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RELATIVISTIC KINEMATICS FOR MOTIONS FASTER THAN LIGHT

R. T. Jones

Ames Research Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

The kinematic relations of special relativity can be extended in a

simple way to motions faster than light. Being thus restricted, however,

the theory does not address the question of how, or whether, such velocities

might be achieved. The theory is based on the use of conformal, or "radar"

coordinates in two dimensions and differs from the theory of "tachyons"

in that transition to imaginary values does not occur. However, the

correspondence between coordinate systems in relative motion at V > c is

no longer slngle-valued but requires a folded surface analogous to the

well-known Riemann surface in the theory of conformal transformations in

elliptic space. Moreover, visual observation of an object traveling at

superllght speed shows not one, but two objects which appear suddenly at

a point, then separate and move in opposite directions. Measurement of

the velocities of these apparent objects by the Doppler method would reveal

only subllght velocities. The theory shows further that velocities greater

than that of light would not benefit an interstellar traveler since the twin

paradox becomes inverted at such speeds.



i. INTRODUCTION

q

CONSIDERING THE BARRIER AT THE VELOCITY OF LIGHT in a broader context,

we see not one but three such barriers, each associated with the

singular behavior of the wave equation when transformed to moving coordinates.

Thus the so-called "sonic barrier' appears when the factor i/(i - V2/c2) I/2

of the Lorentz transformation approaches infinity at the velocity of sound

c in air. A second barrier appears when a particle approaches the (reduced)

velocity of light in a transparent medium. The third and supposedly final

barrier appears at the velocity of light in free space. As far as is known,

no particle or object has ever exceeded this final limiting speed, although

objects can and do exceed the velocity of sound in air and also the reduced

velocity of light, as in the phenomenon of Cerenkov radiation.

In the aerodynamic case the approximate nature of the theory is easily

recognized and the sonic barrier takes on a finite height when a more exact,

nonlinear theory is employed. In Cerenkov radiation, a particle moving at

less than C in one medium suddenly enters a medium in which the velocity

of light is reduced, thus violating the assumption of constant V/c. The

error involved in the assumption of unchanging velocity is discussed at

length by Heavlslde [i] in his theory of electrons moving at superllght

velocities. Nevertheless, in experiments in which particles are accelerated

by electromagnetic means, the particles have never reached the velocity c.

Indeed Rosen [2] has shown that such processes could not achieve even the

reduced velocity of light in a transparent medium. In spite of this a

study of the kinematics of motions faster than light may not be without

interest, since it brings out the sometimes arbitrary nature of the discussions

often used in conventional theory. Moreover, our analysis shows that such



, velcclties, even if they could be achieved, would not benefit an interstellar

traveler.

2. THE USE OF CONFORMAL COORDINATES IN RELATIVISTIC KINEMATICS

Special relativity acquires its simplest form when expressed in terms of

conformal coordinates in two dimensions. Such coordinates are in reality

nothing more than measurements made by the conventional radar technique.

Thus a spacecraft A at rest at the origin of the x, t, system determines

the distance to a point xI by transmitting a pulse at a time to and

noting the time t2 of the return. The distance xl is simply;

xI = i/2(t 2 - tO) (i)

Likewise the time tI assigned to the point xl is

tI = I/2(t 2 + to) (2)

Here we have chosen units in which the velocity of light is one. A second

spacecraft B considered at rest in the system x', t' makes measurements

in exactly the same way. To establish a regular system of coordinates,

A and B are supposed to emit radar signals at a constant frequency with

the aid of accurate oscillators or clocks.

The equations describing the course of such radar signals in either

the A or the B systems are of the form

x ± t = constant

and are represented by lines at 45 @ to the axes. Thus, we assume that the

velocity of light is constant, unaffected by the motion in either system.

As emitted by oscillators at a constant, unit frequency such lines will

appear with equal spacing in each system. However, if B is in motion
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relative to A the B signals will appear at a Doppler-shlfted frequency

in the A system. Figure I shows radar signals emitted by B and the

associated coordinates x', t' as they appear when mapped on the A system.

Here we have assumed that B moves away from A, then reverses its motion

and returns. Inspire of the motion, B remains at the center of the expand-

ing radar pulses, as may be seen by counting the lines x' = const, on

either side. As thus represented in the A system, such coordinates show

considerable distortion. In the B system itself they are, of course, a

perfectly rectangular system. Such diagrams are helpful in understanding

the analytical relations involved in the theory.

We may represent the correspondence between the x', t' and the x, t

systems very simply by the equations

x' + t' = F(x + t) l (3)
x' - t' G(x - t)J

If wewrlte

dF dG

f = d(x + t) ; g = d(x - t) (4)

we find that the functions f and g are simply the Doppler-shifted

frequencies observed in the A system corresponding to the unit frequency

emitted by B. Such Doppler shifts are commonly used to measure velocities,

and after a little algebra we find, for the velocity of B in the A

system,

V = _ - f (5)
g + f

If we now introduce a third system C, designate the velocity of B rela-

tive to A as VI, and the velocity of C relative to B as V2, we find

after two successive transformations (3) the following formula for the
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velocity V S of C relative to A:

glg2 - flf2 VI + V2
• v3 = = (6)

glg2 + flf2 I + VIV 2

This relation is often called "the relativistic law for the addition of

velocities.' However, we have made no use of the principle of relativity,

but have used merely the constancy of the velocity of light. A better

designation would be "the law of composition of velocities in conformal

coordinates."

As Eq. (6) shows, the velocity of light plays the role of a singular,

invarlant velocity to which no other velocity, either greater or smaller,

can be added. * Figure 2 is a diagram plotted from Eq. (6); it shows

graphically the singular nature of the velocity c = I. I have extended

this diagram beyond its usual range to illustrate the relation for super-

light velocities (see [3]).

If we differentiate Eqs. (3) and then multiply we find that

dx '2 - dt '2 = fg(dx 2 - dt 2) (7)

If the coordinate systems A and B are to be completely equivalent, the

transformation and its inverse must have the same scale. We then have

fg = I and Eqs. (3) reduce to the Lorentz transformation. However,

complete equivalence cannot be maintained between systems in which one or

the other undergoes acceleration. If we identify B as the accelerated

system and A as an inertial system, then we may establish a local

*It may be observed that if a measurement in space could be made by

sending signals at some other velocity, say c', then the new signal

velocity would become the invariant. However, experiments made by

independent methods show that c, not c', is the invariant velocity.
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equivalence by making fg equal to 1 in the vicinity of the "world line,"

x' = 0 of B. The following examples will clarify this relation.

To show the simplicity of our method we consider next the well-known

problem of motion with constant acceleration (see [4]). Since i g is very

nearly 1 llght-year per year per year, we suppose that B undertakes a trip

to a distant star at the convenient acceleration of i g. The equations

connecting the x', t' and the x, t coordinates in this case are;

x'+t'

e =x+t}
x'-t' (8)

e =x-t

Multiplying the two equations, we obtain

2x' x2 t2e = - (9)

The path of B is given by the equation of the llne x' = 0 and is

clearly

X2 - t2 = I (I0)

that is, a rectangular hyperbola with the velocity V asymptotically

approachingthe speed of light (seeFig. 3). In order to determinethe

elapsedtime during the trip we divide the first equationby the second and

obtain

2t' x + te = -- (li)
X - t

Along the "world line" x' = 0 we have (x + t)(x - t) = I, hence

i/(x - t) is equal to (x + t) along this line. Then

t'
e = x + t (12)

If the star is very distant, the path of B will be near its asymptote

so that (x + t) _ 2x; therefore,
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t' = in 2x (13)

• For 50 light-years the time required is approximately 4.6 years, in agree-

ment with the usual result.

If we differentiate Eqs. (8) and then multiply we find

2X I 2
e (dx'2 - dt' ) = dx 2 - dt 2 (14)

Adopting a conventional description, we see that the B coordinate system

is characterized by a gravitational field corresponding to the (unit)

acceleration. Thus B, considering himself at rest in the x', t' system,

observes the remainder of the universe falling away in the negative x'

direction under the apparent influence of a gravitational potential,

ffi-x' (15)

We are thus led to the well-known scalar or conformal gravitational metric

(see [5])

e-2_(dx 2 + dy 2 + dz 2 - dt 2) (16)

where _ is the analogous Newtonian potential. Such a scalar field can

be thought of as an approximation to the more general gravitational metric

which may contain as many as i0 components.

Returning to our hyperbolic motion we observe that the potential

vanishes in the vicinity of the world llne x' = 0, hence the transformation

reduces to locally tangent Lorentz transformations along this llne,

consistent with the assumption that A is an inertial system.

Figure 4 shows an example in which B moves away from A, then

reverses his velocity and returns. Such examples are easily constructed

by taking suitable values for the Doppler functions f and g. Here we

take g = 2 and f ffi1/2 for the outgoing portion, with these values
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interchanged on the return. According to Eq. (5) the velocities are ±3/5.

The condition fg = 1 results in an elapsed time for the B system of

8 years, while the time in the A system is i0 years. As the figure shows,

inverting the transformation discloses a "distance paradox" in addition to

the well-known time paradox. A does not move as far to the left of B as

B moves to the right of A. Such differences are easily explained by

noting that the radar signals emitted by B during a portion of his outward

journey are not returned until he is well on his way back. The lack of

equivalence between the direct and the inverse transformations is a

characteristic feature of radar measurements made from systems in accelerated

motion.*

3. CON-FORMAL COORDINATES AT SUPERLIGHT VELOCITIES

In the theory of tachyons it is supposed that the factor (i - V2) I/2

of the Lorentz transformation becomes imaginary at superlight velocities.

It is not difficult to show, however, that this factor changes discon-

tinuously to the real value (V_ - I)I/2 on transition through the speed of

light (see [3]).

Set dx' = 0 in Eq. (7) and let dx = V dt; then

dt' = [fg(l - V2)] I/2 dt (17)

*It will also be noted that the conformal coordinates determined by B

show displacements at negative times, long before the acceleration begins.

Again the explanation is a simple one. Signals emitted by B when he is

at rest are not received back until his motion has begun. It is interest-

ing that such "incoming gravitational waves" appear, even in exact solutions

of the equations of general relativity (see [6]).
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' Now consider a series of motions of B at progressively increasing

velocities, as shown in Fig. 5. The Doppler-shifted frequency g on the

advancing side will increase without limit as B approaches the speed of

light. The frequency [ on the receding side, satisfying the condition

f = I/g,_will approach zero in a regular fashion. However, as soon as B

exceeds the velocity of light the signals g reverse their order, the last

signal arriving first. The function g thus switches from positive

infinity to negative infinity on passing through the singular velocity.

It is during this transition that the scale factor fg changes discon-

tinuously from +i to -I. Setting fg = -I in Eq. (17) we obtain;

dt' = (V2 - 1)I/2 (18)

for velocities greater than i. Figure 6 shows the easily traced course of

the functions f and g.

It is interesting that the conventional measurement of velocity, relying

on the absolute magnitude of the Doppler shift, would not disclose the

superllght motion of B but would assign the sublight velocity I/V. If

B moves at superlight velocity his radar pulses will trail behind and

fill an expanding cone, a phenomenon well known in the case of supersonic

flight and also in the case of Cerenkov radiation. In the B system,

however, we must assume that such pulses remain centered on the position

of B, in accordance with the invariance of the velocity of light (see

Fig. 7). That such pulses could be used to measure distances in the region

ahead of B is of course not an intuitive concept. However, in conven-

tional theory we are required (by the evidence) to believe that waves travel

at full speed ahead of B, even though he may be going at 90% of the speed

of light. The present concept is not essentially different. Clearly,
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however, the trailing light cone will complicate the relation between the

x', t' and the x, t systems. The coordinate for B must preserve his

position at the center of his radar pulses, while in A coordinates he

moves ahead of them. The correspondence between the two systems is thus

not a simple variant of the Lorentz transformation, but is multivalued.

The map of B coordinates must be folded to fit on the A system. Such

a folded sheet may be thought of as the analogue, in hyperbolic space, of

the well-known Riemann surfaces, which are much used in the theory of

complex variables, that is, conformal transformations in elliptic space.

Figure 8 shows an example in which B moves away from A at a

velocity of 5/3 the velocity of light and then stops. The folds along the

lines x - t = const, keep the traveler at the center of his radar pulse

emitted at the time t = O. This may be verified by counting the number

of lines ×' to the right and to the left of B as they are identified

by the dots on the figure. Figure 9 shows another example in which B

moves to the right of A at V = 5/3, reverses his velocity, and returns.

Comparing this figure with Fig. 4 we find that the elapsed time in the

A system is much reduced by the higher velocity, as expected. However, the

elapsed time for the traveler B is not reduced but remains the same as

before, 8 years. If B had acquired a still greater velocity, his time

for the journey would have been even greater. The path of A in the

non-inertial B system shows again the lack of uniformity in the super-

light transformation. Two points in the B system correspond to a single

point in the A system.

Interestingly, a body moving at superlight speeds actually appears

visually as two bodies. Moving at speeds less than c, the waves emitted

by B will form eccentric circles with their centers trailing behind.
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, Hence, when viewed from A the position of B wlll appear behind his true

position, that is, at the center of a displaced circle. This is the well-

known phenomenon of aberration. Aberration takes an extreme form when B

moves faster than light, as shown by Flg. I0. Here we observe that every

point in the light cone trailing B is marked by the intersection of two

spherical waves. An observer in A, momentarily at such an intersection,

sees two objects BI and B2 at the centers of the waves. At the first

encounter, B appears single, then splits into two bodies which then

separate moving in opposite directions.

As noted earlier, moving faster than light does not benefit a space

traveler. To obtain the elapsed tlme for a trip at constant velocity to

a point x, set t = x/V. Then

t' (V2 - 1)i/2
= V x (19)

At infinite velocity, the factor (V2 - I)I/2/V reduces to i. Hence a trip

at infinite velocity requires the light tlme for the traveler. Although

it is made instantly in the inertial system. Einstein has remarked that

motion at the velocity of light is equivalent to infinite velocity for the

traveler. We now see that the converse Is also true: motion at infinite

velocity is equivalent to the velocity of light for the traveler.
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RADAR PULSE t' = CONST

X #

Fig. i. Space-time coordinates determined by radar measurements from

spacecraft B. Note that B remains at the center of the expanding

radar pulse in spite of his motion.
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Fig. 2. Composition of velocities in conformal coordinates. No velocity,

larger or smaller, can be added to the velocity of light.
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Fig. 3. Hyperbolic motion. Moving with an acceleration of 1 g, B approaches

the velocity of light asymptotically.
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Fig. 4. Direct and inverse transformations at V = ±3/5. Because of the gravitational

field in the B system the direct and inverse transformations are not similar. When

B returns to A the elapsed time in his system is 8 years, while the elapsed time in

the inertial A system is i0 years. Moreover, the distance from A to B is not the
same as the distance from B to A.
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g=2 _ _//g=-2" f=_/ Y

V = 3/5 V = 5/3

Fig. 5. Doppler shift of time signals below and above the speed of light.

Note that a measurement of velocity by the Doppler method would not reveal
the superlight velocity, but would show V = 3/5 in each case.
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Fig. 6. Behavior of the Doppler frequencies f and g on transition through
the speed of light. When the conformal scale factor fg changes to

negative values the quantity (i - V2) I/2 changes to (V2 - i)1/2 and
remains real.
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B SIGNALS IN A SYSTEM B SIGNALS IN B SYSTEM

Fig. 7. Radar signals at superlight velocities.
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Fig. 8. Conformal transformation, V = 5/3. At superlight speeds the x',

t' map must be folded to fit on the x, t system.
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Fig. 9. Direct and inverse transformations for V = ±5/3.
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Fig. i0. Double appearance of body traveling at superlight speed. Traveler A

detects two objects, B1 and B2, each traveling at less than the speed of
light.
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