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1. INTRODUCTION AND SUMMARY

The object of this study was to provide the information which NASA
requires to select a concept for a 30/20 GHz flight experiment and to procure
the major system elements of the 30/20 GHz communications system. The
study, which began in April 1980, first examined a baseline concept provided
by NASA; then several alternate concepts suggested by the contractor and
approved by NASA. Evaluations were made of the cost, schedule, risk and

" technology development requirements associated with these concepts, A

final concept was defined by NASA in March 1981. This report is devoted
erntirely to that final concept. The analyses of the previous concepts were
presented to NASA as they were developed and were documented in task com-
pletion reports.

The design for the communication subsystem components is presented
in Section 3. Although NASA is funding technology development studies,
which will result in proof of concept models for most of these components,
the design presented in this report is a Hughes design. This approach is
taken for two reasons. First, the technology studies were still in an early
stage at the time the acsign was made; and second, Hughes considers that
it will be more competent to reach correct make or buy decisions and to
effectively procure components if it has been through the preliminary
design process. At this time no decisions have been made regarding the
source of any of the communication components. Make or buy decisions
will be made early in the system definition phase (Phase B).

The final concept was selected by NASA because it was considered to
provide as comprehensive an experiment as could be performed within
realistic funding constraints. The communication concept is described in
the next section. It consists of trucking service (TS) and customer premise
service (CPS) experiments. The tiucking system serves four spot beams
which are interconnected in a sateliite switched time division multiple
access (SS-TDMA) mode by an IF switch matrix. The CPS system covers
two large areas in the eastern half of the United States with a pair of scanning
beams. The individual spots which comprise these CPS areas areintercon-
nected through a baseband processor (BBP) onboard the satellite. Both trunk
and CPS systems use an antenna with a 3 meter main reflector. The down-
link data rate of 256 Mbps (for both trunk and CPS) are supported by 40 watt
TWTAs being developed for NASA by Hughes Electron Dynamics Division.
Since the trunk and the CPS services are not simultaneous, the trunk
TWTAs are also used for the CPS. The CPS total uplink data rate is broken
into 32 Mbps uplink channels so that low cost earth stations can be employed.

l-1

N




09Z 8£E0L8

FIGURE 1-1. SPACECRAFT ISOMETRIC

The NASA 30/20 GHz flight experiment has a 2 year duration, however,
the satellite is to be designed for a 4 year lifetime so that additional use of the
satellite can be made by industry if there is a need. The spacecraft propul-
sion system must have fuel for 4 years of stationkeeping in inclination, longi-
tude, and spacecraft attitude.

It is a NASA requirement that the communication payload be installed
on an existing spacecraft bus. A 4 year lifetime is required. The bus
employed by Hughes is the LEASAT spacecraft. Figure 1-1 shows the
30/20 GHz flight experiment installed on the LEASAT bus., The antenna
employs a Cassegrain configuration. The planar surface is a frequency
selective screen which separates the transmit and receive signals. The
trunk feeds are part of the scanning beam feed arrays which are shown. The
20 GHz beacon antenna is also visible. The beacon signal is available on
propagation measurements anywhere in the contiguous United States (CONUS).
It also carries the telemetry and ranging data.
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FIGURE 1-2. LEASAT SPACECRAFT STOWED CONFIGURATION

The LEASAT spacecraft configuration is shown in Figure 1-2. It is
the first communication satellite designed to be launched only by the Space
Shuttle and to take full advantage of the Shuttle's considerable launch cost
savings. In its launch configuration, LEASAT is 422 cm in diameter and
430 cm in height. The spacecraft is a dual spin configuration, with a rate of
30 rpm on station. The spinning section contains the propulsion, attitude con-
trol, and power subsystems. The despun section contains the telemetry,
command, and communication subsystems and the spacecraft's earth pointing
antennas. The antennas and the equipment on the despun platform are
replaced by the 30/20 GHz payload. The spinning section is virtually
unchanged.

The LEASAT propulsion system incorporates the perigee and apogee
stages needed to lift the spacecraft from low Shuttle orbit into synchronous
orbit. A liquid propellant system will be used for perigee augmentation and
the complete apogee imnpulse. Four years of on-orbit station keeping and
attitude control will be provided by a standard monopropellant hydrazine
system.

The 30/20 GHz flight experiment vehicle will weigh 17, 071 pounds in
the Shuttle bay and 3, 095 pounds when it reaches synchronous orbit. Its weight
at the end of 4 years will be 2,750 pounds. A weight summary is given in
Table 1-1. The total spacecraft weight margin provided by excess propulsion
capability is 156 pounds. A 10 percent payload weight margin of 42 pounds
was allocated to the payload leaving 114 pounds as rotor weight margin. The
ultimate limit in payload weight is the stability requirement that the spin to
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TABLE 1-1. SPACECRAFT WEIGHT SUMMARY

item Paylosd Weight, Ib

Payioed 465

Antenna 189

Microwave 123

Digital m

Margin (10%) 42
Bus 2,285

TT&C 123

Controls 75

Power 541

Propuision 323

Structure 1,100

Margin (rotor) 114
Spacecraft (dry) 2,750
Fianellant (BOL) 3485

RCS (4% yr} 324

LAM residusi 21
Spscscraft (BOL) 3,086
Transter orbit expendables 12,191
Shuttie deployment 15,286
Cradle and ASE 1,788
Shuttle payload 17,071

transverse inertia (Ig/1;) ratio be greater than 1.05. As much as half of the
114 pound rotor margin could be reallocated to the payload if the remainder
of the rotor margin were positioned near the perimeter of the rotor. The
actual fraction of the 114 pounds which is available for the payload depends on
whether the payload weight growth was above the despun platform (e. g.,
antenna) or in the despun platform which is near the center of gravity. If the
first of two options which were studied at NASA's direction were implemented,
the payload weight would be reduced by 49 pounds by eliminating one of the
scanning beams and reducing the BBP throughput. The additional margin
provided by option 1 does not appear necessary. The second option, which
added an FDMA capability to the payload, added 16 pounds to the payload.
Adoption of option 2 would appear to leave adequate margin. Also, option 2

could be removed if necessary without any significant effect on the remainder
of the payload.

Table 1-2 is a power summary of the 30/20 GHZ spacecraft, The
major portion of the trunking service payload power is for the four 40 watt
TWTAs. In the CPS mode, only two of the TWTAs are used but the BBP,
which is used primarily for the CPS mode, replices these TWTAs as a
power user. The effect in power demand of the two options is insignificant
compared to the very large power margin.

1-4
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TABLE 1-2. POWER SUMMARY (WATTS)

Baseline
item TS CcPs

Payload

Antenns 18 98

microwave 515.8 286.8

Digital a 2.2
Bus 28 228

TT&C (48)

Controls (37)

Power (92)

Thermal (§1)
Spacecraft 786.4 748.6
Capebility {4 yr) 1,000 1,090

Margin 303.6 3433

The 30/20 GHz flight experiment spacecraft will be carried in the
Space Shuttle as shown in Figures 1-3 and 1-4. It will be held in the Shuttle
bay by a reusable cradle, which attaches to the mainframe of the Shuttle at
five points. While the Shuttle is orbiting at an altitude of 160 n. mi., the
spacecraft will be ejected by two springs which supply a separation of
160 n. mi., the spacecraft will be ejected by two springs which supply a
separation velocity of 40 cm/sec and a rotational speed of 1.8 rpm. Spinup
rockets will increase the satellite's rate to 30 rpm approximately 300 seconds
after release. The solid propellant perigee motor will be fired 45 minutes
after release. The empty motor case and its supporting structure will then
be dropped. The liquid propellant motors will supply the additional velocity
needed to put the spacecraft in elliptic transfer orbit. On reaching synchro-
nous orbit, the communications antenna will be deployed and operational
service will begin.

A summary estimate of the reliability of the space segment is given
in Table 1-3. The reliability of the launch and orbit insertion is included in
the estimates. The estimate uses an existing reliability estimate for the
LEASAT bus and the number and type of parts used in the payload. The
assumptions and model used are described in 4.3, Space Vehicle Reliability.

The reliability shown is quite adequate to meet mission objectives,
particularly since the partial failures of case 4 will not seriously interfere
with these objectives. The scanning beains each have a total of 16 spots in
the uplink and 10 spots in the downlink so the loss of one spot from each of
the two areas can be tolerated. The reason for the lower reliability of the
CPS relative to the trunking service is the complexity of the beam forming
networks of the scanning beams.

1-5
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FIGURE 1-3. LAUNCH CONFIGURATION

TABLE 1-. SPACE SEGMENT RELIABILITY

and no more then 1 spot from esch scan-
ning besm

item 2 yeers 4 yeors
1) Compiete communication capsbility 0.90 0.62
2 Compiete trunk capebility 0.4 081
3 Compiete CPS capebility o8 0.68
4) Loss of no more then 1 of 4 trunk besms 0.92 0.79
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The terrestrial :egment of the 30/20 GHz flight experiment consists of
trunk terminals, CPS i.erminals, and a master control terminal (MCT). The
I trunk terminals have 5 meter antennas and employ site diversity to improve
propagation reliability. The CPS stations are of two types: 1) small stations
which transmit at a 32 Mbps burst rate and use a 3 meter antenna, and
{ 2) large stations which transmit at 128 Mbps and use 5 meter antennas.

All terminals receive at 256 Mbps, The MCT consists of a trunk terminal
and a central control station which controls both the communication network
and the spacecraft operation. NASA will procure the MCT and a small CPS
[ terminal; experimenters will procure other terminals.
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{ 2. COMMUNICATION SYSTEM DESIGN

\ The design of the 30/20 GHz flight experiment communication system
has the following three aspects:

GRS VN

( 1) D.e.sign of the communication links which satisfy the specified
{ service requirements

2) Design of the communications operations system which controls
the communication links and enables the multiplicity of users
to access the system in an orderly and efficient manner

3) Design of the experiments which make use of the communication
system

[ ™ L el
- &

»

2.1 COMMUNICATIONS

2.1.1 Requirements

The flight experiment must address the service capabilities of an
operational system of the 1990's and the technologies required to provide
these capabilities. This flight experiment, as defined by NASA, is illustrated
in Figure 2-1. The experiment has two parts: a trunk service (TS) and a
customer premise service (CPS). The TS provides high data rate bulk
communications to a limited number of nodes. In an operational system
as many as 20 or more nodes might be served. The flight experiment is
specified to comprise a six node network with four nodes active simultan-
eously. The six nodes are shown in Figure 2-2. Los Angeles and Cleveland
are always part of the network. Tampa and Houston are alternates to New
York and Washington, respectively. The specified access method is
satellite switched time division multiple access (SS-TDMA). Each node
transmits sequential bursts of data to the other nodes. Each station transmits
at least one burst per frame to each node with which it communicates.

The bursts are in synchronism with a switch matrix onboard the satellite.
This switch matrix, which operates at IF, connects each uplink beam at any
instant in time with the downlink beam for which its data is intended. The
means by which the use of the SS-TDMA is controlled and synchronized is
discussed in 2.2. The earth terminals for the TS are specified to have

s ON UN U W P e e ey e
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5 meter antenna diameters and to employ site diversity to minimize the
effect of rain attenuation. The burst rate is specified to be 256 Mbps. The
average data rate will be somewhat less because of the overhead resulting
frog‘n guardtime and preambles., The bit error rate (BER) requirement is
10°°, The required rain margins are 18 dB on the uplink and 8 dB on the
downlink. The resulting propagation reliability is discussed later in this
section.

An operational CPS serves many small and medium users scattered
about the country. The CPS requires two scanning beams. The required
coverage of these beams is illustrated in Figure 2-2. Each beam covers a
contiguous area in the eastern United States plus one or two isolated beams
in the west. The scanning beam covers its area by moving a spot beam about
the area. This antenna configuration imposes SS-TDMA operation because
users in different spots have access to the satellite at different times. The
fraction of the satellite capacity assigned to each spot is adjusted to match
the traffic requirements by varying the fraction of the TDMA frame spent by
the beam at each spot. A baseband processor (BBP) is required to store

- data received from each uplink spot until a downlink beam is pointed at the

spot for which the uplink data is intended. Without this store and forward
capability the up and downlink beams would be constrained to point simul-
taneously at each pair of spots which had a traffic interconnection. This
would require a very large aumber of antenna steps. The time consumed
by these stepping operations would reduce the system efficiency to an inade-
quate level. The store and forward capability allows each beam to address
each spot in its area once per frame. During this dwell it would receive
and transmit all data associated with the spot. The requirement to provide
forward error correction capability also imposes a need for a BBP to
demodulate and decode uplink coded data and encode data for attenuated
downlinks.

Two types of CPS terminals are required. Terminals which transmit
a 32 Mbps burst rate require 3 meter antennas and terminals which transmit
128 Mbps require 5 meter antennas. All CPS terminals receive at 256 Mbps,
The CPS is required to maintain performance in the presence of 15 dB of
uplink attenuation and 6 dB of downlink attenuation. As mentioned above,
forward error correction (FEC) is specified as an aid to meeting this
requirement.

Simultaneous operation of the TS and CPS systems is not required.

One of the objectives of the flight experiment is to improve frequency
reuse by means of the multispot beam antenna. Figure 2-3 and 2-4 show
the NASA frequency plan. This plan requires all trunk modes to reuse the
same frequency band except for Washington which can be frequency isolated
from New York. Likewise, the two scanning beams occupy the same channel
but are polarization isolated. The total uplink burst rate is 128 Mbps. This
can be composed of either four 32 Mbps channels or a single 128 Mbps
channel. A single downlink channel at 256 Mbps is required on each beam,
Because the uplink throughput‘on this experiment is only half the downlink
throughput, at most one-half of the uplink frame is occupied.

2-3
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The service requirements discussed above are summarized in
Table 2-1.

In addition to the service requirements NASA has specified a number

. of technology requirements which are required by potential operational

systems of the 1990's but which are not needed to satisfy the service require-
ments of this flight experiment. These technology requirements are
summarized in Table 2-2. NASA required that the receive antenna beam-
width equal the transmit beamwidth to minimize the number of receive
feeds; however, although the use of a single reflector for both transmit and
receive doubles the number of receive feeds required to cover the assigned
area, this approach has two important advantages for both the satellite and
earth terminals. The earth terminal transmitter power can be reduced by
over 3 dB because of the increased satellite receive gain. The satellite
benefits in two ways. First, the weight of a second reflector (2 meters
diameter), its support structure, and deployment mechanism is eliminated.
Second, the transmit antenna can be pointed more accurately since it
includes the uplink beacon tracking feeds. A single reflector for both
frequencies is made possible by the use of a planar frequency selective
surface (FSS) which creates separate focal regions for transmit and receive
feeds. Thus no diplexers are required and receive and transmit feeds can
be independently optimized. This FSS technology is considered by Hughes
to be important for multispot beam antennas because it provides two
antennas without requiring a second reflector. Consequently, with NASA's
permission, Hughes has designed the satellite antenna with a 3 meter
aperture for both transmit and receive.

2.1.2 Spacecraft Payload Block Diagram

The spacecraft payload shown in Figure 2-5 implements the require-
ments described previously. The upper portion of the diagram represents
the trunk service components and the lower half the CPS components. The
switches are shown in the TS mode configuration. Low noise amplifiers
(LNA) are installed at the feeds in order to establish the spacecraft noise fig-
ure before the losses imposed by the beam forming network of the CPS scan-
ning beam antenna are incurred. At the time this configuration was developed
the beam forming networks (BFN) loss was estimated to be over 3 dB. Recent
data from Electromagnetic Sciences indicates that the loss will be less than
1 dB. Consequently, the use of LNA at the feeds will be reevaluated in the
next phase of this program. The use of an LNA at each feed imposes a sig-
nificant weight penalty especially when redundancy is provided. The weight
penalty for using distributed LNAs is about 6 pounds. If the CPS LNAs wvere
redundant the weight penalty (including the redundancy switches) for distrib-
uted LNAs would be about 15 pounds. The trunk feeds are also provided
LNAs because several of them are also used for the scanning beams. Also,
at 30 GHz, the losses in waveguide runs are appreciable. The TS LNAs are
3 for 2 redundant because of the importance of each of the small number of
beams. CPS LNAs are single string to avoid the weight penalty associated
with providing additional LNAs and the associated switching for the large
number of receive scan beam feeds. There are 29 feeds for the receive
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TABLE 2.1. SERVICE REQUIREMENTS SUMMARY

Service
Requiremen Trunk Service Customer Premise Service
Coverage Four-by-four with two alternate nodes Two adjacent sectors in the earth,
(Los Angeles, Cleveland, New York, United States plus isolated spots in
Washington, Tampa, Houston) western United States
Burst data rates 258 Mbps, nominal Uplink:
H - 32Mbpsor
1 . 128 Mbps, nominal
Downlink:
1 - 256 Mbps
Interconnectivity | Four-by-four SS-TDMA Baseband processor and beam
forming network
Ground station 5 m (site diversity) 5 m for 128 Mbps
antenna size 3 m for 32 Mbps
Rain margin 18/8 dB (power) 15/6 dB (power + FEC)
(uplink/
downlink)
TABLE 2.2. TECHNOLOGY REQUIREMENTS
Satellite transmit antenna Diameter = 3 m
Peak gain > 51 dB (39 from boresight)
Satellite receive antenna Halfpower beamwidth equal to transmit
HPBW
Baseband procassor Scalsble to throughputs of 480 Mbps/
beam and 4 Gbps total
Satellite high power Primary HPAs: 40 W TWTA with
amplifier efficiency greater than 40%
Backup HPAs: solid state
IF switch matrix Scalable to 20 beams interconnect

scan beams. Individual receivers with 3 for 2 redundancy are provided for
the four active trunk beams because all trunk modes except Washington use
the same frequency. The receivers downconvert the signals to 6 GHz which
has been selected as the operating frequency of the IF switch matrix. The
switch matrix interconnects the four active uplinks with four active down-
links to provide SS-TDMA, A 6 by 4 matrix is used to provide redundancy.
Al ms frame is divided into subframes. During each subframe, each uplink
is connected to a single downlink. Over the course of the frame each uplink
is connected to each of the downlinks.
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The four trunk transmitters use 40 watt TWTAs as high power
amplifiers as required by NASA., The redundant transmitters are required
to be solid state. Hughes has chosen GaAs FET HPAs over IMPATTs -
because of the greater potential of the GaAs FET., This trade is discussed
in 3.2. A saturated output power of 7.5 watts is anticipated to be available
with these backup transmitters., The impact of this low power is discussed
in2.1.5.

The receive beam forming networks scan the antenna beams'over the
coverage area by switching the receiver input from feed to feed. Switching
is also provided to allow the New York and Washington receivers to be used
for the CPS when the system is in the CPS mode. The baseband processor
receives the 6 GHz output of the receivers. Each of these signals contains
either four 32 Mbps frequency multiplexed QFSK signals or a single 128 Mbps
signal. The signals are demodulated and the data stored until a downlink
scanning beam is pointed at the spot for which the data is intended, at which
time it is read out to the appropriate transmitter at a rate of 256 Mbps.

. 2.1.3 Satellite Antenna Pointing

A requirement to point the satellite antenna to within 0. 05 degrees
(30) of the designated target has been imposed to limit pointing loss to less
than 0.5 dB on the uplink. Because the spacecraft attitude cannot be main-
tained to this accuracy the antenna points independently of the spacecraft
attitude by tracking an earth based beacon. The antenna has two degrees of
freedom. Elevation tracking is provided by a mechanical drive which is
also used to rotate the reflector from its launch position stowed against the
top of the spacecraft cylinder to its deployed position. Azimuth tracking is
provided by the spacecraft despin system which despins the entire payload
equipment platform to point the antenna at its azimuth position. The error
signal for both the elevation and despin control systems is derived from a
two axis monopulse tracker. This monopulse tracker uses four auxiliary
feeds surrounding the Cleveland feed to measure the elevation and azimuth
errors relative to the beacon transmitted from the MCT at Cleveland. This
beacon could be located at a location less susceptible to rain attenuation
with the tracking feeds suitably relocated; however, the beacon which is
modulated by the command signal is narrowband and has a large rain margin.
Earth sensors, which are required for spacecraft attitude control as well as
for despin during transfer orbit operations, provide a less accurate backup
pointing capability in case of beacon outage.

2.1.4 Antenna Configuration Trades

Figure 2-6 illustrates the effect of scan loss on the gain of large
antennas operating at high frequencies, The curves apply to a beam which
is directed to Boston, 3 degrees from the antenna boresight. Because the
beam defocussing increases with the number of beamwidths by which the
beam is displaced from boresight, the off axis scan loss is particularly
severe at 30 GHz. This defocussing can be reduced by increasing the ratio
of focal length to antenna diameter (F/D).
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The practical focal length of a prime fed antenna is limited by the
" satellite dimensions to about 12 feet, A Cassegrain configuration allows
i this limit to be overcome. The focal length which can be obtained with a
Cassegrain configuration depends on the eccentricity of the hyperloidal
: subreflector. An eccentricity of 3 provides a 24 foot focal length., The
l diameter of the parent parabolic antenna is also 24 feet. (The 10 foot
antenna is an offset section of the parent parabola.) The Cassegrain antenna
then has an F/D = 1 compared to 0.5 for the prime fed configuration. , '

{ The original specification was for a 10 foot (3 meter) diameter for 4
the transmit antenna and a receive beamwidth equal to the transmit beam- -
width. At 20 GHz, a 6 foot (l.8 meter) diameter provides the required beam-
width, It can be seen that at the specified diameters, there is little advantage
to the Cassegrain configuration; however, for Shuttle diameter antennas

. which NASA considers appropriate to operational systems, the improvement

| provided by the Cassegrain configuration is significant. Consequently, the
Cassegrain configuration was selected., Also, since a 10 foot receive diam-
eter has been adapted, as discussed.in 2. 1.1 the Cassegrain configuration, ‘ 4
1 in conjunction with this increase in diameter provides a substantial increase ’
in receive gain. ‘

I 2. 1.5 Terrestrial Segtment
{

The terrestrial segment of the 30/20 GHz Flight Experiment system,
. Figure 2-7, consists of the master control terminal (MCT) and a CPS station
1 provided by NASA and trunk and CPS stations provided by experimenters.
- The NASA CPS station will be mobile.

- The MCT shown in Figure 2-8 located in Cleveland is a trunk station
i_ with the central control station (CCS) attached. The trunk station is com-
posed of a trunk terminal and two antenna sites. The antenna sites include

- the burst modems and all of the RF equipment. The trunk terminal includes
‘ the equipment which interfaces with the user, buffers continuous user data
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FIGURE 2-7. TERRESTRIAL SYSTEM

to convert this data to TDMA burst data and synchronizes the transmission

of the data bursts. The diversity switch connects the trunk terminal with

one or the other 5 meter antenna sites depending on the severity of rain
attenuation at each site. At the MCT one of the antenna sites is colocated
with the trunk terminal and the other is connected by a microwave link. The
MCT has, in addition to its trunk capability, a CPS capability with a 128 Mbps
uplink. This capability eliminates the need for a NASA CPS terminal with a

5 meter antenna in addition to the 3 meter CPS terminal.

The CCS controls the mission operations, the communication
operations, and the experiment operations. The mission operations which
included the operation of the spacecraft during launch and transfer orbit and
the maintenance of the spacecraft bus attitude, orbit and health throughout
the mission are supported by the mission operations computer. The com-
munication operations include the activities which coordinate earth terminals
and payload. These activities which include TDMA burst synchronization,
demand assignment, link control and payload control are supported by the
network control computer,

A typical TDMA trunk station shown in Figure 2-9 is identical to the
trunk service portions of the MCT. It includes the TIM, microprocessor
controlled TDMA terminal, and diversity switch. One of the two antenna
sites is collocated with the station and the remote antenna site is connected
by a microwave link.

There are two types of CPS stations considered for this system
(Figure 2-10). One is a 5 meter antenna station which handles the 128 Mbps
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uplink burst rate and the other is a 3 meter antenna station with a 32 Mbps
uplink to burst rate. The downlink burst rate is 256 Mbps for both stations.
TDMA synchronization is accomplished with burst synchronizer and format-
ting, and decommutation is handled by microprocessor.

The RF parameters of the earth terminals are given in the next

section.
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2.1.6 Communijcation Link Performance
2.1.6.1 Spacecraft RF Performance

The spacecraft RF performance is summarized in Table 2-3. The
antenna performance is for a beam pointed at the vicinity of New York.
This beam is approximately 3 degrees from the antenna boresight. Con-
sequently, it suffers a loss of 1.6 dB on receive and | dL on transmit due to
off axis defocussing. The contour level loss suffered by the antenna in the
CPS mode results {rom the requirement for contiguous coverage. The
stated loss is for a feed system in which each spot beam is associated with
a single feed. This loss can be reduced by more complex feed struciures;
however, except for an experiment involving two feeds, che performance of
the simpler arrangement was accepted. Also, a higher gain is available
over most of the coverage area. As shown in Figures 2-11(a) and (b) the
loss can be reduced from 8 dB in transmit to about 4 dB by giving up
14 percent of the area and to 3 dB by sacrificing 35 percent of the area.

The transmit circuit loss for both TS and CPS includes 0. 15 dB for

the circular switches used to select the power amplifier, 0.3 dB for five
feet of WRS51 waveguide from the output circuits to the antenna feed.

TABLE 2.3. SPACECRAFT RF PERFORMANCE

19.0 GHz 28.8GHz
Antenna Trunk CcPs Trunk crs
Diameter, m 3 k) 3 3
Peak gain (3° from boresight), d8 531 $3.1 56.1 56.1
Contour fevel, dB - 8 - 71
Feed los, dB 1.8 1.9 0.9 09
Net gain, d8 $1.5 43 58.2 48.1
TWTA SSPA

Transmit (19 GMHz) Trunk cPs Trunk crs
Power out, IBW 18 (40 W) 16 (40 W) 8L (7w 8507w
Circuit loss, d8 048 0.48 048 048
Power 1o antenns (dBW) 15.8 (3B W) 15.5 (38 W) 8 (64w 8 (64W)
EiRP, dBW (.74 885 505 81

Receive (28.8 GMz) cPS Trunk
Antenng tempersturs, K 290 290
Receiver noise figure, dB 5 (6279K) 8 (627°K)
Circuit loss, dB 0.4 0.7
System noise temperature, dB-9K 0 0.3
G/T, d8 18,1 249

2-13
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The satellite receiver noise figure is for a four stage GaAs FET
amplifier with a 4.9 dB noise figure and about 30 dB of gain followed by a
receiver with a 7.5 dB noise figure. The circuit loss is made small by A
the placement of the LNAs near the feeds. The trunk loss is slightly htgher
because of the associated redundancy and cunfiguration switches.

2.1.6.2 Earth Terminal Performance

The performance of the earth station RF is shown in Table 2-4. The
antenna diameter was specified by NASA., The 5 meter CPS stations are
capable of a 128 Mbps uplink. The 3 meter stations are limited to 32 Mbps.
The antenna efficiency is 60 percent before accounting for surface tolerance
losses of 2.0 dB at 30 GHz and 1.0 dB at 20 GHz. These losses are based
on a tolerance of 0.64 mm rms and an F/D of 0.5. The maximum transmitter

TABLE 24. TERRESTRIAL RF PERFORMANCE

Trunk CPS
Antenna Diameter, m 5 5 3
28.8 GHz
Transmit gain, dB 59.7 59.7 556.3
Transmit loss, dB -1.3 -1.3 -1.3
Transmitter power, dBW 21 (125 W) 13 (20 W) 13 (20)
EIRP, dBW 79.4 71.4 67
19 GHz
Receive gain, dB 11 67.2 57.2 52.7
Receive loss, d8 0.5 0.5 05
§ky noise temperature, 260 260 260
K
Receiver noise figure, dB 1.9 1.9 19
System noise temperature, | 26.8 (479°K) | 26.8 26.8
dB °K
. G/T 304 304 259
bt
-3d8
8 cal
; :
& INY
a
a) 38 PERCENT TOTAL COVERAGE AREA LOSS . bl 14 PERCENT TOTAL COVERAGE AREA LOSS

FIGURE 2-11. REDUCED AREA COVERAGE
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power for the trunk service is 125 watts. In clear weather the transmitter
is backed off by 18 dB. The power is continuously adjusted to match the
rain attenuation. The 5 meter CPS terminal transmitter has a saturated
output of 20 watts for the 128 Mbps signal. The 3 meter CPS terminal uses
the same transmitter for the 32 Mbps signal.

The sky noise temperature in clear weather is only 60°K but a sky
temperature of 260°K is used to compute the system temperature because
of the increase in sky temperature when rain attenuation is present. This
high sky temperature reduces the benefit obtained by cooling the low noise
amplifier. A GaAs FET noise figure of 1. 9 dB is expected to be achievable
at room temperature for this mission. Cooling would improve G/T less
than 1 dB. '

2.1,6.3 Trunk Link Budget

The trunk liak budget is shown in Table 2-5, The basis for the EIRP
~and G/T were given in the previous sections., .

The earth station antenna pointing error includes +0. 02° for space-
craft orbital motion and £0. 03° due to antenna setup errors and environ-
mentally induced errors. This error could be reduced to a negligible value
by autotracking or, perhaps, steptracking and might be reducible by more
elaborate setup procedures and a more expensive structure. The potential

TABLE 2-5. TRUNK LINK BUDGET (d8)

Downlink Downlink
Uplink, TWTA, SSPA,
Component 28.8 GHz 19 GHz 19 GHz
EIRP, dBW 79.3 67 59.5
Pointing loss (transmit) 15 0.2 0.2
Path loss 213.1 209.5 209.5
Rain attenuation 18 8 05
Atmospheric loss 0.7 1 1
Pointing loss (receive) 0.6 0.7 0.7
G/T (dB/°K) 249 304 304
Boltzmann’s Constant, -228.6 -228.6 -228.6
dBW/OK — —_—
C/Ng 98.9 106.6 106.6
C/N,, end-to-end 98.2 98.2
Data rate (256 Kbps) 84.1 84.1
Eu/No Xl KXl
Ey/Ng, required _141 141
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reduction of the downlink pointing loss of 0.7 dB does not justify the additional
expense and, although the uplink loss of 1.5 dB is considerable it appears
less costly to compensate with increased transmitter power. Improvements
in antenna technology could alter this conclusion. The polarization loss due
to depolarization by rain is considered part of the rain attenuation.

The link requirement that E|,/Ny = 14. 1 dB includes 3.5 dB for
implementation,  interference. and nonlinearity degradations and 10.6 dB
to achieve a 10-6 BER.

. The 40 watt TWTA, required by NASA for reasons of technology
development, allows the trunk link requirement to be satisfied with a 120 watt
earth terminal transmitter. When the 7 watt SSPA is used the link require-
ments can only be met with a 0.5 dB downlink rain margin rather than the
required 8 dB. The 8 dB margin could be restored by increasing the earth
terminal transmitter output to 550 watts.

'2.1.6.4 CPS Link Budgets

The CPS uplink budget is shown in Table 2-6. The downlink budget
is shown in Table 2-7. Because of the regeneration of the digital signals by
the BBP the up and downlinks are independent and each is allocated one-half

TABLE 2-6. CPS UPLINK BUDGET

Sm 3m
Component (128 Mbps) {32 Mbps)

EIRP, dBW 714 67.0
Pointing loss 15 15
Atmospberic loss 0.7 0.7
Path loss 2131 2131
Rain attenuation prior to use of FEC 76 7.6
G 18.1 18.1
Boitzmann’s Constant (dBW/°K) 228.8 -228.6

C/N, 95.2 90.8
Data rate 81.1 _7i1_

Ep/Ng Tan 15.7
Rate change gain 3 3
Coding gain 44 44
Additional rain attenuation when FEC 74 7.4
applied
Equivalent E;,/N, at maximum 14.1 16.7
attenuation
Required E;,/Ng 14.1 141

Margin 0 1.6
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TABLE 2.7. CPS DOWNLINK BUDGET (256 Mbps)

5m 3m
Component TWTA SSPA TWTA SSPA

EIRP, dBW 58.5 51. 585 51.
Path loss 2095 2095 209.5 209.5
Rain attenuation orior to FEC 2. 1.1 2. 0
Atmospheric loss 1. 1. 1. 1.
Pointing foss 0.7 0.7 0.7 0.7
G/T 304 304 25.9 259
Boltzmann’s Constant (dBW/OK) .228.6 -228.6 -228.6 -228.6

C/Ng 104.3 98.2 9.8 94.3
Data rate 84.1 84.1 84.1 84.1

Ep/Ng T202 1a.1 15.7 102
Rate change gain 3 3 3 3
Coding gain 44 44 44 44
Additional rain attenuation when 74 7.4 74 3.5
FEC applied )
Equivalent Ep/N, at max. rain 20.2 14.1 15.7 14.1
attenuation
Required E,/N, 14.1 14.1 14.1 14.1
Total rain margin 165 85 1" 35°

*1f FEC used on all channels

of the 10°6 bit error rates. The theoretical requirement for a BER = 0.5 x
1079 is Ep/Ngy = 11. 1. Three dB is added for impairments and interference
for a total of 14.1 dB. .

The uplink losses are the same as for the trunk link discussed above.

The rain attenuation, however, is handled differently because of the use of
FEC. The total uplink rain margin is required to be 15 dB. FEC provides
a gain of 7.4 dB of which 3 dB is due to a 2 to | reduction of the bit rate
when the rate 1/2 coding, is applied and the burst rate is unchanged. Thus,
a 7.6 dB power margin is required to complete the 15 dB rain margin. All
rain attenuation up to 7.6 dB is accommodated by boosting the terminal
transmitter power., The FEC is only applied when the attenuation exceeds
7.6 dB because a coded channel requires twice as much of the TDMA frame
as an uncoded channel. The received Ey /N, remains at the clear weather
values of 14.1 dB and 15.7 dB for the 5 and 3 meter stations respectively
until the attenuation exceeds 7.6 dB at which time FEC is applied and E,, /N,
increases. As the attenuation increases to 15 dB the effective E, /N drops
to the clear weather value. Note that the ratic of symbol energy to noise
density, Ep/N,, never drops below 9.6 dB so the coding gain does not fall
below 4. 4 dB.
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The downlink data rate is 256 Mbps for all cases. The normal mode
is to use the TWTA. A 2 dB power rain margin is provided so that FEC will
not be required for low rain rates which occur frequently. When the attenua-
tion exceeds the power margin, the FEC is applied. Again the 40 watt TWTA
is oversized so that a high Ey,/N, is obtained when 6 dB of rain attenuation is
experienced. Thus, a total rain margin of 16 dB is available for the 5 meter
earth terminal. Ancther way of presenting the link budget would allot a
8.6 dB power margin so that FEC would only be required when the attenuation
exceeded that value. The total rain margin is still 16 dB. A similar situation
obtains for the 3 meter earth terminal with a total margin of 12.2 dB. Of
course if the downlink rain attenuation reached these values the uplink would

not be available because the attenuation at 30 GHz would exceed the available
margin.

When the SSPA is used with the 5 meter terminal the rain margin still
exceeds the required 6 dB; however, the combination of SSPA with 3 meter
terminal requires FEC even in clear weather. Thus, if a TWTA failed and
were replaced by an SSPA only coded signals could be successfully trans-

" mitted to the 3 meter terminals.

2. 1.7 Propagation Reliability

The performance of the communication system and the resulting rain
margins were discussed in the previous section. An estimate of the propa-
gation reliability associated with these margins is given in this section.

The relation between rain margin and the percentage of the time that
links are out of service because of rain is not generally established.
Experimental data exists for a very limited number of locations in the United
States and for very limited periods (1 or 2 years). Because of the great
variations in rain rate characteristics between even areas in the same rain
zone and from year to year it is difficult to extrapolate this data to predict
rain outage in a particular location for any year or to predict rain outage
averaged over a long period of time (e.g., 10 years). Another approach to
estimating rain outage is to use one of the models which has been developed
for this purpose. The model divides the world into rain zones. Each zone is
associated with a frequency distribution of rain rate. The model combines
this data with the physics of rain attenuation and a model of rain height to
determine the irequency distribution of rain outage.

The modified Global Prediction Model (Cruse and Blood, 1979) pre-
sented in the NASA Communications Division Publication ""A Propagation
Effects Handbook for Satellite Systems Design'' pages 6-18 to 6-26 was used
to develop the propagation reliability estimates presented below,

For each selected location ground station latitude, longitude and
altitude, and satellite elevation angle are entered into the model. Results
are shown in Figure 2-12(a) for the 20 GHz downlink and in Figure 2-12(b)
for the 30 GHz uplink. Results are given in terms of the propagation
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reliability or hours per year of outage as a function of the rain margin

\ provided. The specified rain margins are shown. For the 20 GHz downlink

{ the specified rain margins are 8 dB for the trunk and 6 dB for the CPS. The

lowest propagation reliability in the system is, as expected, the Houston CPS

link which has a reliability of 99.5 percent. This reliability is also achieved

on the 30 GHz uplink indicating a good balance of rain margins. The single

site trunk reliability is only slightly better; however, site diversity is

. available for trunk sites. The diversity improvement was estimated using

k the technique of Goldhirsch and Rohrsik. For a 14 km site separation, a

i single site attenuation of 24 dB at 20 GHz is associated with a diversity gain
of 16 dB. Thus, when an 8 dB rain margin is provided at each of two
reundant sites the resulting propagation reliability is the same as would be
achieved by providing a 24 dB rain margin at a single site. The resulting
reliabilities are shown for several downlinks. Similar results are obtained
at 30 GHz.

For a link to be useful in most applications it is necessary that the
N link be available in both directions. The propagation reliability of some
| duplex trunk circuits is given in Figure 2-13 and for CPS links in Figure 2-14.
! The use of diversity saves about 24 hours per year on the Houston- Washington
circuit and about 11 hours on the LA-Washington circuit. Almost all of the
gain on the LA-Washington circuit is due to the diversity of Washington. In
l general, it does not appear cost effective to apply diversity to terminals in
the arid West since the single site reliability of these stations is higher than
. the reliability with diversity in the rainy areas of the country. The reli-
l ability of the CPS circuits which terminate at an Eastern city run between
99.5 percent and 99.9 percent for the specified rain margins.

2.1.8 Telemetry Tracking and Command

& Sna——
. «

The telemetry tracking and command (TT&C) system will operate on

two frequency bands. During transfer orbit, the TT&C system will operate

i at S band in conjunction with the NASA STDN network. Once the satellite is
at its orbital station, the TT&C function will operate through the 30/20 GHz
payload as discussed below. If the 30/20 GHz TT& C link should become

!' unavailable because of an anomaly or severe rain attenuation the on-station
TT& C function can return to the S band mode. The S band TT&C links operate
through the NASA standard near earth transponder (NASA/SNET).

The satellite TT& C configuration is shown in Figure 2-15. When the
satellite is in its normal on-station mode it receives the 30 GHz carrier
containing the command and ranging information on the Cleveland beam of the
multibeam antenna. As shown previously in the payload block diagram, the
uplink TT& C signals are always continuously available whether the Cleveland
beam is being used as a fixed beam in the trunk mode or as a scanning beam
{ in the CPS mode. The TT&C signal is separated from the communication
{ uplink by a {requency diplexer and downconverted to the NASA/SNET frequency.

———
.
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The input signal to the NASA/SNET is identical to that received on the STDN
uplink. The S band telemetry and ranging signal generated by the NASA/
SNET can be switched between the S band antenna and the 20 GHz upconverter.
The upconverted signal is transmitted over the 20 GHz beacon which also
serves the experiment plan discussed in the next section. The beacon trans-
mitter iz an 0.5 watt GaAs FET amplifier. The beacon antenna is a horn
with half power beamwidth of approximately 3 by 6 degrees which covers all
of the contiguous United States.

2.1.9 Payload Weight and Power

Table 2-8(a) summarizes the weight of the spacecraft payload.
This weight is well within the capability of the LEASAT bus. Table 2-8(b)
gives the prime power requirement imposed by the payload. In the trunk
mode, which sizes the solar panels, the largest user is the transmitter
whose 4 TWTAs consume 460 watts. When a 7 watt SSPA replaces a 40 watt
TWTA, the power requirement drops by 43 watts. In the CPS mode only two
g;;nmitters are used. This power savings offsets the requirement of the

Another power related spacecraft problem is that of dissipating heat
generated on the payload platform. Table 2-8{c) surnmarizes this dissipation.
Again, the power dissipated by the BBP in the CPS mode is offset by the
reduction of TWTA dissipation.
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* TABLE 28(s). SPACECRAFT
PAYLOAD WEIGHT

{

{

{ item Weight, Ib

. Antenna 189
Microwave 127.4
Baseband processor 11.2

i Total 4276

. TABLE 2-8(b). SPACECRAFT PAYLOAD POWER
REQUIREMENT

i 1tem Trunk Mode, W CPS Mode, W
\ Antenna 2 10
Microwave 521 288
! Baseband processor 41 225
' Toul 564 503

TABLE 2-8(c). PAYLOAD POWER DISSIPATION

Trunk CcPS
Item 4 TWTAs 2 TWTAs/2 SSPA 2 TWTAs 1 TWTA/1SSPA

Antenna 31 17 20 12
Equipment platform

Microwave 377 346 196 181

88pP 41 4 22% 225
Equipment platform

Total 418 3.;7 421 406

Psyload total 449 404 44) 418
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2.1.10 _C_)Btiom

Two options, specified by NASA, were examined to determine their
impact on spacecraft weight, power, and cost. Option | is to eliminate one
of the two CPS scanning beams and to reduce the throughput of the remaining
beams from four 32 Mbps and one 128 Mbps uplink channels to a pair of

32 Mbps channels. The downlink burst rate is reduced from 256 Mbps to
128 Mbps.

The purpose of considering Option 1| was to reduce payload weight
and cost and increase the spacecraft weight margin. The weight saving in
the antenna is only 16 pounds because the reflector system, antenna support
structure, and telemetry are unaffected. The BBP weight reduction of
33 pounds is more significant. The BBP power requirement in the CPS mode
is reduced from 225 watts to 89 watts but the solar power requirements are
driven by the trunk mode. In any case, neither weight nor power differences
impact the choice of spacecraft bus.,

Option 2 adds a four beam by four beam FDMA routing experiment to
the baseline communication systemn as shown in Figure 2-16., The nodes
selected for the FDMA experiments are the same as the fixed trunk beams

in the baseline. Full interconnectivity is provided by the wavaguide
connections.

Option 2 does not significantly affect power and only increases pay-
load weight by 16 pounds. Since paylosd weight margin is more than adequate
it appears that this experiment would be accommodated.
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2.2 COMMUNICATION SYSTEM CONTROL

The design and performance of the communication links have been
summarized in Section 2.1. This section describes the functions of the sys-
tem which controls the operation of these links. Several aspects of the com-
munications system and its use must be controlled.

1) Channel access. In an operational system with many users whose
traffic requirements vary over time and location it is necessary
for efficient operation to assign time and frequency channels to
uscers as they are needed and in a way that avoids interference
between users. The problem of controlling channel access is
discussed in 2.2.1.

2) Systr.n syachronization. In order to implement the control of
char.\~i access it is necessary to synchronize earth station
transraissinns with each other and with the spacecraft switching
functions. The method for doing this is described in 2.2.2.

3) Link cortrol. Rain margins for a 30/20 GHz system will be con-
siderably larger than those provided at C and Ku Band. In order
to maintain uplink carrier to interference ratio it is necessary to
control earth station transmitter power so that the carrier power
density of all signals received at the spacecraft are approxi-
mately equal. This requires that the transmitter power vary
with rain attenuation.- This problem is discussed in 2. 2. 3.

4) Payload control. The spacecraft payload has an IF switch matrix
for trunk service, a baseband switch for curstomer premise
service and a scanning beam antenna which uses a beam switching
arrangement. Another set of switches controls the flow of coded
signals to the baseband processor decoders. Subsection 2.2.4
describas the method of controlling the format and sequence of
these switching operations.

5) Station control. The operation of the stations is monitored and
controlled (in part for manned stations) by the central control
station. This task is discussed in 2.2.5.

2.2.1 Channel Access

In the 30/20 GHz flight experiment channel access is primarily a CPS
problem. In the trunk system the spacecraft routing between uplink and
downlink beams is preassigned. The user facility has the resnonsibility of
multiplexing data from its individual sources into sets of data. Each set is
composed of data for a particular downlink beam. The user facility informs
the earth terminal of the composition of the data stream. The earth terminal
has the responsibility of transmitting each of these sets of data at a time such
that the spacecraft IF switch routes it to the proper downlink.
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CPS data is not preassigned. Unlike the trunk service, the CPS
portion of the satellite communication system sets up a TDMA channel for
each message. The routing in the BBP is revised for each message initia-
tion or termination. The satellite antenna scanning format, however, is
preassigned. When an individual source initiates a call the earth terminal
will forward the channel request to the master control terminal (MCT) which
will assign a time slot for the data and notify the BBP when in the frame the
signal will be received and where it is to be routed.

2.2.2 System Synchronization

Each earth station transmission in this SS TDMA system must be
synchronized so that the burst reaches the satellite coincident with the
satellite window for that burst. In the trunk system the window is estab-
lished by the IF switch matrix which sets up a connection to route the burst
to the intended downlink. In the CPS system the window is established by the
BBP which assigns a destination to each received burst according to the time
it is received. If CPS terminals are synchronized with their BBP windows

- they will automatically avoid interference with uplinks from other terminals

in the same beam. Trunk terminals do not share beams in this system;
however, if there was more than one trunk station in a beam the same
principle would apply.

The NASA specification requires closed loop synchronization for both
trunk and CPS systems. Hughes has conceived closed loop synchronization
schemes which make use of the spacecraft switching to minimize the earth
terminal hardware requirements and the dependence of earth terminals on
the MCT. These schemes are described in the following sections.

2.2.2.1 Trunk Synchronization

Trunk synchronization involves timing the uplink burst transmissions
so that they arrive at the spacecraft when the IF switch is in the proper state
to route the signals to the desired destination. In order to allow trunk
stations to synchronize these transmissions with the IF switch matrix, a
loopback subframe is provided in the TDMA frame. During this subframe
the uplink signals are routed back to the transmitting terminal, By measuring
the truncation of a metric code by the beginning or end of the IF switch loop-
back subframe the terminal can determine whether its burst is early, late,
or on time. An initial estimate of the burst time is derived from orbit
data by the MCT. Burst times are measured from a downlink frame
synchronization burst received by the terminal from the MCT via the satellite
communication link.

2.2.2.2 CPS Synchronization

CPS sychronization is similar to trunk synchronization except that
the BBP measures the position in the frame of the metric code received
from the terminal relative to the assigned location and reports the error
back to the transmitting terminal. By synchronizing with the BBP the
terminal automatically synchronizes its burst with the scanning beam and
with other terminals in the same spot.
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2.2.3 Link Control

An important characteristic of any operational system at 30/20 GHz
is its approach to maintaining high propagation reliability despite the severe
degradation associated with realistic rain rates. Because of the uncertainties
in the statistics of this degradation and the novelty of the techniques which
are appropriate to this band, the demonstration of these techniques is an
important objective of the 30/20 GHz experiment program. The techniques
applied in the experiment programs are uplink power control at both the
trunk and CPS stations, gite diversity at the trunk stations, and forward
error correction coding in the CPS subsystem.

2.2.3.1 Trunk Station Link Control

Control of the trunk station link margin is illustrated in Figure [7.
The trunk station measures the signal to noise ratio of the 20 GHz spacecraft
beacon signal. These measurements are either relayed to the CCS for analy-
sis or processed by the local microprocessor computer. As the S/N

-decreases due to rain, the station begins .o increase its transmitter power (1).

When the transmitter power limit is reaciied, the CCS or trunk station initiates
diversity switching (2). In addition to the beacon signal, the CCS receives

rain gauge, BER, and spacecraft received signal strength measurements
which can be used for link margin control decisions. The implementation of
site diversity is discussed inthe Terrestrial Segment, Trunk Station Section.

2.2.3.2 CPS Station Link Control

Control of the CPS station link margin is illustrated in Figure 18.
The CFS station measures the signal to noise ratio of the 20 GHz spacecraft
beacon signal. These measurements are either passed to the CCS for analy-
sis or processed in the local microprocessor computer. The uplink trans-
mitted power is adjusted tn match rain attenuation. When the transmitter
power limit is reached, coding is invoked by the CCS. Bit error rate, rain
gauge data and satellite received signal strength measurements are also
available for link control decisions.

2.2.4 Payload Control

The most flexible satellite processor design concept isto use pro-
grammable random access memory (RAM) sequence controllers for each
of the multiple access switching modes: trunking IF switch, CPS store and
forward processor, and scanning beam controller. A circuit assignment
change is made by the central control station reloading the appropriate
RAMs via the command or data channel. For instantaneous frame change-
over, a ping-pong set of RAMs is used, updating a memory at a slow control
channel rate, The master station accumulates assignment changes and
implements total system frame changeover at pre-established sync times.
The payload control requirements were developed for this design concept
implementation,
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2.2.5 Station Control

All remote trunk and CPS stations are under control of the CCS. The
remote stations send station status and configuration messages to the CCS
via the orderwire or a terrestrial link. The CCS in turn sends experiment

TABLE 2-9. SERVICE EXPERIMENTS

Experiment as Designated in NASA LeRC
“Experiments Planning Document,” June 1980
1D No. Title Experiments in This Plan
PS-1 30/20 GHz Propagation Measurements 5.2,6.5
PS-2 Prop Constraints on Digital Systems 6.3,8.2
PS-3 Prop Constraints on Scanning MBA Systems 8.2
PS-4 Above 40 GHz Propagation Equipment not available in baseline system
PS-5
PS-6
PS-7 )
PS8 Demon of Voice, Video and Data Services Carrier experiment
PS-9 FDMA/TDMA Operational Comparison Carrier experiment, Option 2
PS-10 Bit Stability During Switching 6.2
PS-11 Customer Premise Station
PS-12 Demand Assignment Control for CPS 7.2
PS-13 Narrowband FDMA System Carrier experiment
PS-14 System Synchronization Evaluation 43,6.4,7.1,8.2
PS-15 Heavy Route Trunking Applications Carrier experiment; see PS-8
PS-16 Long Haul Spacecraft Compatibility .| Carrier experiment
Experiment
PS-17 Long Haul Space Diversity Experiment Carrier experiment
PS-18 Service Demand Experiments - Non-Diversity Carrier experiment
PS-19 Service Demand Experiments - Diversity Carrier experiment
PS-20 Dynamic Traffic Model - Trunking Carrier experiment
PS-21 Dynamic Traffic Modei - CPS Carrier experiment
PS-22 Dynamic Traffic Mode! - Combined Carrier experiment
PS-23 C-8and and Ku-Band Experiments Equipment not available in baseline system
PS-24 Synchronization Parameterization 43,7.1
PS-25 Diversity Operation 6.2
PS-26 Link Power Controi 6.1
PS-27 Propagation Availability 5.2,5.3,6.3,6.5,8.2
PS-28 Market Development Experiment Carrier experiment; see PS-8
PS-29 Propagation Experiment 5.2,563,6.2,63,65
PS-30 User Acceptance Carrier experiment
PS-3i 30/20 GHz Propagation Phenomena 5.2,5.3,6.3,65,8.2
PS-32 Systems Impact of 30/20 GHz Propagation 3.1,5.1,6.1,6.2
PS-33 30/20 GHz Propagation Experiment 5.2,53,6.3,6.5,8.2
PS-34 Test Market Experiment Carrier experiment
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directives, and reconfiguration commands to the remote stations. These
messages are in addition to the normal exchange of channel assignments, link
control, and synchronization messages required for normal operation.

2.3 EXPERIMENTS
Experiments are the primary objective of the 30/20 GHz flight
experiment system. In this section, a detailed experiment plan is described

and then the experiment operations are discugsed.

2.3.1 Experiment Plan

2.3.1.1 Experiments Summary

The overall experiment plan has two primary objectives: 1) to eval-
uate and demonstrate the quality of communication service to be achieved in
an operational system in the 30/20 GHz frequency band, and 2) to evaluate
newly developed technologies whose performance is critical to successful

‘operation in this band. Although the actual experiments to be conducted dur-

ing the mission will be determined from the responses to the announcement

of opportunities to experiment this plan is based on the NSAS LeRC ""Experi-
ment Planning Document, " June 1980.

Experiments are broken into three categories: 1) service experi-
ments (Table 2-9), 2) service and technology experiments (Table 2-10),
and 3) technology experiments (Table 2-11), The ID numbers in the tables'
left columns are the codes used in NASA's document; the right columns indi-
cate the corresponding experiments in this plan with the first numbers indi-
cating the segments and the category of experiments. Of 68 experiments in
the Experiment Planning Document 58 are accommodated by the Hughes
design.

TABLE 2-10. SERVICE AND TECHNOLOGY EXPERIMENTS

Experiment as Designated in NASA LeRC
“Experiments Planning Document,” June 1980
1D No. Title Experiments in This Plan
PSAT-1 Air-to-Ground Communications CPS user experiment
PSAT-2 Spread Spectrum Feasibility Emergency service user experiment
PSAT-3 Muitilevel TWT Control Equipment not available
PSAT-4 Cophasing Parameterization Equipment not available in baseline system
PSAT-5 Cophasing Stability Measurements Equipment not available in baseline system
PSAT-6 Low Bit Rate FDMA/TDM Carrier experiment; see PS-13
PSAT-7 Variable Bit Rate SS-TDMA 8.1
PSAT-8 Trunking and CPS Experiments 43,6.1,64,7.1,8.1,8.2
PSAT-9 Space Diversity Experiment 6.2
PSAT-10 Adaptive Fade Compensation 6.1,6.2,8.
PSAT-11 Adaptive Polarizstion 1 3.1,5.1,5.2,65
2-33
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TABLE 2-11. TECHNOLOGY EXPERIMENTS

Experiment as Designated in NASA LeRC
““Experiments Planning Document,” June 1980

1D No. Title Experiments in This Plan
PT-1 Transponder Performance Evaluation 32,41
PT-2 20 GHz TWT Transmitter Experiments 3.2.3,4.1
PT-3 Muitiple Spot and Scanning Beam Antenna 3.1,42,72
Evaluation

PT4A Impatt Solid-State Transmitter
PT-4B GaAs FET Solid-State Transmitter
PT5

PT-8 Intersateliite Relay

PT-7 IF Switch Matrix Performance Test

PT8

PT-9 Baseband Processor Evaluation

PT-10

PT-11 Channel Interference Experiment

PT-12 Baseband Processor Error Detection and

) Correction

PT-13 Small Earth Station Dual Feed
Experiment

PT-14 Intersatellite Link

PT-15 30/20 GHz Muitiple Scanning Spot Bearn
Antenna

PT-18 Synchronization

PT-17 Intersatellite Link Capability
PT-18 Fade Control Techniques

PT-19 Ground Terminal Technology
PT-20 Antenna Pointing Accuracy
PT-21 Interference Assessment

PT-22 Intersatellite Link

PT-23 Network Link System Monitoring
PT-24 Muitiple Carricrs Per Amplifier
PT-25 Beam Acquisition and Tracking
PT-26 Prelaunch Simulation and Tests
PT-27 Fundamental Flight System Tests
PT-28 Technology Experiments

Equipment not available
322 4.1

Equipment not available in baseline system
3.24,4.1

3.2.5, 4.1

3.23,4.1,44
8.1

Carrier experiment

Equipment not available in baseline system
Equipment not available in baseline system

43,71

Equipment not available in baseline system
6.1,6.2,8.1 '

7.2

4.2,7.2

44

Equipment not available in baseline system
6.1,6.2,8.1

323,44

2.1,33

1.1,1.2

2.1

32,4.1,7.2
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3. COMMUNICATION PAYLOAD

The design for the communication subsystem components is presented
in Section 3. Although NASA is funding technology development studies,
which will result in proof of concept models for most of these components, the
design presented in this report is a Hughes design. This approach is taken
for two reasons. First, the technology studies were still in an early stage at
the time the design was made; and second, Hughes considers that it will be

.more competent to reach correct make or buy decisions and to effectively

procure components if it has been through the preliminary design process.
At this time no decisions have been made regarding the source of any of the
communication components. Make or buy decisions will be made early in
the system definition phase (Phase B).

3.1 SATELLITE ANTENNA

3.1.1 Requirements

The performance requirements were discussed in Section 2.! and
are summarized in Table 3. 1-1.

3, 1.2 Antenna Desij&

As discussed in Section 2.1 a Cassegrain configuration has been
selected to achieve an adequate F/D ratio. Other critical design issues are
the selection of a technique to scan the CPS beams and the integration of the
several antenna functions into a single physical antenna.

There are two methods of scanning independent multiple CPS beams
using a dual reflector (Cassegrain) configuration with a spherical wave
source. One method uses a small linear phased array which is imaged onto
a large main reflector by a suitably designed pillbox feed system. This tech-
nique, which would distribute the high power amplification among the feed
elements, is in too early a stage of development to consider for this flight
experiment. Also, a single 40 watt power source for each beam has been
specified. The other method uses an array of fixed feeds. A switching beam
forming network routes receive and transmit power to or from a particular
feed element or small group of feed elements. The beam is scanned by vary-
ing the switch connections in time. The latter technique has been adapted
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TABLE 3.1-1. PERFORMANCE REQUIREMENTS FOR MULTIPLE BEAM ANTENNA

Trunking Customer Premise
Service Link Fixed Beam Scanning Beam
Half power beamwidth, deg Up 0.27 recommended 0.27 recommended
Down 0.4 specified 0.4 specified
Operational frequency range, Up 27510 30.0 27510 30.0
GHz Down 17.7 t0 20.2 17.7 10 20.2
Bandwidth, GHz Up 25 25
Oown 25 25
Number of beams Up 4 simuitaneously 2 simultaneously
active (6 nodes) - active
Down 4 simuitaneously 2 simultaneously
active (6 nodes) active
Minimum peak gain Oown 51 81
3 deg off boresight, dB ‘
Isolation between beams, dB Up »26 >26
Down 226 226
Power handling capability, W Down 40 40
Pointing accuracy, deg 0.04 (30) 0.04
Polarization Both Linear Linear

for the flight experiment. The problems associated with successful use of
this technique are discussed later in this section.

The number of separate functions performed by the antenna is illus-
trated in Table 3.1-2, In addition to transmit and receive functions for both
CPS and TS it should be noted that for each CPS function there are two beams.
It is desirable, in order to minimize antenna cost and spacecraft weight and
complexity, to reduce the number of physical antennas in operational systems
as well as for the flight experiment system. As shown below, Hughes has
configured the antenna system with only one main reflector. This configura-
tion provides separate transmit and receive feed systems.

Because of the use of fixed feeds as the basis of the scanning beam,
those scanning beam feeds which point at trunk terminals can be used as the
trunk feeds. Thus the trunk and CPS feed arrays can be combined. The two
CPS beam feed arrays are essentially a single large feed array with separate
switching networks. Thus they readily share the same antenna. The only
problem, then, in satisfying all the antenna requirements with a single reflec-
tor is to separate transmit and receive feeds. It is undesirable to use com-
mon feeds for transmit and receive because it is difficult if not impossible
to achieve adequate performance in a close packed feed array for both bands.
Also, waveguide diplexers are lossy. Consequently, a means was sought to
provide separate feed regions for transmit and receive.

3.2




TABLE 3.1-2. ANTENNA REQUIREMENTS FOR BASELINE SYSTEM

Four Antenna Functions

1) Transmit TS signals % — Six tixed spot beams ~0.4° HPBW
2) Receive TS signals / A) e Six fixed spot beams ~0.3° HPBW

Two scanning spot beams two sectors {
~0.4° HPBW !

3) Transmit CPS signals / %

Two scanning spot beams two sectors
~0.3° HPBW

4) Receive CPS signals / %

Ara——
. .

. o A o e M e St

The method selected is depicted in Figure 3,1-1, Two focal regions
are created with a common aperture by utilizing a planar FSS. In this
example, the common aperture is a subreflector of a dual reflector antenna
system. The FSS spatially isolates the receive feed from the transmit feed
with the receive feed located about the secondary focus of the subreflector
and the transmit feed located about the mirror image of that focus. A two-
layer FSS structure designed as a two-section transverse electromagnetic
wave filter with the transmission characteristic depicted performs this
desirable function. This approach was selected for use in the dual reflector
configuration shown in Figure 3,1-2,

The sclected antenna subsystem configuration is shown in side and
front views in Figure 3.1-2. Three antennas comprise the subsystem:
1) communications; 2) tracking and command (T& C); and 3) beacon.

The communications antenna is an offset Cassegrain with a reflector
diameter of 3 meters (10 feet) and a prime focal length of 3. 66 meters
(12 feet). Offset, subreflector aperture, and focal length dimensions are
adjusted to allow use of a planar FSS between the subreflector and the
secondary focus at which the receive feed is located. The FSS is inclined
approximately 45° to the boresight symmetry plane of the reflector and
designed for low transmission loss at receive frequencies and low reflection
loss at transmit frequencies. The transmit feed is positioned at the mirror
image of the secondary focus which is at the side of the FSS in the front view.
This configuration spatially isolates the transmit and receive feeds and
allows independent design optimization.
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The T& C omni antenna uses a support structure similar to that of
the SBS omni antenna. Antenna stowage and deployment will be similar to
that of the SBS satellite.

The beacon antenna is an array of two pyramidal horns and is identi-
cal to the beacon antenna used cn COMSTAR except for its structural support
brackets.

The communications antenna performs a number of functions as
described previously and the basic circuit block diagram that is used to
describe how they are accomplished is given in Figure 3.1-3., There are a
total of 29 receive feed horns and 15 transmit feed horns associated with the
same diameter reflector and geographical coverage areas. The allocation
of these feeds for accomplishing the four basic functional requirements for
trunk and CPS signal routing internal and external to the subsystem is
explained in the subsequent paragraphs. Low noise amplifiers (LNA) are
provided at the feeds to improve system noise temperature.

The trunking portion of the antenna has six feeds on both transmit
and receive. Only one feed horn is used to generate a beam at a trunk node.
Four of the six beams can be used at any time. Low speed latching switches
connect either New York or Houston and either Washington, D.C. or Tampa
to the transponder. Three LNAs are provided for each pair of feeds to help
ensure that all trunk beams are usable with three for two redundancy.

There are two scanning beams for transmit and two for receive.
Because the receive beamwidth is two-thirds that of transmit about nine-
fourths as many receive horns are needed as for transmit to scan a beam
over the same sector. On receive, one scanning beam serves the east coast
sector with 13 spots plus an additional spot for Seattle. Two of the beam 1
spots are generated for New York and Washington, D.C. by sharing trunk
feeds as shown. Low speed latching switches switch these feeds from the
trunk waveguide to the CPS beam forming network. The other 11 spots have
dedicated feeds. A total of fourteen horns is used therefore in the sector |
receive beam forming network (BFN). The second scanning spot beam serves
sector 2, adjacent to sector 1, also with 13 spots. One of the beam 2 spots
is created by a shared Cleveland trunk feed and the remaining spots by
12 dedicated feeds. Two additional feeds for covering Denver and San
Franciico are connected to the sector 2 receive BFN giving it a total of
15 feeds. The LNAs for the CPS feeds are nonredundant except for spots
using trunk feeds.

Each transmit scanning beam serves six spots per sector. The
sector | BFN shares two trunk feeds for New York and Washington, D.C.
and uses four dedicated feeds for the rest of the sector. Seven feeds in all
are needed since an additional feed is dedicated to Seattle. The sector 2
BFN has a total of eight feeds with one trunk feed shared for Cleveland,
five dedicated feeds for the rest of the sector and two dedicated feeds for
Denver and San Francisco.
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! Four auxiliary tracking feeds are included in the receive feed
clustered about the Cleveland horn to provide signals for the monopulse
tracking system. As shown in Figure 3. 1-4, the tracking feed array includes
a sum channal horn and four auxiliary feeds which surround the sum horn.
Other horns identical to the sum horn are added where necessary to ensure
a uniform mutual coupling environment to all four auxiliary tracking feeds.
These additional like horns can be those used for communications if the
beacon is completely within one of the scanning beam contiguous areas. If
the beacon is in an isolated beam, the dummy horns are not required. The
three hybrid coupler comparator network with two 90° fixed phase shifters
produces two signal pair differences, i. e., azimuth and elevation signal out-
puts and connects the four horn array to the remai G - of the receive tracking
network shown in Figure 3.1-3, This technique is t:eing implemented in the
Space Shuttle Ku band radar communications antenna system.

Figures 3.1-5 and 3. 1-6 illustrate the method uf scanning a beam
using a beam forming network (BFN). In the receive network the feeds are
connected to the receiver through a switching network which, under control
of the scan controller, connects one feed at a time to the receiver. The
switches are high speed ferrite circulators with semiconductor driver cir-
cuits. The transmit BFN operates the same way to sequence the high power
amplifier output to each of the transmit feeds. Coverage of the east coast
sector by this technique is shown in Figure 3. 1-7. The limitations of this
approach are illustrated in Figure 3. 1-8. Because of the finite size of the
feeds (approximately two wavelengths in diameter) the coverage overlap is
limited as shown. A terminal at the intersection of three spots would experi-
ence an uplink gain which is almost 7 dB below peak gain and a downlink gain
over 8 dB below peak gain. If the coverage shown in Figure 3. 1-9(a) can be
accepted the gain loss reduces to about 4 dB and about 14 percent of the total
coverage area is lost. If the coverage loss is limited to 3 dB, as shown in
Figure 3. 1-9(b), then 65 percent of the area is covered.

. The BFN design described above provides adequate performance for
the flight experiment because the links can be closed using the specified
l' 40 watt satellite HPA and modest earth terminal transmitters. The required
link margins are achieved even with the area losses of 7 and 8 dB: however,
for operational systems better performance over an area covered by spot
beams is desirable. One means of improving this performance is by sharing
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power between contiguous feed elements to form doublets.
erate these doublets it is necessary to replace the switches

In order to gen-
of Figure 3. 1-5

and Figure 3. 1-6 by variable power dividers. The capability of generating

a doublet has been implemented in the area between New York and Washington.
Thus the switch in Figure 3. 1-6 and Figure 3. 1-7 which switches between

the New York and Washington feeds is replaced by a variable power divider.
which can apply all power to either the New York or Washington feeds or
share the power equally between these feeds to create the doublet shown in
Figure 3.1-8. The doublet provides a 2 dB improvement for terminals at

the intersection of the beams.

28.8 GHz 19 GHz
13 SINGLETS 6 SINGLETS

WASHINGTON D.C.

SATELLITE AT 100 DEG
WEST LONGITUDE

FIGURE 3.1-7. SECTOR 1 TRUNK/CPS COVERAGE
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3.1.3 Electrical Performance

The electrical performance of the antenna is given in Table 3, 1-3.
The net gain in the bottom line is the gain used in the link budgets. The
8.1 dB and 7.1 dB losses for area coverage apply to CPS terminals located
equidistant between three beam peaks.

3.1.4 Technology Status

Key component technology status is summarized in Table 3. 1-4. New
technologies are in the reflector with its large surface area and small sur-
face tolerance, the 30 GHz LNA with a desired 5 dB noise figure and the
integration of all components with a steadfast accurate alignment after
reflector deployment. The reflector will be made with graphite structure
that must be mechanically and temperature stable. The subreflector will
also be made of graphite. For the subreflector size envisioned, experience
with the Ku band Shuttle center fed reflector should extend to the hyper-

boloidal design without difficulty.

LNA technology status is discussed with the minrowave subsystem.
The integration and alignment of an offset Cassegrain antenna system with
two reflectors, an FSS plate for separating transmit/receive feeds, a
30 GHz tracking feed and high speed beam forming networks using 30/20 GHz

TABLE 3.1-3. BASELINE CPS/TS ANTENNA PERFORMANCE ESTIMATES
Cassegrain Configuration Main Reflector Dia: 3 M (10 ft)

Service
Parameter Trunking Customer Premise
Frequency, GHz 19 288 19 28.8
Haif power beamwidth, deg 04 0.27 04 0.27
Directive gain of singlet on boresight, 55.7 59.3 58.7 59.3
100% aperture efficiency, dB s
Losses due to illumination taper 2.6 3.2 2.6 3.2
spillover and scan
Directive gain of singlet scanned 53.1 peak 56.1 peak 53.1 peak 56.1 peak
3.2° Az and 0.4°9 El, dB"
Area gain loss due to operation off Negligible Negligible 8.1 71
beam peak
Polarization loss, dB 0.1 0.1 0.1 0.1
Feed losses, dB
Frequency selective surface (FSS) 0.5 0.5 05 05
Switching circulator, high speed - - 0.6 -
Switching circulator, low speed 0.5 0.2 0.3 0.2
Waveguide and horn 0.5 0.1 05 0.1
Net loss 1.5 0.8 1.9 08
Net gain, dB 51.5 55.1 43.0 48.1
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TABLE 3.14. ANTENNA TECHNOLOGY ASSESSMENT

Component/Activity - Technology Status

Reflector, paraboloidal New technology (graphite) large accurate surface

Subreflector, hyperboloidal Ku band shuttle (graphite paraboioid)

30/20 GHz FSS Design technique exists

Feed horn Designs scaled from lower RF

LNA Device expected to achieve 5.0 dB NF

High speed switch Designs exist at other frequencies

VPD and driver Receive:  Scaled version of transmit
Transmit: Existing technology

Tracking feed Several approaches related to existing technology,
e.9., Ku band shuttle radar/communications antenna

T&C omni-antenna GOES/GMS design

20 GHz beacon antenna Existing technology

Integration New technology

circulator switches represents a new satellite subsystem technology. The
use of 30/20 GHz frequency components will place emphasis on their accurate
alignment by specifying fine tolerances throughout the subsystem that signifi-
cantly exceed those encountered at lower satellite communication bands.

3,1.5 Weight and Power

Weight and power estimates for antenna subsystem components are
given in Table 3, 1-5, Major weight contributions are from the reflector and
support structures. The baseline transmit and receive feed weights, includ-
ing the tracking circuit, total 48 pounds or 25 percent of the total subsystem
weight. For option 1 the total feed weight is 34 pounds, or 19.6 percent of
the subsystem weight. Feed horns are conical and of aluminum construction.
T& C omni antenna and beacon antenna weights are known quantities, since
existing designs are assumed. ’

Also, included in Table 3. 1-5 are estimates of total power consump-
tion for the switches and VPDs in the baseline and optional subsystems for a
typical uplink/downlink interconnectivity plan for which a TDMA frame time
of 1 ms is divided into as many subframes as there are CPS feeds. The
baseline CPS feed power consumption is nearly halvad in relation to the
option 1| CPS feeds. This is due to the reduction of scanning beams from
two to one, which thereby reduces the number of control switches from 26
to 14 in the option 1 receive CPS feed, and from 12 to 8 in the o':tion 1 trans-
mit CPS feed. LNA power consumption is based on all LNAs being active
except for the two redundant LNAs (baseline and option 1).
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TABLE 3.1-6. ANTENNA SUBSYSTEM WEIGHT AND POWER i
] {
3. Total Power, W ‘ J
, Quantity Total Weight, b Baseline Option 1 3
Component Baseline Option 1 Baseline | Option1 | CPS | Trunk | CPS | Trunk ‘%
Reflector 1 1 50 50 ;
Subreflector 1 1 6 6 :
30/20 GHz FSS 1 1 5 5 ;
Receive feed
Horn a2 19 » 128 76 ¢
LNA 32 19 8.4 38 | 5.2 08 | 3.2 0.8 .
Low speed circuiator 18 17 1.6 1.5 Nil Nil Nil Nil
switch
High speed circulator 27 15 24 14 24 14
switch
Transmit feed i
Horn 18 13 12.6 941
Low speed circulator 7 6 - 0.7 0.6 Nil Nii Nil Nil
{ switch
. High speed circulator 13 9 1.3 09 1.2 0.7
switch
; Waveguide interconnection, | 1 set 1 set ] 5 . ‘ ;!
i TX and RX Lo
$c Receive tracking circuit 1 1 4 4 1 1 1 1 ;
. T&C omni antenna 1 assembly | 1 assembly 0.6 0.6 .
! Telemetry beacon antenna | 1 assembly | 1 assembly 78 7.8 :
‘ Support structures 1 set 1 set 61.8 60 ; 4
- Miscellaneous 10 10 !
‘ Totals 189 173 938 18 | 63 18 ;

*As of 26 June 1981.
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3.2 MICROWAVE SUBSYSTEM

3.2.1 Subsystem Design

The composition of the microwave subsystem is illustrated in
Figure 3.2-1. The frequency conversion plan is shown in Figure 3,2-2.
The microwave subsystemn frequency plan selection is based upon the con-
siderations listed below:

1) Compatibility with the entire available frequency band
2) Spurious responses

3) Simplicity of local oscillator design

4) Compatibility with IF TDMA switch matrix

5) Avoidance of spectral inversion

The frequency plan chosen should meet the criteria listed in items 2
through 5 over the entire band available for use, i.e., 27.5 to 30 GHz for
the uplink and 17.7 to 20. 2 GHz for the downlink. The requirements to use
a SS TDMA switch dictates that a dual conversion frequency plan be used
since implementation of this switch at the output frequency range is very
difficult and costly. Ease of local oscillator implementation and the desire
to avoid spectral inversion leads to the use of low side downconversion and
upconversion to avoid the generation of very high local oscillator frequencies.

Figures 3.2-3 and 3. 2-4 show the gain distribution and signal levels
for the CPS and trunk service links. The level associated with each stage
is the level at the input of the stage above the level number given in each
block. The signal level at the. antenna output is calculated from the system
noise density, data rate, and uplink Eb/No data as given in the link budgets
of section 2.1 of this report.

The solid state power amplifiers are not shown in Figure 3.2-3 and
3.2-4, however the SSPA gain is apprcximately 7.5 dB less than the TWT
and is consistent with the SSPA power output of 7 watts. Automatic gain
control (AGC) is implemented in the IF amplifier section of the upconverter,
The AGC is placed in this unit so that it can compensate for gain variations
of all components prior to the upconverter., The AGC dynamic range require-
ment is determined by the minimum input level for the CPS aprlication and
the maximum upconverter input level associated with the higher data rate
trunk service. This level range is 15.3 dB; the actual design requirement

of 20 dB includes margin for gain drift of all components preceding the
upconverter.
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3.2.2 Transponder Components

3.2.2.1 Receiver Deoiﬂ

As discussed in Section 2. | the satellite payload has been configured
with LNAs at the antenna receive feeds. The total receiver function is then
divided between the LNAs and the receiver.

3.2.2.1.1 Low Noise Amplifier Design

The LNA provides low noise amplification with sufficient gain to
establish the communications repeater noise figure. A low noise amplifier
based upon GaAs FET devices has been chosen for its combination of low
noise figure and its weight and power. A four or five stage GaAs FET low
noise amplifier will weigh less than 0,25 lb, require approximately 0.2 watts
of regulated power and enable a system design based upon a 5 dB uplmk
receiving subsystem noise figure, If a 0.1 dB post- LNA contribution is
allowed which is consistent with an LNA gain of 20 dB and a receiver noise

" figure of 7.5 dB then the LNA noise figure should be 4. 9 dB and the gain

should be at least 20 dB. To achieve the desired system noise figure it is
apparent a device noise figure of about 3.5 dB with an associated low noise
gain of 4.5 to 5. 0 dB is required.

The low noise amplifier using such a device is a four stage amplifier
consisting of a waveguide circulator at the input and two waveguide mounted
microwave integrated circuit (MIC) amplifiers each having two GaAs FET
low noise devices. An additional waveguide circulator is used between the
two sections of the amplifier., Figure 3,2-5 shows the configuration of a
two stage waveguide mounted amplifier.

CUTOBF WAVEGUIOE CHANNEL L]
oceLOCK a
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FIGURE 3.2-8. TWO STAGE AMPLIFIER CONFIGURATION
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221, 2 Receiver

‘Figure 3.2-6 is a block diagram of the system receiver. The receiver
includes one low noise RF amplification stage, a single ended waveguide first
mixer, the first local oscillator times 12 frequency multiplier, and a four
stage IF amplifier. The low noise RF stage is used to reduce overall receiver
noise figure to permit the use of a simple first mixer rather than resorting to
an image enhancement mixer. The first local oscillator and the input signal
are summed in a common junction diplexer consisting of a bandpass filter
centered at the signal frequency and a bandpass filter centered at the local
oscillator frequency. A low pass filter which has a cutoff frequency of
approximately 7 GHz is used following the mixer to reject signal and local
oscillator frequencies. The four stage IF amplifier uses high gain (12 dB
per stage), low noise GaAs FET amplitiers. Construction of the receiver
is in MICs except for the first mixer and the final times two {requency multi-
plier of the local oscillator chain.

3,2.2.2 IF Switch Matrix

The order of the IF switch for the flight experiment is 4 by 4,
however, the technology employed is required to be applicable to a 20 by 20
matrix. A coupled crossbar design has been determined to be optimum
because it can be easily packaged, made internally redundant, used in a
broadcast mode, and is smaller in size and weight especially in a high order
matrix switch.

Another tradeoff has led to the selection of GaAs FET switching
devices because of lower power consumption and higher switching speed.
A passive FET switch has tentatively been selected for the flight experiment
because it is somewhat more reliable and is easily implemented in mono-
lithic MIC; however, because of the greater loss of the passive switch, which
may lead to unacceptable total loss in the switch matrix for a 29 by 20 matrix,
an active switch will be considered in the next phase of the program. This
will especially be the case if the proof of concept developments being funded
at GE and FACC are successful with their active switch approach.
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The third design trade concerns the method of implementing
redundancy. Again previous in-house trade studies clearly favor the use of
the wraparound internal redundancy technique over other possible approaches.

The basic concept of the [F switch matrix is shown in Figure 3.2-7.
Redundant serial to parallel converters are used to convert the serial com-
mand data from the switch matrix digital control unit to parallel on/off sig-
nals routed to each crosspoint of the coupled crossbar switch matrix. The
redundant on/off crosspoint control signals are combined in a diode ''or' cir-
cuit contained in the switch driver circuit used with each crosspoint.

The six "R" switches at the inputs are used to select redundant paths
by routing the appropriate input signal to a redundant path. This is accom-

plished by changing the digital control unit program memory when a failure
is detected.

3,2.2.3 Upconverter Design

Figure 3.2-8 is a block diagram of the upconverter. A three stage
IF amplifier amplifies the signal prior to upconversion. The output of the
third stage is sampled, detected, amplified, filtered, and used to control a
current controlled diode AGC attenuator tn maintain a constant signal level
at the input to the upconverter mixer. The mixer is a balanced two diode
MIC mixer since conversion loss is not critical. The bandpass filter follow-
ing the mixer is a three pole, 0.1 dB ripple. Chebyshev filter constructed
in waveguide. This filter has an equal ripple bandwidth of 2 GHz. Net gain
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of the upconverter from IF input to RF output is 30 dB when the AGC attenua.
tion is minimum. AGC control range is 20 dB. All circuits except the out-
put bandpass filter are constructed in MIC.

3.2.2.4 TWT Characteristics

Table 3.2-] gives the TWT and the TWT power supply characteristics. .. ‘
Thene characteristics are based upon a recent proposal made by Hughes 4
Electron Dynamics Division for a 36 watt TWT at the same {requency.

3.2.2.5 Solid State High Power Amplifier Design

Table 3.2-2 is a comparison of the two design approaches considered
for the SSPA. At this point in time IMPATT is capable of higher device
power capability and higher efficiency; however, the GaAs FET power

!\
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TABLE 3.2-1. TWTA CHARACTERISTICS

® Helix type p\ !

® Three collectors for high efticiency :

o Frequency rangs 17.7t0 30.2 GMz )

o Ssturated gein S8 d8 '

©® Saturated powsr output 0w

o Etficiency 40% TWT

90% high voitage supply *
38% overall
o Weight, Ib
TWT 3
Power supply 7
*Corstant current linear regulator, efficiency at min or EOL bus
voitage = 90%.
TABLE 3.2-2. SSPA COMPARISON
Perameter GeAs FET Design impett Design

Efticiency, % 10 18
{including power supply)
RF power output, W 7 7
Total number of GaAs 12 18
FET preamp devices
Total number of high k .} 8 (2 watt), 3 (4.8 to 8 watt diodes)
power devices
Bandwidth >1 GHz easily achievebie Gain/bandwidth tredeoft
Stability Unconditionally stable Negative resistance devics
Effects on modulsted signsi Negligible Potentisl probiem sres for
fidelity injection locked design
Power device Lomion, ! <100 200 o0 250
tempersture, °C
Supply voitages, voit 8t 18 ) 70 to0 80; tight reguistion required
Growth capebility Greater potentisl Mgture technology

technology is rapidly changing. The comparison in one year could change in
favor of the GaAs FET as device power capability and efficiency can be
expected to improve and the GaAs FET approach has signilicant advantages
in several other respects.

A block diagram of the SSPA is shown in Figure 3. 2-9. Overall
transmitter gain is 48 dB.
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3.2.2.6 Telemetry Transmitter

The telemetry transmitter block diagram is shown in Figure 3., 2-10.
The telemetry subcarrier and the ranging baseband from the uplirk command
receiver circuits are combined and used to linearly phase modulate a
1.96 GHz carrier from the local oscillator source. A times ten frequency
multiplier multiplies the 1. 96 GHz carrier to 19. 6 GHz. A four stage GaAs
FET power amplifier provides a one-half watt power output. This trans-
mitter was used as a beacon on the COMSTAR satellites.
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3.2.2.7 Local Oscillator Source Design

Figure 3.2-11 is a block diagram of the local oscillator source. The
crystal oscillator frequency is set relatively high to reduce the frequency
multiplication ratio. This also reduces the phase noise generated in the

local oscillator frequency multiplier chain. The crystal oscillator is housed -

in a temperature controlled enclosure to ensure good frequency stability.

Two identical local oscillator sources are used in the microwave
subsystem and both have power on so that individual outputs can be selected
in the event of a failure.

3.2. 2.8 Monopulse Tracking Microwave Circuits

The implementation of the antenna monopulse angle tracking function
is shown in Figure 3.2-12. A single channel monopulse technique used suc-
cessfully in previous space programs provides angle tracking, T: antenna
uses four different feeds symmetrically spaced about the sum channel feed
horn and a comparator network of three waveguide magic tees to generate
azimuth and elevation error signals. These error signals are time-shared
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shared signal then goes through a bandpass filter which passes the command B i
carrier but rejects data carriers. The error signal is processed in a line \
length modulator with two circulator switches. The resulting biphase-
modulated error signal is summed in a directional coupler with the sum
signal and the relative phase adjusted to produce amplitude modulation of the

A received uplink command carrier. The combined signal is then amplified

k and converted to [F by the LNA and the receiver. The diplexer following the

:
' by a circulator switch which alternately selects one or the other. The time-
|

receiver separates the receiver IF output into data and command carrier

outputs. The command carrier, amplitude modulated with error signal

information, is then passed through an AGC circuit to ensure that the antenna/

receiver error transfer function remains nearly constant and independent of

command signal level variation. The AGC circuit output is then detected,

l synchronously demodulated, and separated into dc error signals whose

! amplitude is a function of angle error magnitude and whose polarity is a
function of error direction. A separate command and ranging demodulator

is used to demodulate the frequency modulated command and ranging signals.

o maa e e L

The time-sharing signal and error modulation are generated by digital
circuits and are low rate (5200 Hz) for compatibility with the low speed cir- A

L A A

culator switch in the antenna subsystem. The time-sharing signal period is
both synchronous with and twice that of the error signal.

3.2.3 Wei@ and Power

The component weights and power are listed in Table 3. 2-3. The .
upper portion of the chart lists components for the baseline system. The . ‘
lower portion lists additional components required for option 2. The option 2
receiver weight is increased by 0.5 pounds and power is increased by
0.5 watt because of the addition of an upconverter, additional local oscilla-
tor, multiplier, and RF output amplifier stages. The weight and power of
the LNAs is accounted for in the antenna subsystem.

L

3.2.4 Performance

3.2.4.1 OQutput Circuit Losses and Power Delivered to Antenna.

Table 3, 2-4 gives the circuit losses, amplifier power, and the power
delivered to the antenna feed for the four possible cases. The circuit losses
given in the table include 0. 15 dB for the circulator switches used to select
the power amplifier and 0.3 dB for the power monitor and harmonic filter.
The loss of 0.55 dB for five feet of WR 51 waveguide from the output circuits
to the antenna feed is accounted for in the antenna gain budget as is the loss
in the high speed beam forming network switches and the low speed antenna
configuration switches,

3.2.4.2 Channel Bandpass Characteristics s

The channel bandpass characteristics of primary interest are gain
flatness and phase linearity over the data bandwidth. The two principal con-
tributors to these parameters are the bandpass filter in the upconverter
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TABLE 3.2-3. MICROWAVE SUBSYSTEM WEIGHT AND POWER

Power, W Power, W
Companent Quantity® | Weight, Ib Trunk Mode | CPS Mode

Recsiver 4+2 18 30 18
|F diplexer 1 03
(F switch matrix 1 4 3
30 GHaz circulator switches 6 18
Upconverters and (F amplifiers 4+2 9 9 45
TWTA 4 40 460 230.0
Solid state power amplifier (SSPA) 2 14 ve i
20 GHz circulator switches 7 2.1
Monopuise and command electronics 1+1 8 3 3
IF coaxial switches 30 9
LO source 2 8 8 8
Telemetry transmitter 1+1 -4 6 6
Qutput power monitor 4 2 1.8 1.6
Qutput harmonic filters 4 1.2
Interconnections 8

Totals (baseline) 1274 520.6 268.1
20 GHz circulator switches 22 6.6
Additional for receiver 4+2 3 3 3
Demuitiplexer 4 48
Summer 4 16 - _

Additional for option 2 16.0 3 3

*Operating plus redundant,

**SSPA is used in place of a TWTA.

TABLE 3.2-4. CIRCUIT LOSSES AND POWER DELIVERED TO ANTENNA FEED

Power Amplifier Type Power Delivered to
and Power Output Service Circuit Losses Antenna Feed
TWT-40 Trunk 0.45d8 36.1
TWT-40 CPS 0.456d8 38.1
SSPA.7 Trunk 0.45 dB 6.3
SSPA-7 CPs 0.45d8 8.3

and the bandpass filter preceding the downconverter mixer in the receiver.
The upconverter filter is deliberately made very wide in bandwidth so that
The receiver bandpass filter must be more nar-
row in bandwidth since it precedes the AGC circuit of the upconverter in
the case of the trunk service and it is desirable to minimize transmitter
Other contributors to

its contribution is small,

noise power sharing due to uplink receiver noise.

gain flatness and phase linearity performance are the receiver active cir-
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TABLE 3.2-56. MICROWAVE SUBSYSTEM GAIN FLATNESS AND PHASE LINEARITY

i
! BPF Phase | BPF Filter Component | Component
Variation, | Gain Variation, | Phase Ripple, | Gain Ripple, | Total Phase Total Gain
) Mode deg dB deg d8 Variation, deg | Variation, dB
|
I CPS 10.02 +0.05 15 04 fi’) 1045
Trunk +1.91 +0.05 +7 10556 B9 0.6

cuits, the switch matrix, the upconverter circuit, and the power amplifier.
These circuits contribute primarily phase and gain ripple due to intercom-

{1 ponent impedance mismatches.
[ 3]
Table 3.2-5 gives phase linearity and gain flatness estimates for the
L 8 microwave subsystem for both trunk service and CPS service. The filter
- data of Table 3.2-5 are based upon theoretical filter response characteristics.

The component phase ripple and amplitude ripple data are estimated based
upon similar subsystems,

3.2.5 Ogtions

3.2.5.1 Option 2 Modifications to Microwave Subsystem

Figure 3.2-13 shows the configuration of the microwave subsystem

for option 2 which provides the capability of either SS TDMA or FDMA
operation for the trunk service.

The configuration has several additions to the baseline system. The
receivers provide an RF output for FDMA operation of the trunk service,
Additional redundancy switches are required to select the receiver RF out-
puts. Four 4 channel demultiplexing filters, interconnections, and four
4 way summers are added to provide the FDMA capability. Additional mode

switches are required to select FDMA or TDMA inputs tu the power
amplifiers.

3.2.6 Technology Assessment

The technology required for the microwave subsystem is considered
to be within the state of the art with the exception of the low noise amplifier
used in the antenna subsystem. The noise figure and associated low noise
gain required to meet the system noise figure goal of 5 dB requires a modest
improvement in GaAs low noise device performance at the uplink frequency.

The Hughes Electron Dynamics Division has a contract from the
NASA Goddard Space Flight Center to develop a low noise receiver consisting
of a five stage preamplifier, mixer, and local oscillator with an overall
noise figure design goal of 4 dB. Results to date indicate that 5 dB should be
achievable within the next year, Device noise figures as low as 3. 6 dB with
an associated low noise gain of 4 dB have been measured on devices having a
gate length of 0.5 mirrons. Work is being done to improve device manufac-

turing processes to permit reduction of device gate length in order to obtain
improved noise figure and associated gain.
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3,3 BASEBAND PROCESSOR
3.3.1 Introduction

The baseband processor (BBP) design is presented in this section,
Although NASA is funding a technology developm ent study which will result
in a proof of concept model for the BBP, the design presented in this report
is a Hughes design, This approach is taken for two reasons, First, the
technology studies were still in an early stage at the time the design was
made; and second, Hughes considers that it will be more con petent to reach
correct make or buy decisions and to effectively procure components if it
has been through the preliminary design process, At this time no decisions
have been made regarding the source of any of the communication components,
Make or buy decisions will be made early in the system definition phase
(Phase B),

The functional requirements on the baseband processor are illustrated
by Figure 3,3-1, The BBP performs complex baseband data routing functions
in the CPS mode, The single trunk function is that of sequencing the IF
switch matrix, This switch sequence is reprogrammable in the BBP via the
command link,

The primary function of the BBP is the routing of CPS data which is
gathered by the scanning beams and downconverted to a 6 GHz IF by the
receiver, At any time the receiver output contains either four 32 Mbps quad-
rature phase shift keying (QPSK) channels or a single 128 Mbps channel, The
BBP must demultiplex and demodulate these signals and store the data until
one of the downlink scanning beams is pointed at the terminal for which each
message is intended, at which time it reads out that data to the transmitter
serving that scanning beam, The output data is a single channel for each
beam at 256 Mbps QPSK, The routing format can be modified via the order-
wire in response to changes in the CPS traffic pattern, Because the output
rate on each beam is twice the total input rate, the downlink outputs will be
active for at most half the TDMA frame,

As much as 25 percent of the received CPS data can be FEC encoded,
The BBP must separate this data from the uncoded data and decode it before
processing it through the store and forward operation described above, Simi-
larly, the BBP can FEC encode up to 25 percent of the transmitted CPS data,

In addition to the store and forward and FEC functions, the BBP
controls the operation of the scanning beam antenna as well as the IF switch
matrix, takes part in the system synchronization and orderwire functions,
and provides the master clock for the system,

The baseband processor is divided into four sections as shown in
Figure 3, 3-2,
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3.3.2 Input Section (Figure 3,3-3)

The demultiplexer downconverts the received signal to an 800 MHz
band centered at 575 MHz and demultiplexes the four 32 Mbps channels and
the 128 Mbps channel, This data is then downconverted to 2 common 20 MHz
center frequency for the 32 Mbps data and a 125 MHz center frequency for
the 128 Mbps data, FEC encoded data is routed to the soft decision
demodulators,

The demodulators have carrier and clock acquisition circuits which
are specia.ly designed for burst mode operation, The incoming signal is
passed through an X4 nonlinearity to produce an unmodulated signal at four
times the carrier frequency from which a carrier is extracted, This
approach allows much more rapid carrier acquisition than can be achieved
with a Costas loop., The hard decision demodulators reproduce the mod-
ulating bit stream while the soft decision demodulators encode each bit as
a 3 bit word for the FEC decoder, The demodulator also supplies a
measurement of the signal strength at a rate which allows the signal strength
measurement unit to estimate the strength of individual uplink bursts for
transmission to the MCT,

The unique word detector provides the sync interface unit with a
measure of the timing error of the uplink burst, This error is relayed to
the transmitting earth station so that uplink burst timing can be corrected.

3.3.3 Store and Forward Section (Figure 3,3-4)

The demodulated data is stored in double buffered CMOS input
memories., Each half stores one frame (1 msec) of data, The output of the
input memories are dynamically cross-connected to the output memories by
the baseband switch, The orderwire interface unit extracts uplink orderwire

data from the MCT uplink data stream and interleaves BBP originated order-
wire data on the MCT downlink,

The routing sequence may be modified under master control station
command, A new control sequence may be sent to the spacecraft either on
the orderwire channel or on the command link, A changeover in time slot
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FIGURE 3.3-3. BASEBAND PROCESSOR BLOCK DIAGRAM, INPUT SECTION

assignment and store and forward timing and control may be made in a
single frame without interruption of service or loss of data. The routing
: sequence in spacecraft memory may be monitored either on the downlink
orderwire channel or on the telemetry link,

The convolutional decoders are used on rain attenuated encoded

! bursts, The coding gain makes up for link loss due to rain attenuation,
Rate 1/2, constraint length 5, 3 bit soft decision convolutional decoders are
used. The decoders implement the Viterbi Algorithm. The coding gain is

‘l 4.4 dB, Since the burst rate is fixed, a rate 1/2 encoding of the data implies
’ that twice as much energy per information bit will be used in transmission,
‘ The result is a rate gain of 3 dB, The overall improvement due to decoding
‘ is the sum of the coding gain and the rate gain which is 7,4 dB,
|
{.
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3.3,4 Output Section (Q&ure 3.3-5)

The output of each of the two output memories goes to a convolutional
encoder and a mux, For data which will not be convolutionally encoded, all
eight lines contain 32 Mbps serial bit stream data, For data which will be
convolutionally encoded only four of the eight 32 Mbps lines contain data
because the encoder will double the data rate, The convolutional encoder
outputs are eight lines at 32 Mbps. The convolutional encoders are Fairchild
Isoplanar ECL gate array LSI devices, The nonencoded or encoded eight
lines at 32 Mbps are multiplexed together and converted into two 128 Mbps
serial bit streams for each of two multiplexers, on the same gate array as
the encoder, The two 128 Mbps bit streams are input into each of two 256
Mbps QPSK modulators, The modulators use ECL digital circuits, thin film
RF amplifiers, and RF hybrids, The two modulator outputs are upconverted
to 6 GHz and are output to the two upconverters which correspond to the two
scanning beam downlink antennas,

3.3.5 Control Functions

In addition to the functions shown inthe previous block diagramsthere
are a large number of control functions required for operation of the BBP as
well as for control of the IF switch matrix and the scanning beam,

As shown in Figure 3, 3-6, the baseband processor contains an
onboard oscillator which is the master oscillator for the TDMA system,
This oscillator may be frequency corrected from the ground ¢ither by the
command link or through the uplink orderwire channel., The baseband proc-
essor contains a beam forming network controller which controls the scanning
sequences of the uplink and downlink scanning beam antennas., The digital
routing controller controls the data memory write and read sequences, the
analog routing switch sequences, the baseband switch sequences, the decoder
timing, the encoder timing, and the Mux timing to implement the store and
forward, decode, and encode functions, New data routing sequences may
be loaded into the controller memory via the uplink orderwire channel or
via the command link, For trunk operation, which cannot occur simultan-
eously with CPS operation, the IF switch controller controls the IF switch
sequence,

New IF switch sequences may be entered via the command link, The
contents of the IF switch controller sequence memory may be monitored via
the telemetry link, The contents of the BFN controller seguence memory or
the digital routing controller sequence memory may be monitored cither on
the downlink orderwire channel or on telemetry.

3,3.6 Weight and Power Estimates for the Baseband Processor

The weight and power for the baseband processor is shown in Table
3,3-1. The weight includes redundancy, Option | eliminates one of the
scanning beams and reduces the throughput of the remaining beam to a
single 128 Mbps signal on the downlink and two 32 Mbps signals in the uplink,
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TABLE 3.3-1. BASEBAND PROCESSOR POWER AND WEIGHT SUMMARY

Full Capecity Processor Reduced Capecity (Option 1) Processor

CPSMode | Trunk Mode Weight, | CPS Mode | Trunk Mode Weight,
Component Power, W Power, W () Power, W Power, W ()

e B St i+ Pl -’

Analog 56.3 0 370 138 1) 1585

electronics

Digitat 168.2 41 742 78 a 63.1 ;

electronics :
Total 2245 '] 1.2 888 4 78.6 ‘

3,3.7 Technolggry Assessment y

All of the technologies utilized in the baseband processor design will
be available in 1982, The required LSI devices will be developed using gate
array technology, Gate array devices have significant advantages over %}
custuom LSl devices: '

1) Design time and cost of yate array development is far lower ‘
than full custom development, '

2) Gate array device characteristics are better known than the
characteristic of a newly developed custom LSI device.

Several device technologies are used for the gate array device types
used in the design, The use of technology that meets the clock rate require-
ments of the logic design, and does not wastefully exceed the requirements,
minimizes the overall power dissipation is the baseband processor,

In the serial data transfer between memories which occur at a
64 Mbps clock rate, Fairchild FAST logic was chosen because of its speed :
capability at a low power dissipatio.: level, While ECL is faster than FAST, ;
it is considerably more power consuming and is on a poorer delay power
product contour,

The gate array devices and technologies used in the baseband
processor are listed in Table 3,3-2, The numbers of devices and gate array
technologies used in the digital electronics in the baseband processor design
are listed in Table 3, 3-3 and the analog electronics technologies are listed
in Table 3,3-4, The physical design of the analog and digital electronics in
the bascband processor is shown in Table 3, 3-5,
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TABLE 3.3-2. GATE ARRAY DEVICES USED IN THE

BASEBAND PROCESSOR DESIGN
Function Gate Array Technology

Convolutional decodar

32 bit serial to paraliel converter
32 bit parallel to serial converter
Ambiguity resolver

Sync detector

32 bit serial to paratiel converter
32 bit parallel to serial converter
Convolutional encoder

High speed ambiguity resoiver
High speed sync interface

Fairchild 9480 I13L
Fairchild FAST
Fairchild FAST
Fairchild FAST
Fairchild FAST

Hughes 5 uM SOS-CMOS
Hughes 5 uM SOS-CMOS
Fairchild isoplanar ECL
Fairchild ECL

Fairchild ECL

TABLE 3.3-3. BASEBAND PROCESSOR DIGITAL ELECTRONICS COMPLEXITY ESTIMATE

Gate Array Devices
SOS | Large | Smali
Subunit Disc | SSI |MSI | LSt |CMOS | 12L 2L | ECL | Fast
Input memory 64 6 4
Output memory 64 8
FEC input memory 192 42 6
FEC output memory 32 8 2
FEC decoder 14 4
Memory contro} 4 18
Convolutional encoder 2 1
128 Mbps ambiguity resolver 2 1
32 Mbps amb.guity resolver 2 1
128 Mbps sync interface 2 1
32 Mbps sync interface 2 1
Signal strength interface 1 1
OW interface 32 8 2
Scan beam controller 12 38
IF switch controller 10 30
Digital routing controller 10 3
Power supply 400 10
3-36
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TABLE 3.3-4. ANALOG ELECTRONICS TECHNOLOGY

Component

{F downconverter and
routing switch

128 Mbps demodulator

32 Mbps demodulators

Technology/Packaging

Thin film RF amplifier chips, RF hybrid packages and GaAs FET
solid state switches integrated into complex hybrid package

Discrete component filters

Thin film RF amplifiers and RF hybrids
ECL digital circuits

Discrete component filters

Quenchable BPFs are helical resonators
Thin film RF amplifiers and RF hybrids
Schotky TTL and ECL digital circuits
Discrete component filters

TABLE 3.7-5. BASELINE PHYSICAL DESIGN APPROACH

Component Packaging

RF analog 1 x 2 in. hybrids
Multilayer PWBs

Digital Muitilayer PWBs

Power supply 3-0 soldered/welded modules

Construction

RF analog PWBs bonded to honeycomb panel mounted in RF|
partitioned chassis

Digital Multilayer PWBs bonded to honeycomb panel mounted
in machined chassis

Power supply Machined aluminum subassembly

Chassis Milled out aluminum
60 mil lids
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4. SPACE VEHICLE

4.1 SPACECRAFT BUS

The LEASAT bus has been chosen for the 30/20 GHz payload because
it has ample payload capacity (>500 pounds, >850 watts) and requires minimum
modification but is inexpensive to launch. The LEASAT with the 30/20 GHz
payload installed will require just over one-fourth of the payload bay length.

“Thus, the weight and length fractions of the shuttle payload will be nearly

equal. This balance minimizes the shuttle launch cost and maximizes the
opportunities for ride sharing. Also, the bus incorporates its own perigee
stage so that a costly PAM is not needed. Other Hughes spacecraft were
eliminated because either they had lower payload capability (SBS) or were
more costly (HS 350). The LEASAT spacecraft will be flown and flight
proven before the 30/20 GHz launch,

A description of the present LEASAT design will be presented first
and then followed with a- discussion of the modifications required for the
30/20 GHz program.

4.1.1 Spacecraft Design

4.1.1.1 Baseline Desiﬂ

The LEASAT spacecraft is a dual spin configuration. The vehicle is
spin stabilized and the communications payload is despun. It is inherently
stable in all phases of the mission. The dual spin spacecraft is a well estab-
lished, conservative design approach which has been used, and is now being
used, for many satellites. Figure 4-1 provides an overview of the space-
craft system. '

The cylindrical, spinning section of the LEASAT spacecraft contains
the solar cell arrays, power electronics, batteries, propulsion, and attitude
control equipment. The despin scction consists of an electronic equipment
platform on which the communications and the telemetry, tracking, and com-
mand subsystem (including their antennas) are mounted. The despin function
is accomplished through a bearing and power transfer assembly (BAPTA).

-




P o

4.1.1.2 Spinning Section

The external boundary of the spinning portion of the spacecraft
illustrated by Figure 4-2 is the solar cell array cylinder. The cylinder,
which is made up of four quarter cylinder sections, is supported by a truss
structure at each of the four mating joints. The panels are removable to
allow access to the spacecraft internal components. The four-sided truss
structure is the primary load-carrying structure of the spacecraft. It
supports the solar panel, all of the propulsion subsystem equipment, and
eight platforms onto which are mounted the power control, attitude control,
and TT& C spun electronics (see Figure 4-3). At its forward end, the truss.
also supports the BAPTA which, in turn, supports the despun section. The
batteries are mounted on panels immediately adjacent to the solar panel
mating joints. '

The propulsion subsystems occupy most of the spinning section's
volume. The solid propellant subsystem (SPS) is housed in the central cavity
of the truss structure. The tanks of the liquid bipropellant subsystem (LBS)

" and the reaction control subsystem (RCS) are nestled between the members

of the truss. These tanks include four 33 inch diameter propellant tanks
and two helium tanks for the LBS, and four hydrazine tanks for the RCS.

The SPS case is jettisoned from the spacecraft after its propellant has been
expended.

4.1.1.3 Despun Section

The LEASAT satellite has all of the communications subsystem
equipments, including the antennas, and most of the TT& C subsystem equip-
ments in the despun section. Accordingly, no RF rotary joint is required
and all RF signals travel unbroken paths between the multiplexers and the
antennas, thereby eliminating a potential sonrce of IM products and RF
losses. The despun platform is located within the forward end of the spinning
solar panel. High power transmitter equipments are mounted on the forward
(antenna) side of the platform, and low signal level receiver and digital
equipments are mounted to the aft side.

4.1.1.4 Desiin and Performance Characteristics

Large spacecraft bus performance margins support the prime mission
objective of providing the specified communications service with a high prob-
ability of service continuity. This objective is achieved with an uncomplicated
bus design incorporating key subsystem components which have been proven
through wide use in long life synchronous orbit communications applications.

Large margins are also provided for the communications subsystem
performance.

A weight summary is shown in Table 4-1.

4-2

. AL e sl n‘-‘



SPACECRAFT SUBSYSTEMS COMMUNICATION SUBSYSTEM

© STRUCTURE ® ANTENNAS
STS Cost-Geometry Optimized UHF
Conservatively Oversized — Design Based on Flight Experience/Test
! In Current Flight Implementation *MARISAT, SDS, TACSAT
Truss *Range Data On Modeled Spacecraft
GRP Composite - Intermodulation (IM) Product Control

® Separate Transmit and Receive Antennas
* Deployed Position Eliminates Spacecraft Coupling

Solar Panel Substrates ® Low IM Constructior
Kevlar Construction from Current Flight Programs — Simple, Reliable Deployment
166" D x 108" L - Transmit and Receive
o Type Bifilar Helix Axial Ratio: 0.8dB
Motor Adapter *Polarization. RHCP Gain 139 Tx/141 Recat ¢ 8,
Permits Alternate Growth Motor
X-BAND HORNS
e THERMAL — Intelsat IVA Derived
Predictable, Standard Spinner Design — Earth Coverage, RHCP Transmit, LHCP Receive
Benign (40° F to 71° F, 20© F Eclipse Min) Equipment Environment — Gain 17.0dB at £ 9.0°
Spin Averaged Solar Load, Passive Design Axial Ratio = 1.5dB
Simple Heater Augmentation on Propulsion, Batteres
® REPEATER
* POWER Hardware Based on over 15 Orbit Years UHF Experience
Large Margins, Redundant eMARISAT, SDS, TACSAT
Array Performance Backed by Over 80 Orbit Years Instrumented Flight Data ~Extraordinarily High Reliability (0.937, 5 years)
Solar Cells, Power Control Electronics from Current Programs, Batteries, Discharge ® Low Level Crosstrapping in Receiver
Regulator Scaled from Existing Designs o Ample Power and Mass Capability of Bus Used for Conservative
1216 w. 5 year Equinox, Solar Flare Plus Traupped Radiation, 15% Array Margin I/M Control
Three 28 8 Ahr Batteries Including Redundancy, 42% DOD o Low I/M Components in Transmit Line
Constant Power, Current-Shared Battery Discharge eNo Common Transmit/Receive Path
Standard Passive Charge Control via Current-Limited Solar Cells, Continuous Trickle, .
Commandable High Rate CHANNEL QTyY BW G/T,dB/MK
FB
e ATTITUDE CONTROL SHF Rcv 30 MHz 169
Common Stable Spinner, Passive Nutation Damping, 50 RPM SHF Tx 50 MHx
Motor/Bearing/Slipring Assembly . Intelsat IV/IVA, Comstar Design (over 50 orbit UHF 25 KHz
years on specific type) 25 KH2 6 25 KHz 139
Existing Earth Scnsors (14 flights), Sun Sensors (standard on all spinning Spacecraft) 500 KHz 1 500 KHz 139
Earth Center Finding Despin Control - Simplification of Similar Flight Designs 5KHz 5 5 KHz 139
® PROPULSION SUBSYSTEMS 6 COMMAND SUBSYSTEM
Proven Components Reliable — Separate. Redundant Systems
System Proof Underway Clean Interface - Fuily Compatible with Navy Equipment
Provides 11% Mass Margin Capacity
Solid Propellant Subsystem: Existing Minuteman Motor, over 600 Built. 7308 Ib Despun 256 Pulsed, 8 Serial
Propellant, Fiberglas Case, CTPB 88% Solids Spun. 128 Pulsed, 4 Serial
Liquid Bipropulsion Subsystem: Regulated Bipropellant. Redundant Existing Design
100 Ib. Thrusters (Apollo) with 100 1 Nozzles; 3088 Ib Capacity, 4 Titanium Tanks,
2 Helium Bottles, Welded Construction EAHAMEIES il Akl
Reaction Control Subsystem: Flight Proven Tanks, Thrusters (Intelsat, Comstar, Others) Link Margin 50 dB 19d8
Welded System, 352 lo. Capacity Accommodates 7 Years, 4 Lateral, 2 Axial 5 Ib Coverage Earth 40° Torod
Thrusters, Over 100 Flown Frequency 7980 MHz
Modulation FSK FM/FSK
Rate 2/sec =1/sec
O TELEMETRY SUBSYSTEM

Flexible Formatting, Reliable - Hughes Standardized Modular T/'M
Clean Interface — Fully Compatible with Navy Equipment
Solid State Amplifier

Characteristics
Frequency, MHz 7245, 7275

EIRP, dBm 28.3 over 40° Toroid in Transfer Orbit
37.4 over 13.4° Coverage On Orbit

Data Rate 1000 bps

Modulation PCM/Biphase; 1.4 Rad max. Mod Index

Despun Channels: 256

Spun Channels 128

Dwell Mode 1.7CH

Submultiplexing Battery Cell Voltages (96)
Temperatures

FIGURE 4-1. SPACECRAFT SYSTEM OVERVIEW
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TABLE 4.1. WEIGHT SUMMARY

ltem Weight, Ib
Communicstions 481
Telemetry and command 174
Attitude control 68
Reaction control (dry) 37
Electrical power 540
Thermal control 143
Structure , ) 842
Wire harness ' 104
Liquid bipropellant subsystem (dry) 286
Balance weight 1
Margin 22
Spacecraft weight, end of 7 yr 2,729
Hydrazine used on station, 7 yr 137
Orbit acquisition hydrazine 122
Weight following apogee burn 2,989
Apogee burn 2,628
Preburn hydrazine 36
Attitude/orbit trim hydrazine 37
Waight following perigee burn 5,690
Perigee augmentation 1,381
SPS jettisoned mass 708
SPS expendabies 7,387
Spinup hydrazine 20
Spacecraft at separstion 15,181

The basic LEASAT spacecraft structure sizing has been based on a
conservative 1.5 safety factor. Further, recent coupled loads analysis has
shown that additional margin exists relative to current loal levels. Owing to
the large equipment shelf area which can be made available within the 166 inch
diameter spacecraft body, ample installation volume exists for growth or the
addition of experiments.

Power sources are sized with large margins for support of loads
throughout 7 years as shown in Table 4-2. Multiple redundant batteries are
sized for very low stress — 43 percent depth of discharge for the longest
eclipse and full system load. This figure is in contrast to other 7 year
synchronous orbit systems which are frequently designed to a more highly
stresaed 50 percent DOD. Redundancy provided by the three batteries
permits full load support with loss of one of the batteries, increasing DOD
to only 49 percent. Voltage sizing of the batteries permits loss of at least
two of the 32 series cells in each battery.

4-7
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TABLE 4.2. POWER SOURCE SIZING

Power at 28 V
Summer
Aliocation Solstice Equinox Eclipse
Communications 739 739 739
Teiemetry and n n 7
command
Attitude control 34 3 34
Thermal control 61 96 81
Power control and 61 66 177
distribution
Total 966 1006 1072
Battery charge k| 96 -
Main bus 987 1102 1072
(1264 Whr,
1.17 hr eclipse)
Available 7 yr: 1063 1194 3387 Whr.
Array margin, % . Tyr: 8 8 -
Battery depth - - 43
of discharge, %

The solar panel output of 1194 watts at equinox is sized for an initial
design margin of 15 percent, including full 7 year conservative solar flare
and trapped radiation exposures. Over 80 orbit years of accurately teleme-
tered spinning solar array performance on Hughes synchronous spacecraft
shows predictability of array output to within £2 percent when the actual
environment is taken into account. Thus, the excess panel allocation in the
LEASAT design ensures that loads can be supported throughout the mission
and that load increases fur addition of experimental packages or for other
purposes can be accommodated.

For assessment of communications payload and bus performance in
orbit, a flexible telemetry subsystem has been provided. Table 4-3 lists
the channel allocation to communications and bus subsystems. The total
allocation includes 105 spare channel or 27 percent of the expected require-
ment. With the standardized modular telemetry system selected, increase
or restructuring of this allocation is easily achieved. Commands are also
summarized in the table. Sufficient capacity exists to support anticipated
system needs, including specific payload requirements, serial digital
commands for operations such as nonreal time thruster pulsing, and general
purpose pulse commands. Spares include 66 pulse commands or 17 perceat
of the expected requirement, and 12 serial digital commands or 200 percent
of the expected requirement.
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TABLE 4-3. COMMAND AND TELEMETRY ALLOCATION

Command Telemetry

Subsystem Puise | Serial | Anaiog Bilevel Conditioned Serial-Digital
Communications 169 0 13 107 35 o
Attitude control 13 2 L] 0 0 2
Power 79 0 14 ? 22 0
Propuision 20 0 0 9 31 0
TT&C a7 2 8 19 7 0

Totsl Required 318 4 40 142 98 2

Available 384 12 384 total channels

Soares €6 8 . 108

Thermal environments provided by the LEASAT dual spin bus design

" are a benign 40°F to 71°F for the payload over all seasonal conditions through-

out the 7 year mission while in sun, and 20°F to 70°F including eclipses.
These values are similar to or even more moderatc than those for typical
7 year Hughes synchronous orbit spinning spacecraft, so that expected
LEASAT electronic part performance can be predicted accurately by using
established derating factors and on-orbit life history, thereby supporting
LEASAT reliability computations.

Orbit control requirements are accormmodated in the spacecraft design
and fuel budgets. This provision includes fv 'l for the specified repositioning
maneuvers and the inclination maneuver planned to maintain <3 degree latitude
during the seventh year.

The system specification requires that the spacecraft parts and
materials, including the solar array, meet performance requirements while
taking into acco:nt the natural radiation exposures over the mission life.
Because of the importance of geosynchronous orbit, the expected environ-
ment has been assessed over more than the past 10 years and the models
upgraded continuously. The large number of geosynchrcnous spacecraft
successfully operated have supported the adequacy of the environmental
models and the suitability of the spacecraft designs. The LEASAT space-
craft achieves ample radiation hardening margins by use of circuits and
components screened for environments in excess of those expected. Further,
many components are hardened to the additional extremes of artificial
exposures, Conservative trapped and solar flare environment models used
for solar array sizing are those commonly used for Intelsat, COMSTAR,
MARISAT, and others. Solar array flight data conclusively show the models
are more severe than actual environments.

Proper LEASAT performance will be assured through electromagnetic
control provisions based on existing Hughes spacecraft designs such as SDS.
The LEASAT electromagnetic design will be implemented through a formal
system level activity including design, analysis, and, as required, test.
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Requirements specified or assumed for design purposes for control
of electromagnetic effects are summarized in Table 4-4.

4.1.2 LEASAT Modifications for 30/20 GHz System

Using the previous LEASAT spacecraft description as a baseline, the
following sections present the modifications of the LEASAT required to
develop a 30/20 GHz spacecraft design. The telemetry, tracking, and com-
mand system is modified to provide TT&C service at 30/20 CHz and at an
S band rather than at the X pand and UHF frequencies associated with
LEASAT's defense upplication. The attitude control system is modified to
accept a radio beacon error signal for platform despin and the liquid apogee
motor system is provided to improve oif the shelf thrusters for better
performance.

4.1.2.1 Telemetry, Tracking, and Command System

The telemetry tracking and command (TT&C) system will operate on
- twe frequency bands. During transfer orbit, the TT&C system will operate
at S band in conjunction with the NASA STDN network, Once the satellite is
at its orbital station, the TT&C function will operate through the 30/20 GHz
payload as discussed below. If the 30/20 GHz TT&C link should become
unavailable because of any anomaly or severe rain attenuation the on-station
TT&C function can return to the S band mode. The S band TT&C links
operate through the NASA standard near earth transponder (NASA/SNET).
Operating at S band the system will he completely compatible with planned

modification of STDN to make it compatible with the deep space network (DSN).
The use of K band TT& C requires no modification of the spacecraft bus since

the payload wili dewnconvert the 30 GHz TT&C signal to the NASA/SNET S
band input frequency and upconvert the NASA/SNET S band output to the

20 GHz downlink frequency. The 30/20 GHz TT&C RF link is discussed in
Section 2.1, Communications. A functional block diagram of this proposed
systermn is shown in Figure 4-4, The diagram depicts appropriate cross-
strapping between the S and K band portions of the aystem.

TABLE 4-4. ELECTROMAGNETIC EFFECTS CONTAROL REQUIREMENTS

Assumed
Category Requirement Specified Design Goal
EMI MIL-STD-481/ X
MIL-STD-1541
TEMPEST NACSEM 5100 X
Electrostatic discharge Hughes design criteria X
Intermodulation Any 120 Hz BW:-23 dB X
product control Total, § kHz channsi:
-14 dB
Any channel, at receive
input: 30 dB sbove
noise power density
GFE unit power X
reguiation
4-10
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FIGURE 4-4. 30/20 GHz TT&C SUBSYSTEM

The NASA/SNET proposed for this mission is fabricated by Motoroia
and is currently under consideration by Hughes for the next series ¢f GOES
spacecraft under negotiation with NASA, The transponder has been developed
and qualified to meet tne needs of most NASA missions by providing factory
. installed options for some application variable parameters. The command
unit in SNET interfaces with redundant spacecraft command decoders. It
is programmable to operate at a selectable bit -ate varying from 125 to
2000 bps. The data is in nonreturn to zero (NRZ) format. The transmitter
functions as either a telemetry transmitter or in conjunction with the
receiver as a coherent ranging transponder. The downlink modulation
indices are selectable by command.

'y ] Pésewreany Lo
v . .

Table 4-5 contains the link budgets for commanding from the STDN
9 meter and 34 meter antenna subnets. The uplink signal will consist of a
ranging and command signal; either or both may be present. The command
signal is a 2 Kbs NRZ-L data stream #90° PSK modulated on a 16 kHz sub-
carrier, which is phase modulated on the main carrier (f_, = 2034.2 MHz),
The ranging signal is a 125 kHz sQuare wave which phase m:.lulates the
main carrier directly., Phase modulation indices are assumed accurate to
within %10 percent, based on previous program experience, and adverse
tolerances have been considered in compiling the budgets. The modulation
loss values are given for both command only and simultaneous commanding
and ranging. Losses are computed for nominal and worst case (due to
+10 percent tolerance) values of the modulation indices.

The link budgets for telemetry from the spacecraft to the 9 meter and

34 meter DSN subnets are presented in Table 4-6. The telemetry signal is a
2 Kbs Bi-OL (Manchester encoded) data stream phase modulated directly on

4-11
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the dov'nlink carrier (£

= 2209. 086 MHz).

This carrier may also be

simultaneously phase-modulated by the command subcarrier which is allowed
to leak through the transponder, and ranging squarewave received on the

uplink.
TABLE 4-6. SYSTEM COMMAND LINK (S BAND)
item Uniu 9 M Subnet 34 M Subnet

Groungd antenng size m 9 4
EiRP abm 13 1283
Polarizetion loss d8 3 3
Spece low* a8 1934 192 4
Ground sntennas track loss d8 0os 0s
Receive sntenns gein a8 105 | 105
Losses batween antenna and a8 8.7 5.7
receiver
Received signal power daBm -100.1 848
Modulation indices

Commaeng Rodisne 04 0.28 10 09 24 0.38 10 09

Ranging Radisns 04 044 - - 04 044 - -
Command signal mod loss ] ] 19 129 4.1 | 48 119 128 4.1 4.8
Command threshoid P dbm 119 ~110.1 1189 | 1182 119 -116.1 1189 -1182
Margin a8 IR 10.1 88 l 18 263 2.3 3.1 234

*Spsce loss for O = S8.000 kmand f = 2,034.2 Mz,
TABLE 4-8. SYSTEM TELEMETRY LINK (S BAND)
Item Units 9 M Subnet 34 M Subnet
S/C EIRP dbm 20 20
Polerization loss a8 02 0.2
[ Spece loss® a8 194.1 196.1

Ground sntenna track loss ad 08 0s
G/T, ground station d8/°K 241 342
Receveu §/Ngy das 479 S8
Mod indices

Telemetry Radisns 10 0§ 1.4—[ 128 10 09 14 12¢

Commend Redisns 04 0.44 10 11 04 044 1.0 1.1

Aanging Radisns 04 044 - - 04 044 - -
Mod loss ds 28 34 2.4 33 28 14 24 33
Awgilable $/Ng a8 ®%3 “s 4535 . 446 554 4.6 558 54.7
Required Ey/N ;" ° ds ¥ ] 96
implementation los a8 185 18
Sitrate, Q daB 3 h &}
Margin o ‘ 12| oa| 15| os | na| s | ns | 08

*Sp6ce loss caiculated for O = 55,000 km, ! = 2,200.008 Mhiz,
**Theoreticsl required Ep/Ng for 108 SER.
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For the 9 meter subnet the margins are very small, only a 0.4 dB
margin results for simultaneous telemetry, ranging, and commanding when
worst case index values are used. Due to the increase in ground station
G/T these margins improve by 10. 1 dB when the 34 meter subnet is used.

4,1.2.2 Attitude Control

The 30/20 GHz system requires that the multibeam anterna be pointed
to within an accuracy of less than'0. 05° to satisfy communication link per-
formance. The LEASAT antenna is pointed with an accuracy of 0. 7° by con-
trolling the attitude of the spin axis and the angular position of the despun
platform in response to error signals from an earth sensor. The order of
magnitude improvement required of the 30/20 GHz spacecraft is achieved by
reorienting the antenna main reflector in elevation relative to the spacecraft
body in response to an error signal from a 30 GHz earth based beacon. The
azimuth orientation is still controlled by platform despin but also in response
to a beacon error signal. The use of the elevation axis circumvents the
problem of maintaining constant spin-axis attitude in the face of solar torques.

"This approach is identical to that used on the operational Hughes SBS design,

wherein the received beacon signal is resolved into east-west and north-south
components, and then processed by the antenna positioning electronics (APE)
and attitude control electronics (ACE) to drive the north-south antenna posi-
tioning mechanism (APM) and east-west despin platform motor. Since the
present LEASAT design does not include an APE or APM, they will be added
and almost identical to those of the SBS design. Also the LEASAT ACE will
receive minor modifications to accept the APE east-west signal as primary
drive for the azimuth positioning of the antenna. The use of a spinning space-
craft with a despin platform results in a yaw gyroscopically stabilized vehicle
requiring only a single beacon station and a single elevation control mechanism
on the spacecraft antenna. The use of the earth sensors on the 30/20 GHz
design will be relegated to transfer orbit and on-orbit attitude determination,
initial on-orbit antenna despin and acquisition, and as a backup to the primary
beacon mode.

Typical antenna pointing error budgets applicable to the 30/20 GHz
system are listed in Tables 4-7 through 4-9. All results satisfy the 0,05°
requirement.

Figure 4-5 shows the block diagram of the APE, APM, and command
track receivers, The communications and track receivers are part of the
microwave subsystem. Figure 4.6 and Table 4-10 give further details on
the APE and APM.

4,1.2.3 Proguloion

The LAM subsystemn will use the Ford qualified thrusters rather
than the Marquart thrusters to obtain an increase in specific impulse
( 308 sec). This improvement plus targeting the orbit for 0° inclinatior
results in additional RCS propellant (no pre-on-orbit burns) being made
available to satisfy a 4 year stationkeeping requirement of #0.02° in
inclination.

C———;\ 4-13




TABLE 4.7, EAST-WEST BEAM POINTING ERROR BUDGET

Error Types and Sources

Constant

Tracking boresight calibration
Omni antenna interference offset
Command biass granularity
Servo electronics null offset

RSS subtotal

Long term variations

Track receiver

Servo electronics
RSS subtotal

Diurnal variations

Track receiver

Track filter network

BAPTA friction torque variation
RSS subtotal

Short term variations

Track receiver noise

Beacon signal random variation

Oynamic coupling of wobbie into E-W

BAPTA friction torque disturbances

Response t0 accelerometer noise
RSS subtotal

Total error in steady state operation

Maneuver transient errors

€-W velocity meneuver
N-S velocity mansuver
Attitude trim maneuver

Worst case pointing error
Sum of steady state and wOrSt Case maneuver transient errors

Error,

deg (30)

0.0064
0.0086
0.0016
0.0010
0.0089

0.0104
0.0010
0.0104

0.0108
0.0058
0.0040
00129

0.0013
0.0042
0.0008
0.0050
9.0003
0.0067
0.0388

0.0058
0.0021
0.0080

0.0449
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TABLE 4-8. NORTH-SOUTH BE£M POINTING ERROR BUDGET

e e AT L Y o A

Error,
Error Types and Sources deg (30)
Constant
Tracking boresight calibration 0.0082
' Omni antenna interference offset 0.0056
' Command bias granularity 0.00'5
P Servo electronics null offset 0.0010
(. RSS subtotal 0.0077
- Long term varistions
e ' Track recsiver 0.0041
i 2 Servo electronics 0.0010
j RSS subtotal 0.0042
‘ Diurnal veriations
& | Track receiver 0.0040
; Track filter network 0.0030
- RSS subtotal 0.0050
L Short term variations
b Beacon signal random variation 0.0028
. Wobble and bearing runout 0.0025
: Stepper servo deadband 0.0036
4 Nutation induced by antenna stepping 0.0002
| Dynamic coupling of E-W jitter to N-S 0.0004
i RSS subtotal 0.0062
Total error in steady state operation 0.0221
Maneyver transient errors
E-W velocity maneuver 0.002%
N-S velocity maneuver 0.0036
Attitude trim maneuver 0.0100
Worst case pointing error
Sum of steady state and worst case maneuver transient errors 0.0321

>y e e Em e ey
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FIGURE 4-6. ANTENNA POSITIONER ELECTRONICS BLOCK DIAGRAM

PHYBICAL CHARACTERISTICS

SIZE = 48.8x 18.0x 7.Y om
WEIGHT © 3.43 kg (7.38 1d)
POWER = 28 W

PAATS COUNT
124 i/C + 1036 DISCRE TS

UNIT INTE®NALLY REDUNDANT
FIGURE 4-8. ANTENNA POSITIONER ELECTRONICS
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TABLE 4-9. BEAM ROTATION ERROR BUDGET

Error Types and Sources

Constant

Antenna rotation misalignment
RSS subtotal

Long ter:.: variations

No identified errors

Diurnal variations

Spin axis attitude drift

Attitude trim correction error

Attitude messurement uncertainty
RSS subtotal

Short term variations

Wobbie and besring runout

Nutation induced by antenna stepping

Dynamic coupling of E-W jitter to rotation
RSS subtotal

Total error in steady state operation

Maneuver transient errors

E-W velocity maneuver

N-S velocity maneuver

Attitude trim maneuver

Worst case pointing error (rotation)

Sum of steady state and worst case maneuver transient errors

Equivalent pointing error

Ercor,
deg (30)

00080
0.0080

0.1600
0.0820
0.0200
0.1728

0.0028
0.0002
00004
0.0025
0.1803

0.0024
0.0062
0.0100

0.1903

0.017

TABLE 4-10. ANTENNA POSITIONER MECHANISM

CHARACTERISTICS
Drive system i Redundant
Motor Size 18, PM, 45 dag stepper
Torque output 16 ft-ib
Output shaft stiftnas 1028 ftib/deg
Positioning increment 0.0026 deg/step
Travel range 70 deg
Backiash Zero
Potentiometer 42 kS, conductive plastic
Motor power Approx 186 W (during step)
Weight 3.44 kg (7.57 Ib)
Temperature range -519 to 685.68°C (-80° to 180°F)
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4.1.2.4 Connguration and Structural Modifications

The LEASAT despun shelf modifications necessary to accommodate
the 30/20 GHz payload are illustrated in Figures 4-7 through 4-9. Fig-
ure 4-7 shows the forward and aft (dashed) layout of the payload, TT&C,
and APE units on the despun shelf. The high power RF units are on the
forward side and couple easily to the antenna. They are located radially
outward to couple thermally to the forward spinning thermal barriers for
heat removal. The low power RF units and digital units are shielded from
high power units by locating thern on the aft side of the shelf.

Al] units have been located with a concern for minimizing waveguide
lengths, digital cable lengths, mass properties, and thermal control. Fig- .
ure 4-8 shows a side view of the shelf with the associated despun and
spinning thermal barriers. Both barriers will be modified LEASAT designs.
The shelf dimensions and design are identical to those of the LEASAT, only
the unit mounting bolt holes and attachment features need changes. The
extensive shelf area leaves ample margin for repositioning and growth of

.the payload if required.

The antenna layout is shown in Figures 4-8 (side and top views) and
4-9 (reflector axis view). The main reflector and omni antennas are shown
both stowed and deployed. All antenna elements, beacon antennas, wave-

guides that connect to the shelf units and structural support elements are
shown,

A gpacecraft isometric is shown in Figure 4-10.

4.1.2.5 Thermal and Structural Analyses

The results of thermal and structural analysis of the 30/20 GHz flight
experiment spacecraft are reported in Volume 2. Both thermal and
structural loads imposed by the 30/20 GHz payload are less severe than
those due to the LEASAT payload.

4.1.3 Mass Properties

The spacecraft weight summary is presented in Table 4-11. The
communication payloads are detailed in Section 3.

The on-orbit weight capability is somewhat less than that for the
present LEASAT, but there is more RCS propellant available for station-
keeping in the 30/20 GHz design. This additional propellant is required to
maintain the tight north-south orbital control (20, 025°) over a 4 year period.
This requirement is driven by the desire to implement low cost nontracking
ground station antenna systems.
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TABLE 4-11. SPACECRAFT WEIGHT SUMMARY

e o

¥

4

P
€ =

item Payload Weight, Ib
Payload 485
Antenna 189
Microwave 123
Digital m
Margin (10%) 42 .
Bus 2,285
TT&C 123
Controls 75
FIGURE 4-10. LEASAT SPACECRAFT ISOMETRIC
Powor 541
Propuision 323
Structure 1,100
Margin (rotor) 114
Spacecratt (dry) 2,750
Propellant (BOL) 348
RCS (4% yr) 324
LAM residual 21
Spscecraft (BOL) 3,095
Transter orbit expendables 12,191
Shuttie deployment 15,286
Cradie and ASE 1,785
Shuttie payload 17.0M
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The total spacecraft weight margin provided by excess propulsion
capability is 156 pounds. A 10 percent payload weight margin of 42 pounds
was allocated leaving 114 pounds as a rotor margin. Some of the 114 pounds
rotor margin can be shared between rotor margin and payload margin. The
ultimate limit on the payload weight is the requirement that the spin to trans-
verse inertia ratio (I;/I,) be greater than 1. 05 for spacecraft stability. LU
one-half of the 114 pounds rotor weight margin (or weight growth) is deployed
at the perimeter of the satellite an Ig/I, ratio of 1.064 results at the end of
4 years. Of the remaining 57 pounds, a large fraction could be added to the
payload if the remainder was distributed at the rotor perimeter. The fraction
would depend on whether the weight growth was above the despun platform
(e.g., the antenna) or on the platform which is very near the center of
gravity. :

If option 1 was implemented the payload weight would decreas by
49 pounds. Option 1, which is described in 2.1, eliminates one of the scann-
ing beams and reduces the BBP throughout, Option 2, also described in 2.1,

~adds a frequency division multiple access (FDMA) axperiment which weighs

16 pounds. Although this cuts into the 42 pounds (10 percent) weight margin
the additional payload weight available from the rotor weight margin ould
compensate. In any case, if weight growth required a reduction of the pay-
load the entire FDMA experiment could be removed without impact to the
basic system.

4.1.4 Power Summary

All spacecraft designs have ample power margins as shown in
Table 4-12. During eclipse operation, the margin on batteries is reduced,
but still ample as shown in Table 4-13 for the baseline TS design.

TABLE 4-12, POWER SUMMARY (WATTS)

Baseline Option 1 Option 2
Item TS cPS TS CcPS TS CcPS

Paylosd . {

Antenna 18 9.8 18 ! 83 18 9.8

Microwave 515.6 285.6 5156 285.6 518.8 285.6

Digital 410 223.2 411.0 88.8 410 223.2
Bus 228.0 228.0 228.0 228.0 228.0 228.0

TT&C (48)

Controls (37)

Power (92)

Thermal (51)
Soscecraft 788.4 748.8 788.4 608.7 7189.4 748.6
Capability (4 yr) 1,090 1,080 1,000 1,000 1,080 1,000

Margin 303.8 343.3 303.6 481.3 300.6 3434
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TABLE 4-13, ECLIPSE POWER SUMMARY

(WATTS)
. Bayioad
: Antenna 1.8
Microwave 8156
Digital 410
Sus 3130
TT&C (48)
Contron (37)
Power (177)
Thermal (£1) —
Spececrafy 8714
Cepaility (43% 000) . 1072
Margin 200.6

4.1.5 Conclusion
The LEASAT spacecraft can be readily adapted to accommodate the
30/20 GHz program. The new 30/20 GHz spacecraft will satisfy all mission
) okjectives, minimize shuttle launch costs, and provide ample payload weight
and power margins for future growth.
4.2 LAUNCH VEHICLE SYSTEM

4.2.1 Introduction

The function of the launch vehicle system (LVS) is to provide an

y interface between the spacecraft and the shuttle while the spacecraft is in
the shuttle; to perform the functions required to separate the spacecraft
from the shuttle; and to change the spacecraft's orbit from the shuttle's low
altitude orbit to the designated near synchronous drift orbit.

The approach chosen for the LEASAT and for the 30/20 GHz flight
experiment system which uses the LEASAT bus is to integrate the LVS into
the spacecraft. The spacecraft is injected into transfer orbit by the combi.
nation of a perigee kick motor (PKM), which is mounted within the space-
craft structure, and the first burn of a restartable liquid apogee motor (LAM).
The spacecraft is then injected into the synchronous orbit by the LAM second
burn and the spacecraft reaction control system (RCS). The use of a PKM
mounted within the structure of the spacecraft rather than an externally
mounted stage, such as the SSUS-A, reduces the length of the shuttle payload.
The combination of an integrated PKM, LAM and a widebody satellite
(422 cm/14 feet in diameter) results in a shuttle payload which occupies unly
17 feet of the shuttle payload bay when the spacecraft antenna is stowed. This

4-24

e BN Soves SN cnses BEE cvut BERE anto SR S

Hinguo |

MR

€ “~ .



T WTTTTwmRewT W Ly

i s

short length is a significant advantage because the cost of a shuttle launch
and the ability to share a launch with other payloads depends on the ratio of
payload length to shuttle bay length or the ratio of payload weight to the
shuttle total payload weight capability, whichever is greater. This design
approach results in nearly equal ratios for weight and length which is an
optimum shuttle payload configuration.

4.2.2 Shuttle Bay Installation

The installation of the payload in the shuttle bay is illustrated in
Figure 4-11 and Figure 4-12. The mechanical interface with the shuttle is
provided by a reusable cradle, with five contact points between the space-
craft and the cradle, a:d five contact points between the cradle and the
shuttle. The cradle provides mechanical support to the spacecraft during
launch; avionics and electrical interfaces between the spacecraft and orbiter;
and a means for ejecting the space<raft from the orbiter.

L4 X

ORBITEAR COOMRDINATES

FIGURE 4-11. LAUNCH CONFIGURATION
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FIGURE 4-12, TYPICAL CRADLE SHUTTLE BAY INSTALLATION

4.2.3 Ascent Operations Overview

This section describes the activities/operations required of the
shuttle (STS), the spacecraft, and the ground controllers in order to effect
a successful ascent to synchronous orbit. The activities described begin
at the time the payload bay doors of tl.e STS are closed for the last time and
end with a brief ''on-orbit test'' description, whichis thelast activity planned
prior to starting service. (Figure 4-13)

The shuttle payload bay doors are closed at ncminally L-20 hours.
The spacecraft batteries are fullv charged, and the spacecraft is completely
checked out and reported ''ready-for-launch'’ by this time. Once the payload
bay doors are closed, the spacecraft is unpowered (except for special thermal
control power later provided by the shuttle) and there will be neither a
command nor a telemetry link.

The STS is launched into a 160 nautical mile, 90 minute parking orbit.
The STS attitude is controlled such that the payload bay doors are earth
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FIGURE 4-13, ASCENT OPERATIONS OVERVIEW

facing, and the doors are opened (nominally at L+2 hours). After bay door
-opening, the payload bay is earth facing, with maximum excursions of

30 minutes sun facing and 90 minutes deep space facing (thermal stabilization
between excursions required). Life support systems for the STS are sized
for a maximum of 7 days in orbit. The spacecraft will be manifested with

at least two other payloads. NASA expects that the first payload will be
ejected within 24 hours of launch, and subsequent payloads will be ejected

at a rate of one per day.

Spacecralt ejection from the shuttle is nominally 1.5 fps and 2 rpm.
The postejection sequencer (PES) starts and automatically turns on the
spacecraft, deploys the TT& C antenna, spins up the spacecraft to 35 rpm,
fires the perigee kick motor to place the spacecraft into the first elliptical
subtransfer orbit, and turns on the required heaters, all at the proper time.
In order to achieve the target apogee altitude for injection into synchronous
orbit, three augmentations are required using the liquid apogee motor (LAM)
bipropellant subsystemn. These augmentations are ground controlled and
timed to occur at perigee. Once reaching the target apogee, the LAM is used
again to inject the spacecraft into synchronous orbit. Upon achieving syn-
chronous orbit, the spacecraft is configured for earth pointing and a com-
prehensive on-orbit test is performed to verify spacecraft performance.
Upon completion of the test, the spacecraft is placed into service,

4.3 SPACE SEGMENT RELIABILITY

Estimates of the reliability of the 30/20 GHz flight experiment's space
segment are given in Tables 4-14 and 4-15. The reliability shown, which is
calculated from the number and type of parts, is relatively high compared to
that of current communication satellites. This is due to the shorter life
(2 and 4 years compared with 7 to 10 years) and the smaller number of
traveling wave tube amplifiers (TWTA) required for success. Of course,
this analysis does not account for the immaturity of much of the technology
involved and the lack of experience in designing, building, and operating
such a system.
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The estimate shows a very high probability (0. 92) that at least partial
experiments in both trunk and CPS modes can be carried on for a minimum
:' of 2 years and a high probability (0.76) that this capability will be available
' for 4 years. This partial capability is quite adequate. Since there are
16 spots in the uplink and 10 spots in the downlink for each scan beam, the
loss of a single spot in each beam is easily tolerated. The three trunk nodes
remaining if one trunk transponder is lost are adequate to meet the objectives

[ o P

of trunk experiments.

TABLE 4-14. 30/20 GHz RELIABILITY FOR VARIOQUS SUCCESS CRITERIA
MISSION DURATION: 2 YEARS

Partial Capacity
Full Full Loss of
Full Trunk CcPS <1 Trunk Beam Loss of Loss of
Items Capacity | Capacity | Capacity | <2 Scan Beam Spots | <1 Trunk Beam | <2 CPS Spots
‘Antenna subsystem | 0.8484 | 09881 | 0.8499 0.9796 0.9882 0.9832
Microwave subsystem | 0.9732 09732 0.9861 0.9851 0.9952 0.9861
e8P 0.9842 0.9999 0.9842 0.9842 0.9999 0.9842
Payload 0.8136 09713 0.8249 0.9503 0.9834 0.9543
Bus 0.9744 09744 09744 0.9744 09744 09744
Boost 0.991 0.991 0.991 0.991 0.991 0.991
System reliability 0.7857 0.9379 0.7965 . 0.9176 0.9496 0.9216
' *This allows one spot failure in each beam.
TABLE 4-15. 30/20 GHz RELIABILITY FOR VARIOUS SUCCESS CRITERIA
* : MISSION DURATION: 4 YEARS
. Partial Capacity
Full Full Loss of
Full Trunk cPs <1 Trunk Beam Loss of Loss of
items Capacity | Capacity | Capacity | <2 Scan Beam Spots | <1 Trunk Besm | <2 CPS Spots
Antennas subsysiem 0.7537 0.9867 0.7398 |, 0.9588 0.9872 0.9609
t Microwave subsystem | 0.9(26 | 0.9025 | 0.9481 0.9462 0.9906 0.9481
e8P 0.9834 0.9909 0.9534 0.9534 0.9999 0.9634
Payload reliability 0.6485 | 0.8904 0.6814 0.8335 09778 0.86
Bus 0.9232 0.9232 0.9232 0.9232 0.9232 0.9232
Boost 0.99 . 0.991 0.991 0.991 0.991 0.991
System reliability 0.5933 08146 | 0.6228 0.7628 0.8948 0.7947
*This allows one spot failure in each beam.
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" The reason for the lower reliability of the CPS relative to the trunking
service is the complexity of the beam forming networks which generate the
scanning beams. Although the BBP is the most complex part of the payload,
its reliability is high because of the extensive use of large scale integrated
circuits.

The bus- reliability shown is the result of detailed calculations made
as part of the LEASAT program. The probability of successful boost and
orbit insertion (0.991) is based on historical data. This reliability may be
different for shuttle launch but the difference will have a negligible effect
on overall reliability.
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5. 30/20 GHz SYSTEM DEVELOPMENT PLAN

The 30/20 GHz system development plan is based heavily on
experience with previous communication satellite systems produced by the
Hughes Aircraft Company. Since the spacecraft bus is almost identical to
that of the current LEASAT bus presently under development, its production
and subsequent system integration and test will be rather routine. A bonus

~derived from the use of the LEASAT bus is the elimination of an intermediate

upper stage and the attendant management, development, interface, and cost
tasks. The LEASAT has an integrated built-in perigee boost capability that
not only simrplifies programrmatic aspects, but optimizes launch cost-
effectiveness and enhances shuttle sharing flexibility.

The flight system payload is based on technology that is presently in
its embryonic stage. This implies that careful attention be given to these
new technology items to ensure a minimum risk is imparted to the final
experimental 30/20 GHz flight system. Towards this objective, the payload
subsystem: antenna, digital, and microwave, although utilizing all possible
results from the technology efforts currently in progress, will be developed
beginning with breadboards, brassboards, and engineering models. In the
case of the digital baseband processor, these additional tasks plus the need
for a significant preprogram LSI development effort will result in a tight
critical program schedule.

The terrestrial segment of the system presents no critical develop-
ment or schedule problems because of the lengthy time period determined by
the overall program schedule. Such key items as 30/20 GHz TWTAs and
receivers, and high data rate modems can be engineered and developed
within the allotted schedule. The complex total system architecture that
primarily impacts the ground system software will be given special emphasis
early in the program to ensure that all system elements interact and per-
form properly and in a cost-effective manner.

The guidelines that apply to the 30/20 GHz program are listed in
Table 5-1.

The development plan is based on Hughes making all units and sub-
systems, This was done to understand the problems in detail and set the
base for the make or buy decisions which will be made for each payload com-
ponent prior to program go-ahead. All payload components will be subjected
to make or buy tradeoffs during the system definition phase.
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TABLE §-1. 30/20 GHz PROGRAM GUIDELINES

Contact go-ahead, 1 August 1983

Launch date, 1 October 1987

Single flight system pius spare subsystems
One trunking diversity terminal, Cleveland
Master control station (MCS), Cleveland

One customer premise service terminal, mobile

2 year mission/experiment operations
support

LEASAT bus
Turnkey experimental system
o 1983 technology

5,1 PROGRAM FLOW

The elements of the 30/20 GHz system along with their integration,
test, and final verification are illustrated on the program flow chart (see
Figure 5-1). The multibeam antenna components, auxiliary antennas, and
structure are integrated and range tested. This is done for the engineering
model, qualification model, and flight model. The qualification model is
refurbished and becomes the optional spare. After completing range tests,
the antenna subsystem is delivered to the spacecraft system integration and
test area.

The microwave components are completed and integrated with the
spacecraft despun shelf to produce the microwave subsystem. An engineer-
ing model, flight model, and optional spare subsystem will be developed.
The microwave qualification units will be used as spares for the flight and
optional programs.

Prior to delivery of the microwave subsystem to spacecraft system
integration and test, it is integrated with the digital components for an all-up
communications subsystem test. This key test also will include elements of
the terrestrial system and be performed in an end-to-end configuration to
ensure that all components of this complex subsystem perform together
properly. The qualification model digital components will be used as spares
for the flight and optional spare systems.

The remaining spacecraft bus subsystems; telemetry and command,
controls, power, propulsion, and spinning structure and harness, are
delivered along with the communications/antenna subsystems for all-up
integration and test. The bus will include a flight and optional spare system
plus a set of spare units. Spacecraft integration and testing will consist of a
complete buildup of the spacecraft, and ambient and environmental tests.
Emphasis during this phase is placed on end-to-end testing over the com-
plete range of environmental conditions.
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The final phase of the program flow consists of prelaunch checkout,
integration with the Shuttle, and launch. During this final period, assembly
and checkout of the terrestrial system will proceed in parallel and a final
total systems readiness test will be performed to verify flight and ground
segment integrity.

5,2 MASTER PROGRAM SCHEDULE

The 30/20 GHz Program Schedule, Figure 5-2, is bounded by a con-
tract go-ahead date of August 1983 and a launch date of October 1987, or
50 months. The 15 months prior to launch are allocated for system integra-
tion, test and launch operations, leaving 35 months for design, fabrication,
and test of all flight subsystems. Since the bus is a LEASAT derivative, it
presents no schedule problems. The despun payload shelf will need modi-
fications to relocate units, but there is ample time within the schedule.

The antenna and microwave subsystems can be developed within the

"schedule, but not without some concern and therefore risk. The antenna

schedule could be slipped a few months because it is not needed immediately
for system integration and test. The microwave (and digital) subsystem is
needed for the overall communication subsystem test that already has been
compressed, and therefore its schedule is firm.

The digital subsystem is known to present schedule risks. To meet
the present schedule a preprogram effort must begin at least 15 months
before formal program go-ahead, May 1982. This period is necessary to
develop selected LSI components and define the baseband processor speci-
fications. Even with an advanced effort, the technology and attendant
problems result in the digital subsystem schedule being the high risk phase
of the overall 30/20 GHz program schedule.

The terrestrial system schedule is comfortable for development of
the terminals and master control station including a special phase needed to
produce the new 30 GHz TWTs.

Following delivery of the flight system items, the spare subsystems
for an optional system are produced. If the option is exercised by October
1987, the new system can be integrated and tested and be ready for a
November 1988 launch.

Also shown on the schedule are 90 days of mission operations sup-
port for each flight, and 24 months of support for mission, communications
and experiment operations following the October 1987 launch.
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5,3 WORK BREAKDOWN STRUCTURE

The 30/20 GHz Program work breakdown structure (WBS) to level 1
‘ is shown on Figure 5-3. The first three items on level Il relate to the overall
$ program direction, control, performance, and system quality: program

‘ management, systems engineering, and product effectiveness. Program

management and product effectiveness include not only the typical tasks as
listed on Tables 5-2 and 5-3, but an additional program level technology con-
sultant task under program management, and system safety (STS), radiation
design, new technology, and enhanced subcontract monitoring under product
effectiveness.

The system engineering tasks include the flight and ground system
elements encompassing the spacecraft hus, payload, Shuttle interface,
ground terminals, master control station, and total system architecture and
design. The tasks have been selected to ensure that the system is approached
from the "top-down'' to generate a complete specification and a system that
_satisfies program key objectives. Table 5-4 lists the system engineering
work breakdown structure (WBS).

TABLE 8-2. PROGRAM MANAGEMENT TABLE 5-4. SYSTEM ENGINEERING WBS

[ o Managers e Msnagers
: e Technology consuitants e Communications system engineers
;’ r o Cost/schedule control o Manager
§ . e Configuration management e RF/link
‘ o Dats management ‘ e Digital
g [ o Parts management e Architecture/software
i o Subcontracts e Antsnns
e Manufacturing o Communications operations

[ o Spacecraft bus engineers
' o Manager
E o Telametry
; [ e Controls
! TABLE 5-3. PRODUCT EFFECTIVENESS TASKS o Power
t ¢ Harness

r o PA* and relisbility management e EMC
‘% - o Reliability anslysis and engineering o Systam engineers
) # Quality sssurance menagsment o System specification

o r e Quality control ' o Integrated test plan
. o Components and materials o Launch vehicle integration
) . o Component redistion characterization o Mission operations
\ e System mfety o Experiment operstions
“Product A o Orbital dynamics
o Other
o Mission support
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The remaining four level Il items; spacecraft subsystems,
communication payload, spacecraft system integration, and test and
terrestrial system are subdivided in a conventional manner, The detailed
level III, and below, WBS is presented in the following section.

5.4 ROM COST DATA

The 30/20 GHz program ROM costs (1981 $M) based on the previously
presented development plan are summarized in Table 5-5. These costs are
shown spread over the fiscal years and include G and A and fee. The subsys-
tems cost for an optional spacecraft are included, but the system integration
and tests costs are not included. Shuttle launch costs are not shown,

TABLE 5-8. COST SUMMARY, 1981 $M

FY83 | FY84 | FYss | FY8e | FY8? | FvBs | FY?9 Totat
Program management (8%) 0.5 3 3 3 3 - - 12
Systems engineering 0.4 22 2.2 22 22 03 vd 98
Product effectiveness (10%) 0.8 4.3 4 44 1.3 - - 146
System integration and test® - - 2 8 8.7 - - 18.7
Flight systems 6 42 37 28.7 24 - - 1131
Ground terminais 0.1 09 1 X ] 32 - - 10.7
Master control station - - 0.4 $.1 16 - - 71
Operations, maintenance - - - - - 09 09 18
and support
Subtotal 76 579 | 8.1 | 839 | 194 1.3 1.3 188
CHhA (12%) 09 7 X 68 | - 23 0.2 0.2 22
Fee (18%) 1.3 9.7 9.3 9.1 33 0.2 0.2 nn
Totsl 9.8 696 | 68 s | 28 1.7 17 2383

*integration and testing of major systems including master control station simulations, GSFC simulstions
and lsunch base support = $1.1M.
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