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IDENTIFICATION OF MULTIVARIABLE HIGH PERFORMANCE TURBOFAN
ENGINE DYNAMICS FROM CLOSED LOOP DATA

by Walter Merrill

Nationa| Aercnautics and Space Administration
Lewis Research Center
Clevelard, Ohio 44135

Abstract. The multivariable Instrumental Variable/Approximate Maximum
CikeTihood (IV/AML) method of vecursive time-series analysis is used to
identify the multivariable (four inputs-three outputs) dynamics of the
Pratt and Whitney F100 engine. A detailed non-linear engine simulation is
used to determine linear enaine model structures and parameters at an
operating point using open loop data. Also. the IV/AML method is used in
a direct identification mode to identify models from actual closed loop
enqine test data. Models identified from simulated and test data are
compared to determine a final model structure and parameterization that
can predict enaine response for a wide class of inputs. The ability of
the IV/AML algorithm to identify useful dynamic models from engine test

data is assessed.

Keywords. Multivariabie identification: Jet engine: Closed loop data;
nstrumental variable/approximate maximum likelihood

INTRODUCTION

A tvpical engine contral desian cycle
consists of developing a dynamic engine
simulation from steadv-state component per-
formance data, designing a control based
upon this simulation, and then testing and
modifying the control in an engine test
cell to meet performance requirements,

This desian cycle has been successful for
state-of-the-art engines. However, for
more advanced multivariable engines that
exhibit strona variahle interactions, this
procedure will result in substantial trial
and error modification of the conirol
during the testing phase. One method to
automate the desian process and reduce con-
trol modification testing and development
cost would be to identify accurate dynamic
models directly from the closed loop test
data. These identified models would then
he used in coniunction with a synthesis
procedure to systematically refine the con-
trol. Recent advances in closed loop
identifiability (Ref. 1) present a methcd-
oloay for this direct identification of
enaine model dynamics from closed loop test
data. This paper describes the application
of the IV/AML identification method

(Ref. 2) to simulated and actual closed
Toop F100 enaine data (Ref. 3). This study
was undertaken to determine if useful
dynamic encine models could be identified
directly “rom closed loop enaine test data.

Recentlv, some qgas turbine models have been
identified. In Refs. 4 and 5 a sinale
input state-space mode]l was obtained by a

time series method from simulated input-
output data. In Ref. 6 a nonlinear filter-
ina technique was used to estimate system
parameters from multiple input simulated
engine data. In Ref, 8 a two input engine
model was determined from open loop data
analysis usina the "Method of Models."
Later the model form of Ref. 8 was applied
to condition monitoring for a single input
engine (Ref. 9)., In Ref. 10 a single input
engine model was determined from closed
loop fliaght data using a maximum likelihood
parameter search of dynamic engine simula-
tion parameters. It was assumed that there
was no process noise. In Ref. 11 a two
input automotive aas turbine model was
identified from open loop engine frequency
and step response data. The two data types
were used in concert to fix the model
stiructure a~d to fit the model parameters.

In this report the IV/AML method is applied
to both simulated and actual closed loop
test multiple input data. The IV/AML
method is an output error identification
method and was implemented in a combined
iterative/recursive form. As yet, the
IV/AML method has not seen wide application
to many physical processes, and, until now,
the method has not been epplied either to
aas turbine engine data or to closed loop
data. The test data studied in this report
contains both measurement and process
noise. The available closed loop engine
test cata records are each comprised of
only 200 sample points. Since this is a
relatively low number of sample points per
operatina record, the IV/AML method was
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<plected for use because Monte Carlo tests
have shown the method to exhibit reasonable
converagence for a small number of samples
(Ref. 2).

This report beains with a brief description
of the IV/AML method and its application to
enqine model identification. Next, an
enaine model structure is developed and
applied to simulation and test data.

THE TV/AML IDENTIFICATION
METHOD

The multivariable 1V/AML method is the time
spries analvsis tool used in this study.
Monte Carlo simulation has shown the method
to be an asymptotically efficient identifi-
cation tool., A complete descripton of the
Refined IV/AML method i qiven in Ref. 2.
Briefly, the model is written as:

-1 -1
ALz )x, = B(z7 )y, (1a)
¢z e, = oz he (1b)
k k
vk=x,’(*[k (1(‘)
where 2z ! is the backward shift operator.

n n
The vectors y eR Y and u eR Y are known

k k
ard represent the noisy output and deter-
minictic input, respectively. The vector xy
is the deterministic part of y, and &y
models the effects of unmeasureable disturb-

ance< and measurement noise. The vector
n
v R Y catisfies:
f{r = 0: F P.FY} - Q&. : Ele ulle0 (2)
K ’ ik ALY ik
The polynomial matrices A. B, C and D
are defined as:
n
A1+ :E: A.z"i
i
=1
n
=
B-B ¢ :E: B,z
0 1
i=]
(3)

where A;, Bj, Cj and Dj are real
matrices. The algorithmic structure of the
iterative/recursive version of the IV/AML
method is given in Fig. 1. Here the auxil-
iary system model is updated iteratively
after a complete passage through the data
during which the model is maintained at the
previous iteration value, ‘a . The noise

model, however, is updated rgkursively.
Model updates are determined by the IV
aloorithm and the AML alqorithm blocks of
Fig. 1. These two algorithms have the same
basic structure and represent iterative
solutions to the necessary conditions for
maximizing a log likelihood function of the
observations. The algorithms basically
update the model parameters as a function
of output error and estimated parameter
uncer.ainty. Prefiltering, which is used
in a "refined" IV/AML procedure, can yield
estimotes with improved statistical effi-
ciency. Prefiltering was not used in this
study, however, due to the additional com-
putational complexity and the satisfactory
operation of the "standard" IV/AML approach.
The noise covariance was estimated by:

§ =08 ,+1feel -0 (4)
AL WA 4 LR

When applying the IV/AML method of Fig. 1

to the engine data, usually six iterative
passes through the data were taken.

Initial parameter values for the system and

for the noise covariance were determined
from open loop simulation data. Values for

the initia] asymptotic parameter covariance
matriges, for the parameters of 6,
and for the 6., were selected as:
50 a ul
(5)
ﬁo = uRl

where u = up in general and u s
selected as approximately 100 to 1000 times
larger than the diagonal elements of Q.
Once estimates of 6,, 6, and Q were
obtained in one test, they were often used
as initial values in subseguent tests.
However, during each test, was normally
held constant during the iterations 1-4 and
6, and updated durinq teration 5. Eigen-
values of , and were calculated at
the start of each iteration to nsure
stable alqorithm operation. Alsc, compari-
son of eigenvalues from one iteration to
the next is a good indicator of algorithm
performance. For example, the movement of
one eigenvalue of toward the stability
bound indicates that the algorithm is
"getting lost" or that an incorrect model
tructure_has been chosen. Also, norms

k and Rg were calculated at each
iteration as a measure of convergence.



ENGINE MODEL

The Pr~tt and Whitney F100 engine (Ref. 3)
is a twin-spool low-bypass ratio after-
burning turbofan. Four controlled vari-
ables are considered: main fuel flow (WF),
exhaust nozzle area (AJ), compressor (fan)
inlet variable quice vanes (CIVV), and the
rear compressor variable guide vanes
(RCVV) . Three output variables are con-
sidered: engine fan speed (Nl1), engine
compressor speed (N2), and augmentor
entrance pressure (PT6). The engine speeds
are indicative of the dynamic response of
the engine while PT6 is closely related to
engine thrust. Globally the engine is
modeled as

x = f(x.u,ALT.MN)
(6)
y = a(x.u,ALT,MN)

where x is the state vector, u is the
control vector and y is the output vec-
tor. Engine operation is also dependent
upon environmental variables altitude (ALT)
and Mach number (MN). An engine operating
point is definec as

f(x .uSS,ALT.MN) =0

SS

(7

q(xss.uss.ALT.MN) = Vg

A thirc order behavioral model relatinag the
engine outputs to the primary control vari-
ables WF and AJ was developed in Ref. 12
and is given as

Uty Gy Cp b O
x =|0 -l/t2 0 X + bFH 0 |u
0 Cp -l 0 by

(8)

This model represents linearized behavior
in a small rqion about an operating point.
Inclucding CIVV and RCVV and writing in the |
form of (1), the behavioral model becomes

(I + Alz‘l)xk - Blz'luk (9)

where x = (N1, N2, PT6) and u = (WF, AJ,
CIVV, RCVV). :

Simulation Application

The IV/AML method usina the model of (9)
was initially applied to open loop SISC
digitally simulated engine data. These
data were cbtained for an ALT = 10 000 ft,
MN = 0.9 intermediate power operating
point. Two data sets were qenerated in the
followina manner. A1l controls were held

constant at their steady-state operating
point values except for WF in the first
case:

WF = WF_ (1 +0.03 v,) (10)

and AJ in the second case

A) = A (1 +0.03 y,) (11)

where vy 1is Gaussian noise with

E{yk} -

efx} -1

Equations (10) and {11) represent %3 per-
cent variations about the nomiral operating
point to insure linear operation. In both
cases the sampling rate was T = 0.01 sec.
From these two data sets an initial esti-
mate of A) was obtained as

(12)

-0.85 0 0
0 -0.96 0 (13)
0.615 0 -0.4

Al =

This corresponds to continuous eigenvalues
of -16, -4, and -90. This information was
used as a starting point in MIMO identifi-
cation test.

A random input emphasizes identification at
all frequencies. However, the frequency
range of engine operation is practically
limited by actuator and engine hardware to
about 20 radians/sec. Thus a set of inputs
was chosen. somewhat arbitrarily, for a
MiMO test that empahsized this more realis-
tic frequency range. Here

Y = uss(l + 0.03Auk) (14)

and
(sin(0.1kT) + cos(5kT + 2)

(sin(0.2kT) + cos(7kT + 4)
by = (15)
(sin(0.3kT) + cos(5kT)

(cos(0.4kT - 4) - cos(10kT)

Also the sampling interval was selected to
be T = 0.05 sec to corresponc to sub-
sequent tests which used actual test data
recordec at T = 0.05 sec. Four hundred
data points (K = 400) for each test were
recorded. The IV/AML method was applied
and the results are given as model 1 in
Table 1. The average percent error per
point was calculated from the outputs as
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k=1

Error. = (16)
i 100 K sz ‘ykil

and is given in Table 1 also. For model 1
each output has less than 0.6 percent error
per point on the average which is a qgood
fit of the data. An additional element in
A1 was found to be required to satis-
factorily model PT6.

The noise model (see Fig. 1) was found to
be close to the auxiliary model. Thus, the
number of parameters could be reduced by
constraining C; = Aj. However, this

was not pursued as larae improvements in
model accuracy were not anticipated by
enforcina this constraint. Ad”.i"mally.
initial identification tests .. ed the
eigenvalues of the [ matrix .. be beyond
the frequency range of interest. There-
fore. the D matrix was corsirainec tc be
D=1.

The noise covariance, Q, is also aiven in
Fig. 1. Since Q did not change sub-
stantially from model 1 to model 2, sub-
sequert models were identified using the

Q of model 2. Periodic updates of the
value of Q in subsequent models showed no
large variation in Q.

Model 1 of Table 1 was used to predict
enaine behavior based upon actual closed
loop engine test data. This is described
in the next section.

Tost Mata Application

The F1C0 engine was tested in the Lewis
Research Center altitude test facilty to
evaluate the F100 Multivariable Control
(MVC) law (Refs. 2 and 3). During the same
test period the "Bill of Material" (BOM)
control was also evaluated as a baseline/
backup control model. Thus, there are a
variety of closed loop operating records
obtained throughout the fliaht envelope
with a number of different power input
requests. The two multiva~iable data sets
used in this report were recorded at an

ALT = 10 000 ft, MN = 0.9 condition as the
power request was varied !step change) in &
small (hopefully linear) range about inter-
mediate enqine power. One set corresponds
to an MVC control test, the other to a BOM
test., Data were sampled at T = 0.05 sec
for a 10-second transient, which yields

K = 200 points for each record in the data
sets.

The BOM and MVC control structures, line-
9rized at an operating point, correspond to
the structure of Fig. 2. The reference
point and control blocks are different how-
ever for the two controls. The structure
of Fig. 2 is exactly the structure given in
Ref. 1. Since each control structure is

QuALITY

fixed at a gqiven operating point, strong
system identifiabilty can be quaranteed if

Rank =1 # "y (17)
Or in other words, if
det[L] ¢ 0 (18)

The BOM and MVC reference point schedules
do exhibit the characteristic of (18),
therefore a direct identification approach,
such as IV/AML, can be successfully applied
to the closed loop input/output data sets
recorded in the Lewis test facility.

Sensor nsirumentetion for the input and
output variables of interest is summarized
in Teble 2. in each case sensor dynamics
are beyond the 20 radians/sec frequency
range. Thus. sensor dynamics were ini-
tially ianored in the identification
tests. Ambient roise statistics were ob-
tained durino .ready-state engine opera-
tion. Standard deviations were calculated
at the operatina point for the sensed
values. Signal to noise ratios (SNR's)
vere estimated based upon these ambient
noise levels and the deviations of the
various signals from their operating point
values. These SNR's are included in Table
2. In each case the SNR's show the level
of noise tc be small relative to the
signal. Therefore, the identification
results should be quite consistent and
accurete,

Normalized WF from the BOM and MVC control
tests is shown in Fig. 3. Thic is typical
of the enaine inputs in these tests. Power
spectrum analysis of these inputs shows a
slightly higher frequency component in the
MVC inputs, although more total power is
contained in the BOM inputs. Houwever, for
both the BOM and MVC inputs most of the
power is concentrated below 6 radia' s/sec.

The control inputs of Fig. 3 wcie used in
conjunction with the identified model 1 to
predict engine output. Comparing the pre-
dicted outputs of mocdel 1 with the actual
outputs, it was apparent that moael 1 was
unacceptable. No output was predicted well
for either BOM or MVC date. Figure 4 is
typical of the comparison. Slight dis-
crepancies between simulation and test data
cannot account for large discrepancies
between predicted and actuel outputs.

To investigate this further the IV/AML
method was applied directly to the closed
loop test data producing models 2 and 3.
Model 1 was used as a starting point. As
illustrated in Fig. 5, model 3 accurately
reproduces the data, from which it was
qgenerated (BOM) . Model 2 results are simi-
lar. In fact, Fig. 1 shows the error of
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all the outputs for models 1, 2 and 3 to be
less than 1 percent. However, comparing
parameters for models 1, 2 and 3 (see
Table 1) it can be seen that while A
remains essentially unchanged elements of
%1 do change substantially. This im-
p*ies a slightly overparameterized model
structure which does account for the in-
ability of model 1 to predict BOM and MVC
engine data. To determine which elements
should be eIminated to remove the over-
parameterization, the following procedure
was adopted.

First. a reasonably accurate initial model
is ascumed. In this case, models 2 and 3
were used. An initial covariance matrix

Po = diaa(pgy) (19)

is chosen where the poj are small to
indicate small uncertainty in the model
parameters. In the engine example

=7 p
Po = 10071 20)

was used. Next, the IV/AML method is ap-
plied for only a single iteration to data
for which the model is overparameterized.
The method now will be most sensitive to
removing the uncertainty inherent in the
extra parameters. Now, the diagonal ele-
ments of P; which correspond to accu-
rate parameters will not change. However,
the diagonal elements of Py, p1j, which
correspond to extra parameters will change
significantly. Thus, if

[P1i = Poil > Poi (21)

where ¢ 1is a positive threshold, the
corresponding parameter a; can be set
to zero. The threshold was selected as

¢ = 0.05 (22)
for the engine data.

Three elements of Py satisfied (21) for
both the MVC and BOM data. The correspond-
ing parameters were eliminated and this new
structure applied to the simulation data
generated by the inputs of (14) and (15).
The resultant IV/AML identified model is
given as model 4 in Table 1. A comparison
of average fit error is quite comparable to
model 1 with full Bj and, in fact,

shows improvement in the PT6 comparison.

Note that the eigenvalue associated with
PT6 in model 4 represents a frequency of
approximately 25 radians/sec which is
slightly greater tnan the 20 radians/sec
natural frequency of the PT6 sensor.
Obviously, the PT6 sensor dynamics can no
longer be competely ignored in the inter-
pretation of the results. Additionally,
since one mode models the sensor dynamics,
a second mode may be required to model the

PT6 engine mode. This was not pursued at
this time however.

When used to predict BOM and MVC output
data, model 4 was still unsatisfactory.
Model 4 did predict N1(MVC), N2(MVC), and
N2(BOM). However, N1(BOM) and especially
PT6 for both data sets were not predicted
well, The error in PT6 is somewhat ex-
pected from sensor and input bandwidth
considerations. The N1(BOM) error was not
expected however. Figure 6 compares pre-
dicted N1 data using model 4 to actual
closed loop N1(BOM) data. Model 4 pre-
dicted N1 grossly follows the trend of the
simulated data. Thus, it appears that the
dynamic portion of model 4 is correct.
However, there must then be large dis-
crepancies in some of the model 4 gain
terms. These discrepancies are somewhat
perplexing since model 4 predicted N1(MVC)
but not N1(BOM).

Recall, however, that the BOM inputs are
larger in magnitude than the MVC inputs,
and that model 4 represents linearized
dynamics. Thus, some nonlinear effects may
be inherent in the BOM data. This explana-
tion is not entirely satisfactory since
N2(BOM) and N2(MVC) were both predicted.
Further work to resolve tnis problem is
required. The IV/AML identification method
was again utilized to further refine the
model parameters for the structure of model
4 using the two sets of experimental closed
loop data. The purpose of this final
iteration is to identify a single model
that can accurately predict both sets of
engine test data and, hopefully, simulation
data as well,

Again model 4 was used as an initial condi-
tion in the IV/AML method applied to the
BOM and MVC data. Models 5 and 6 of

Table 1 resulted. Both models 5 and 6 fit
their respective data sets quite well.
Figures 6 to 8, for example., show a good
fit of the BOM data by outputs predicted
using model 5. Similar comparisons to MVC
data were obtained using model 6. More
importantly, when the BOM model 5 is used
to predict the MVC data, the comparison
given in Figs. 9 to 11 is quite reason-
able. Thus, model 5 (or equiwilently

model 6) represents a model which predicts
a class of inputs and can be used with con-
fidence in a control design procedure.

CONCLUSIONS

The IV/AML method was applied to both open
loop simulation and closed loop test data
of an F100 turbofan engine. The method
accurately and consistently identified
models from both the simulation and test
data. Due to the structure of the BOM and
MVC control laws, the engine model is
strongly system identifiable and con-
sequently a direct identification approach
was used on the closed loop data.



A third order model structure was derived
and found to be cverparameterizeda. Three
parameters were eliminated by sensitivity
considerations. The simplified structure
was found acceptable for fitting both simu-
lation and test data. Test model accuracy
is limited to 6 radians/sec since spectral
analysis of the inputs shows limited signal
strength above this frequency.

Also, identification results indicate that
PT6 related model parameter accuracy is
further 1imited by sensor bandwidth and
that an additional dynamic mode is required
to faithfully model PT6.

Comparisons showed that models identified
from simulated data generally predicted
N1(MVC), N2(MVC). and N2(BOM) test response
acequately. However, predictions of
PT6(MVC) anc PT6(BOM were poor and N1(BOM)
showed some discrepancies in dynamics. The
PT6 differences are attributed to the low
frequency content of the test input signals
(<6 radians/sec), the bandwidth of the
sensor, and the high frequency nature of
the PT6 mode. However, the difference in
Nl is attributable to a difference in simu-
lated versus actual engine performance.
This conclusion is accurately portrayed in
a comparison of identified models.

Finally, a simplified model determined from
BOM data accurately predicted not only BOM
but also MVC test response data. This
ability to predict engine performance for

a class of inputs generates confidence in
controls designated from this model. Thus,
it is concluded that useful dynamic engine
models can be obtained from closed 1cop
test data using the IV/AML identification
method. This identification technique,
then, represents the first step in an
automated engine control design process.

RCFEREMCES

Soderstrom, T.: Ljung, L.: and Gustavsson, I.:

Identifiability Conditions for Linear
Multivariable Systems Operating Under
Feedback. [EEE Trans. of Autom. Con-
trol, Vol. AC-21, No. 6, Dec. 1976,
pp. 837-840.

Jakeman, A.: and Young, P.: Refined
Instrumental Variable Methods of Re-
cursive Time-Series Analysis - Part II,
Multivariable Systems. Int. J. Con-
trol, Vol. 29, No. 4, 1979, pp. 624-644.

Lehtinen, F. K. B.: Costakis, W. G.;
Soeder, J. F.: and Seldner, K.: Alti-
tude Test of a Multivariable Control
System for the F100 Engine. NASA TP
(to be published).

Merrill, W.; and Leininger, G.: Identifi-
cation and Dual Adaptive Control of a
Turbojet Engine. Int. J. Control, Vol.
34, No. 3, Sept. 1981, pp. 529-546.

Merrill, W. C.: An Application of Moder™
Control Theory to Jet Propulsion Sys-
tems. NASA TM X-71726, 1975.

Michael. G. J.: and Farrar, F. A.: Identi-
fication of Multivariable Gas Turbine
Dynamics from Stochastic Input-Output
Data. UARL-R941620-3, United Aircraft,
1975 (AD-A006277) .

DeHoff. R. L.: and Hall, W. E.: System
Identification Principles Applied to
Multivariable Control Synthesis of the
F100 Turbofan Engine. Joint Automatic
Control Conference, Proceedings, Vol.
2. [IEEE. 1977, pp. 1007-1012.

Rault, A.: Richalet, J.: Bardot, A.:
Sargenton, J. P.: [Identification and
Modeling of a Jet Engine. Presented at
IFAC Symposium on Digital Simulation of
Continuous Processes (Gyor, Hungary),
Sept. 6-10. 1971.

Baskiotis, C.: Raymond, J.: and Rault, A.:
Parameter Identification and Dis-
criminent Analysis for Jet Engine
Mechanical State Diagnosis. Conf.
on Decision and Control, 18th, Ft.
Lauderdale, rL, Dec. 1979, Proceedings,
Vol. 2, IEEE, 1979, pp. 648-650.

DeHoff, R. L.: Identification of a STOL
Propulsion Plant Model from Flight
Data. J. Guidance and Control, Vol. 2,
No. 3, May-June 1979, pp. 235-240.

Wellsted, P. E.: and Nuske, D. J.: Identi-
fication of an Automotive Gas Turbine.
Int. J. Con- trol, Vol. 24, No. 3,

Part 1, Frequency Response Estimation,
pp. 297-309: Part 11, Parameter
Fitting, pp. 311-324.,
DeHoff, R. L.: Hall, W. E., Jr.: Adams,
R. J.: and Gupta, N. K.: F100 Multi-
variable Control Synthesis Program.
Vols. I and 11, AFAPL-TR-77-35, June
1977. (AD-A052420 and AD-A052346.)



6°S01 | 98°vl 20° AI0QPadj 0A4aS | AADY U033 JIP JURA U0SSIAGwO)
902 | SI'SE 20° A20QPad) 0A43S | AAID | uOL3II3|J9p AueA 3pinb 9| u]
LS| oS 92 20° 432Npsue4} U0L3ILSOd Y INO4)S OALS RIJ4R o
8722 1679 20° 4933w MO 4 E | MO|J |9N) J9udnq uien
8°911 | 8L°01 S0* abneb uyeais 91d 24nS$53.d ISNRYXI /40 JuONY
08 16°91 S0 4933wC IR ) 2N po9eds 40SS940w0)
2sl 8°E¢ £€0°0 4333w0yoe | N paads uey
23S
‘3juejsuod
WOByNS | IAWunS awi | 3dA | LOQuAS 31qeLi2A PIsuIs
uoLjeJuAWNJISU] Autbul 2 3@Vl
wSL 856" - 0 6S0° vE00° - 2vB0° - 6860° 081" 162°- w61°~ 6827
§Le° 0 ¥96 - 0 0 0 E6I0° ofot" 0 808" - 0
G2v°0 3A0Qe se JuesS 0 0 1S6°0- 0 §200°0- S080°0 80S0°0 0 0 82L°0-| 00¢ 1593 DM 9
82§° 596" - 0 8v0° 9110° vip0° - I86%°- [0L1° | €82 - 681"~ 99¢°
s02° 0 €467 0 0 0 990" 0620° 0 815~ 0
SIT°0 JA0Qe Sse ouwes 0 0 28670~ 2 S600°0- S997°0 8L£0°0 0 0 0.9°0-| 00 1593 W08 S
SLE” 096° - 0 090 SIvO"- BEED - 0L0;°- 2981° | €62°- 681"~ 992"
69¢° 0 886" 0 0 0 O170° Sw20° 0 658"~ 0
0S5°0 9A0Qe se wes 0 0 670" 0 2€00°0- 69£0°0 1£90°0 0 0 00£°0-| OOF uoLje|neis v
v2s° 269°2 90" 120" |wi6°- 0 980 SS10° 1220°- EPEE - 2602° | 9vE"- 6II'- 6LE°
S81° ¥90° L10°  9%0° 0 16"~ 0 | ¥000°- 2100° 2I10°  ®2EC” 0 9€8°- 0
LIT°0 | 120°0 9¥0°0 68I°0 0 0 286°0-| €000°0- LIOO'O SO¥O°0 O0BE'OD 0 0 0s8°0-| 00¢ 1593 WOe £
v68° 269°2 ¥90° 120° 146"~ 0 s8or° 2200°- 2{90°- wB2E°- [LE61" | w¥E"- w2l°- B9E"
v92- 90" L10°  9v0° 9 096°- 0 | 2000°- €200°- 8f00" 8IE0" 0 108 - 0
1EP°0 | T120°0 9¢¥0°0 68170 0 0 1S6°0-| 2000°0- 6200°0 Z2¥p»0°0 SOWO'O 0 0 S98°C-| 00¢ 1593 I 4
185" 98y’ TL1°  SIE°— | L4467 0 260" BIEO" - 9200°- 29€E°- EEIZ° | 96€°- 021°- ¢28E°
68%° ur ov0"  950° 0 8.6°- 0 | 6200° 9000° 2010°  GE20° 0 898°- 0
129°0 | #IE"0- 990°0 G2Z2°0 0 0 0.6°0-|2€00°0- S000°0 S6£0°0 SO®PO°0 0 0 O0¥8°0-| OO0 uoLle|nuts 1
sjujod
40443 ejep 340 224n0s
32434 g0TX0 &) Ig Iy 35quty | €32 Lapow | 1apow
San|eA Jajawedeq |3pOW PILILIUIP] | INEVL




8

{a9)-%

AUNPNILS UOISIIA TWY/ Al 3RSy - T unbyy

WHLIN0OTY
Wy

[

)

Yag-%3423
TI00W 3SION

f

3

WHLIZ09TY
Al
% tan A Ax
V)"
nyag-May
1 ol | v !
TAOW A3VIIXNY %
:
Ny 4 9.0
(.20 - 309
Ingog -Mgav
WALSAS -— n




SENSORS | Gg,, 2"} H@l) | UNCERTAINTY
REFERENCE
POINT
POWER  SCHEDULES ACTUATORS ENGINE . SENSURS
R__—EQUEST L'l | b Ga @) > ci)) Xt Gsy @)
+
CONTROL
FEl) e
Figure 2. - Engine control structure,
09—
06—
[
>
0
Y
0f— ‘
AP T T O O O
0 1 2 3 4 S5 6 1 8 9 10

TIME, sec
Figure 3. - Engine inputs; WF.

> (y (t)



PTé6

PO I T T Y N B
0 1 2 3 4 5 6 1 8 9 10
TIME, sec
Figure 3. Continued,
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Figure 4 - Comparison «f actual BOM output with a sim-
ulated BOM output and an output predicted by mode! 1
obtained from simulation data - unconstrained ’l'
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Figure 5. - Comparison of actual BOM output with out-
put predicted by model 3 obtzined from BOM data -
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Figure 6. - Comparison of actual BOM output with a
simulated BOM output and outputs predicted by
models 4 and 5.
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Figure 7. - Comparison of actual BOM output with out-
put predicted by model 5 obtained from BOM data -
constrained Bl-
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Figur: 3. - Comparison of actual BOM output with out:
put predicted by model 5 obtained from BOM data -
constrained Bl.
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Figure 9. - Comparison of actual MVC output with out-
put predicted by model 5 obtained from BOM d3ta -
constrained Bl-
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Figure 1C. - Comparison of actual MVC output with out-

put predicted by model 5 obtained from BOM data -
constrained Bl-
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Figure 11, - Comparison of actual MVC output with out-
put predicted by model 5 obtained from BOM data -
constrained Bl-
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