from empirical correlations for the incompressible turbulent 

boundary layer on a flat plate14• In particular, we assume 

~ = 0 04625 x 4/5 Re -1/5 
c • 

'" 

Then using the relationship 

U ( __ n_)1/7 
Ue = 

15 b1 

and Eq.'S 19 through 23 we can find that 

e 
c = (-i) (~*) 

15* - (-) 
H = c 

(~) 
c 

d 5* 
C = 7 - (-) 
E dx c 

(68 ) 

(69) 

( 70) 

(71) 

( 72) 

Wi th the i ni ti a 1 condi ti ons speci fied, the parameters So, Re"" Teo' 

and Pr t defined, and the distribution .(x, y, t n) given, Eqs. 53 
througn 55 may be integrated from the station x = xi + 4X to the 
downstream boundary. For this purpose a second order accurate 

Runge-Kutta predictor-corrector numerical integration scheme was 
employed. Whil e other more accurate techniques cOlll d easily have been 

selected, the truncation error incurred in the chosen method is of the 
same order as that of the inviscid algorith~. The evaluation of the 
expressions in Eqs. 45 thorugh 49 wa5 performed using a central 
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difference to calculate $ and either a central or backward difference x 
to compute .xx based upon the local flow characteristics (i.e., a 
central difference was used in subsonic regions and a backward 
difference was used in supersonic regions). This treatment is not only 
consistent with the inviscid algorithm, but also duplicates the 
technique employed in previous steady computations6,7. Once the 

integration has been completed the functions Fl and F2 defined in 
Eq. 64 may be evaluated along the airfoil surface and entire trailing 
viscous wake. These are then employed to couple the viscous soluion to 
the inviscid solution through the use of Eqs. 66 and 67. 

Although integration of the lag entrainment equations is initiated 
upstream of the shock, coupling with the inviscid flow does not occur 
until the first mesh point downstream of the shock for which the flow is 
locally subsonic, defined as xsub. This ensures that the turbulent 
variables have properly adjusted to the shock-boundary-layer interaction 
when the coupling procedure is invoked. Upstream of xsub' the viscous 
ramp technique is implemented in the fashion described in the previous 

section. Beginning at xsub' Eq. 66 is used as the modified boundary 
condition for the inviscid solution. This treatment can potentially 
produce anomalous behavior due to inconsistencies between the respective 
methods, but none have been observed and the procedure appears to be 
reasonably stable numerically. 

Equation 66 is approximated by evaluating .y as a first order 
one-sided difference and .xx as a second-order central difference, as 
the condition is only applied in subsonic flow regions. If it is 
assumed that the solution at the new time level t n+1 has been 

generated for all x < x I' then Eq. 66 for the upper surface may b.e 
expressed at x = xI as follows: 
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n+l n+l ) 

( 
~ I, J W+ 1 - ~ I, J W = f X I + F 1 I 

YJW+1- YJW 

n n+l n+l n+l 

[( ~ 1+1, JW - ~I, JW\_~~I' JW - ~I-l, JW)] 
+ F XI+1 - XI '/ XI - XI-1 21 

( XI+1 -/1-1) 

(73) 

where y W = 0+. It is noted that at the station just downstream of 
the sta{lon under consideration, XI+1' a value for ~ at the previous 
time level must be taken in order that the inviscid algorithm remain 
intact. Equation 73 is now rearranged such that all known quantities 
appear on the right-hand side: 

(1 n+l 
Y J W+ 1 - Y J W) ~ I, J W+ 1 

+ 2 I 1 + 1 _ 1 ,n+ 1 ~~ 2 F )~ ) J X I + 1 - X 1 -1 X I + 1 - X I X 1 - X I -1 Y J W+ 1 - Y J W' ~ I, J W 

2F ) (~ n ~ n+ 1 ) = f + F + 21 1+1, JW + 1-1, JW 
XI 11 ()1+1 - XI_1 X1+1 - XI XI - XI_1 • (74) 

When used in conjunction with the difference expressions for the 
flowfield differential equatio'n, this relationship provides an implicit 

expression simultaneously, coupling all points above the airfoil 

(y > 0+) at the station x. This treatment is considered to' be 
significant in suppressin~ numerical instabilities which would otherwise 
occur, particularly in regions of large pressure gradient such as those 
at the trailing edge. An expression similar to Eq. 74 may easily be 
obtained for the lower surface. 
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Downstream of the trailing edge, the effects of the viscous wake are 
manifested in the jump condition, Eq. 67. This impacts upon the 

inviscid algorithm through the term ~yy in the governing differential 
equation when evaluated along y = 0 for x >1. It follows from Eq. 36 
that once the jump in potential at the trailing edge is found at time 
level tn+1, it is uniquely determined for all subsequent downstream 
stations. Thus ~ may be evaluated along either y = 0+ or y = 0-yy 
and the value along the opposite side of the wake determined from Eq. 36 • 

We now consider (~yY)I, JW where YJW = 0- and x > 1 and for 
convenience define 

n+1 + n+1 - n+1 r 1 =~(Xl'0,t )-~(Xl,O,t ), 
+ n+1 - n+1 

al=~y(XI,O,t )-~y(Xl,O,t ). 

Using Eq. 67, we can express Eq. 76 as 

+ - + + --
a 1 = (F 11 - F 11) + (F 2 1 ~ xx 1 - F 2 1 ~ xx I) • 

(75) 

(76) 

(77 ) 

Because the wake is entirely subsonic, a central difference is used to 
approximate the derivatives in Eq. 77 such that 

( + -) + a 1 = F11 -F11 +F21 ~( ~ ~+1 - ~ ~)_/~ ~ - ~ ~-1) 1 
XI+1 - XI \X I - X1_1 

(XI+1 - XI_1 ) 
2 . 

- - - -

- F2I [(
~I+1 -~1) ~I -~1-1 
XI+1 - XI -\X I - XI_1 

CI+l : X1- 1 ~ 
(78) 
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Values of the potential on the upper side of the wake are now eliminated 
through use of Eq. 75. In addition, we note that the potential at the 
upstream station XI-1 at the new time level are known, those at the 
current station XI are to be solved for, and those at the downst~eam 
station XI+1 must be taken at the previous time level tn. Thus we 
may write 

B n+l=( 2 ) 
I XI+1 - XI_1 

( 1 
XI+1 - XI 

+ 1 ) (F- _ + !!.+1 
XI - XI_1 21 F21)~ I 

+ -)+( 2 ) 
+ (F - Fl1 X - XI 1 11 1+1-

(1 + XI+1 - XI_1 
1 ) 

XI - XI _1 

n+1 n 

n 

( 1+1) {~ 
~+ 

XI+1 - XI 

r n+l 
I 

n+l+",- ~ + 
r I_1 't'1_l) F21 

+ (X - XI 
1+1 [ 

~I+1 ) + 
- (X t XI I-I 

n+1 ] 
~~-1 )] F2I • (XI - XI _1 

(79) 

A second order approximation for (~YY)I, JW may now be written as 

(cj) YY) I, JW = 

~ -cj) ~'-~ ( I, JW+l I, JW) _( I, JW I, JW-l) 
YJW+1 - YJW YJW - YJW- 1 

(JW:.:t~JW-l ) 
(80) 

where ~I, JW+l is a modified value of 4l(XI , YJW+l). 
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Because ~ and ~ are discontinuous on y = 0, the value of y 

~ I, JW+1 must be computed in terms of ~ I, JW+1' r I' and a I· 

From a Taylor series expansion about y = 0: we write 

~I,JW+1 = ~I, JW + (YJW+1 - YJW ) ~YI + 0 [(YJW+1 - YJw)2]. (81) 

Similarly, expanding about y = 0+, 

~I,JW+1 = ~~+ (YJW+1 - YJW ) ~y~ + 0 [(YJW+1 - YJW)2]. (82) 

Upon combining Eqs. 81 and 82 along with Eqs. 75 and 76, the following 

expression is obtained: 

~I, JW+1 = <\II, JW+1- r I - (YJW+1 - YJw ) 13 1 • (83) 

Finally, Eq. 83 is substituted into Eq. 80, the resultant expression 

evaluated at time level n + 1 and 13
1 

n+1 eliminated by use of 
Eq. 79 to arrive at the expression . 

n+1 
(~YY)I, JW = ( 2 ) ( 1 n+ 1 

YJW+1 - YJW- 1 YJW+1 - YJW ) ~I, JW+1 

( 2 ) [( 1 
YJW+l - YJW- 1 YJW+1 - YJW 

+ 1 ) 
YJW - YJW- 1 

+ ( 2 ) 
X1+1 - XI_1 

(1 + 1) (F- +)] n+1 
X

I
_
1 

- XI XI - X
I
_
1 

21 - F2I ~I, JW 

+ ( 2 ) 
YJW+1 - YJW- 1 

( 
1 ) n+1 

YJW+1 - YJW ~ I, JW-1 
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_ ( 2 Y (F+ - -
JW+1 - YJW-1 11 F

lI
) 

n 

_ ( 2 ) 
YJW+1 - YJW- 1 [ 

+ 
2 ~ 1+1 ( vOl [(.,, " ) 

( 1 + 
XI +1 - XI 

1 
XI - X ) n+1 

1-1 r I 

n+1 n+1 n n+1 
r +~ ~ ~ ] + (1-1 I-l,JW)] + _ [( 1+1, JW) + ( 1-1, JW)] F-
XI +1 - XI F21 XI +1 - XI XI - XI _1 21 

_ ( 2 .. ) 
YJW+1 - YJW- 1 

n+1 r 
(I ) 
Y JW+l - Y JW 

(84) 

Equation 84 now provides the implicit condition coupling the inviscid 

algorithm with the viscous downstream wake. 
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IV. COMPUTED RESULTS 

In order to validate the modifications to the LTRAN2 code and to establish the 
acceptability of generated solutions, several computational examples of 

practical interest were considered. Two airfoil sections were selected as 
being representative of those for which viscous effects may be significant, 
namely the RAE 2822 and the NLR 7301. Section geometries are shown in 
Figure 2. The RAE 2822 section has a maximum thickness to chord ratio of 
0.1210 and is characterized by appreciable camber, but a thin nose region. On 
the other hand, the NLR 7301 section has a very thick blunt leading edge, a 
large aft cove, and a thickness ratio of 0.1683. These sections, particularly 
the NLR 7301, are considered to be a severe test of the limitations inherent 
in the computational method. This -selection is based upon the existence of 
experimental data available for comparative purposes15 ,16. 

All of the results presented here were generated on a nonuniform Cartesian 
grid consisting of 113 points in the x-direction and 97 points in the 
y-direction, symmetric about y = O. Minimum grid spacings were ~xmin = 
0.005 at the leading edge, ~ymin= 0.01 at the surface, and the computational 
domain was defined by 

- 200 ~ x ~ 200, 
-397 .8 ~ Y .s. 397.8. 

The airfoil surface was defined by 48 points in the x-direction. For each of 
the cases considered, results were generated for an inviscid solution, the 
viscous ramp solution, and the lag entrainment solution. Comparisons between 

these results, and with experiment when available, were then made. 

A. The RAE 2822 Airfoil 

Solutions for the steady flow at M = 0.73, a = 3.190
, 

and Re = 6.5 x 106 over the RAE 2822 section were obtained by 
00 

integrating in time. The inviscid solution was evolved from an initial 
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undistributed flow (i.e., • = 0). This result was then used as the 

initial flow to obtain the viscous ramp solution, which in turn provided 
the initial condition for the lag entrainment result. While this 
process may not in general be optimal, it was employed here because all 
three solutions were required for comparison, and has been used to 
generate all subsequent steady results. Implementation of either the 
viscous ramp or lag entrainment computation (which is used in 
conjunction with the ramp) usu~lly requires a local minimum of the 
pressure occurring over the airfoil surface in order to initiate the 
computation. This provides a starting location upstream of the trailing 
edge for the viscous effects to impact upon the solution as was noted in 
earlier formulations for steady solutions obtained by relaxation3• 

Surface pressure distributions for this case appear in Figure 3 and are 
compared with the experimental results of Cook 15 et al. It is seen 
that the inviscid shock location lies downstream of the experimental 
position. The inclusion of viscous effects displaces the shock 
forward. Location of the shock appears to be predicted quite well by 
use of the wedge alone, but not by the lag entrainment solution. The 
reason for this is that this case is particularly sensitive to small 
perturbations in the flow conditions. Other computations17 , for 
example, have slightly varied the Mach number and angle of attack to 
obtain better agreement with the experiment. Just upstream and 
downstream of the shock it is noted that the lag entrainment solution 
produces a pressure distribution that has no appreciable gradient. This 
evidences the fact that the shock position has little perferred location 
and will be quite sensitive to small perturbations in the flow 
conditions. The lag entrainment solution is also seen to produce better 
agreement with experiment upstream of the shock, on the lower surface, 
and in the trailing edge region. In this result the viscous 
displacement has properly accounted for the effective decambering of the 

airfoil. Because this effect is absent in the wedge solution, its close 
agreement with the experimenal shock location may be fortuitous. 
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Distributions of the upper surface displacement thickness and momentum 
defect thickness corresponding to this case appear in Figure 4. The 
comparison of the computed solutions with experiment is qualitatively 
correct. Downstream of the shock, the levels of the computation lie 
somewhat below the experiment. This is probably because the shock 
10cJtion is poorly predicted. If the shock were located further aft, 
the ri se of a and 6 * through the shock woul d be expected to be greater 
due to a larger local Reynolds number in the wake region. In addition, 
the behavior may be due in part to the fact that the inviscid and 
viscous solutions are not coupled through the shock profile. Downstream 
of the trailing edge a and 6* can be seen approaching a constant value 
which is consistent for free shear layers without pressure gradient. 
This is indicated, for example, in Eq. 53 with Cf = ~xx = O. 

In order to exemplify the sensitivity of this computation to the flow 
conditions, a second solution was generated for M = 0.75. Pressure 

~ 

distributions for this case are shown in Figure 5. Upon comparing this 
result with those in Figure 3 for M = 0.73, it can be seen that the 

~ 

slight increase in Mach number has produced a significant effect on the 
numerical solutions. It is observed in the inviscid computation that 
the shock has moved to the trailing edge and that in the wedge solution, 
the shock location is far aft of the experimental position. The lag 
entrainment result, on the other hand, compares quite well with the data 
and appears to duplicate a previous steady calculation7• Once again, 
the reason for this is because the lag entrainment solution accounts for 
the aft displacement effects, while the other results do not. This 
effect is also noticeable on the lower surface and in the regions both 
ahead of the shock and at the trailing edge. The anomalous behavior of 

the wedge result just upstream and downstream of the shock probably is 
produced by the positioning of the wedge ~ithin the shock profile. Th~s 

behavior could possibly be eliminated by alternate choices for the wedge 
parameters (xp' xO' xR)' but no attempt was made to do that here. 
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Corresponding upper surface distributions of the boundary layer 
quantities are presented in Figure 6. The lack of agreement with the 
data occurs because the flow was found to separate experimentally, but 
remained attached for the computed solution. Much higher levels in a 

and 6* naturally occur downstream of separation. This condition is once 
again probably quite sensitive to the flow conditions. It is 
interesting to note that the numerical results of Reference 7 
overpredicted the level of the 6* distribution, while those presented 
here have underpredicted it. The fact that the pressure distributions 
of both results compare well with experiment is due to the fact tbat the 
coupling between the inviscid and viscous solutions is provided by 

d6* which is insensitive to $ as was noted earlier. 
~ xx 

As an example of an unsteady calculation, this airfoil was forced to 
oscillate sinusoidally in rotation about the mid-chord at M = 0.73 

00 

with a reduced frequency k = 0.2 and an amplitude of 10 , The solution 
was initiated from the steady-state results in Figure 3 and the 
oscillation was allowed to proceed for three cycles with ~t selected 

such that 0.50 of rotation occurred in one time step. Figure 7 shows 
the instantaneous surface pressure distributions for the last cycle of 
oscillation where the time is referenced to the beginning of this cycle 
and given in degrees. The inviscid result for this case could not be 

computed with the same time step, and thus does not appear in the 
comparison. 

As was noted in the steady pressure distributions, the lag entrainment 
solution produces a weaker shock with more forward displacement than 
occurs for the wedge alone. Also, the effects of decambering on the 
lower surface and in the trailing edge region are noticeable. At 
t = 360 the wedge is seen to generate a post shock re-expansion. Use of 
the viscous ramp can cause this behavior which may be altered by 
variation of the ramp parameters. 
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Instantaneous upper surface distributons of the displacement and 

momentum defect thickness for this case appear in Figure 8. They 
exhibit the same general properties of the steady-state results 
(Figure 4). In Figure 9 the time histories of the unsteady lift and 
moment coefficients are presented. Here the moment coefficient is taken 
about the pitch point x = 0.5. The unsteady angle of attack is provided 
for comparison. Phase differences between the lift and moment and 
oscillatory motion can be clearly seen. 

B. The NLR 7301 Airfoil 

Flow about the NLR 7301 section provides a severe' test for the 
computational method described in preceding sections. Not only is the 
airfoil exceptionally thick, but the leading edge is extremely blunt. 
Thus, the assumptions inherent in small disturbance theory may be'in 
violation. Nevertheless, this case was selected because of available 
existing unsteady experimental data. In order to render the geometry 
more tractable for a small disturbance calculation, the original airfoil 
slopes were slightly modified. This modification is discussed in 

Appendix A and has been used for all the computations presented here 
with the NLR 7301 airfoil. 

~teady state solutions were generated for M = 0.75, a = 0.37 0
, and 

Re = 1.148 x 107 in the manner as was described for the RAE 2822' 
00 

airfoil. These conditions duplicate those of the experiments of Davis 
and Malcolm16 • Surface pressure distributions for the respective 
results and the experimental data appear in Figure 10. Both the 
inviscid calculations and the wedge solution are seen to agree favorably 
with experiment upstream of the shock. Location of the shock is poorly 
predicted by the inviscid result. Without the aforementioned slope 
modification, the shock was found to lie at the trailing edge. 

Improvement occurs when the wedge is included. On the lower surface 
both solutions are seriously deficient. The lag entrainment result 
appears to predict the shock location reasonably well, but the shock is 
weaker than that indicated by the experiment. In the aft region, the 
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" 

lag entrainment solution agrees favorably with the data. Upstream, 
however, there is a discrepancy on both the upper and lower surfaces. 

The generally poor agreement between all the computed results and the 
experimental data is attributed to the limitations of small disturbance 
theory. This conclusion is supported by a previous resultS for this 

same case where it was not possible to match the test data except by 
performing an inverse calculation. Thus, the good agreement obtained by 
the inviscid and wedge solutions on the upper surface ahead of the shock 
must be considered to be fortuitous. It is noted that the lift for 
these results must necessarily be in serious disagreement with the 
test. Corresponding viscous parameters for this case from the lag 
entrainment solution are shown in Figure 11. 

Using the steady-state solutions as initial conditions, the airfoil was 
oscillated sinusoidally in rotation about x = 0.4 with a reduced 
frequency k = 0.6 and an amplitude of 0.50

, duplicating one of the 
unsteady test conditions of Davis and Malcolm. The condition k = 0.6 
may violate the low frequency approximation, but the range of 
applicability of the governing equation can easily be extended by 
including a high frequency term in the surface boundary condition2• 
Three cycles of the pitching oscillation were computed with a value 
of ~t corresponding to 10 of rotation per time step. Instanteous 

pressure distributions for the last cycle of oscillation are shown in 
Figure 12. It is seen that the inviscid and wedge solutions vary only 

slightly from their respective steady-state values. The lag entrainment 
distribution, on the other hand, alters considerably during the course 
of the oscillatory cycle. This is due to the weakened shock which is 
present and allows for greater pressure fluctuations in the supersonic 
region. At t = 270 it can be seen that the pressure level crosses the 
sonic value (Cp*) more than once. Because this criteria is used to 
define and locate the wedge position of the viscous coupling, special 
provision had to be made to treat this case. This was done by forcing 
the code not to consider sonic locations upstream of a fixed value 
(x = 0.5). 
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A Fourier analysis of all solutions was performed on the upper surface 
pressure distributions for the last cycle of oscillation and the 
magnitude and phase of the first Fourier component was extracted. A 
comparison of these results is shown in Figure 13. In general the lack 
of agreement with the experiment is considerable. The inviscid solution 
fails to account for the pressure fluctuations ahead of the shock and 
also poor1y predicts the shock location and pressure level in that 
region. The wedge solution has some of the same deficiencies, but 
compares better with the data near the shock and in the aft region. In 
the case of the lag entrainment result, the previously noted 
characteristics which were observed in the steady solution result in 
large fluctuations upstream of and at the shock. It appears that none 

of the computations have been able to closely reproduce the experimenal 
data. Once again this is attributed to the limitations of the theory. 

Corresponding instantaneous distributions of the boundary-layer 
parameters appear in Figure 14. Time histories of the instantaneous 
unsteady lift and moment coefficients and angle of attack are shown in 
Figure 15. The inviscid and wedge solutions are seen to be quite­
similar. The lag entrainment solution differs from these not only in 
magnitude, but also in phase. This is not surprising based on the 
steady-state results of Figure 10. 

A second unsteady oscillating case was calculated for k = 0.4 and an 
amplitude of 10. Pressure distributions are shown in Figure 16. The 
results of a Fourier analysis of the upper surface pressure distribution 
are compared with experiment in Figure 17. It is noted that the 
characteristics of the magnitude and phase are quite similar to the 
previous unsteady calculation. The inviscid and wedge solutions do not 
recover the upstream fluctuations and the inviscid result locates the 
shock downstream of its experimental value. While the lag entrainment 
result predicts upstream fluctuations, they are quantitatively 

inaccurate. In addiition, the phase in aft region does not agree with 
experiment. Corresponding instantaneous values of e and 5* are shown in 
Figure 18 and time histories of the lift and momentum appear in Figure 
19. Phase differences between the respective solutions are apparent. 
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v. CONCLUSIONS AND DISCUSSIONS 

Two methods have been considered for including viscous effects in the 
compuation of unsteady transonic flows. One employs a simple phenomenological 
model as a computational artifice in accounting for the gross dominant effects 
of shock-boundary-layer interaction. The second, used in conjunction with the 
first, utilizes an additional set of integral equations to treat displacement 
effects of aft cambered regions and viscous trailing wakes witin the context 
of boundary-layer theory. Theoretical developments of the methods have been 
presented and modifications for their inclusion in the LTRAN2 code have been 
described. While the methods considered are relatively simple they are_ 

thought to model the significant effects of viscosity and thus be useful for 
aeroelastic applications without degrading numerical efficiency. 

A number of computational results for both steady and unsteady flows have been 
generated. Comparisons with inviscid solutions and experimenal data have been 
made. Results which duplicate previous steady cases compare favorably, thus 
ensuring the integrity of modifications to the code. The unsteady 
calculations for the NLR 7301 airfoil exhibited serious deficiencies compared 
to experimental data. Although this result was not surprising, it is 
attributed to the severity of the case which may have violated some of the 
inherent theoretical assumptions. It is suggested that other unsteady 
computations be perform~d for a more thorough understanding of the limitations 
of the methods. 

All of the calculations presented here were carried out on the NASA AMES 
Research Center CDC 7600 computing system. Solutions for the wedge model were 

generated in virtually the same computational times as those for the inviscid 
LTRAN2 code. Inclusion of the lag entrainment equations required 

approximately 10% additional computing time. Thus, the goal of maintaining 
efficiency appears to have been met. It is hoped that the modified code can 
thus extend the utility of LTRAN2 for the computation of unsteady transonic' 
flows when viscous effects of shock-boundary-layer interaction, aft 
displacement, and trailing wakes are not negligible. 
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APPENDIX A 

At the leading edge of all blunt-nosed airfoils, the surface slope becomes 
infinite. Because this slope provides the flow tangency condition, the basic 
assumptions of small disturbance theory are violated in this region. Thus, 
since the solution in the immediate neighborhood of the leading edge caQnot be 
described correctly by a numerical integration of the governing equation, a 
modification of the surface slope near the nose is often employed in transonic 
calculations. Such modifications are applied locally to enhance stability 
without degrading the results outside of the leading edge region. 

One of the most common of these modifiations is the Riegels' rUle18• If 
~o is the original airfoil surface slope, then the modified slope 
fXm is computed according to the following formula: 

f ± = f ± [1 + (f ±)2] - 1/2 
xm xo xo . 

This expression alters the slope in a smooth continuous manner at all points 
along the airfoil surface. When the slope is very large (i.e., near the 

leading edge) it is reduced to unity in the limit of ~o+~. Elsewhere, 
when the slope is small, little change occurs. In the rimit 

~o + 0, fx~ = ~o· Although the basis for Riegels' 

rule is incompressible theory, it has been widely used for computing steady 
transonic flows. For completeness, the modified and unmodified surface slopes 
for the NLR 7301 airfoil which were used for all the computations presented 
are given below. The unmodified slopes are those generated at computational 
mesh points by the LTRAN2 code which employs a cubic spline fit through 
airfoil coodinates for this purpose. 
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x 

0.00250 
0.00750 
0.01250 
0.01750 
0.02250 
0.02750 
0.03250 
0.03813 

0.04563 
0.05500 

0.06500 
0.07500 
0.08563 
0.09875 

0.11703 
0.14204 

0.17188 
0.20313 

0.23438 
0.26563 

0.29688 
0.32813 

0.35938 
0.39063 

0.42188 
0.45313 

0.48438 
0.51563 

0.54688 
0.57813 

0.60938 
0.64063 

f+ 
xo 

3.11794 

1.78953 
1.33984 
0.96358 
0.75954 
0.67158 
0.52192 
0.38352 

0.34466 

0.27566 

0.23412 
0.20572 
0.18233 
0.15831 
0.13440 
0.11412 
0.09122 
0.07817 

0.07083 
0.05150 

0.03627 
0.02288 
0.00028 

-0.01312 
-0.01191 
-0.01294 
-0.02988 

-0.05300 

-0.07613 

-0.09763 
-0.12661 
-0.14333 

+ 
fxm 

0.95222 

0.87295 
0.80140 
0.69387 
0.60485 
0.55752 
0.46269 
0.35809 
0.32585 

0.26575 
0.22796 

0.20150 
0.17937 
0.15637 
0.13321 
0.11339 
0.09084 

0.07793 
0.07065 

0.05143 
0.03624 

0.02287 
0.00028 

-0.01312 
-0.01191 

-0.01294 
-0.02987 

-0.05293 
-0.07591 

-0.09717 
-0.12561 

-0.14188 
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f;o 

-3.05200 

-1.42208 
-0.90111 

-0.66624 
-0.61575 
-0.51744 
-0.46085 

-0.41565 
-0.35792 

-0.29837 
-0.26036 

-0.23001 
-0.20005 

-0.17457 
-0.15341 
-0.12556 
-0.10286 

-0.08716 
-0.07088 

-0.05092 
-0.02748 

-0.00449 
0.01371 

0.02928 
0.04426 

0.06119 
0.09409 

0.12610 
0.15442 

0.18383 
0.20768 

0.22189 

r xm 

-0.95029 

-0.81800 
-0.66942 

-0.55445 
-0.52432 

-0.45956 
-0.41854 

-0.38381 
-

-0.33699 

-0.28591 
-0.25196 

-0.22416 
-0.19617 

-0.17197 
-0.15164 

-0.12458 
-0.10232 

-0.08683 
-0.07070 

-0.05085 
-0.02747 

-0.00449 
0.01370 

0.02927 
0.04422 

0.06108 
0.09368 

0.12511 
0.15262 

0.18080 
0.20334 

0.21662 

-j 

.. 

" 

--, 
) 

" 
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x l xo 

0.67188 -0.15362 
0.70313 -0.16744 
0.73438 -0.19029 
0.76563 -0.20953 
0.79688 -0.21820 

.. 0.82813 -0.23116 r.. 

0.85797 -0.23315 
0.88235 -0.23304 
0.90000 -0.23274 
0.91500 -0.23253 
0.93000 -0.23214 
0.94500 -0.22968 
0.96000 -0.22468 
0.97500 -0.22097 
0.98875 -0.22569 

1.00000 -0.22791 

'" 

f+ 
xm 

·-0.15184 
-0.16514 

-0.18694 
-0.20508 

-0.21319 
-0.22522 

-0.22706 
-0.22696 
-0.22668 
-0.22649 
-0.22613 
-0.22385 
-0.21921 
-0.21576 

-0.22015 
-0.22221 
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f~o 

0.21845 
0.21495 

0.21649 
0.20620 

0.18921 
0.15643 

0.12979 
0.09068 

0.06194 
0.04077 
0.01876 

-0.00639 

-0.03459 
-0.05940 

-0.07582 
-0.08597 

f~m 

0.21342 
0.21015 

0.21159 
0.20195 

0.18591 
0.15455 

0.12871 
0.09031 

0.06182 
0.04074 

0.01876 
-0.00639 

-0.03457 
-0.05930 

-0.07560 
-0.08566 



APPENDIX B 

A brief description for use of the modified code is presented here. It is 
assumed that the user is familiar with the LTRAN2 program so that only the 
alterations governing its use will be considered. All user defined input 
parameters have assigned default values. The code will operate with any 
number of these redefined by the user as input. In many cases, if default 
values of some of the parameters are used, the resulting solutions may not 
have any practical significance. The following list itemizes the user defined 
parameters: 

Variable Name Variable Type Default Value Description 

VISC Logical 

XOFFST Real 

XPREC Real 

XRAMP Real 

IBLCAL Integer 

GREEN Logical 

REYINF Real 

FALSE 

0.02 

0.02 

0.10 

1 

FALSE 

1.0E7 

70 

Defines boundary-layer option 
FALSE--no viscous calculation 
TRUE--perform viscous calculation 

Offset of wedge from sonic point, 

xo' 

Length of wedge precursor, xp' 

Length of ramp, xR 

Iteration increment for 
performing viscous calcu1ation 

Defines lag entrainment option 
FALSE--use viscous wedge only 
TRUE--integrate lag entrainment 
equations 

Chord Reynolds number based on 
freestrem conditions, Re 

~ 

" 
" 

.. .. 
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.. 

f;. 
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TINF Real 

PRT Real 

so Real 

IBlPRT Integer 

300.0 

0.9 

110.0 

50 

Freestream temperature in degrees 
Kelvin, T 

co 

Turbulent Prandtl number, Prt 
(default value is for air) 

Sutherland law viscosity constant 
in degrees Kelvin, So (default 
value is for air) 

Iteration increment for printing 
viscous parameters 

The logical variable VISC has been added to the namelist INPUT. If no viscous 
calculations are desired, VISC may be input as FALSE or the default value 
taken. This will permit the code to operate in the inviscid mode. If VISC is 
input as TRUE, it indicates that a viscous computation is to be performed. In 
addition the program expects to find another namelist of input variables 
immediately following INPUT. The new namelist name is VeAlC. Note that even 
if no parameters are defined in VCAlC, a card of the form $VCAlC $ must-appear' 

in the input data. Conversely, if VISC is FALSE, the namelist VCAlC must not 
appear. 

The remaining parameters are defined in the VCAlC namelist. The variables 
XOFFST, XPREC, and XRAMP are the parameters defining the ramp geometry. In 
general the optimal choice for these is case dependen,t, but the d.efault value.s 
have proven adequate for a large number, of both steady and unsteady 
computations. IBlCAl is an integer variable available to control how often 
the viscous displacement is updated. It is suggested that this be done 
every time step, but for certain applications an alternate procedure may be 
desirable. GREEN is a logical variable controlling selection of the lag 

entrainment calculation. If GREEN is FALSE only the viscous wedge is used. 
With GREEN set to TRUE the lag entrainment equations will be integrated. 
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When the lag e~~trainment option is selected, the variables REYINF, TINF, PRT, 
and SO must be specified. These are the parameters \'1hich define the physical 
flow under consideration. The default values will have no significance in 
this case. Finally, IBlPRT is an integer variable which determines the 
number of time steps bet\'Jeen pri nti ng val ues of the vi scous parameters. Thi s 
printing gives distributions of 

15* 
1 dCc) e TI 5 * 
6" --cr:-''(;-, n, CE, a nd e-

x 

• 
along the airfoil and trailing wake for the upper and lower surfaces •. Note 
that no printout occurs for the wedge solutions unless the lag entrainment 
equations are integrated. 

The input for running the 'code in its various modes is as follows. 

1. Inviscid 

2. Wedge Only 

3. lag Entrainment 

The code will run inviscidly by setting 
VISC = .FAlSE., or by using its default value. 

In namelist INPUT set VISC = .TRUE. Namelist 
VCAlC must now appear even if default values are 
taken. XOFFST, XPREC, XRAMP, AND IBlCAl may be 
defined or default values taken. All other 
variables are not needed, but GREEN = .FAlSE. if 
defined. This is also its default value. 

Set VISC = .TRUE. in namelist INPUT. In namelist 
VCAlC, set GREEN=.TRUE. Ramp parmeters may be 
defined or default values taken but REYINF, TINF, 
PRT, and SO must be defined for the specific flow 
conditions. Other parameters are user optional. 
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In order to generate a steady viscous solution, the airfoil surface boundary 
condition must be augmented by the viscous displacement through an unsteady 

time integration. This is done by setting the amplitude of the unsteady 
moti on (ALFONE) to zero'. Choi ce of the time step is controll ed by input 

variables XK and NSPC, which will be case dependent. Implementation of the 
\,,'edge requi es that the 'minimum pressure on the ai rfoi 1 occur somewhere between 
the leading and trailing edge. If this situation is characterized by a shqck, 
the wedge will be located within the shock profile. In addition, if the lag 
entrainment equations are to be solved, they will apply aft of the shock up to 
the downstream boundary. When no shock occurs, the wedge is not applied, but 

the lag entrainment solution (if this option is selected) will commence at the 
point of minimum pressure. 

Thus, to obtain the viscous solution the calculation should begin with a well 
behaved inviscid result as the initial condition. This result need not be 
converged, but should have the essential features of a converged solution. If 
it is not possible to obtain a reasonable inviscid result for the given flow 
conditions, these may be altered until the viscous modifications are 
implemented. For example, if in the inviscid solution the shock lies at the 
trailing edge, the Mach number and/or angle of attack may be reduced. This 
allows the shock to move upstream. Once the inviscid starting solution is 

obtained, viscous input parameters may be set to their desired values for the 
computation of the viscous solution. After the steady viscous solution-has 

been generated, it will serve as the in1t1al condition for any unsteady 
~iscous calculation. 
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