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Abstract. The multivariable Instrumental Variable/Approximate Maximum
L^keTihood (IV/AML) method of -ecursive time-series analysis is used to
identify the multivariahle (four inputs-three outputs) dynamics of the
Pratt and Whitney F100 en g ine. A detailed non-linear en g ine simulation is
used to determine linear enoine model structures and parameters at an
operatina point usin q open loop data. Also, the IV/AML method is used in

a direct identification mode to identif y models from actual closed loop

en g ine test data. Models identified from simulated and test data are

compared to determine a final model structure and parameterization that
can predict engine response for a wide class of inputs. The ability of

the IV/AML al gorithm to identify useful dynamic models from engine test
data is assessed.

K pyw,)rds.	 Multivariahle identification. Jet engine; Closed loop data:

nst r ump ntal variahle/ap p roximate maximum likelihood
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INTRODUCTION

A t yp ical engin p contral design cycle

consists of developin q a d y namic engine
simulation from stead y-state component per-
formance data, designinq a control based
upon this simulation, and then testina and
mndifyinq the control in an enaine test

cell to meet performance requirements.
This design cycle has been succ p ssful for
state-of-the-art en g ines. However, for
more advarc po multivariabl p p ngine5 that
exhibit stron g variahle interactions, this

procedur p will result in substantial trial
and error modification of the control
durinq the testin g p hase. One method to
automate the d p sion process and reduce con-
trol modification t p stinq and development
cost would he to identify accurate dynamic
models directly from the closed loop test
data. TheSe identified models would then
h p used in con i nnction with a synthesis
procedure to s y st pmaticall y refine the con-
trnl.	 Recent advanc p s in closed loop
id p rtifiahilit y (Ref, 1) p resent a mp tht-l-
oloay for this lirect identification of
enoin p model d ynamics from closed loop test
data.	 This p aper describes the application
of the IV/AML identification method
(R pf. 2) to simulated and actual closed
loop F100 en g ine data (Ref. 3). 	 This study
was undertaken to determine if useful
dynamic p n4ine models could be identified
directly °rom closed loop en g ine test data.

R p r p ntl y . comp oas turhin p models have been
identified.	 In Refs. 4 and 5 a single
input state-space model was obtained b y a

time series method from simulated input-
output data.	 In Ref. 6 a nonlinear filter-
in g techni q ue was used to estimate system
p arameters from multiple input simulated
en g ine data.	 In R p f. 8 a two input engine
model was determined from open loo p data
anal y sis usino the "Method of Models."
Later the model form of R pf. 8 was applied
to condition monitorinq for a Sinqle input
en g ine (Ref. a).	 in Ref. 10 a singl p input

engine model was determined from closed
loo p fli g ht data usino a maximum likelihood
p arameter search of d ynamic engine simula-
tion p arameters.	 It was assumed that there
WAS no process noise.	 in Ref. 11 a two

input automotive g as turbine model was
identified from open loop en g ine frequencv
and step response data. The two data types
were used in concert to fix the model

structure a , 1 to fit the model parameters.

in this report the IVIAML method is applied
to both simulated and actual closed loop
test multiple input data.	 The IV/AML
method is an output error identification
method and WAS implemented in a combined
it p rativ p lrpcursiv p form. As yet, the
IV/AML method has not seen wide application
to man y physical processes, and, until now,
the method has not been applied either to
aas turhinp engine data or to closed loop
data. The test data studied in this report
contains both measurement and process
nriSP. The available closed loop engine
test oats records are each comprised of

onl y 200 sample pnints.	 Since this is a
relatively low number of sample p oints per
operatine record, the IVIAML method was
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celerted for use because Monte Carlo tests
have Chown the method to exhibit reasonable

conver g ence for a small number of samples

(Ref. 7).

This report beg ins with a brief description
of the IVIAML. method and its ap p lication to

engine model identification. 	 Next, an

en g ine model st r urtti rp is developed and
Applied to simulation and test data.

THE IVIAML_ IDENTIFICATION

METHOD

The multivariahle iV/AML method is the time
ceriec an,flvcic tool used in this study.
Monte Carlo simulation has shown the method
to he an acymptotirAlly efficient identifi-

r,ition tool. A complete descripton of the

Refined iV/AML. method i. g iven in Ref. 2.

Briefl y , the model is written as:

A(z - i )x k . 8(7 -1 )u k 	(la)

C(z 'i )E k r n(z - I le k 	(lh)

v k - x ', + E k
	 ( I c )

%here z I	 is the backward shift operator.

n	 nThe vector	 v k rR	 tsy an	 u k rRs	 W are known

and reprrser•t the noisy output and deter-

ministic input, respectivel y . The vector xk

is the oeterminictic part of	 yk and Ek
models the effects of unmeasurrable disturb-

arres ant' measurement noise. The vector
n

ekrR v satisfies:

0- F {e i r k} - Qaik: E^e t U T 	0	 (2)

the polynomial matr ices A. B. C and D

are defined as:

n

n - i	 Aiz-t

i.l

n

B * Bo	
Riz-i

i-]

(3)

n

C - I	 ^ f i z r

i.l

n

D	 I	 ^ Diz-i

i-]

where Ai. B i , C i and Oi are real
matrices. The al gorithmic structure of the

iterative/recursive version of the IVIAML
method is given in Fig. 1. Here the auxil-
iary system model is updated iteratively
after a complete passage throu g h the data
durinq which the model is maintained at the

previous iteration value, ae a 	The noise

model, however, is updated recursively.
Model updates are determined by the iV
aloorithm and the AML algorithm blocks of

Fig. 1. These two algorithms have the same
basic structure and represent iterative
solutions to the necessary conditions for

maximiztnq a log likelihood function of the
observations.	 The algorithms basically

update the model parameters as a function
of output error and estimated parameter
uncertainty. Prefilterinq, which is used
in a "refined" IV/AML procedure, can yield
estimates with improved statistical effi-
ciency. Prefilterinq was not used in this

study, however, due to the additional com-
putational complexity and the satisfactory
operation of the "standard" IV/AML approach.
The noise covariance was estimated by:

Q k - V, + k [ekek - Qk-1]	
(4)

When applying the IV/AML method of Fig. 1

to the engine data, usually six iterative
passes through the data were taken.
initial parameter values for the system and

for the noise covariance were determined
from open loop simulation data. Values for

the initia asymptotic parameter covariance

matri es, i for the parameters of ea
and # for the ec, were selected as:

p	 ul0

(5)

k o = uRl

where u - PR in general and u 	 is
selected as approximately 100 to :000 times
larger than the diagonal elements of Q.

Once estimates of ea, ec, and Q were
obtained in one test, they were often used

as initial values in subseq ent tests.
However, during each test, 6 was normally
held constant during the iterations 1-4 and
6, and updaed during iteration 5. Eiger-

values of	 , t, and 6 were calculated at
the start of each iteration to nsure
stable algorithm operation. Alsc, compari-
son of eigenvalues from one iteration to
the next is a good indicator o f algorithm

performance. For example, the ,:ovement of
one eigenvalue of A toward the stability
bound indicates that the algorithm is

"gettinq lost" or that an incorrect model

^
tructure has been chosen. Also, norms
k and % were calculated at each
iteration as a measure of convergence.
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ENGINE MODEL

The Pr a tt and Whitney F100 engine (Ref. 3)

is a twin-spool low-bypass ratio after-
burning turbofan. four controlled vari-
ables are considered: main fuel flow (WF),

exhaust nozzle area (AJ), compressor (fan)
inlet variable ouide vanes (CIVV), and the
rear compressor variable guide vanes

(RCVV). Three output variables are con-

sidered:	 engine fan speed (N1), engine

compressor speed (N2), and augmentor
entrance pressure (PT6). The engine speeds
are indicative of the dynamic response of
the engine while PT6 is closely related to
engine thrust. Globally the engine is
modeled as

x = f(x,u,ALT,MN)

(6)

y = g(x.u,ALT,MN)

where x is the state vector, u is the
control vector and y is the output vec-
tor. Engine operation is also dependent
upon environmental variables altitude (ALT)
and Mach number (MN). An enqine operating
point is defined as

f(xss,uss,ALT,MN) . 0

(7)

a(x 
SS' uss,ALT.MN) - yss

A third order behavioral model relatina the
engine outputs to the primary control vari-
ables WF ano AJ was developed in Ref. 12
and is given as

-1/TI	
C
HL	 CPL	 bFL	 0

r- 0	 -1/T2	 0	 x+ b FH	 0	 u

0	 CLP	 - 1
/TP	 0	 bAP.

(8)

This model represents linearized behavior
in a small rqion about an operatin g point.

Includinu r ► VV and RCVV and writing in the
term of (1), the behavioral model becomes

( + A l z -1)x, . 
61z-Iuk	

(9)

where x = ( NI. N2, PT6) and u . ( WF, AJ,
C1VV. RrVV).

Simulaticn Application

The 1V/AML method usin g the model of (9)

was iritially applied to open loop SISC
Cigitally simulated enqine Bata. These

deta % pre obtained for an ALT . 10 000 ft,
MN = 0. g intermediate power operating
point. Two data Sets were generated in the
followin g manner. All controls were held

constant at their steady-state operating

point values except for WF in the first
case:

WF . WF ss (1 + 0.03 Yk )	 (10)

and AJ in the second case

AJ . AJ ss (1 + 9.03 y k )	 (11)

where Y k is Gaussian noise with

EJYkJ . 0

(12)

E(Yk } • 1

Equations (10) and (11) represent *3 per-

cent variations about the nomiral operating
point to insure linear operation. In both
cases the sampling rate was T . 0.01 sec.
From these two data sets an initial esti-
mate of Al was obtained as

	

(0.85	 0	 0

A I 	 -0.96	 0	 (13)

	

.615	 0	 -0.4

This corresponds to continuous eigenvalues

of -16, -4, and -90. This information was
used as a starting point in MIMO identifi-
cation test.

A random input emphasizes identification at

all frequencies. However, the frequency
range of engine operation is practically
limited by actuator and engine hardware to

about 20 radians/sec. Thus a set of irputs
was chosen, somewhat arbitrarily, for a

M,MO test that empahsized this more realis-
tic frequency ran ge. Here

u  • u ss (1 + 0.03eu k )	 (14)

and

(sin(O.lkT) + cos(5kT + 2)

(sin(0.2kT) + cos(7kT + 4)
euk	(15)

(sin(0.0 T) + cos(5kT)

(cos(0.4kT - 4) - cos(lOkT)

Also the sampling interval was selected to

be T . 0.05 sec to corresponc to sub-
sequent tests which used actual test data
recorded at T . 0.05 sec. Four hundred
data points (K . 400) for each test were
recorded. The IV/AML method was applied
and the results are given as model I in

Table 1. The average percent error per
point was calculated from the outputs as
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^li__d 2 Eki

Error.	
k=1	

(16)
K Max IYki

and is aiven in Table I also.	 For model 1

each output has less than 0.6 percent error
per point on the avera g e which is a good
fit of the data. An additional element in
Al was found to be r oquired to satis-
factorily model PT6.

The noise model (see Fiq. 1) was found to

be close to the auxiliary model. Thus, the
number of parameters could be reduced by
constrainin g Cl = A l . However, this
was not pursuea as lar ge improvements in

model accuracy were not anticipated by
enforcina this constra;rt.	 Ar	 :	 sally.
initial identification tests	 ed the
eigenvalues of the L` mat-ix 	 be neyond
the frequency range of interest. There-
fore. the D matrix was cor < Lraineu tc. be
D = I.

The noise covariance, Q, is also g iven in

Fiq. 1.	 Since Q did not chance sub-
stantially from model 1 to model ?, sub-
sequert models were identified csinq the

Q of model 2. Periodic updates of the
value of Q in subsequent models showeo no
laroe variation in Q.

Model 1 of Table 1 was used to predict

enaine behavior based upon actual closed
loop enaine test data. This is described
in the nexr. section.

'.st Cata Application

The F100 enaine was tested in the Lewis

Research Center altitude test facilty to
evaluate the F10O Multivariable Control
(MVC) law (Refs. ? and 3). Durinq the same
test period the "Bill of Material" (BOM)
control was also evaluated as a baseline/
backup control model. Thus, there are a
variety of closed loop operating records
obtained throu g hout the fliaht envelope
with a number of different power input
req uests. The two multiva-iable data sets
used in this report were recorded at an
ALT . 10 000 ft, MN = 0.9 condition as the
power request was varied 'step chrnge) in a
small (hopefully linear) ranae aLout inter-
mediate enoine power. One set corresponds
to an MVC control test, the other to a BOM
test. Data were sampled at T . 0.05 sec
for a 10-second transient, which yields

K . 200 points for each record in the data
sets.

The BOM and MVC control structures, line-

^rized at an operating point, correspond to
the structure of Fiq. 2. The reference
point and control blocks are different how-
ever for the two controls. The structure
of Fiq. 2 is exactly the structure given in
Ref. I.	 Since each control structure is

fixed at a g iven operatin g point, stronq
system identifiabilty can be guaranteed if

I	 0

Rank	 = n o
	 y

+ n	 (17)

F	 L

Or in other words• if

Vet[L] # 0
	

(18)

The BOM and MVC reference point schedules

do exhibit the characteristic of (18),
therefore a direct identification approach,

such as IV/AML, can be successfully applied
to the closed loop input/output data sets
recorded in the Lewis test facility.

Sensor -nstrumentation for the input and

output variables of interest is summarized
in Table 2.	 i n each case sensor dynamics

are beyond the ?0 radians/sec frequency
ranae. Thus. sensor dynamics were ini-
tially ioncred in the identification

tests. Ambient rnise statistics were ob-
tained durin g •ready-state engine opera-
tion. Standard deviatin— were calculated
at the operating point for the sensei
values.	 Si g nal tc noise ratios (SNP-)
vrere estimateo based upon these ambient
noise levels ?nd the deviations of the
various siqnals from their operating point
values. These SNP's are included in Table
2.	 In each case the SNR's show the level
of noise to be small relative to the
signal. Therefore, the identification
results shoulr be quite consistent and
accurate.

Normalized WF from the BOM and MVC control

tests is shown in Fia. 3.	 This is typical
of the enaine inputs in these tests. Power
spectrum analysis of these inputs shows a
slightly hiqher frequency component in the
MVC inputs, although more total power is
contained in the BOM inputs. However, for
bot h the BOM and MVC inputs most of the

power is concentrates below 6 raaie- s/sec.

The control inputs of Fiq. 3 wrre used in

conjunction with the identified morel 1 to
predict engine output. Comparing the pre-
dicted outputs of model 1 with the actual

outputs, it was apparent that mooel 1 was
unacceptable. No output was predicted well
for either BOM or MVC data. Figure 4 is
t ypical of the comparison.	 Sliaht dis-
crepancies between simulation and test data
cannot account for large discrepancies
between predicted and actual outputs.

To investiqate this further the IV/AML

method was applied directly to the closed
loop test data producing models 2 and 3.
Model 1 was used as a startin g point. As
illustrated in Fiq. 5, model 3 accurately

reproduces the data, from which it was
generated (BOM). Model 2 results are simi-
lar.	 In fact, Fiq. 1 shows the error of

• 4•
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all the outputs for models 1, 2 and 3 to
less than 1 percent. However, comparing
parameters for models 1, 2 and 3 (see
Table 1) it can be seen that while Al
remains essentially unchanged elements of

;1 do change substantially. This im-

plies a slightly overparameterized model
structure which does account for the in-
ability of model 1 to predict BOM and MVC

eng ine data. To determine which elements
should b^ -lminated to remove the over-
parameterizat ^e, the following procedure
was adopted.

First, a reasonably accurate initial model

is assumed. In this case, models 2 and 3
were used. An initial covariance matrix

P o = dia g ( p oi )	 (19)

is chosen where the poi are small to
indicate small uncertainty in the model

parameters. In the engine example

P o = IT 1	 ;20)

was used. Next, the IV/AML method is ap-

plied for only a single iteration to data

for which the model is overparameterized.
The method now will be most sensitive to
removinq the uncertainty inherent in the
extra parameters. Now, the diagonal ele-
ments of PI which correspond to accu-
rate parameters will not change. However,

the diagonal elements of Pl, pli, which
correspond to extra parameters will change
significantly.	 Thus, if

1 pli - Poil 
> cpoi	

(21)

where c is a positive threshold, the

corresponding parameter ai can be set
to zero. The threshold was selected as

E = 0.05
	

(22)

for the engine data.

Three elements of P I satisfied (21) for

both the MVC ano BOM data. The correspond-
ing parameters were eliminated and this new
structure applied to the simulation data
generated by the inputs of (14) and (15).
The resultant IV/AML identified model is
given as model 4 in Table 1. A comparison
of average fit error is quite comparable to
model 1 with full BI and, in fact,
shows improvement in the PT6 comparison.

Note that the eigenvalue associated with

PT6 in model 4 represents a frequency of
approximatel y 25 radians/sec which is
slightly greater tnan the 20 radians/sec
natural frequency of the PT6 sensor.
Obviously, the PT6 tensor dynamics can no
longer be competely ignored in the inter-
pretation of the results. Additionally,
since one mode models the sensor dynamics,
a second mode may be required to model the

When used to predict BOM and MVC output

data, model 4 was still unsatisfactory.
Model 4 did predict N1(MVC), N2(MVC) and
N2(BOM). However, Nl(BOM) and especially

PT6 for both data sets were not predicted
well. The error in PT6 is somewhat ex-

pected from sensor and input bandwidth
considerations. The NI(BOM) error was not
expected however. Figure 6 compares pre-
dicted NI data using model 4 to actual

closed loop N1(BOM) data. Model 4 pre-
dicted N1 grossly follows the trend of the

simulated data. Thus, it appears that the
dynamic portion of model 4 is correct.
However, there must then be large dis-
crepancies in some of the model 4 gain
terms. These discrepancies are somewhat
perplexing since model 4 predicted Nl(MVC)
but not NI(BOM).

Recall, however, that the BOM inputs are

larger in magnitude than the MVC inputs,
and that model 4 represents linearized
dynamics. Thus, some nonlinear effects may
be inherent in the BOM data. This explana-
tion is not entirely satisfactory since
N2(BOM) and N2(MVC) were both predicted.
Further work to resolve this problem is
required. The IV/AML identification method
was again utilized to further refine the
model parameters for the structure of model

4 using the two sets of experimental closed
loop data. The purpose of this final
iteration is to identify a single model
that can accurately predict both sets of
engine test data and, hopefully, simulation
data as well.

Aqain model 4 was used as an initial condi-

tion in the IV/AML method applied to the
BOM and MVC data. Models 5 and 6 of
Table 1 resulted. Both models 5 and 6 fit
their respective data sets quite well.
Figures 6 to 8, for example, show a good
fit of the BOM data by outputs predicted
using model 5. Similar comparisons to MVC
data were obtained using model 6. More
importantly, when the BOM model 5 is used
to predict the MVC data, the comparison
given in Figs. 9 to 11 is quite reason-
able. Thus, model 5 (or equirilently
model 6) represents a model which predicts
a class of inputs and can be used with con-
fidence in a control design procedure.

CONCLUSIONS

The IV/AML method was applied to both open

loop simulation and closed loop test data
of an F100 turbofan engine. The method
accurately and consistently idertified
models from both the simulation and test
data. Due to the structure of the BOM and
MVC control laws, the engine model is
strongly system identifiable and con-
sequently a direct identification approach
was used on the closed loop data.

be	 PT6 engine mode. This was not pursued at
this time however.



A third order model structure was derived

and found to be cverparameterizea. Three
parameters were eliminated by sensitivity
considerations. The simplified structure

was found acceptable for fitting both simu-
lation and test data. Test model accuracy

is limited to 6 radians/sec since spectral
analysis of the inputs shows limited signal

stren g th above this frequency.

Also, identification results indicate that

PT6 related model parameter accuracy is
further limited by sensor bandwidth and
that an additional dynamic mode is required
to faithfully model PT6.

Comparisons showed that models identified

from simulated data generally predicted
N1(MVC), N2(MVC), and N2(BOM) test response
aaequately. However, predictions of

PT6(MVC) and PT6(BOM were poor and N1(BOM)
showed some discrepancies in dynamics. The
PT6 differences are attributed to the low

freq uency content of the test input signals
(<6 radians/sec), the bandwidtn of the
sensor, and the hi gh frequency nature of
the PT6 mode. However, the difference in
N1 is attributable to a difference in simu-
lated versus actual engine performance.
This conclusion is accurately portrayed in
a comparison of identified models.

Finally, a simplified model determined from

BOM data accurately predicted not only BOM

but also MVC test response data. This
ability to predict engine performance for
a class of inputs generates confidence in
controls designated from this model. Thus,
it is concluded that useful dynamic engine
models can he obtained from closed lclp

test data usin q the IV/AML identification
method. This identification technique,
then, represents the first step in an
automated fngine control design process.
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Figure 2. - Engine control structure.
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Figure 5. - Comparison of actual BOM output with out-
put predicted by model 3 obUlned from BOM data -
unconstrained 81.
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Figure 9. - Comparison of actual MVC output with out-
put predicted by model 5 obtained from BOM OU -
constrained B1,
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put predicted by model 5 obtained from BOM data -
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put predicted by model 5 obtained from BOM data -
constrained B1.
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