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ORIGINAL PAGE IS 
OF POOR QUALITY 

CHAPTER I INTRODUCTION 

Microwave paramatric amplif1ers, the subject of this investigation, 

are a class of amplifiers which ut1l1z8 e1 thsr nonlinear reactances, or 

reactances which can be varied. as a function of time by apply1.ng a sui t-

able pump source. The time variation of a reacti va parameter can create 

the equivalent of a negative resistance n a certain frequency range, 

and this negative resistance can be used to provide amplification. This 

is the origin of the term negative resistance parametric amplifier, or 

simply parametric amplifier. There are ";"0 distinctive fea"tures of para-

metric a.lIlpll..!"iers ~ha.t arG worth mentioni!lg. F1=st, electronic amplifiers 

use energy from an electrical ~ource to incrt~ase the power in a desir~·d 

signal waveform, for :nost amplifiers, such as vacuum tube or transistor 

amplifiers, this electrical source is a d1=ect·-current (dc) source, while 

for parametric amplifiers, it is an alternati!lg-current (ac) source. T~e 

second fea.ture of a paramet.-1c amplifier is its capability of low noise 

amplification. A vacuum tube or a transistor is essentially a nonlinear 

resistor, and it 1s well bown that any resistor at non- zero temperature 

nll generate theIl!lal noise. On the other hand, a pa.ra.metric amplifier 

utilizes mainly a nonlinea= reactance, and a reactance does not contrib-

ute ther:nal noise. This was first pointed out by van der Ziel in 1948 

'.rhen he a.na.lyzed the :n.ixL"lg properties of nonli:lear capaci taLces ~1_ . 

I: is ~hls feature :ha.t :na.kes pa.rame:~c a,m- l1.!'iers the :nost att...-act:·/e 

-1-
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candidate for loW' noise front ends in co~unication systems. when oper-

ated cryogenically, the noise figure of a pa~etr!c amplifier is compa-

rable to that of a maser, yet its bandwidth and stability are far supe-

nor to those of a maser. 

Al though van der Ziel was the first person to point out the potential 

use of nonlinear capacitance as loW' noise amplifier, parametric amplif1-

cation was t neoretically shown to be possible by Fa.ra.d3.y in as early as 

18)1 [2J , and later. by Lord Raleigh in 1863 [JJ. It was, however, one 

hundred years later, when the parametric effect was experilllentally observed 

in an electro-mechanical nonlinear capacitance device [4J . In 1957; t he 

:1rst realization of a microwave ~~etr1c amplifier was finally made 
I 

by 'ieiss C5] , following t he earlier prOp"' ~;l 1.. '-;y Suhl [6.J ' s~gesting t he 

use of t he nonlinear effect in f errit es, This caused widespread int erest 

aJllOng Jdcrowave engineers, and in the following f ew years, wi t h high qual-

ity semiconductor j tmction diodes ( often referred as varactor diodes, or 

su ply va.ra.ct ors) more readily ava.Ua.ble, semiconduct or pa...-amet ric ampll-

fie:-s were soon devel oped t hrough the ef!'orts of many resear~hers . 

The semiconductor junc t i on diode has a nonlinear capa.~i tance . If a 

pump source at frequency f aZld a small amplitude signal at frequency f 
p s 

a--e applied s1mult1neously , the no~e~ capacitance behaves like a time-

va.ry-I-ng linear capacitance at f. Tho m.i..rI ng of f a."ld! w1l.l generate 
s p s 

a. tr.L~ :requency component, f -f. This frequency is usually called the 
p s 

idler !'requency, f l' The id.ler L quency is an i:levi table by-prod1.!c: of 

pa...-a.:net--ic amp~!.ca :.ion, suppress.1.:lg i 7. would also S1.!Ppr3ss :.r:e desired. 
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amplification at f s ' I t should be pointed out that the closer the signal 

frequency is to half the pump frequency, the closer the idJ.er frequency 

i~ to the signal frequency, and the more difficult 1 t 1s to sepa.ra. te 

signal and idJ.er frequencies by filtering. If the signal and idler f're-

quencies are 50 far apart that J.:.he signal circuit does not pass the idler 

frequency, the amplilier is ca.lled a !lond.egenerate amplifier. On the 

other hand, if' the signal and idler frequencies are very close or if' their 

spectra overlap, the signal circuit can no longer distinguish between 

them, and the amplifier is then called a degenerate ampl.1.fier. 

, For degenerate amp.l.1iiers, the ordina...,. concepts of noise figure do 

not apply. Degenera te amplifiers are not a!I1plifiers in tht:t usual sense, 

because they gj.'le output at frequencies not include',i in the 1nput. While 

the noise figure of a nondegeuerate ampll~ler is 'lJIliquely defined, the 

noise performance of a degenerate amplifie·: depends on the ty-re of input 

signal, t.'1e type of detector used, and the in terpreta tion of t he detector 

output. Still, two kinds of noise figure, s1.ngle-s~de1::a.nd and double-

sideband, are often quotec by ~ufacturers. 

The single-sideband 'lOi56 f!.gure is used in operation wbere the input 

sig:la.l spec"trt3 is confined to one sids of half-pump frequency. Although 

the signal circuit can not distinguish between ":.he signal and the idler. 

a sharp :Uter in a subsequent s~ can be used to select f. Th!s type 
s 

of operation is chBo...-acterlzed by the reduction of useful amplifier 'ba..nd.-

width and a. ce.rt.a1n d.ef;re$ of deg=ad.ation in si~ to :1oise =atio. In 

opera tion in ..n-.ich the inpt.l't SpeC~1 sur=o1..:.nds -:.he :-.al..: -pump l:-equenc:r, 



the double-sideband nnise f1gure 1s used. F:or ampl1f1ers built with 

diodes ~f the same quality, the n01se figure of a nondegenerate amplifier 

1s higheJ: than the double-side t&rl' noise figure, yet lower than the 

s1ngle-s1-teb&.nd noise figure of a degenerate amplifier. However, it 

must be kept in mind that a degenerate amplifier and a nondegeD,erate 

amplifier can not be compared by their respective noise f1gure~ unless 

the sy~tem into which the Mpl.1.:f1ers are to 1:e incorporated is first 

specified, 

It should be obvious that in some instances it is possible to real-

1ze system sensitivities calculated from the double-sideband noise figure. 

When this 1s so, the degenerate amp:tiier "'ould 1:e no doubt the 1:etter 

choice. Even in appllca. tions 1.:0 which single- side ba..nd noi sa figure must 

be used, there may well be practical considerations which would ma.k~ the 

d.egenen.t9 amplifier a better choice. By eliminating the 1dler circuit, 

the degenerate amplifier 1s a much simpler d~vice to build. I ts pump 

frequency is relatively low as compared to that of a nonci.egenerate ampli

fier. Also, as a consequence of c1rcui t si.mplici:'y, the broadl:aoding of 

a de ge nera u, amplif l ex 1 s easi~r. 

1.2 S tao tamen t of '?ro blems 

Since its in\:eption, the pa.ra.metrlc ampli.f1er has been plagued by 

the problem of ha'(j~ very narrow buld.width. NUJl.erous researcher:3 have 

proposed soluti.vr.s for this problem [7 TsI9 I10TUT12J. In lIlOst cases, 

oVtU siJIlpli.!'led a 'ssumptions were ;na.cie and pa--asi tic elements of tne c!1cde 
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toget~.el. with signal circuit loss were neglect9d. Thi3 caused sign1.ficant 

discrepancies 10 theoretical and actual ras~onses. 

Seidel and Hernnann [7 J appear to be tha first to a ttem-pt lJroadl:a.nding 

the parametric amplifier by use of a ~ultiple-rasonator ~tching circuit. 

They gave design criteria. for a fUter circuit of a degenerate: ampl1fif;lr, 

using the approach of setting the derivatives of the g~ function equal 

to Z8t'0 at midband. However, the varactor model is too simple, and 103s 

in signal circuit is not included. 

Matthaei [8J subsequently derived the gain expressions sui ..able for 

rldeband design, us:1ng a complete '1a-a._ctor equivalent ci=cuit, and demon-

strated that, by using proper flir.ers in signal and idler cirCw.·s, frac

t ional 'bmdJddth. of lQ( (at.::. ga.ia of :1.5 dB) can :,e obtained. However , 

no d.1J:~ct way of choosing th,~ proper fil:'ers is given, and a consj,.cle.ra ble 

amount of exper'Uenting is involved 

Kuh e.nd F'..lka.da [9J developed an approxi.lPate synthesis t echnique 1.esed 

on more rigorous netlolork concepts. S tart~ !'rom Bode's theol-em on renec-

~ion coefficient limitation, equations ~OI gain-bandwidth product are 

derived. From a designer's point of '.1ew, A:uh and Fukada's technique is 

~oxe :xactable than that of i'tattha.ei, but it a.2.so suffers !'rom several 

deficiencies. Diode parasi tit.::s 3J:e !lot included 1!l the equivalent circuit 

and the circulator is assumed to pass both t..~e signal and tr..e idler f::e

quencies . !u [10J subsequently den 'red a :nore exact~ synthesis technique 

wt-.!ch, al:h.o'.Jgh it is :nora flexible and ~are elegant, is less :'::ac:.a.':lle 

:han :.::a:. of X:;.h and ::<'1.i.kada r and also su.~':ers :rom the sama :.e:ic:'e::c:es. 
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Perhaps the most widely used synthesis technique is that developed 

by DeJager [llJ. with extensions by Connors [13J and Parra and Somerv~lO 

[14J. However. this technique contains numerous approximations, employs 

a rather simplified varactor equivalent circuit, and is limited to only 

double tuned signal circUits. EgaJDi [12J later developed a. new desi8n 

theory ba.sed on slope parameter concepts. He has included diode para.-

51 tics and signal circlli t loss in his dart va tions. lihUe the technique 

is more exact, it is also less tractable and !.s again l.im..1 ~d to double 

tuned sigIla.l cireui ts only. 

~any, i! not all, of the above ~eutioned · deficiencies can be removed 

if comput er-aided design techniques a....-.oe fully uti.llzed in pa.rametric am

plifier design. loIith :'he high speed capability of a ci.i.gi~ computer, 

one can af:'ord. to use c.' ~ore realistic va-""a.ctor equivalent ci=cui t, t o 

include sigr3l. cireui t loss i!l :'he computation of amplifier perfo.mances, 

and to explore more complicated. topologies. In this research ::-eport, 

a computer program rlll ~ developed for parametric amplifier design 

wi th special emphasis on a d.egenera~ parametric amplifier in the fcr.n 

of a JLicrowave i.!lteg:at.ed. circui:'. 

3ecause of :.nei.= advantages of light weight, low cost and mass 

producibilltJ, microwave integ:ated circuits have been increas!.ngly used 

to replace coax' aJ cables and waveguides in many microwav.e izlstruments. 

Along rl:th the se advantages, ncr-owa ve in teg:'a. ted c:1.rcui t~ also bring to 

mic-:ow;~:"e eng!.neers some ve=-! challengl-ng design problems. Among these 

:.::e ]lost se=!.ous !os pe=:-..aps :'i:e lack of :'-..ma.bili:'7. :'0 overcome :..."lis 
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difficulty, m.1crowave integrated circuits ar.! sometimes first built and 

tested with adhesive copper foil. on oversized substrate at relatively 

low frequencies, usually a few hundred megahertz (MHz) . Tun1.ng is pos-

sible, though very cumbersome, on this low frequency model. Once the 

cirelli t is tuned to achieve the desired performance, frequency seal 1 ng 

* techniques are used to br1.ng the operating frequency into the m.1crowav~ 

or m1~l1meter-wave frequency range, usually from a few gigahertz to tens 

of ~ertz (GHz). This technique proves to be very useful for passive 

!letworK des1i;n r 15J . Sowever, for active ::let;'(orks, the 5<'41 j ng is fax 

more difficult and less satisfacto~I because of ~he difficulty in obta 1n1 ng 

7,(0 active devices !-.ar.....ng all. their parameters (size , ~unction and pa.~e 

capacitances, bulk resistance, and lead induc"tance ) relat ed to sach other 

by the same factor. This is particularly true for active networks with 

low stab1ll ty and high sensi tin ty, such as pa...-aJIletric or tunnel diode 

amplifiers. This Inay well be the reason that only very few m.1crowave 

int.egra. ted circlli t para.metric ampli.!'iers are reported in the ll:.era ture . 

1.3 Objectives and ' Outli:le f the ?resent S tud.y 

!he objec':.ive of this study is to develop a computer program :or 

pa.ram.etric aJ:lplliier design rl th special emphasis on practical design 

.. .All circlli t ~ens1ons are reduced by a cer..a.in :a.c:.or. Hence, the 
operating fre<lue~cy 1s also increased "rJy L"le same !'actor. F:Jr :!lore 
:ie:.ails, see L15_. 
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considerations for microwave integrated circuit degenerate ampll.!'i e=s . 

To attain this objective, precision measurement techniques must be 

developed to obtain a more realistic varactor equivalent circuit, existing 

theory of parametric ampl1.fler must be mo,i1fled to include the Ilew equi

valent circuit, and microwave integrated circuit properties, such as 

loss characteristics and circuit discontinuities, must be investigated 

thoroughly. 

In Chapter n the basic theory of semiconduct or PH junction is 

briefly reviewed. Lumped-e1.ement equivalent circuits of packaged vara.ctor 

for various :'...-equency ranges are then proposed f ollowing a close exami

oation of t.he structure of a t.ypical varactor package. :'ecbniques fo= 

p:r9cision :nea.surement of dri ... ~-poi.!lt impedances are given t ogether 

wi. th methods for exL-a.ctlng varactor parameters from measured impedance 

data. 

Chapter III i s devoted to the a.!lalysis of parametric amplifier cir

c...u ";s. 'The behavior of a varactor under the influence of a pump source 

i!: !.!lvest!.ga.ted. This i.3 followed "ay the ':ormulaticn of t.he sma.ll

sig'"'-.al i.mmi ttance Jla~ of a pumped varactor. Ga.!.n and noise fi~..I:.'e 

e~essions for ampll.fier circuits employed a complete equivalent ci=cuit. 

are presented in a manner which makes them suita.ble for aplemen--;ation 

1.:1 computer-aided design program.. 

The study of ll1crowave integra ted circuit properties 1s covered in 

Chapter IV. Computational methods ':or chara.c:.eristic iJnped2nce, effec";i-re 

:i!.elec~!.c consta.:lt, ~C: attenua.:'icn consta.n· a.::e gi.ven alcng -.. i:.n numer-



-9-

1eal results for several frequently used substrates. Circuit discont1-

nuit1es. such as open circuits and T-junct1ons. are discussed in detail. 

Analysis and synthesis methods for one part1cular circuit component, the 

parallel-coupled band.-pass fUter, are presented. 

The models and calcula.t1on methods developed 1n Chapter II through 

Chapter IV axe used in Chapter V to design and construct a 5.5 GHz 

degenerate ampl.1..fier. '!'he computer program used for :Us design 1s 

described in detail. Power ga.i.::l and noise figure of this amplifier are 

reported. 

I!l Chapter VI the results of this dtudy are s1..Ul1llla.ri2ed and sugges

tions are g1. ven for f~\ .. her resea=ch into all a.sp9cts of this study. 



CHAPTER U CHARACTERIZATION OF MICROWAVE VARACTOR DIODES 

Z.l Introduction 

The varactor diode is a semiconductor p-n junction which is generally 

used not for its rectifying pro~rties but rather for its voltage depend-

ant nonlinear capacitance provided primar1.ly by the depletion layer of the 

junction. By specifying the impurity profile throughout the junction 

region, the dependence of the depletion width and hence the nonlinear 

depletion capacitance on applied voltage can be controlled to suit the 

intended application. As depicted in Fig. 2.1.(a) I the p-n junction is 

formed by d1.f!'us:i.ng p-type i.JIlpurlty a.toms (e. g. boron) into an n-tJ1lE! 

+ epi t.a.x1 a1 layer which is grown on top of an n substrate. 'T'b.e substrate 

is pUJ:'ely for mechanical support and is heavily doped (usuall ! d:.h arsen-

ic) to reduce the undesired bulk resistance. An ohmic conta.ct is ucie to 

a. sma1.l circular area on top of ~"le 'lffifer I and most of the epi tarlal layer 

is et ched away t except that which is directly underneath the contact. 

In this 'rfay a :nesa. of desired geometry can be for.ned. '!'he substrate is 

tben bonded electricaJ.ly and mechanically to a mounting post t or pedestal 

wbich is raised from one of the tOlO conducting end caps of the packa.6e 

as shown u Fig. 2.1(0). The top of the wafer is connected to the other 

end cap using one or more lead w1.res or bonding 5 ..... -ap5. The two end caps 

arP brazed to a ceramic cas" ng to ensure hermetic sealing. ~hile such 

packages a...-e rugged and convenient for handling t they are also a source 

of pa.-asitic elements which become significant at microwave f=eque~cies. 

-10-
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In this chapter, the electrical characteristics of a varavtor will 

be dealt with fint. By closely exam1 n1 ng the varactor prorerties and 

the package structure, a realistic equivalent circuit is then proposed. 

F1Dally, means for determining the equivalent circuit are discussed. 

This includes the measurement setup, measurement technique, computational 

methods, and a computer-aided opt1m.1za.tion technique for obtaining numer

ical values for the equivalent circuit elements from the exper'-IIlental 

data. 

2.2 Circuit Elements of Packaged Varactor Diodes 

2.2.1 Junction Ca'OaCitance. Although the formation of a p-n j_:c

tion is actually done by a diffusion process, let us visualize what would 

happen if two regions of semiconductor lI1a.terial possessing different type 

of conductivity, one of p-type and the other of n-type, are brought into 

contact. Be1.!aUS8 of the concentJ:ation gradient, electrons would oiffusc 

from the n-type region 1!lto the p-type region and quickly recombi:le ;d:.h 

holes. SiJIl1arly, holes would d.1!:f'u.se f:::-om the p-type region i!lto the 

D.-type region and recombine with electrons. This process would leave a 

!let posi ti va charge in the previously neutral n-region near the junction, 

and a net negative charge in the p-region due to ~e ionized donor and 

acceptor atoms respectively. As the diffusion proceeds, an electric 

field is set up which retards and f1nal.ly stops the diffusion of lI1a.jori ty 

car=1ers across the junction. After equilibrium is established, a ~ow 

=agion called the depletion laye:::- or space-cha=ge laye= is left a~ ~~e 
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junction, which i s swept completely ft~ of charge ca-~ers by th~ elec-

tric field. The potential difference across the depletion layer is 

called the con~ct potential or barrier potential. 

The width of the depletion layer depends on both the type of sami-

conductor 111& ter1a.l and the impurity d1stri bu.tion near the junction. 

Knowing the impurity distribution, the depletion layer width ca.u be 

found by sol~~ the one dimensional Poisson's equation for the scalar 

potential ~(x) 

~(x) 
E (2.1 ) 

wi -th appropriate boundary conditions. Figure 2.2 shows the space-charge 

distributions of the two most commonly tr3ated junction, namely, the 

abrupt junction and the linearly-g:ra.ded j1mction. For the abrupt .. 
junction, ·l1e width of the depletion layer is given by 

\( = 2E ~ q, + V) (_1_ + _1_) 
q Na Nd 

where 

q = the electronic ~~ge (1.6 x 10-19 C) , 

4> = -the contac t potent ial (volt s ), 

( 2.2 ) 

.. The derivation of Eq . 2.2 i s 1oIe11 cover ... rl i n essentially ever'] semi 
cond~ctor device theory 'book . See, :or example , Chapter 5 of [16:. 

... 
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E :-: the pemittivity of the sendconductor material (F/m ) , 

v = the applied voltage (volts), 

N = the acceptor concentration (m-J), 
a 

Nd ::s the donor concentration (m- J). 

Since va.ra.ctors are usually operated in the reverse bias region, for 

convenience, a sign con.,ention is adapted such that a rsverse bias vol~ 

is positive, while a forward. bias voltage is negative. Equation 2.2 can 

be written as 

W = W (1 + v/~ ) 1/2 (2.J) 
o 

where Ii represents the width of the deplet ion layer a t zero bias. The 
o 

junction capacitance is 

c .0 
J 

( 1 + V I cp ) 1.72 
(2 .4 ) 

where A is the junction area , and C .0 = A( E/W ) is the capacitance at J , 

zero bias. 

SiJDilarly, for lbearly-graded junction, the rldth of the depletion 

layer at zero bias is 

12ECP l/J 
Wo = ( qg ) (2 • .5) 

where g is the impuri ty gra.d1ent as shown 10 Fig. 2. 2( b). ·'hen bias 

voltage V is applied to the junction, ~e wid·~ of the deple~1on layer 
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w = W (1 + V/~)1/3 
o (2.6) 

The junction capac1 tance 1s then g1 ven as 

E CJ'O 
C!'l = A- = --~-~~ 

W (1 + v/~)113 
(2.7) 

In practice, the impurity dist:1bution 1s far more complicated and 

wsuaJ.ly can be approx1ma.ted by either a gaussian or a compll.!nentary 

error function, depending on the diffusion process. In this case, t he 

capacitance-voltage relationship must be calculated numerically [ 17J . 

However, as a first order approx1ma.t10n, the depletion layer width and 

the junction capacitance of a real p-n junction can be expressed 

( 2. 8) 

(2.,9) 

where the value of n 1s 1n the range of 2 to 3. 

2.2 . 2 Series Resistance. The series resistance of a packaged. diode 

consists of two parts, f1.xed resistance, R
f

, and variable resistance, Rv' 

The f"1xed resistance includes that of the two end caps, the mounting st , 

the substrate, and the bon~g straps , and 1s independent of the bias 

voltage. R
f 

can be evalua ~ ed if the resistivities of the substrate and 

the conductors are given ·ogether with the package c;onfigura:'lon. !he 

'rariahle =esis"taIlce 1s due to the bulk r9sistance of :.he semiconductor 
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me sa. excluding the depletion layer. For the case of .ul epi tax:1a1 d1)de, 

this resistance 1s dominant and is gi van by 

R =...l- [ f P. (x) dx + f ~n(:t) dx ] v A p • . 
(2.10) 

where the integration l1m1ts for the first term are from the top of the 

epi ta.xial layer to the el'ge of the depletion region in the p-region, and 

from the epitaxial layex - substrate interface to the edge of the depletion 

region in the n-region for ti.e second term. The p-type and n-type resis-

tiv1ties are functions of the acceptor and donor impurity concentrations, 

respecti valy. Rv is thus a function of depletion width which in t urn is 

a function of the bias voltage. Consequently, the total serles resi tance 

R is a fUnction of bias voltage. Larger bias voltage causes a -.rider 
s 

deple t ion layer, which lowers the series resistance. 

For abrupt junction, Eq. 2.10 I",an be calculated by making ~cme sim-

llllfy1.ng approximations. For instance, if the p-region is a~sumed t o be 

negligi bly t hick, and e « p. , so that'll ~ 'II , t hen Eq. 2 .10 becomes 
p n n 

1 
R" = -A- f (x) dx 

n 
(2 .11) 

where t ~~ the -:.'1idmess of the epi taxial layer . Since :he assumption 

of an abrupt ,;unction i:nplles a constant donor concen:=a:!.on, Pn( x) is 

constan-:, and ttus 
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t'n(t - \1) 
A 

(.2.12) 

Equa.tion 2.12 can be expressed in term$ of bias vo1~e explicitly. 

Using Eq,s. 2.3 ~\lld 2.4, the following equation i!: obtained 

(2.13) 

The total series resistance can now be expressed in the form of 

(2 .14 ) 

where Rl = Rf + Pn t/A, and H2 = ~n <:/C jO' 

For a. real va.ractor, ~q. 2.10 ca."l be evaluated nt..lIerlcally if the 

d1!fusion process is known. :iowever, fOJ:' the purpose of characterization, 

R can be simply expressed as 
5 

R = R - R (1 + v/~)l/~ 
s 1 2 

and unknown parameters can be deter.nined experiJlent.a.1ly. 

(2 .15) 

2.2.3 Lea.d -~ducta.nce. All the meta.llic portioDS of :'he package 

contribute ~sitic ud.: .- ..a.nce which a.ppea....-s to be in series wi:h tt-.e 

junction ca.paci tance. The most sign1=-1cant contribution undoubtedly 

comes f=om the 1ea.d rlres or bonding straps which connect the semi con-

c.uctor die to one of the end caps, because of :.heir -/E.ry small cross-

sectional dimensions. r~ica.lly, the connec:icn eonsists of ~ sing_e 
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gonal pair of 25 ~ thick by 75 IJm wide gold straps, with the center 

attachad to the semiconductor d!.e and both dens to the end cap (raf"r ~o 

Fig. 2.1 a). 

The inductance of a round wire with length 1 and diameter d is g1 ven 

as [18J 

L = U[~ - 0.75J (2.16) 

where L is in nanohernies (DR), and 1 and d are in centimeters. The low 

f=equency inductance of a straight rectc.ngular w.r with length 1, W"1dth 

w, and thickness t is [18 J 

L = 2l[ln "2: t + 0.5 + 0.2235 w ~ t J (2.17) 

where L is ~n in DR, and all d1.!nensio~ are in centimeters. T.'le ir.duc -

ta:lce values at lIlicrowave frequencies Co "e affected by ~ effect, but 

are lower than those given by the low frequency formula by lees than 

6 per ~ent [19J. 

The value 0: lead inductance assocl.ated with a particular ::'ype of 

package can be obtained from the :nantllar:+.ure.r. However, the lead -..ri=es 

or bond1!lg s~""aps a--e a.l.most u.z;iversally installed by !'land, t.hus the 

iea.d inducU3.nce usua.lly ___ aries from un1 t to un1 t. Therefore the cia. ta 

supplied by the iIl.L.,ufa.cturer must be verified experiJl1entally. 

2.2.4 Package Capac1tance . In general, capacitance ex:ist..:; between 

any two sepa....-ated conductors. Therefore I the package capac1 '..a.nce of a 

varactor diode comes from ~y sourceSj bet.ween the two end caps, betwep.n 

the bond!.ng st ... ..lpS and the bottom ene. cap, be:.ween ..... '1e bocdi~ s~=a?s a."lc. 
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the atounting post, and betwaen the top end cap and the atounting post. 

Even if the f~-ng1ng field effect and discontinuities are neglected, 

evaluation of ths pac~ capacitance is st~ a. foImida.ble, if not 1JIpos

sible, ta..sk [20J. Howevex, the value of the pack~ capacitance can be 

ea.a1ly 0 'ota.1.ned by atea.sur1ng the capacitance of a. dummy package at low 

frequencies. 

2.) Lumped-Element Equivalent Ci=cuits 

As depicted ill Fig. 2.3{a), the parasitic ~pa.citance and inductance 

a..-e in fact distributed elements. 'Thus, the gener-~ approach to the pack

~e =epresentation would seem to be ei tber a three-port transioDa.tion 

matrix 2l], or a. d1~tr1buteci-element circuit, as illustrated in Figs. 

2.J( b) and 2. 3( c ), respectively. However, the transformation JI1atrix 

~J!~ers fro~ two major drawbacks: one, that the matI1L~ elemects may not 

have any physiCLl. meaning and t-.ro, that each matrix evaluaticc 1." only 

valid at one frequency. .hile the distributed-element cu-cui t does 

relate its elements to the physical pa...--ameters of the pa.cka.ge str.lC~ura, 

it also :na.kes t::e a.oa1.ysis of t.."le cL.--cu! t atucr. more d,if:icul":, and :""lUS 

renders i tsel t '.mdesL-able. However, i! the ?&ckage diJIlensions a...-e much 

smaller than one wavelength at the !requency of interest, these di!1cien

cles can be ::eadi.l1 removed by employing a lumped·-elelllent equivalent 

circui t. 

~o see how t..~e equivalent cu-cuit in ~1g. 2.4(a) is conceived, a 

closer look a.t :.. .. e :!ist....-i~t.ed-tl:ement cL-cui-; ~::l Fig. 2.;(c ) ~s !on cr:ier. 
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The elements C , and R I represer.t the j\mction capacitance and the bulk 
J S 

re:5istance of th9 semiconductor ma ter1al (i. e., the substra. te and thE' 

unda1'leted epitax1a1 layer). The resistance and inductances with subscript 

1 throtl8h 4 are those contributed from the top end ca:p, the bottOlll end cap, 

the bonding straps, and the mounting post, in that order. Cl is attributed 

to the capacitance batween the two end caps, while C2 is that between the 

bond1.ng straps and the bottom end cap, with C
J 

being that between ti:.e 

bond1.ng straps and the mounting post. 

In Fig. 2. It{ a), it is 0 bvious that C , remains unchanged while R 
. J s 

becomes the sum of 2' and all distributed resistive eleD1ents. The capac-
5 

itaoce bet-..reen the straps and the post in the immediate vicinity of the 

semiconductor ... afer forms the first shunt' element, C~J' with portion of 

the strap inductance ~ci a.l.l the post inductance appe<l-~ immediately 

in series with the semiconductor elements past the ini t 1a1 s~unt capac-

itance as re~sented by L~. TI"!e second shunt element, C~2' represents 

t..~ e other pa.rt of the capac!. tance be tween the straps and the post, toge-

ther rl t. ... porcion of the capac 1 tance between the t;(O end caps in the a.1= 

Yol'Jllle. L~I ~e seccai series element, consists of the ether part of 

the strap inductance and a.l.l the end cap inductance . Finally, C
pl 

::-epre

senta the capac 1 tance ootween the end caps !.n the ceramic casing. 

This equiva.lent circuit does, to some extent, actually relate the 

circuit elements to the physical. parameters to the package structure, and 

therefore 1s relatiV'81y invari.c.nt over a wide fre<;.usncy ra!lge. :1:us, in 

man! applications:':' is use:ul OV'8r several octa-Ies fo~ :requencies as 
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high as that in the lower end of the ml1J1meter-~ve range. For lower 

frequencies, this equivalent c.1rcuit can be reduc&d to that of Fig. 2.4(0). 

This is done by observ1.og that if two adjacent circuit elements, a series 

inductance and a shunt capacitance, having sma.l.l 1mm1ttances, but not 

sma.l.l enough to be neglected outright, they may often be intercha.nged in 

position. This rl.ll a.lloW' them to be coabined with elements of the saJIle 

tYJ)e and thus reduce the number of loops in the c1.rcui t by one. Consi

dering the L-section conta1 oj cg L~ and C~2' the ABCD mat.l:"'...x ( see Appendix 

A) which represents this section is 

[. :. ;]I) p2 

jwL ' 
52 

I-d-r., c' 
52 p2 

( 2.18) 

If the positions of L~ and C~2 are interchanged, then the ~ 

matrix becomes 

1 

o 

. L' 
~52 

1 

1 

jwC I. 
p2 

o 
= 

1 

1 - uh' C' 52 p2 

jWC ' p2 

(2 .19) 
1 

Equations 2.18 and 2.19 indicate tr.at the positions of L~ and C~2 

may be intercha.nged without introducing significant error for ~quencies 

satisf]1ng the condition 

uJ2 L' C· «1 
52 p2 

( 2.20 ) 

For ~ost standard packages, the criterion of Eq. 2.20 can be easily 

~et !or frequencies i~ the X-l::a.r.d. ( 8-12. GHz, or lower. !'he equ!'1alen"; 

~ - ui be f·.-+\.. -~ - ,. &" d..·\.. • -, 2 '() ..l ' , \ C.u.C ~ can \,U. ... uer ~p~;.e wO ... uose _!l ::.gs .. ..j. C a.!1<.o. ,:. ) . 
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3ecause of their simplicities, these two circuits, in one fom or the 

other, have been used by numerous aut."lors. However, they are only va.l.1d 

at ultxa-higb frequencies or lower microwave frequencies, and any attempt 

to ~ them at high frequencies might cause significant discrepancies 

bttween theoretical and actual responses. 

2.4 Measurement of Packaged Vara.ctor Diodes 

The measurement techniques of microwave varactor ~od.es can be 

1::rroadly characterized into t-... o catagories: the "tra.nsmission loss versus 

frequency" method due to DeLoach [22J, with extensions by Roberts and 

illlson [23J, and the "1mIX3dance versus bias" method due to Houlding [24_, 

with extensions by Harrison [25J. Diode parameters, namely C . and a , 
J S 

a.ra calculated f=o"m the measured data and expressed in ter.ns of Q factor 

[26 ... , from which amplifier por!onances can be roughly predicted. Para-

si t!.c elements are not of great importance, and thus are not accurately 

determined, since they can be easily tuned out in waveguide or coaxial. 

line Circ\1its. Unfortunately, for the cur:r:ent study, this is not the 

case because of the la.ck of tUIlab1llty in microwave tntegrated circuits. 

In the following sections, a measurement technique is described which 

wi.ll enable the d.eterJlli.Ila.tion of the diode equivalent cL~u1t more accu-

rately. The diodes used in this study a.~ Microwave Associates' MA 48.50s;E 

gallium-arsenide (GaAs) V'a.-"""a.ctor diodes, cOllllllonly employed L'l microwave 

paraJDetrlc ampli:iers. Figure 2.5 shows its dimensions. Diode parameters 

at bro =averse bias voltages, 0 and 6 volts, · ... ere supplied by the :na.r.u-
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A = 3.04 mm 

c = 0.71 mm 

D = 0.2.5 mm 

E = 2.03 mm 
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?!.g. 2 . .5 JLnens.~ ens of ~ :...cSC<jE "; J.=:-tc".:;r :!.od.e 
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fa.cturer, and are listed in Table 2.l. 

Table 2.1 Manufacturer Supplied Data. for MA 4850<;E Varactor Diode 

Paraaeter Diode #l Diode #2 Diode #3 

C jO (pr) 0.578 0.552 0.594-

C j6 (pr) 0.271 0.252 0.280 

15 (DR) 0.3 0.3 0.3 

c (pr) 0.292 0.292 0.292 
P 

• 
fco (GHz) 292 294 267 

VB (volts) 13 18 18 

at a volt. 

2.4.1 Measurement Setup. Since pa.~etric amplifiers are generally 

used for low-level reception with signal level usually bel~w -70 dam 

(10 -7 mW', the MeasureMent Must be ca.rrled out with pofi'er level campa. ti ble 

to the ·. ow-level condition. Prel1m1nary investigations indicated that 

the di ::'.ie parameters c..re affected by power levels when the incident 

power ' .. s above -15 dEm. As a result, the power lavel under which the 

diod6 :i a...-e !.o be :neasured was then decided to be about -20 ~m. ~.is 

=equi=es a :neasurell1ent system with very high sensitivity, and consequently 
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the superheterodyne system shown in Fig. 2.6 was ~bosen. 

A l..r1ef description of the systf4 follows. To el1m1nate the pulling 

effect, a circulator with one port teminated in a 50-ohm load is inserted 

between the signal. generator and the rest of the system. Frequency is 

IIl8&SUJ':ed by a precis10n frequency meter. Power level is continuously 

monitored through a directional coupler. Bias voltage is applied via a 

coa.na.l bias-+;ee. The recision slotted-line 1s a 50-ohm HP type 8161\ 

with APC-7 connectors. SigDa.l picked up by the untuned RF pro-oe is fed 

to the low-noise mixer. The IF output from the mixer is then displayed 

by a precisely call'arated, JO MHz al1plifier (GR type 12J6) . 

The diode test mount deserves a more deta.i1ed descript ion since i t 
./ 

plays the most important role in the whole system, and is not commercially 

ava.ila.ble. To be compatible with the slotted-line, the diode t est mount-

was des1gned around an APC-7 a1r line connect or . Every part was machined 

in 'arass and then gold plat ed to m1 n1 mi ze ohmic ~oss . The diode is held 

bet ween the inner conductor and a cylindrical slug wi th the center of one 

end slightly recessed t o ensure tha t the diode w1ll be properl:v centered . 

A fine thread screw is used t o keep the slug, and thus the diode , :iJ:mly 

in position. Figure 2.7 is a photograph of the completely disassembled 

diode llOun t • Some critical dimensions are indicated in Fig. 2 .8. 

2.4.2 System Call'aration. Before the diode measurement can be made, 

two important parameters of the system must be determined: the attenuation 

constant of the slotted-line, and the position of the reference plane 

consistent with t:.'1e scale on the slotted-line. Losses on a slotted-l!.!!e 
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are usually very smal.l., and can be neglected 1n most cases. However, in 

this case, the diodes lave a 'Very smal.l. resistance, and hence the voltage 

~tanding-wa.ve ratio (VSWR) is very high. I\s a result, neglecting the 

line loss car. affect the measured data drastically. Bandler L27J has 

shown that the attenuation constant, a., of a slotted-line is related to 

me short-CllCui ted VSWR, S , by o 

1 a. = --=--~ S 1-
o 

nepers/em (2.21) 

where Z is the distance between the position of the probe and the reference 

plane in centimeters. The attenuation constant ~easured by this method 

has a value of 0.00046 nepers/em at 5 GHz and. 0.00056 nepers/cm at 6 GHz. 
/ 

To establish the load reference plane, the center-recessed slug was 

replaced by another slug with identical dimensions, yet an even and 

smooth suria.ce, which made fim contact wi th the inner conductor. The 

posl tions of standing-wave minima were recorded at intervals of approxi-

:nately 1 GHz from 1 to 18 GHz. These positions were numeri..:ally extra-

polat.eci. by integer numbers of half- llavelength '.lIltU t::ey c incld.ed, and 

this, of course, \las the load reference plane. 7t:e value cocsistent 

with the slotted-line ScalL was deteJ:Ill.i1led to 'be -1.38J em. The scatter 

~_~ough ~he whole f're<iuency ::ange was rather ~ and could well be 

attrtbuted to experimel.. tal errors, thus the syste:n "as believed -:'0 be 

substantially free f=om major defects. 

For th~ cUod"! :neasured in this =eport, ~_'1e d.iaJneter of -:'he larger 

end cap 1s 3 . 05 mm, which is identlcal to ":.he dic.me:'e::: of :';:e i:'.ner 
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conductor. Thus, the load reference plane can 1:e further moved t o the 

end cap-dielectric cas.:,ng illterface. As rlll be seen la.ter 1n this cha.pter, 

this makes t..he data reduction procedure much simpler. Sillce the thickness 

of the end cap 1s 0.0,58 em, the new load reference pla.ne was then moved 

to -1.441 em. 

2.4.3 Measurement Tect!Il.1que. Due to the combination of low power 

and high V5VR, the a.ccuracy of measuremgnt by the "double-adn1mum" methcd 

[28] is rather poor 1:ecause of the difflcul ty in precisely measuring the 

power level at locations of standing-wa:/e m1 oj rna. To overcome this pro-

blem, the "four-point" method [29J was employed. Referring to Fig. 2.9, 

this method requires the measu:relIlents of four positions ( ~, x
2

' xJ' and 
/ 

x4) and the difference be~"een two power levels (? dB) whic.~ was usua.l.ly 

taken to be about 10 dE. Measurements were made at iI'J.tervals of about 

200 MH z from 4 .8 GH 7; to 6 .2 GH z , and again from 10 to 12 G1i z . A teach 

frequency , measurements were ~de at six different bias voltages: 0, 0.5, 

1.0, 2.0, 4.0, and 6.0 volts. At each bias voltage, ~ probe ~oved from 

one end of the slotted-line to the other covering all standing-wave 

mj oj iDa. Usua.l..ly several hundred sets of data. were taken :or each diode. 

The calculation of standing-~ave =atio, S, is ~uite straightforward. 

Let ~ be the distance betOfeen ~ and Xz' and t1z l::etweeo ~ and x4 ' t.hen 

eXE(O.23026P) - 1 ] 1/2 
2 7T~ ~ 1T~ 

sin (--r-) exp( O. 2J026P ) 5io'( -r--) 
g g 

, 2.22) 
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where ~ is the wa.velength atld P is the difference in dB between the two 
g 

power levels where the !'our positions lfere measured. However, Eq. 2.22 

gives VSVR ",t the position of minimum (xo)' For lossy slotted-llne, 

the value at the load reference plane is [28130J 

S l = coth[arctanh(l/S) - tIl] (2.23) 

where 1, 1~ the distance between ~ and the load reference plane. If 

S » 1, and al « 1, Eq. 2.23 18comes 

1 
S = -:o-r.:----::-

lIS - a...e 

and the load impedance at the reference plane is 

1 - j5 2 tane 
7 = Z 
.., 1, 0 S.z - jtan9 

(2.24) 

(2.25) 

where Z 1s":.he c.~cterlstlc impeda.I:.ce of the slottad-l.i.!le ~d e is 
o 

the electric angle between Xo and t.!".e load =-ei'erence plane, and 1s given 

27T'1 a =-r
g 

(2.26) 

A computer program was wr1. tten to proce 53 th@ measured cia. ta according 

t o Eqs . 2.22, 2.23, and 2.25. During the 1cl t1al t"UZl. , all data points 

were processed i!ldindua.1ly, ana. an "avera.ge ~pedance" iolaS calculated 

a:' each bias. 'r:1e . ompute= pr'...ntout was carefully exaJUined and data. 
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to be "1Bd point" due to experimental errors, and thus was discarded. 

After the cleanup, t.~e data were reprocessed. Figure 2.10 shows one 

page of the computer prtntout on the 1n1.tial run. 

2.5 Determ1.Da.tion of Equivalent Circuit Pa.rameters 

2.5.1 Diode Test Mount Equivalent Circuit. As has been discussed 

in great detail by Gets1.Dger [Jl,], the impedance calculated from Eq. 2.25 

is in fact the impedance of 'both the diode mount and the diode i tselt' • 

Figure 2.11('0) shows the diode mount equivalent circuit proposed by 

Getsinger. Circlli t elements n.ll now be briefly descrl bed. 

The first element from the left, C
f

• is the !'ri.ngi.ng capacitance 

bet-..reen the end cap and the out3r conductor. The sene s inductance, L , 
c 

is the coa.x1a.l inductance caused by tnagIletic fields i~ the volume bounded 

by the outer conductor as indicated in Fig. 2.11(a). The pi-net~ork 

fomed by C
rl

, L
r

, and C:-
2

, is the equivalent network for the radial 

line [ J2 ~ wi th letl~..h h, extending from the diode to the diameter Di of 

the inner conductor. 

Based on the dimensions of the diode and t.he diode mount, • .. hese 

parameters were calculated tv be (see AppendU S) 

C .. = 0.062 pF 

L = 0.118 cH 
r: 

C = C = 0.025 ~~ rl r2 r'"' 

Lr = 0.058 nH 

:'0 test i"ts ·r.Ll!.d!:1, "':.he impeea.nce calcula:'ec. !'::-om this equi·r4.len':' 
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c1rcui t together with the diode parameters ill Table 2.1 are compared 

wi th the measured 1.Jtpedances. Figure 2.l2 shows excellent ~ement 

between the calculated and measured reactances, and thus substantially 

confirms the validity of the equivalent circuit. 

Once the equivalent circuit of the diode mount is dete::1ined, the 

diode impedance, Z d' can be easily obtained from the measured impedance, 

Z 1.' The diode reactances at two bias vo:tages are also plotted in 

Fig. 2.l2. 

2.5.2 Comuuter-Aided Optimization of Diode Parameters ~d Equivalent 

Circuit Slements. The problem of obtaining numerical values for the eqtd

valent c~-cui t elements from the measured impedance data is usually solved 

by the least- squa..-.oe polynomial approxilItation mttthod [JJ] . Conceptually, 

it is very straightforward. A polynomial function which fits the mea

sured data is compared with a second polynomial function ..mich =e~sents 

the impedance of the equivalent circuit. Numerical values of the ci=cuit 

elp..ments are solved from a se t of si:nultaneous equations for.ned by 

equating t.~e coefficient s of like tenns from these two polynomial func

tions . In prac h.::e , this me thod i s very tedious and involves enoDl1OUS 

amount of computational efforts. -iorse yet, the equivalent circuit thus 

deteJ::lli.ned is only va.lid atone bias voltage. 

'.ha t is !'Saily desired is to deter:n.ine not just the equivalent cu-cui t 

at any particular bias vol~e. Instead, it is more desL.""able to deter

mine the values of the parasitic elements and the dio<ie pa.ra;nete=s, 

namely, n, ~, C jO' Rl , and H2 as in Eqs. 2.9 ar.d 2.13. !{:J.cwi:-.g :.he5e 
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parameters, the equivalent circuit at any given bias vol~ can be con-

tructed. Furthennore, these parameters also permit the mora accurate 

ca1cul.a. tion of pump power level and amplliier perfomance. 

To detemine these parameters, a computer-aided optilllization tech-

nique was employed. This technique can be simply explained as follows. 

lnitiaJ. parameter values an obta.1.ned by "educated guess" or any other 

judicial means. Following a certain strategy, or optimization method. 

each parameter is then adjusted (wi thin certain constraints) so as to 

m1 oj mj ze the error between the measured impedance and those ca1culat~d. 

By doing this successively, the error is fillally mj nj mj zed, and thus 

t.h~ "optUUlll" parameter values axe obtained. This is obviously not a 

systematic method, and a certain amount of experience and intu1 tion is 

required. In fact, many factors such as initial. pa.raJIleter values. step 

sizes, optimization method, and error d1finition, can all affect the 

final outcome. 

A computer prog::am employing a mod1.fied "direct search" method [J4] 

* ;ms wr1 tten for this stud:r. ~e error function is defined as 

ERROR = L {v1CRe(Zd.cal.l - Re(Zd."ea.l:f 

+ v2[Im(Zd.cal. l - Im(Zd.mea. lJf} ( 2.27) 

* r-... o suaroutine simng to "mRECT" and "EXFLCH" in Appendix C were 
used in this program :'0 peron the "d.!....-ect search". This :nethed 
~.-ll be cov/!red in :!lore detail in Chapter V • 
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where w1 and w2 are weighting coeff1cient~, and the summat ion is over all 

frequencies of interest. As is evident from Fig. 2.10, the real part of 

the measured impedances is 1e~s repeatable, and thus less rella.ble, than 

the 1.m.ag1na.ry part. Therefore a value of 0.2 or 1e ss was assigned to 

the ratio of w1/w2 • Measured data of each diode were usually optill11zed 

more than ten times, each with slightly d1.fferent initial value and step 

size, for the equivuJ.ent circuit shown in Fig. 2.4(b). The results were 

then compared and the one with the smallest er=or was retained. Table 2.2 

shows the optuum. parameter values for t he three diodes listed in Table 2.1. 

Table 2.2 Opt.im.UT4 Parameter Values for :iA 48509E Vara.ct or Diodes 

-
Parameter Diode #1 Diode # 2 Diode #3 

n 2.332 2.1.54- 2.218 

q> ( volts) 1.214 1.147 1.126 

CjO 
(pr) 0 • .581 0.552 0 .596 

rt1 ( ohlus) 1.04 1.03 1.11 

R2 (ohms) 0.12 0.14 0.:5 

L (nH) 0.317 0.324 0.325 s 

Cpl (pr) 0.251 0.2.51 0.247 

Cp2 
( :IF' - ) 0.043 0.046 0.051 
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where w1 and Wz are weighting coefficient~, and the summation is over all 

frequencies of interest. As is eVident from Fig. 2.10, the real part of 

the measured impedances is less repeatable, and thus less reliable, than 

the imag1na.ry part. Therefore a value of 0.2 or less was a.ssigned to 

the ratio of w1/w2 • Measured data of each diode were usually optimized 

more than ten times, each with slightly different initial value and step 

size, for the equiV"cUent circuit shown in Fig. 2.4(b). The results were 

then compared and the one With the smallest error was retained. Ta.ble 2.2 

shows the optimum. parameter values for the three diodes listed in Table 2.1. 

Ta.ble 2.2 Opt.U.U74 Parameter Values for MA 48.509E Va...'"'a.ctor Diodes 

-
Parameter Diode #1 Diode #2 Diode #3 

n 2.332 2.1,54 2.218 

<P ( volts) 1.214 1.147 1.126 

CjO (pF) 0 • .581 0 • .552 0 • .596 

Rl ( ohms) 1.04 1.03 1.11 

R2 (ohms) 0.12 0.14 0.1.5 

L (nH) 0.317 0.324 0.325 s 

Cpl (pr) 0.251 0.2.51 0.247 

C
p2 

("JF' - ) 0.043 0.046 0.051 

... 
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CHAPTER III 'mEORY OF NEGATIVE RESISTAl.'1CE PARAJ.'1ETRIC AMPLIFIERS 

3.1 Introduction 

In the aoalysis of parametric amplifiers and converters, a. set of 

power relations origiDa.lly u.eveloped by Ma.oley and Rowe [3.5J proved.es a 

fundamental 't:asis. It is convenient for the purpose of illustration to 

consider the general situation as represented by the circuit of Fig. 3.1. 

~~o voltage generators at frequencies f1 and f2 together with associated 

series resistances and ideal 1::and-pass fll ters are placed across a. 10ss-

less no~ear reactance. Each filter pxesents a short-~ircuit to the 

desired frequen.::y, a.ad an open-circuit to all other frequencies. In 

addition to the two voltage generators, an infinite array of ideal band-

pass fll tel;;, .::..nd load resistances are also connected to the nonlinear 

reactance. :':J.ese fll tars are tuned to the various sum and difference 

frequencies which will arise because of the nonlinear reactance. The 

equations that relates the power flowing into (positive power) and out 

of (negetive power) the nonlinear reactance are shown by Ma.:nley and Rowe 

to 1:e 

(3.1) 

( 3.2) 
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where P is the ~verage ~ower flowing into the nonlinear reactance at m,n 

the frequency mil + ni2 .. ·· Equations ).1 and ).2 axe often referred as the 

Manley-Rowe relations~ These relations are independent of the shape of 

reactance characteristics and of the driving power level. 

To illustrate the' applications of the hanley-Rowe relations, a par-

t1cular case will now be exauined in which power is parmi tted to now a.t 

only three frequencies. If t:le nonlinear reactance is excited at f1 and 

i Z' it w:Ul generate a third frequency f). The circuit is assumed to 

present an open-circuit to a.ll. other frequencies. It is further assumed 

that the power from the voltage generator at f1 is much ~er than that 

fro~ the voltage generator at f2 ~ch is responsible for driving the non

linear reactance, and which is usually called the pump source. If f) 

is the defference frequency, i. e., f) ~ f2 - f 1 , Eqs. ).1 ~d ).Z become 

P1 P - ...:).. :; 0 (J.)) 
~ !) 

P2 P~ 
-.:...- + -2.. :; 0 (J.4) 

f2 f) 

Since IIUIIlP power P 2 is sup:plled to the nonlinear rea.ctance and is 

positive, it follows ti'.a.t P1 and PJ. are negative. This means that the 

nonlinear reactance is sup'Olyine; power to the voltage genera. tor at f 1 

rather than absorbir:g power from it. Since this power is independ.ent 

of that supplied by the genera. tor i tseli, it follows that iniini te power 

gain is possi Ole a.:. f l' This is the case of the 50-ca.lled. neget.i ve 

, 

I :j 
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resistance parametric amplifiers, and f'l and f
J 

are the signal and the 

id:i.er frequency, re specti veIl. 

The nonlinear reactance can be either inductive or capacitive. In 

• 

this study, the treatment is limited to the latter case in which the non-

linear depletio!'. capacitance of a varactor desert bed in last chapter is 

eJI1ployed. More precisely, a varactor has not only a nonlinear capa.ci tance, 

but also a nonlinear resistance. Engelbrecht [J6] has studied circuits 

contaJning both nonlinear capacitance and resistance for frequency con-

varters. The time-varying capacit.ivE!! and resistive elements were asswned 

to be 90° out of phase, i. e., they axe pumped in time-quadreture. This 

arrangement allows the circuit to ~xhibit non-reciproca: features not 

found in single nonlinear element circuits. Other have also studied the 

cases in which the two nonlinear elements are pumped in arbi tra...-y phase 

rela. tionshi p [J71J8 J. However, for high q u.a.li t:r vaxactors, the nonlinear 

effect in series resistance is insignificantly small, and may thus be 

neglected. Throughout the remainder of this re?Ort, the series resistance 

of a va..."Q.ctor wiJ.l be treated as a variable (1. e., dependent upon bias 

vol tage) but linear element. 

In the subsequent sections, the behavior of a vaxactor under the 

influence of a la.rge-ampll tude pump voltage will be investigated. This 

is followed by the fonula.tion of the small-signal immittance matrix of 

a. pumped va...~tor. The analysis of pa.ra.metric a.m:plliiers emploj'"ing a 

siinplified equivalent circuit, 1. a., a. nonl..l.nea.r ca!;acitance and :j. 

~ ~ 

linear resis-tance I has °ceen covered in a num 1:er of well-lmown books U7..J 

. . 

.. 

. . \ . . .... "'. l' .1 +. . . , . ." . 
'\ • ''jl~ I • ~ I . 

~ . 
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[J8J[J9J[40I4-1J. and numerous journa.l. articles [42][43J. No attempt to 

review the vast II terature '\<jill be made here. Instead, generalized ex-

pressions for power gain and noise figure will be derived for amplifiers 

employing a mere realistic equivalent circuit. 

3.2 Pumping of Va...""actor Diodes 

In a parametric amplifier, let a large-amplitude pumping voltage of 

frequency fp be applied across the va.ra.ctor. By Fourier series expa.nsion, 

the nonlinear capacitance can then be replaced. by a. time-var.{ing linear 

capacitance, 
Xl 

C(t) = LCk 
k=..oo 

The purpose of this section is to ca.1cula te the Fourier coefficient;:) 

C-l{ I and the required pUlI.ping power. The discussion is lilni ted to the case 

of voltage pumpi.:lg, in which the vol ta.ge across the nonlinear capacitance 

is assumed to be simu::oidal. The calculation methods for the case of 

cu.rrent pumping, in which the Cll.."'"'ren"t thrcugh the nonli..'lea.r ca:faci :.a.n(.;t; 

is assumed to be si1:l.usoi::ia.l, 3.:I.7e s1:nn ar to tha. t of vol tage pumpi~, and 

~ -r -
a...-r-egi'len elsewhere LJ8...L 41J. 

The ~e of the pumping voltage, v (t), across the non.l..b.ear capaci
p 

tance is l.i.mited b'J t..'"le COL tact potential, ·tJ I in the forward cias :=egion, 

and by the Cre~ciown voltage, V 3 J i.:l :.he :;everse bias regior~ .7n.e ?ump:LTJ..g 

l_'" sai'"' "'".0' ~ull i·~ v ( .. \ v' " ll"[ ~ ~ _ ce: ~.... \ ,,) arl.e S .rom -. -::'0 . - • 
p ~ 

~n ~~s case, the bias 

vol ~e is chosen to "::::e 

. ~ -- ,-. , . ' :..' . . ~ l f' ", • • '. '.!"\. '. . . . .. . ." '",. . ... . ,.' 
. . . 
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v = o (J.6) 

If the pumping power is lim1ted, then the field of variation of Yp( t) is 

na.rrower, and the pumpi!lg is said to be pa-...-t1al. In. this case, the bias 

voltage should be chosen such that thEt foJ~owiIlg condition is m.et a.t 

any instant, 

Since the vcl~ across the lloDJ.izlear capacitance is sinusoidal in 

voltage pumping, v (t) can be expressed as 
p 

v (t) = V + V ccsw t pop p 

.mere, without loss of gene~ty, the time origin is chosen ill such a 

flay tha. t the pU!!1:ping phase is zero. frODl Eq. 2.9 J the time-vaJ.-ying 

~pa.cita.nce '1Jay be n-itten as 

Letting 

~ere 

given as 

c( t) 

a = V~(Vo + ~), Eq. 3.9 becomes 

c _. 
c( t) = ___ ..-J~'i .w,o __ .....,...._ 

(1 + a casU! t)l/:l 
p 

(3.10) 

The Fo~~r coe:ficients, Ck , a.--e ~~en 

. 
1 
j 

) 
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i 
i 

j T 1 . -jkw t 
St = T C( t) e P dt 

o . 

Since C( t) is an even function, it follows that 

Equations 3.10 and 3.12 yield 

( 2IT 

) 

cosh 

(1 + a cosx)l/n 
o 

(J.ll) 

(J.12) 

/ 

dxl 

Equation 3.13 can be evaluated by either expansion in tens of hyper

geom.etric functions [44I4SJ. or numerical integration. Tables 3.1 to 

3.4 give the results of the computation of the first four Fourier coef-

ficients for several different values of n in the range from 2 to 3. 

The J1a.X!.m1.llll gain-bandJddtb product of a negative resistance parametric 

aJZl:plifier as d.ertved by Kuh and F1Jka.da [9J is giV'en by 

(J.14) 

where b is the fract~onaJ. banciwid tb, a:ld G is the transducer gain. From 
t 
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Table 3.1 Ratio of First Fourier Coefficient to DC Capacitance 

as a Function of a 

cclc:(v) 
III 

n = 2.0 n = 2.2 n = 2.4 n~= 2.6 n = Z.8 n = 3.0 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0005 1.0004 1.0004 1.0003 1.0003 1.000) 

1.0019 1.0017 1.0015 1.0013 1.0012 1.00ll 

1.004J 1.0038 1.00:34 1.0030 1.0028 1.0025 

1.0077 1.0068 1.0060 1.0054 1.0949 1.0045 

1.0121 1.0107 1.0095 1.0086 1.0078 1.0072 
/ 1.0178 1.0156 1.0139 1.0126 1.0114 1.0105 

1.0246 1.0217 1.0193 1.0174 1.0158 1.014.5 

1.0)29 1.0290 1.02.58 1.0232 1.0211 1.0193 

1.0429 1.0376 1.0)35 1.0JOl 1.0274 1.0250 

1.0546 1.0479 1.0426 1.0J83 1.0y.a 1.0318 

1.0686 1.0601 1.05:34 1.0480 1.0435 1.0398 
1.0854 1.0747 1.0662 1.0594- 1.0539 1.0492 

1.1055 1.0921 1.0816 1.0731 1.0662 1.0604 

1.1300 1.1133 1.1001 1.0896 1.0810 1.0739 
1.1605 1.1395 1.1231 1.1099 1.0992 1.0903 

1.1998 1.1730 1.1522 1.1357 1.l222 l.llll 

1.2531 1.2181 1.1911 1.169B 1.1525 1.138) 

1.))18 1.28J9 1.2474 1.2187 1.1957 1.1769 

1.~7J7 1.4001 1.3450 1.3025 1.2687 1.Z41i.} 

- •• $ , 
I 

:j 
: 
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j 
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Table 3.2 Noxmalized Second Fourier Coefficient as a Function of a 

le1/col 
a n = 2.0 n = 2.2 n = 2.4 n = 2.6 n = 2.8 n = J.O 

0.00 0.0000 . 0.0000 0.0000 0.0000 0.0000 0.0000 

0.05 0.0125 0.OU4 0.0104 0.0096 0.0089 0.0083 

0.10 0.02.51 0.0228 0.0209 0.0193 0.0179 0.0167 

0.15 O.OJ77 0.0343 0.0314 0.0290 0.0270 0.0252 

0.20 0.0506 0.0460 0.0421 0.0389 0.0361 0.0337 

0.25 0.0636 0.0579 0.0530 0.0489 0.04.54 0.0424 

0.30 0.0770 0.0700 0.0642 0.0592 0.05.50 0.0513 

0.3.5 0.0907 0.0825 0.07.56 0.0698 0.0648 0.0605 

0.40 0.1049 0.09.54 0.0874 0.0807 0.0749 0.0699 

0.4.5 0.ll97 0.1088 0.0997 0.0921 0.08.55 0.0797 
I 0.50 0.13.52 0.1229 0.1127 0.1040 0.0965 0.0901 
1 

0.5.5 0.1516 0.1378 0.1263 0.ll66 0.1082 0.1009 l 0.60 0.1691 0.1.537 0.1409 0.1300 0.1207 0.1126 

0.65 0.1880 0.1709 0.1.566 0.144.5 0.1341 0.12.51 i 

0.70 0.2088 0.1898 0.1739 0.1604 0.1489 0.1389 

0.75 0.2321 0.2110 0.1933 0.1783 0.1654- 0.1.543 

0.80 0.2590 0.23.54- 0.21.56 0.1988 0.1844 0.1720 

0.8.5 0.2912 0.2647 0.2424 0.2235 0.2072 0.1932 

0.90 0.3329 0.302.5 0.2769 0.2.552 0.2365 0.2204-

0.95 0.39.53 0.3.591 0.3286 0.3026 0.2802 0.2608 
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Table 3.3 Normalized Third Fourier Coefficient as a Function of a 

ICicol 

a n = 2.0 n ~ 2.2 n = 2".4 n 2 2.6 n a Z.8 n = J.O 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.05 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 

0.10 0.0009 0.0008 0.0007 0.0007 0.0006 0.0006 

0.15 0.0021 0.0019 0.0017 0.0015 0.00l4 0.0013 

0.20 0.0038 0.0034- 0.0030 0.0027 0.0025 0.0023 

0.25 0.0061 0.0053 0.0048 0.0043 0.0039 0.0036 

0.30 0.0089 0.0078 0.0070 0.0063 0.00,57 0.0053 ! , 

0.35 0.0123 0.0109 0.0097 0.0087 0.0080 0.0073 I"l 
t 1 

0.40 0.0165 0.0145 0.0129 0.Oll7 0.0106 0.0097 

I' 0.45 0.0214 0.0189 0.0168 0.Ol52 0.01)8 0.0127 

0.50 0.0273 0.0240 0.0214 0.Ol93 0.0176 0.0161 , ' 
0.55 0.0;42 0.0302 0.0269 0.024) 0.0221 0.0202 I 

f 

0.60 0.0425 0.0374 0.0334- 0.0301 0.0274 0.0251 

0.65 0.0524 0.0462 0.0412 0.0372 0.0338 0.0310 

0.70 0.0645 0.0568 0.0507 0.0457 0.0415 0.0)81 

0.75 0.0793 0.0699 0.0624 0.0562 0.0.5ll 0.0468 

0.80 0.0983 0.0866 0.07'73 0.0696 0.0633 0.0.579 

0.85 0.1235 0.1088 0.0970 0.0874 0.0794 0.0727 

0.90 0.1598 0.1408 0.1255 0.ll30 0.1026 0.0938 

0.95 0.2215 0.1951 0.1737 0.1562 0.1417 o --94-•• J:. 
~ 

:~ 
.~ 
\ 
" 
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Table 3.4 Narmal1zedFourth Fourier Coefficient as a Function of a 

ICicol 
&. - n ~ 2.0 n =- 2.2 n =- 2.4 n =- 2.6 n =- Z.8 n =- 3.0 

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.15 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
i 0.20 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 --'I 

j ; 
0.25 0.0006 0.0006 0.0005 0.0004 0.0004 0.0004 I: O.JO O.OOll 0.0010 0.0009 0.0008 0.0007 0.0006 

0.J5 0.0019 0.0016 0.0014 0.0013 O.OOll 0.0010 f . , . 

0.40 0.0029 0.0025 0.0022 0.0019 0.0017 0.0016 t 
• 0.4.5 0.0042 0.0037 0.0032 0.0029 0.0026 0.0023 

0.50 0.0061 0.005J 0.0046 0.0041 0.0031 0.00)4 

0.55 0.0086 0.0074 0.0065 0.0058 0.0052 0.0047 

0.60 O.OllS 0.0102 0.0090 0.0030 0.0072 0.006.5 

0.65 0.0162 0.0140 0.0123 0.0109 0.0098 0.0089 : 

~ 

0.70 0.0220 0.0191 0.0167 0.0149 0.0134 0.0121 t 
0.75 0.0300 0.0260 0.0228 0.020J 0.0182 0.0165 .4 

~ 
0.80 0.0412 0.03.57 0.0;13 0.0278 0.02.50 0.0227 

1 0.85 0.0578 0.0,500 i O•0439 0.0390 0.03.50 0.0317 

0.90 0.0844 0.07:30 0.0640 0.0569 0.0.510 0.0462 ... 

0.9.5 0.1359 0.ll75 0.10)0 0.0913 0.0818 
~ 

0.0740 .~ 
A 

.~ 

1 
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Eq. 3.14, it is obvious that a. large Cl/Co ratio is highly desirable. 

C/Co 1llcreases, as is evident from Table :3.2, with (1) decreasing n, and 

(2) increasing a. The first condj.tion dictates the choice of a va.ractor 

with Junction be1nc as nearly abrupt as possible. The second condition 

indicates the varactor should be pUllped as hard. as possible. However, 

this raises an important question. How hard. can a varactor be pUIlped? 

In other words, what is the reasonable vcUue for a? Obviously the ac 

voltage swing can not be a.lJ.owed to carry all the way to the contact 

potent1aJ. because of the onset of forward. conduction. Such a. condition 

introduces shot noise, and thus must be avoided. At the present time, 

there is no theoretical. anaJ.ysis on ma.x1mum allowable a. ExperimentallY', 

this parameter appears to be £':om 0.85 to 0.95, dependiDg on the type of 

semiconductor materials and reverse breakdown voltages. For design 

purposes, a. value of 0.90 will be aSS'UIled. With this assUIlption, it can 

be observed from these tables that c( t) can be well a.pprox1m.a.ted by only 

the first three tens of the Fourier series. 

TIle current fior..Ilg through the nonli.'1ear capacitance is [41J, 

dv (t) 
1( t) = c( t) -~a\-

C 
= J'Vg V (-w )s1Ilw t 

(1 + a. cosw t)lln p p p 
p 

The pumping power then can be calculated. from 

(3.15) 

i ~ 
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If the cutoff frequency at a specified bias V 1s defined as 
o 

w = -=-..;:l~_ 
c R C-nr 

s oJ'o 
(3.17) 

and the nor.D&l1za.t1on pumpillg power at a spec1!1ed bias V 1s defined as 
v 

(3.18) 

then Eq. 3.16 can be wrttten as 

(3.19) 

( 3.20) 

The integral in Eq. 3.20 can be evaluated by numerical integration, 

and results are given in Table 3.5. 

3.) Small S1gna.l Ret)resentat1on of a Nonlinea.= Capacitance 

The relationships 'between the current flowing through a. nonlinear 

~--- ...... 

j . 

i . 
i 
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Table 3 • .5 Noma.l1zed Pumping Power as a Function of a 1 ., 
I 

P i.P n(wt..lJJc)
2 l 

~ 
a n = 2.0 11 :a 2.2 11 = 2.4 n = 2.6 n a 2.8 11 .. J.O ~ -

J j 
0.00 0.0000 0.0000 0.0000 0.0000 0'.0000 0.0000 

0.0.5 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 

0.10 0.00.50 0.00.50 0.00.50 0.00.50 0.00.50 0.00.50 I 
I 

0.1.5 0.Oll3 0.0113 0.Oll3 0.0113 0.0113 O.Oll) 

0.20 0.0202 0.0202 0.0202 0.0201 0.0201 0.0201 

0.25 0.0)18 0.0)17 0.0)16 0.0)16 0.0)16 0.0)15 

0.)0 0.046J. 0.0459 0.0458 0.0457 0.04.56 0.04.56 

0.)5 0.06)) 0.0630 0.0628 ·0.0626 0.0625 0.062) 
~ 

0.40 0.08)5 0.08)0 0.0826 0.0823 0.082.1 0.0819 

0.45 0.1070 0.1062 0.10,56 0.1051 0.1047 0.1044 

0.50 0.1)40 0.1)27 0.1)18 0.1310 0.1)04 0.1299 

0.55 0.1648 0.1629 0.1615 0.160) 0.1593 0.1585 

0.60 0.2000 0.1972 0.1950 0.1932 0.1918 0.1907 

0.65 0.2401 0.2359 0.2)27 0.2)02 0.2281 0.2265 

0.70 0.2859 0.2798 0.2752 0.2716 0.2687 0.266) 

0.75 0.3)86 0.3299 0.J2)3 0.)182 0.3141 0.)108 j 

I 0.80 0.4000 0.)876 0.3182 0.3710 0.3652 0.)605 

0.85 0.4732 0.4552 0.4418 0.4314 0.4232 0.4166 

0.90 0 • .5641 0.5312 0.5175 0.5024 0.4906 0.4812 .j 

I 0.95 0.6877 0.6446 0.61)6 0.5905 0.5727" 0 • .5585 

I 
~ 

1 
• 

~._J.~ - . .1- ~-- -......-..... 
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capaci tance and the signal vol ta.ge a.cross its terminals w1ll now be de ... 

veloped. The ampll tude of the signal voltage is a.ssumed to be much 

SI1&ller than that of the pumping voltage. The treatment is llm1 ted to 

the case of negative resistance parametric amplifiers. to e., besides 

the pumpiag voltage. voltages at only two other freq~ncies are a.ssumed 

to be ot s1g..."\if'icant magnitude. These frequenc1e!! are the signal fre-

quency f s ' and the idJ.er frequency fi. The respective voltages and 

currents at these frequencies are 

v (t) = i [v 
jw t 

* 
-jw t 

e s s ] + v s e s s (J.2la.) 

1 jWi t 
viet) = ~ [ Vi e + 

* -jLllit 
Vi e ] (J.21b) 

i (t) = ~ [I e 
jws t -jw t * s ] + I e s s s ( J.21c) 

1 jwit 
1i(t) = -Z- [ Ii e + 

* -jwit 
Ii e ] (J.21d) 

where the a.etensk denotes the complex conjugate. If it is a.ssumed that 

only the first two t8zms in the Fourier serles are sign1iicant, then C( t) 

can be expressed a.s 

jw t -jw t 
C(t) = Co + Cl ( e p + e p ) 

(3.22) 

.... 

i 
I 
I 
I 
I 
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where "tl = C:/CO' The voltace across a nonlinear capacita.t:ce and. the 

cuz:nnt fiow1ng through it are rela.ted. by 

i(t) = ~ [C(t)v(t)] (J.2J) 

or 

(J.24) 

Substituting Eqs., J.ll and. J.22 into Eq. J.24. and. equating the coeffi

cients on. th9 left- and right-hand sides at fs and f
i

• the following 

equation is obtained, 

Is j<.:J
sCO jJJ s "(lCO Vs 

= • (J.2.5) *' *' Ii -j 1111 "tl eO "~iCO Vi 

In deriving the small-signal admittance matrix of Eq. ).2.5. it is 

implied th ... \t all unwanted hanonics are short-circuited. In practice, 

a perlect short-circuit can never be 0 bta.i.ned. because of the inevi ta ille 

series resistance. A dif'ferent set of relationships whic..'1 correspond to 

2, condi tion of open-c1rcui ted h.a.r.nonics can also be derived by tak1 ng 

several. a.d.ditional fl:8quencies into ~ons1d.eration. These additional 

frequencies a...-e <UJ = CAl + III I w4 = 2.111 - <U I and w.5 = 2w + w. To 
p s p s p s 

account for th:! <U4 and w.5 terms, the second hamonic component m.ust be 

included in the expression of C( t). Thus 
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(3.z6) 

wbere YZ = c/co' Following tne same procedure as 1n the der1vat~on of 

Eq. 3.ZS. the saall-s1gnal admittance matrix for the case of open-

circuited b&monics 1s obtained as follows: 

Is jwsCo jl&ls Y100 jl&ls Y1Co jl&lsY2CO jli.ls Y2CO V s 

* * Ii -j1&l1 Y1CO -jli.liCO -j1&l1 'iZCO -jli.li'ilCO 
·0 Vi 

I:3 = jl&l:3'il CO jwJ'iZCO jl&lJCO 0 jWJ'i1CO • V
J 

(J.Z7) 

* • 
I4 -j\yZCo -j\'il Co a -jW4Co a V4 

IS jli.l:}ZCo a jl&lsY1CO a jl&lfo -l V j 

* J.Z7 by the Perturbation method [37J. I s and I i can be solved from Eq. 

and are g1 ven a.s follows; 

= • 
(J.Z8) 

The small-sig!l&l. admittance ma.t:cl.x of either Eq. 3.25 or Eq. 3.28 

can be used for the ana.J.ysis of negative resistance pa.ramet.'"ic ampl1.fiers, 

depencU.ng upon whether tbe unwanted ha.r.nonics are more nearly short-

c!:cui ted or open-circuited. In practice, it is d.1!!icul t to control 

... 

~ , 
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th1s condition, and thus it can not be siad.! priori that one is more 

accun.te than th., other. The d1!ference in amplifier per.f'omance calcu .. 

la.ted tor both cases will be shown in Chapter V • 

To include the ettects ot the series resistance and ~le parasitics, 

the admittance matrices must 'be inverted. into impedance I&...i.tr1ces. For 

either case the resulting matrix is 

where 

V s 

= 

1 

Y = Y1 

o = 00(1 - ~) 

for the case of short-circuited ha.rlIlonics f and 

Y = Y1 (1 + "ti)(l .. "tZ) 

o = 00(1 - Z"t~) 

for the case o! open-circuited harmonics. 

• 

J.4 Circui t AIl&ly~s of Basic Amplifier Configu;:a tion 

(J.Z9) 

(J.JO) 

(j.Jl) 

Figure J.Z shows a practical configuration of a negative resistance 

pL'""8.IIle tric ampll.fier. A circula. t.or is used to sepa..., te the input from 

~~e out.put since a negative resistance amplifier is in essence a ene-port 

l' 'n< • de • st.- US ~f'" tt 

! 1 
; 

i 
'j 

1 
" 

j 
i 
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ampllfier, i. e., the input and output signals aJ:e of the same frequency 

~<i at the same port. A circulator 1s a non-rec1procal device which 

transfers power from port 1 to port 2, from port 2 to port J, and from 

port J to port 1, but not Vice versa. Of course, 1t 1s possible to 

extract the output power fro. a load connected in serles with the generator 

and the ampll.f1er. This is not des1n.ble, however, since some of the 

output power 1s lost in the generator resistance. The gain and noise 

figure of such a configuration a..-e ;auch inferior to those of an amp.l1:f1er 

making use of a circulator [41J. 

!'be boxes labeled is and f1 are band-pass fll'ters centered around 

the signal and the 1dler frequenc~ bands, respectively. Pump and bias 

circuits are not shown in Fig. J.2, since they aJ:e assumed to be perfectly 

~solated , and thus need not be included in the am.lysis. Expressions .. 
for tJ:ansdu.cer gain and noise figure W"...ll. now be de..~ved. It should be 

pointed out that these expressions are intended for computer-aided design 

uplementat1oIl, thus the step-by-step dar!. vat10n is presented ~ such a 

-.ray as to facilitate computer prog:amm~ ng. 

3.4..1 T=ansducer G~. In practice, the generator resistance Rg , 

and the load. resistance ~, are always equal to Zc' the chara.cteristic 

i:Ilpedance of the circulator. Renee J the transducer gai!l of the amp.l1:fier 

. is given by 

.. :'ransducer gai!l is d.ef!.;:ed as -:he =a tio of the power d.ell· ... erec. to the 
load, to the ava.ila.ble power of ";he source. 
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2 

where Zm is the input impedance looking into the aml?l1fler frOJIl port 2 

of the circulator. Obv1('1l'sly. for the transducer aa1n to be cOlIlputed • 

the input impedance, ZDf' must first be detel:Jll1ned. To &ccOllpl1sh this, 

consider the circuit in F1g.J.3, in which the diode is replaced by its 

equivalent circuit of Fig. 2.4(b). Zi represents the impedance of the 

idler c1r.cuit together with the idler band-pass fUter, while the s1gnal 

circuit and the signal l:and-pass filter are represented by an ABeD matrix 

wi th elements A (CAl ), B( w ), C (CAl ), and D( CAl ). To fac1li ta. te the a.na.l.ysis, s s s s 

the nonlinear capaci ta.nce is repla.ced by> the small.-signal lJapedance matrtx 

of Eq. 3.29 with elements denoted as ZU' Z12' Z21' and ZZZ' as shown in 

Fig. 3.4. 

It' Zi represents the impedance of the circuit to the right of the 

matrix as indicated in Fig. J.4.~ then 

(3.33) 

where the symbol" II" is used to designate two lJapedances connected in 

pa.ra.llel. The lJapedance of tbe nonlinear capacitance loaded by the idler 

circui t a.s seen from the signal circui t 1s 
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Zli21 
Z = Zll -

eq Z22 + Z~ 

• 1 
jl.ll C' 

S 

where the asterisk denotes the COlIlpleX conjugate. At this poin't, it is 

pemaps worthwhile to digress from the derlva.t1on and show why this type 

of amplifier is caJ.led a. negative resistance amplifier. and how the a.Dl-

plication is a.ch.1eved. 
,. 

Substituting Z1 = R1 - jX1 ' Eq. 3.:34 becomes' 

= 

= 

1 
jill C s 

1 
jill C 

s 

1 
jill C s 

./ 
IIls,\C2[Ri + (Xi - 1/ 1II

1C)2J 

Y~1 
2~ 2 ( / )2~ I.Ils,\C LR1 + Xi - 1 1II1C .1 

j-r(X1 - 1/1II
1C) 

IIIsIll1C
2[Ri + (Xi - 1/1II1C)2j 

(3.35) 

The second te:::n on the right-hand side of Eq. 3.35 obviously =epresents 

, 
l 

~ j 

1 

1 
J 
1 
~ 

.j 
.~ 

., 
I 
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a. negat1 va resista.nce 

(;.36) 

It the signal c1.rcu1 t is assumed to. be low.ss a.nd all re&cta.nces 

are ttmed out. the 1mpe~ce look1ng into the signal circuit from port 2 

is then a pure negative res1sta.nce (not necessarily equal to tha.t of 

Eq. ;.36 since the s1snal circuit may contain impedance transformers). 

thus 

From Eq. 3.32, the transducer gain of the ampll.fier is 

G = t 

z -!t~ c -"N 

Z - R.~ c -"N 

2 

From Eq. J • ;8 , it is evid.en t that amp' H'ica tion is a.chieved. When RN 
is made to equal to Zc' the transducer ga.i.n becomes infinite. 

Returning to the derivation of the transducer gain, the impedance 

at t.,.e V'dJ:a.ctor ter.Ilinals seen from the signal circui t is 

If the elements of t.'le A.XD matr-x of the signal circuit are A(w ), s 

....... ' ........ -.. '---....-- ... _ ... ---- - -

l .6$ 
4 111 

1 

,j 
. ! 

1 , 
I 
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:a( (oil ), c( (oil ). and D( (oil ), the input impedance is then s s s 

A«(oIl)Z + B( III ) 
S S S 

(3.40) 

.. 
The tnn:Jducer gain can now be calculated. £rom Eq. 3. j2. 

The preceed1ng f'omuJ.a.t1on is appl1cable to both nondegenerate and 

degenerate amplif1ers. For nondegenera.te amplifiers, Zi is the impedance 

of an external idler circuit which is completely tllIrelated to the signal 

circuit. However, for degenerate ampll!1ers, Zi is th~ impedance looking 

into the signal circuit from the terminals of the vara.ctor. TIlerefors 

whexe A(w i ). B«(oIli) t C(lIIi ) J and D(l.IIi ) are the ABeD matrix elements of the 

s1gnal circuit calculated at the idler frequency. 

3.4.2 Noise Figure. The fundamental. noise in a parametric amplifier 

is due ma.1nly to the theDlal noise genera. ted by the signal circuit. the 

idler c1rcui t. and the diode series resistance. Al though numerous authors 

have provided approx1ma.te expressions for ,?redicting p&.'"'ametric amplifier 

noise per£omance [J?IJ8141I46I47]. for computer-aided design, a more 

general expression for the circuit in Fig. ).2 must be developed. 

Th~ noise of a resistor results from the random motion of free 

electrons wi thin the resistor. This random :notion causes a small fluc-

tuating voltage, or noise voltage, to exist at the terminals of ~he 

resistor. Nyquist [48= ;,as able to shoW', 1:a.sed on fundament.a.l thermo-

, 

i 
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dynamic consid.eJ:ations t that the mean square noise voltage in the frequency 

interval 6£ genezated by a resistor R at an absolute tempel.-a.ture T is 

• (3.42) 

where k is Boltzmann's constant (1.38 x 10-23 J/T.). For am.l.yt1ca.l 

purpoae, a. nois1' resistor can be replaced by either a noise voltage source 

in series with a noiseless resistor, or a noise current source in para.lJ.el 

nth a. noiseless resistor, a.s shown in Fig. J • .5. 

The equ1vaJ.ent circuit in Fig. 3.4 is redzawn in Fig. J.6 for purpose 

of noise a.na.lysis. As indicated in the figure, ZTs and ZT1 are the im

pedances looking from Rs into the signaJ. circuit and the idler circuit, 

:respect1 velj • 

(3.43) 

ZSIIl = C( Ul )Z ;. A(Ul ) 
s c s 

D(Ul)Z + B(Ul ) s c s 
(3.44 ) 

where 

and 

(3.4.5) 

1 
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As shown in Fig. J.7, the theJ:maJ. noise generated by resistances, 

RT f FLi , and R , can now be represented by noise voltage sources, e , .. s ~ s ~ 

eni , and end ' respectively. lbese noi. sources are uncorrelated and, 

in add1tion, components of end at Ws which excites the a11ll&l circuit 

a..., uncor.rela.ted to the components of end. at wi which excites the idler 

circuit. 

The matrix equation for the circu1t in Fig. J.7 is 

red + e r Zu + R. + ZTs Z12 Ins n ns 

(3.46) = 

l l * * .. .. 8 nd + eni Z21 Z22 + Rs + ZTi Ini 

lbe noise current in the s1gml circuit due to the noise sources at 

'!'bus, the output noise power at Ws is 

N = s /Inss /
2 

Zc 

(end + 80s)2IZ22 + Rs + Z;i1 2 Zc 
= ~----~----~~~~--~--~~--~----~~ I (Zu + Rs + ZTs)(ZZZ + Rs + Z;1) - Z12 Z2J.!2 

(3.47) 

(3.48) 
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Since 8 d and e are uncorrelated, it follows that n ns 

~ :I effective amplifier banciw1dth (Hz), 

T :I signal circuit temperature (~), s 

Td :I diode temperature (~). 

Equation J.48 then becomes 

Similarly, the output noise power at ""1 1s 

wbere T 1 1s t-"le 1cUer circuit temperature. 

The n01se fig'..Jre of the ampll!ier. 1s g1 ven by [J7 J, 

F = 

wbere T = 290 ~ 1s the standard. n01se temperature. 
o : ' 

.*4 $ 

( J.49) 

(J.50) 

The preceedillg foxmula.t10n is aga.1ll a.pplicable to both nond.egenerate 

and degenerate ampll!1ers. Howeve:, as discussed 1n Chapter I, degenerate 

ampl!!1ers possess the distinct10n of ha.~.ng t~o n01se f1~~es, namely, 

Q 4 

1 , 

1 
1 
; 
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the single-sideband an", the doubla-sideland noise figures. The s1zl3le

sideband noise f1gure can be calculated directly from Eq. 3.52, while 

the doubla-sidebmd noise figure is one-half of that calcula.ted from 

Eq. 3.52. 
• 

.z-..~~ ___ ' ~_-..... - _ ..... ____ .......,,""'-_~ __ '""'--___ ..... ~"--



QW'TER IT PROPElttLl!5 OF MICROS'l'RIP TRANSMISSION LINES 

4.1 Introduction 

In the process of tecbnologj.caJ. evolution, continuous interaction 

ex1sts between tectm1ques of d1.frerent fielda. Often techn1Q1J8S developed 

for one field stimulate and praota the developlLent and progress in others. 

Such is the case of tlle ncrowave integrated circuit (mc). 

Prior to the earl:- s1r..1~s, nearly all microwave syS""...ems ut1l1.zed 

wavegu:ides and cou:1al lines. Semiconductor devices such as "rara.ctors, 

tunnel diodes, and point-contact diodes were used in receivers. Van.ctor 

haoonic generators were used in a few systems as low power sources. 
,/ 

But, for the aost part, tuDes 1I'e-~ still the ~-!l.cipal Ddcrowave power 

sour=es. Hence, although the MIC was introduced in the fifties [49J, 

progress, both theoretical and . exper4-!11.ental , was very slow in the decade 

follO~-Dg its inception. 

~ the mid.-sir..!.es, with rapid im.provements in the low-frequency 

izltegrated c~cui~ (Ie) teclmiq;,;es such as epitax:ial ~"r..h, passivation, 

photolithography, and. metal deposition by evaporation or sputter'.Ilg, 

llicrowave tr-~~tors as well as transfer=ed electron devices and ava-

lanche diodes were de·(eloped for solld-sta. te microW3.ve power sources. 

Scllrtt.ky-Oa...'"T!.er diodSs and PIN diodes were also develo'ped fer receivers 

and. control circuits. ili~ a..ll these solid-state devices a7aila.ble, it 

was only natural that attempts toward. circuit miniaturization should be 

-76-
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choices considered. Kot onlY' did advances in low-f:equency IC techniques 

make these solid.-state deVices possible, they aJ.sa made the fabrication 

of lI1c:rowave integrated. circuits lIlore precise and. more reproducible. 

Out lIent the old and c:ruda techniques of glue and razor bla.das, aJ.ong 

cue the aore sophisticated. and more rel1a.ble techniques of metal depo

sition and. photol.1"thography. ~"'In me years followin8 1965, several selll1-

conductor ma.nufa.cturers, ra.da.r system ma.nufa.cturers, and gover.IDlent lab-

oratory started prog:ams to develop IIl1!l1a.tu:r1zed IIl1crowave circuits for 

applications in pha.sed.-a.r::a.r radar systems. This early work was cul.ild-

nated in the .const::".lCtion of a feasib:1.ll ty rada:r system by Texas r'1S'tr;l

llents 1n 1968 L5OJ. T'nis radar system uses more than six hundred t.:&nsadt

receive (T/a) modules fabricated. by MIC techniques. Each aodule contains 

a power ampll.fier, an IF aapllfier, a vaxa.ctor f....-equency multipJ.1er, a 

bal.anced Schottky-Oa.l:::1.er diode mixer, PIN diode switches, PIN diode 

phase shifters, and. associated ~ shift logic cirCuits. The module 

1s about 1.Ba by 6.4 em, and. delivered 0.5 1( at 9 GHz. 

V1ta the feasibil.!. t:r demonstrated, nea::ly all ;aa.c.ufa.cturers of IIlicro-

ilave equipment entered -the }!Ie field. Toda::r, :-rrcs a::e ~ell accepted and 
. 

are employed in essentially all the low- and lledium-polier microwave 

appllca tiona. 

Microwave 1.:ltegra:ted circuits can be broadly diVided into two cata-

gor1es: monolltM.c and hybrid. A lIlonol1tr..1c MIC is one in which all com-

ponents, acti'l'e and passive, are toned simult.a.neousl::r on a single piece 

of semicond.uctor :na.ter1a.l. Due to the large vax:'e7.J of a.\:tive deVices, 

Cd n" 

~ 

.~ 

~ , 
I 
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it is ext:emell d1f!icult, if not 1lIlp\)ssibls, to specify a diffusion pro-

cess that s1mul taneowl opt1 m1 zes the performance of every active device __ 

Furthermore, the interconnections between active devices have rela.tivell 

~ 1JJaensions, espec1al.lr when distributed elements are used. This 

requirea l.arp substrate a.reaa wh1ch are vfJrT expenai ve ~ the case ()f 

&oaollth1c technology • 

A h)"br1d me is one in mich cirelli t interconnections are fODled by' 

met.aJ. lines on a d1electr.1c substrate and. active devices are attached to 

the substrate. Depending upon the techniques by which the uta' 11 zation 

is for.ned, the hrl:lr1d technology itself can be divided into troro cla.sses: 

tbin- and t.h1ck-f1llll. In thin-film technology. the conductor fll:D.s are 

deposited in vacuum. b1 evaporation or sputter1Ilg. followed b1 tllectro-

pla.ting to increase the f1h thickness, if necessa-."'7. The desired pattern 

is 1.efined by photolithographic techniques. In thick-fUm tec.omologj, 

the :neta' 1i zation 1s usually for.ned by' silk-screening. in which the 

desL-ed patten 1s incorporated into tr.e sc:::een. 

!iybrid ~CS can also bq cla.ss1.f1ec4 acco~....!.ng to the types of circul t 

elements employed, namelr. lumped and distributed. Lumped-element circuits 

for a.pplications at frequencies in the X-band hav'e been :reported C5lI.5zJ. 
The llmita.tion on the use of lumped-eiement circuits cOIles from the ex-

cessive circuit losses at higher frequencies. 

For the distributed-element ci-'9OQu1ts, various tjpes of ci:cu1t con-

figurations are cur--entlJ 1!l use. Ftgure 4.1 shows "t..'le configmaticns 

- - r -of seve=-a.l COlllDlOnlJ used cueui ts; stripl!.ne L.5J~. microst.l'''ip ~:';"9 _;J slot 

.......................... ,. 

", 

, 
• , 
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Une C54IssJ. and coplanar waveguide [56J. Among these. IIl1crostrip 1s 

certa1nly' the lIlost popul.ar configuration, and 1s most fl:equsntly 1den-

t1!ied with the tam "microwave integrated :1rcuittt
• 

In the subsequent sections ~ electrical characterist1cs of microstrip 

l1n.es relevant to this stuq wUl be 1llvest1p.ted. These includtt cbara.c-

ter1st!c impedance, effect1ve dielectric constant, conductor and dielec-

tric losses, and !l:equency dispersion effects. Discontinuities 111 circuit 

structure, such as open c1rcu1ts and T-junction, will 'be eDmined in. de-

ta1l~ F1."8"1, analysis and synthes1s methods for one circuit component, 

parallal-coupJ.ed lIlic=ostrip 'band-pass f1lters, wUl be developed. 

In deal j ng with various techniques in each area, the emphasis 1s 

placed upon tnose that are applicable to compu"teX-alded design. In other 

wordS, closec! fon expressions which! in most cases they are derl ved 

empL..-ically, L"'"e ~ferxed over the lIlore rigorous and more t1llle-cons1..lDl.1llg 

analytical techniques. However, major works in. each area will still be 

reie..."'"ellced, and interested :readers are urged to consult the ortg1na.l 

publicaticns. 

Material select10ns and !'abricat1011 techniques, two i:Ilportant aspects 

in !fie tech.nolog;r, will not be covered here; t.."ley can be found in books 

dea l1 :3g with low-frequency rcs or MICa L57J[saI59J. 

4.2 3:1ectrical Characterist.ics of Microstrip Lines 

4.2.1 Cha--actarist1c I~?8dance and Effect1ve ~ie1ec~ic :onstant. 

The difficulty in ~crost::i~ a.nal.:rsis stelUS f:=olll the fact t.."1at e1ectro-

, 

i 

I 
i 

J 

1 
1 
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--...... ------.,;~~, --~ 
(a.) 

(b) 

(0) 

Fig. 4.1 Various :':rpes of :1!.crowa.ve I:ltegrated Ci=8'...d.-:'.s, (a.) S:'=ip-

11n8, (0) MiCIOS~~p, (c) 3~ot Line, (d) Cop~' ¥a.veguide, 
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lIBFet1c waves propagete along the Une in two regions with different 

dielectric constant, i. e., in the substrate with a. dielectric constant 

equal to Er' and in the air with & d1electric constant equal to l. In 

such a. composite structure, the concept of effective dielectric constant 

is quite useful. The effective dielectric constant is a weighted mean 

of the dielectric cons+..ants of the two rep-ons, and bas a. value in the 

ranp from Er to l. If the substrate and the air axe both replaced by 

a. mater1a.l with & dielectric constant equaJ. to the effective dielectric 

constant, the capacitance between the center strip and the ground plane 

From basic electromagnetic theory, it is obvious that a transverse 

electromagnetic (lEM) wave can not ex1st in this structure since the wave 

velocity in the sUbstra.teis different from that in the air. In fact, 

one can show tba. t not even the pure transverse electric ('IE) or transverse 

magnetic (nt) waves can exist alone in the structure, but that it can only 

support a. hybrid mode in which both the longi tudj cal electric and magnetic 

components a--e non-zero [60J. The effective dielectric constant the~efore 

is dispersive, or frequency-dependent. 

In microstrip a.nalysis, two different approa.c..~es are usually taken. 

In the "quasi-lEM" analysis, the structure is assumed to support a 'lnt 

",,_'Ie. The problenl then is reduced to one of determ1 oj ng the electrostatic 

po ten tia.l :~om a tvo-dimensional Laplace t s equation wi t.~ proper boundar! 

condi:'ions. 'ia.rious techniques have been used to solve this problem. 

!hese ~c:"ud.e the coninr.na.l :nappi:lg Jl.et~od by ',iheele= :61:. the =ini te-

, 
.... ' 
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element method (relaxation method) by Stinehelfer [62J, the moment method 

by Adams [6:3J, and the varia.tioIl&l. method by Yamasita and Mittra. [64]. 

Dispersion effects are accounted by sepuate equations, often obtained 

empirically. In the Itwave theory" a.calysis, the dispersion effects are 

calculated directly from a .hybrid mode a.calysis of the structure. Various 

a.calytical techniques have also been used in this problem [6sI66J[67J. 

Most of the analytical techniques mentioned above require lengthy 

computation that is generally reserved for a ci1gita.l computer. No a.ttempt 

to review these techniques will be mac:;e here. Instead, aJla.lytical and 

synthetic equations by Wheeler [61J and Schneider [68J. nth extension 

by Hammerstad [69J. will be introduced. These equations are in closed 

forms, and thus are suitable for computer-a.i.ded designs. 

The effective dielectric constant,Eeff, of a micr~strip with width 

W, and substrate thicImess H, is given by 

E ff = a.S(E + 1) + a.S(E - 1)/(1 + l2H/W)1/2 err (4.1) 

for the case of ii/H2 1, and 

Eeff = a.S(Er + 1) + a.S(Er - 1)[(1 + 12Ht~)-l/Z + 0.04(1 - ~/H)ZJ 
(4.2) 

for the case of ii/H ~ 1. The cha.ra.cte=1stic impedance Z is given a.s 
o 

60 Z = In( ai/W + W/4H) 
o ~Eeff\ 

(4.)) 

for ~f.i ~ 1, a.:ld 

1 
1 

-, 
1 , 
1 

1 

I 

I , 



.. 

. , 

...... s .. o .. · !.~-r·""',,: 1 ati' .: • y ..... :e**c .• :w;"""ptIi#l4¥S _ ..... 3.'.' 4.4 @..L"''''' )-~---...----

Zo = :fe6.7( [w/H + 1.393 + 0.667ln(W/H + 1.444)y1 (4.4) 
aff 

for v/H~ °1. 

For the purposes of synthesis, Ti /H can be expressed in terms of 

des1red characteristic 1mpeda.ce Zoe For v/H s 2, 

8 w/H = -~---,~~ exp(A) - i exp( -A; (4.5) 

and for w/H~ 2, 

and 

E - 1 
w/H = ~ (B - 1 - ~n(2B - 1) + ~ E [In(B - 1) + 0.39 - 0.61/E ]} 

r r 

Z E - 1 
A = ~O JZ(Er + 1) \ + er + 1 (0.23 + O.ll/E.) 

r ~ 

B = 591.766 
K' Zo r 

C 4.6) 

( 4.7) 

( 4.8) 

Values of cha.ra.cterlstic impedance and effective dielectric constant 

calculated from Eqs.4.l-4.4 are plctted in Fig. '4.2 for severa.l dielectric 

* materials, namely. Duroid 5880 (Er = 2.22), fused quartz (E
r 

= 3.82), 

and alumina (E = 9.0). 
r 

* Trade name for a non-woven glass microfiber-reinforced po1jtetra.~uor
ethylene C?l'}'E) st--ucture ude "r:rJ Rogers Corp •• Chandler, Arizona. 
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An ingenious em.pirical equation has been developed by Schneider [70J 

to describe the dispersion effects. The normallzed phase velocity is 

expresS8d a.a 

~ ~e - l' r 
fn =--~X---

o 
( 4.10) 

and l. and t.. are thlt miCZ'ostl:'1p and the free-space wa.velengths, respec-g ·0 

t1 vell. Graphica.l plots for the normalized pha.::;e velocity are shown in 

F1g. 4.;. It is evident that, for the same w/H ratio, the ~spers1on 

effect 1s more profo~d for a substrate with a higher dielectric constant. 

4.2.2 Conductor and Dielectric Losses. The losses in microstrip 

lines a.re due to the f1ni te resistivity of the center and ground con-

ductors as well a.s the dissipation in the dielectric substrate. The 

attenuation constant ~ can be expressed as [72J, 

( 4.ll) 

where Pc and P d are the powers dissipated in the conductors and the 

~electric subst.:ra.te, respectively, and P is the power transmitted along 

the lln.e. Letting cr. = a.c + cr.d , then 

cr. = c (4.12) 
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and 

et
d 

;: ( 4.13) 

If the surface cur.rent density distributions on the strip conductor 

and the ground plane an Imown, Eq. 4.!2 can be oa:1tten as 

( 4.14) 

1/2: 1/2 
where Rs! ;: (1T~Pl) and RsZ ;: (1T~2P2) denote the surface a. • n 

resistivity in ohms per sqaure for the strip conductor a.nd the ground 

plane, respecti~ely, Jl(x) and J 2(x) the corresponding surface cur.:ent 

densities. and I the total,;eur:rent per conductor. The quantities !-L:L' ~2 

and ~l' P2 represent the peneab1l1tyand bullt res1sti~ty of center and 

ground conductors, respectively, and f denot~s the operating frequency. 

Tl:e first integn.l is around the periphery of the center conductor. and 

the second integral is over the entire ground plane. Using a technique 

based on the so-called "incremental inductance rue" [nJ, Pucel.!! all 

[72J were able to derive a set of approximate equations for various llne

widths. Assuming Rsl = Rs2 , the nor.nallzed conductor attenuation constant 

is, for ~/H S 1/21T , 

a.c Zo H 8 686 2 
Rs! -;: '2'1f [1 - (ji'/4H) ] [1 + H/W' + n (' 4'11 

W' NO t 

(4.l.5a) 

lor 1/21T ~ ii /H ~ 2, 

" 

~1 

. j 
1 
I 
" 

1 , 
~ 

\ ~ 
! ~ 
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( 4.15b) 

and tor w/H ~ 2, 

ClZH 68 / ___ e~o_ = 8. 6 [...!: + w' H ] 
Rsl (W'/H + 0.637ln[21re(W'jar + O.94)]}2 H w'/ai + 0.94 

[ H H 2 H t )] 1 + Tr + .,-.(.£n t ;. H ( 4.15c) 

where e = 2.71828 •••• is the base of natural, or Naperlan loga.r1thm, and 

t tienotes the thickness of the strip conductor. The attenuation constant 

(le is in dB/em. The effective linewidth ... ' is given by [61J, 

W' = Ii +...1..(.z 41fW' + 1) 
11' n t 

for w/H So 1/2Tr, and 

( 4.16&) 

( 4.16b) 

for 'i/H ~ 1/2'l1'. ~"igure 4.4 shows plots of the normallzed conductor 

attenuation constant versus W/H for several ttrl values, ca.lcuJ..a.ted 

using Eq. 4.15. 

To calculate the dieJ'_~ctric attenuation constant (ld' Eq. 4.1J can 

be shown to equal to 

a. -d - (4.17) 

q 

__ ..... I 
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where a is t..'1.e conductiv1ty o£ the dielectric substrate, E is the electric 

field intensity at any point inside the substrate. and V is the voltage 

across the center conductor and the ground plane. The double integral 

is defined over the cross section of the substrate. Simpson and Tseng 

[73] have developed an eff1uient numerica.l al8or1thm for evaluating 

Eq. 4.17. The ca.lcula.ted results are in excellent agreement with the 

experimental data. of Hylt1n [74]. Table 4.1 gives the nor.na.l1zed dielec-

t...-1c attenuation constant, a.Ja. for several dielecttic co~..a.nt::;. 

Based on the concept of a "f1)1' ng factor" defined by Poole [75J. 

Schneider has derived an appro~te equation f~tr dielectric attenuation 

constant [76J, 

(4.18) 

where ta.n6 = cr/2nfE E is the loss tangent of the substrate, and a.d is in 
r 0 

dB per unit leng+...h. The f1 J li ng factor q is given by 

1 
q = ----~--,,,----F - 1 

1 + -E_"';;(~F-+~l-)-

(4.19) 

... 

with 

F = (1 + lCH/W)1/2 ( 4.20) 

Numerlca.l results calculated from Eq. 4-.18 are a.lso given in Table 4.1. 

4.3 Jiscontinuitv Effects in ~icrostriu Lines " . 
4.;;.1 :-!ic=os ..... -i:> O'Je:1 C1=c'J!.ts. In construction of :dcrostrip cir-

.. 
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Table 4.1 No~zed D1electric Attenuat10n Constants 

E = 2.22 E = ).82 E = 9.0 r r r 

w/H 
.. ** .. ** .. 

tldn CldD adD (ldn Cldn 

0.4 743.8 743.9 594.6 596.9 405.0 

0.6 760.2 764.3 606.0 m.l 4ll.9 

0.8 

I 
774.7 780.9 616.2 622.6 418.0 

1.0 787.9 794.9 625.5 6J2.3 423.4 

2.0 836.8 844.9 659.5 666.7 443.3 

3.0 871..2 877.8 683.6 689.2 457.5 

4.0 896.4 902.1 700.8 705.8 467.3 

5.0 916.4 921.1 714.3 718.6 475.1 

6.0 931.1 936.5 724.7 729.0 l~l.l 

.. Resul ts 0 btained by numerical integration [7~J. 
** Results obta!.ned by approximate equation [76~. 

** Cldn 

406.8 

415.1 

421.7 

427.4 

447.J 

460.3 

469..8 

477.2 

483.2 

-,,"-~ __ -,-____ ,rt_d""_lIIIlIc_._"""' ___ ~....:...-.._""-~ ._ ... __ ~..rL~' _. _"'t'----'--._ ''M-'f-_
e 
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cuits, an open circuit is usually realized by simply cutting .the strip 

off square as illustrated in Fig. 4 • .5(a). The end region of an open 

circui t fozmed in this way will store considerably more charge per un1 t 

length than the rams 1 aing portion of the line •. Thus, the and effect can 

'be represented by an equivalent capacitance, C
oc

' as shown in Fig. 4 • .5(b). 

This capacitance can be calculated from 

c = 11m +Cz eel) - leo] oc 1-00 (4.ll) 

where eCt) is the total capacitance of the section of length l and width 

W as shown in Fig. 4 • .5(a), e is the capacitance per unit length of a 
. 0 

unifom line of the same width. In actual calculation, l is not infinite, 

instead, it is equal to scIlle large value .beyond which the change in 

eCl) - 1C is negligible. o 

Alternatively, ~~e end effect can be represented by a length of 

transmission line that corresponds to the capacitance C , as shcwn in 
oc 

."... Il::") ~ ... g ........... \C • The leng-~ ~l may be calculated from 

(4.22) 

Many researchers have studied this discontinuity [77][78J[79:[80J 

[81J, and good agreements are usually observed between results calculated 

from d.1i'ferent techniques, and between calculated and measured results. 

For design purposes, two empirical equations Will now be given. 

Silvester and 3ened.ek [78~ {lAve. in adell tion to the grapr..ica.l plots, 

I· 
I 
I , 
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presented their calculated data. for open circuit capacitance by an 

empirical expression 

5 
Coe = exp[2.)OJ 2: ~(Er)(.tn-t)k~l] ( 4.2J) 

• k=1 

Where the coefficients ~ for .six different values of Er are tabulated 

in Table 4.2. 

Hammerstad. [69J has fOlmd that it is possible to reduce these equa.-

tions to one valid for all values of Er by expressing the capacitance 

in terms of an equivalent line exten:sion At, 

k E 

1 

2 

) 

4 

5 

Eeff + 0.300 
= 0.412 E 258 .. ~ - O. e .. _ 

w~ + 0.262 
W + 0.81) 

Table 4.2 Coefficients ~ for Equation 4.2) 

= 1.0 E = 2.5 E = 4.2 E = 9.6 E = 16 - r r r r .. 
1.liO 1.295 1.44) 1.738 1.938 

-0.2892 -0.2817 -0.25)5 -0.2538 -0.22)) 

0.1815 0.1)67 0.1062 0.1)08 0,1"" I 

-0.00)) -0.01)) -0.026c -0.0087 -0.0267 

-0.0540 -0.0267 -0.0073 -0.0113 -0.0147 

( 4.24) 

E = 51 r 

2.40) 

-0.2220 

0.2170 

-0.0240 

-0.0840 

:; 

i 
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4.3.2 Microstrip T-junctions. The microstrip T-junction, as shown 

in Fig.· 4.6(a.), is incorporated in a wide variety of microwave circuits. 

The cha.ra.cterizat1on of the tee by a. direct junction is inadequate since 

it ignores the equivalent reactances associAted with the energy stored 

in the neighborhood ~f the junct1on. Two dif£erent models a.:r:a \43ually 

used to represent this discontinuity. In the model shown in Fig. 4.6(b), 

the T- junction is represented by three series inductances and one shunt 

ca.pacitance. These equivalent in9,uctances have been investigated by 

Thomson and Gop1na.th [82J, and the ca.pacitance can be calculated from a 

numerical technique developed by Silvester and Benedek [83J. Ho';.rever, 

t.'1ese computations ue extremely t1ll1e consuming, and thus are not sui t-

a.ble for computer-aided designs. 

The second model as depicted in Fig. 4.6( c) was origj.na.lly developed 

for stripline T-junction by Franco and Oliner [84J, with extensions by 

Leighton and Milnes [8.5J, VOg"l [86J, and Hammerstad [69J. The micro-

strip T-junction is redrawn in Fig. 4.7 to identify t.'1e requisite para-

meters. 

In this model, the most important parameter is the stub axm reference 

displacement, i. e., M a:; indicated in Fig. 4.7. As is evident from 

the figure, Ad may be calcula. ted from 

( 4.2.5) 

where Wl is the ll·.ew1dth of the :nain line, and D1 , liZ are given by 

(4.26) 

, . . 
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2Dl 2 -1·7lZ1 Zl Zl d2 = Dl (0.076 + 0.2( i ) + 0.66) exp( Z ) - 0.172 In(-z--)} -z--
~ 222 

(4.27) 

where Zl and Z2 denote the char8.cteristic 1IIlpedance of the main line and 

the stub. respectively. and Eefn the effective dielectric constant, Agl 

the wavelength. of the ma.1n line. The displacement of the main line 

reference plane is generally very small, and is g1 ven as 

(4.28) 

where 
(4.29) 

(4.)0) 

The shunt susceptance, B, can be calcula. ted from 

(4.)1) 

this model has been observed to be in fair agreement with experimental 

results [69J. 

In a recent paper by Menz~~l and Wolff [87J. t."le scattering paraJIleters 

of the T- junction are calculated using a. mode-matching procedure. The 

dynamic effects are included in this model. The discussion on the feasi·-

bill t"l of using this model in computer-aided design w-'...ll be deferred until 

~- --. '- -- ,,.., 

... 

1 
l 
! , 
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Cbapter VI. 

4.4 Mlcrostrip Parallel-Coupled Band-Pass Filtars 

Parallel-coupled IIL1crostrip lines have been used enensi vely in the 

reaUzat10ns of IIL1crowave band-pass iUters and directional. coupl~~'S. 

This structure, as shown in Fig. 4.8, can simultaneously ·support two 

d.1fferent modes of propagation, namely, $ven- and odd-modes. In the 

even-mode propagation, waves in the two strips propagate in.the same 

dlrection; while in the odd-mode propagation, waves pr~pagate in the 

opposite dire,::tions. Thus, there are fou~ paraJIleters associated with 

this structUl."e, Il8JI1ely, the even- and odd-mode ch..'U'a.cter1stic impedance s, 

and the even- and odd-mode effective dielectric constants. These para

meters will be denoted by Z , Z , E f'f ' and E ff ' respectively, and oe 00 e e e 0 

can be calcula.ted by the a.na.lytical techniques developed by Bryant a..1'ld 

Weiss [eoJ. 
A microstrip parallel-coupled band-pass filter consists of a number 

of .resonators e~~ with a length of approximately half-wavele~Jl. 

Figure 4.9 shews the typical layou~ of a three-resonator band-pass filter. 

The analytical techniques and design procedure of this ty-pe of filters 

w1ll now be g1 ven. 

4.4.1 Analysis 'of Para.llel-Coupled Band-Pass Filters. To facilitate 

analysis, a s1JJgle section of para.1lel-coupled microstrip line 1s redrawn 

in Fig. 4.l0(a), in which port 1 1:< connected to the preVious section, 

port J is connected to t.he following section, and ports 2 and 4 are open-

is a 

I 
" 
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circuited. Figure 4.10(b) shows the current and voltage associated with 

each port together with the open c1rcui t capacitances of ports Z and 4. 

The current.voltage relationship of this circuit can be exprp,ssed in 

tams of an impedance matrix, 

V1 Zu 7 
"12 Z13 Z14 Il 

Vz Z21 Zzz ZZ3 ZZ4 I Z 
= ( 4.)2) 

V3 ZJl Z;z '7. t7 I) '"')3 ~J4 

V4 Z41 Z42 Z43 
t7 I4 . '"'44 

/ 

where the matrix elements as derived 'by Zysman and Johnson [89J are given 

(4.)Ja.) 

( 4.3Jb) 

z 
00 , 

si!lhl. Y 2) -o 
( 4.33c) 

( 4.JJd) 

and "te , "to a...~ the even- and odd-mode propagation constants, and are given 

as 

" - ,. +'p le(o) - ..... e(o) oJ e (0) ( 4.)4) 
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The even- and. odd-mode attenuation constants, (l and (l , can be calculated e 0 

:!'.rom Eq5. 4.~5 and 4.17 with Zo replaced by Z~e and Zoo' respectively. 

The even- and odd-mode phase constants, ~ and t:i • are given by e 0 

r ge(o) 

where l and l a----e the even- and odd-mode wavelengths. 
(8 go 

The current and voltage rela.tions at ports 2 and 4 are 

I = -j£lC V 2 oc 2 
( 4.36a.) 

( 4.36b) 

Substitution of Eq. 4.35 into Eq. 4.32 yields (after some le~..hy algebra.1c 

manipulation), 

( 4.37) 

where 

Z2 (7. . 1 )2 
'l - '"'I T 'UI(! 
.J J oc 

(4.38a.) 

2Z ~ (Z 1) Z (72 • Z2) 
Z"4 1 +;we - J "'2' 4 ... oc 

':" I - Z I - Z + ---~--..;..;;--:---=----':'13 - JJ. - J 2 1 2 
Z~ - (Zl + ~WC ) 

) .,; oc 

( 4.38b) 

I 
! 

1 
-r 
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For computer-aided anaJ.ysis. the impedance matrix is then transformed 

to an ABCD matrix (see Appendix A), 

A B 

= 
c D 

A = D = z' /Z' II 13 

(4.39) 

(4.4-0&) 

(4.40b) 

The over-all ABeD matrix for the filter can be readily obtained from 

the individual matrices. Then the input VSWR, insertion loss, and phase 

shift can be calculated as follows: Assuming both the source impedance 

z s' and load. impedance Z.t are real and posi ti ~e I the input impedance is 

given by 

Z-
AZ,t+B 

(4-.41) = .u"i CZl'~D 

The reflection coefficient is 

Znt - Z 
r= l.~ s (4-.42) 

Z-N + Z' .u s 

and t."le input '{StiR is 

1 + 1:-\ s= (4.~J) 
1 - 1:'\ 

i 

~ 
1 
; 

. ! 
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The vo~tage transmission coeff1c1ent is defined as [90J. 

(4.44) 

and the insertion loss and phase shift, in tez:ms of T. a...-e 

(4.45) 

( 4.46) 

where Li • the insertion loss, 165 in dB, and at the phase shift, is in rad.1a.n. 

4.4.2 Synthesis of Para.llel-Cou-oled Ba.."'ld-Pass Filters. The design 

procedure was orig1nally developed by Cohn [91J for stripllne, and later 

eXtended by Dell-Imagine [92J to include microstrip. Cohn has shown that 

each parallel-coupled sect10n with a length of qroarter-wa.veleng+..h 1s 

equivalent to an ideal impedance inverter nth qua:ter-wavelength of line 

on either side. From this eqUivalent cirCuit, the even- and odd-mode 

cha--a.ctexistic impedances are derived as [9~J, 

Zoe Z Z 2 
-",.~ = 1 + ~ + (-~) 
~ K K Llo 

( 4.47a) 

( 4.47b) 

where Z is the tel::l1.in.a.ting impedanC',. ~see F1g. 4.9), andK is t..'1e impedo 

a.:lce of the ideal !.Jlped.a.!lce inverter, &.net can be calcula. ted from low-pass 

~ ! 

. : 
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prototype elements [91J. 

The leng'"..h of each section is given by [92~, 

A Z + Z 
I _ 0 oe 00 
AI--';- re-::: Z +~ Z etie oe efio 00 

(4.48) 

This procedure usually results, even for filters nth moderate band-

width. in very high Z a'ld wa:y low Z for the first and the la.st sec-oe 00 

tions. In teJ:ms of physical. parameters, this m.eans extremely narrow gaps 

between strips far these sections, and thus requires a high degree of 

accuracy in photolithographic techniques. However, it has been deter-

lIlined that more workable paxameters can be obtained by slightly per-

turbing, using computer-aided optimization techniques, the parameters 

calculated from this design procedure [9:3J. 

Using this technique, a four-section Buttexworth (maxima]] y-flat) 

ba.nd-pass ftiter wit."l ac 1:andw1dth for operation at .5.5 GHz was designed 

for a Duroid 5880 substrate (if = 0 • .508 lIllIl). The even- and odd-mode 

characteristic i'pedances for-each section were first calculated from 
.It 

Cohn's equations. A computer program was then used to optimize these 

Lnpedances. The initial and the opt1m1zed val.ues are listed in Table 4.:3. 

.. This program consists of three subroutines s1m" Ja .... to "~~T". 
"mm:CT", and ''EXI"....oR in Appendix C. See descriptions of tlle::.;.e 
subroutines in Chapter ., • 
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The width of the first and the last gaps (51 and 54 in Fig. 4.9) is. in

creased from 0.0'7 mm. to 0.11 mm, thl18 considerably lessening the toler-

anee requ1rements imposed on the photoll thogrs.ph1c process. The physical 

dimensions are given 1n Table 4.4. Calculated and actual responses are 

plotted in Fig. 4.ll. The passband insertion loss was measured to be 

0.5 dB at 5.5 GHz as compared to the calculated value of 0.:38 dB at the 

same frequency. The lIleasured l-dB bandwidth is 4)0 MHz (5.)0-5.7) GHz) 

as compared to the calculated. ba.ndJddth of 460 MHz (5.27-5.7:3 GHz). 

Table 4.4 also gives the dimensions of a II GHz band-pass filter 

idth ac bandwidth. Calculated and measured responses of this filter 

were <:.lso in exceJ.:l.ent agreement. The passband insertion loss was 

approximately 0.7 dB. 

, , 
, l 

, 

! 
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Table 4.) Even- and Odd-Mods Characteristic Impedances for 

a Butterworth Band-Pass Filter with ~ Bandwidth 

Table 4.4 ~ensions of Parallel-Coupled Sand-pass Filters 

Section W(mm) 

1,4 1.2) 

2,) 1..51 

* fo = 5.5 GHz 

.... f = li GHz o 

S(mm) 

O.li 

0.64 

l(mm) * l(!I1lIl ) 
.... 

9.76 4.77 

9.70 4.74 

4 I,: 
'-1 

I 
1 
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Fig. 4.11 A 5.5 GHz Band-Pa.ss Filter Characteristics 

ORIGINAL PAGE IS 
OF POOR QUALITY 

; 

l , 
i 
I 
1 

1 
• 

1 
j 

j 
l 

j 
1 
1 

\ 



~7 .. '~~"¥~;-~~~~"'''''''~~,_''''_'''''c -~~~~"'"""I"--';-----_----. ______ !IIII'lIIII"' _______ Il"''''_'''''' ___ • Ic It • .... ';;5 4c ci 

i;, 
_t's t t 

CHAPTER V DESIGN AND REALIZATION OF MIC tmENEBATE AMPLIFIERS 

2.:,1 Description of computer p;og;am CADDAC 

In recent years, a. number of computer-aided design programs have been . 
made a.vailable to microwave engineers on time-sba.r1Ilg systems [94J. ' Large 

microwa.ve f1l:ms have also developed their own package programs that are 

only ava.lla.ble to their design engineers. These programs usually requ1;re 

large computer memory. and are very costly. Moreover. they. are general 

purpose programs which handle mostly passive network,s with some including 

a tn.nsistor. and others including a diode as the sele active device. 

The computer program CAOOAC (Computer-Aided Design of Degenerate - ~ - -
!mpllfier Q1rcui ts) developed. in this report is intended pr1ma.rUy for 

the design of degenera. te parametric amplifiers, though it is also Uc
·' ful 

for certain types of passive networks. It can be readily extended to 

include r:.ondegenerate amplifiers. Furthemore, with a few minor change3, 

the program can Ce run on a mini-computer since it requires very little 

meJU,ory. The source listing of CADDAC, written in FORTRAN l.a.ngua.ge v is 

given in Appendix C, together with circuit element 1dent1.f1ca.tion oodes 

and inqut data. card requirements. Similar to that of C1sco[95J in struc

ture, the program consists of the followings: 

Subrout1ne RES?ON 

S ubroi t1ne BPF!LT 

SUCrout1ne DL~CT 
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DIRECT 

I HAL" I I EXP~R 
1 

EVAJ. 

1 
DIS PLY 

41 nISP 

MAIN 

~ 

OUTPUT 

r--

~ 
RESI'ON 

SENSIT 

! 1 
CSINH CCOSH 

Fig. 5.1 Flow Chart of Program CADDAC 
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Subroutine mLOR 

Subroutine RANOOM 

Subroutine EVAL 

Subroutine GRAPH 
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Subroutine mSPLY (With entry msp) 

Subroutine JUTPUT 

Subroutine SENSIT 

Functions CSINH, CCOSH 1 and CTANH. 

• 

The interrelations between these indiVidual programs are illu:stxa.ted 

in the fl.:lw chart in Fig. 5.1. The arrows L"'"e understood to be directed 

from the call' ng :programs toward. the called programs. 

Before these programs are explained, a. brief review on the basic 

jtructure of a computer-aid6d design program is perhaps in order. Figure 

5.2 shows a. simplified flow chart of such a. prog:ra.m. 

The computer reads the circuit topology and initial parameter val'Jes, 

and proceeds to ca..l.culate the a.ctuaJ. response. Next, a. comparison is made 

between the a.ctual response and the a bjecti va function (desired response) 

from which an error function is generated under certain cr1 teria.. At this 

point. the error is tested to set! if it exceeds some prescr1 bed value. if 

it does. the prog"u goes to the optiDdzat1on subroutine. The optimization I 
subroutine generates a. set of incremental par'4meter values, which, when 

added to the previous parameter values, W"'...l.l yield a. smaller error. This 

:procedure is iterated until the program is ~topped when one of the fol-

lowing conditions occurs: 

• a-..... t.'·,; w· 



Rtiad clrcul t 
topology and 
1 nl tlal para
meter values 

Calculate 
circuit 
response 

No 

Opt~_1l1ea tion 
6u-broutine 
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l!Wlction 

i 

." ' •• I 

Objective 
fWlction 

!!! 

Fig. 5.2 Simplified Flow Chart of a Computer-Aided Design ~rograa 
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(1) that the error is less than a prescribed va.l.ue, 
. 

(2) that a. specified number of :1.terations is exceeded, or 

() that an allotted COlllpUt1n~ time is exceeded. 

Return1ng to program CADDAC, ea.ch. subprogram will be now c!,(,scr1 bed • 

.5.1.1 Ma.1n program. The ma.1n program reads all input data. wh1ch 

include objective function, frequencies of interest, circuit topolol1, 

circuit parameter values, and values of various parameters associated 

with the optimization procedure. It also decides whether the Circuit is . 
to be analyzed or optimized, whether a graph of gain versus frequency is 

to be plotted, and whether sensi ti vi ty analysis is to be performed. 

5.1.2 Subroutines RESPON! BPFILT, and functions CSINH, CCOSH, and 
/ 

CTANH • This group of subprograms calculate the circuit response. The 

three functions calculate values of hyperbolic sine, COsine, and tange!lt 

functions with complex arguments. 

Subroutine BPFILT ca.lculates the ABeD matrices of the ~el-

coupled microstr1p band-pass fllter at a.ll frequencies of interest a,c •• 

cor'iing to the etluations d.e=1ved in Section 4.4.1. To avoid repetitive 

computations, this subrouti~e is only called by the ma.1n program iihen 

the enstence of a band-pass fll ter in the cirelli t is detected. Onee 

the ABeD :na.tr1ees are calculated, they are stored and ma~ available to 

suC:!'~ut1na RESPON via. a COMMON statement. 

Subroutine RESPON calculates t.~sducer power gain according to the 

equat.ions derived in Section ).4.1. AlgOrittUIl for noise figure ca.lcula-

tions is :lot included. nowever, wi th tr~ E:.'d,uat1ons derived in Section 

1 
1 
I , 
j 

J , 
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3.4.2, the implementation should be a straightforward. ma.tter. 

5.1.3 Subroutines RANroM, EVAL, DIRECT, and EXPLOR. This group of 

subroutines perloDls the optimization procedure and thus can be considered 

as the lacItoone of this program. 

Subroutine RA.NIXll is a randoll number gene:ca.tor. 

S'.lbroutine EVAL "!valuates t!le error between the objecUve function 

and the calculated response. In CADDAC t the en:-or is defined as 

(.5.1) 

where NFP is th.e number of f'xequency points, and E is calculated from 

NFP 

E== L - GtCf.) "b. ] 2 
it 0 J. 

(.5.2) 
k=l 

Subroutines DI3ECT and EXPLOR employ an improved .td.L..-ect search" 

lllEft-~od to pari'OIlIl circuit optilldz.a.ticn. Algorlthm.s [96I97: for the 

original (H rect sea..."'"Ch !lLethod developed by Hooke and J eeves [)4 = are 

ava.!.la.ble, and :IlOd~ "led lIlethods such as ··spider search" [98J, "razor 

search" [99 J ba.ve also been l'ubllsheci. The algor1.~.m. used in ~DAC, 

.men compared wi til othe=s, bas been observed to reduce the computing 

time considerably. 

3a.sicallJ, the d!...-ect search consists of t.wo :na.jor waves, namely, 

~~e exploratory :nove and the pa. ttem move. At the begj nn tog, ini tiaJ. 

values axe assigned to !{ ci=cui t parameters which a...-roe to be opti.:n.ized, 

... 1 
I 

i 
1 
J 

I 
11 

J 
.~ 
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j 
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and error is evaluated at this set of parameter values (called "basepoint" 

in direct &!arch). Next an exploratory move is made. The expJ.on.tory 

!!love varies i;he value of each parameter by some sull amount (called 

"step size"), and observes the effect of each of 'tb.ese var1a.tiOIlS on the 

error function. Those that reduce the error are retained. After the 

explon.tory move is cODlpleted. certa.1n puaaeters are increased, others 

decreased, and still. others remain unchaJlged. 

A "vector" 1!l the N-d1mensional hyperspace can be defined as the 

difference between the new and the 1n1 tial. set of pa;rameter values. A 

move in the cU...-ection of this vector 1s then attempted. This move 1s 

called a patter.:l move. If the pattern move 1s successful in reducing 

the er:or, a move in the same di...---ectioll wi tho larger step size 1s taken. 

and. so on, until failure occurs. Upon the fa.1lure of a patter:l. move, 

the last "good" point 1s established as the new blsepoint f=oJr1 iihich 

another exploratory move 1s conducted to deteraine the new direction 

for pattern lIlo'res. If this exploratory move also faiJ.s, t..'le step size 

1s reduced, and the ~hole pl.'ocess 1s repeated. The opt1Jl1za.t1on process 

1s term~ nated when. the step size is small.er than a presc.--.oj,bed nn.1Jl:um 

step size. The flow c.~s in Fige. 5. J and 5.4- cutline su1:::rout1nes 

DDECT and EXPLJR, respectively. 

A number of features that are not shown in the fiow c.'la...-t.s will now 

be d.escri bed: 

(1) 30th t..'le eX?lorator.r and the pa.tte-~ !!loves a...""e rest:t'icted i(1th!.n 

a cer+..a.i!l range imposed by pa...""aJlleter const...-a.!.nts. Thi.:: is :lecessar-.r for, 

.. 

1 

1 
1 

l 

l 

i 1 
1 

I 
1 
1 

I 
I 



~_'''''''71'-r:- .. '-.1I'~-' ------.. ~----,---,. -~-"""'''''·''''''''''---:;~!!!';;~b !±!::!!;;A~:~::-.. -:P .... _'*JI!!I"I!!!I .. .,'_ • .,.'''''. _4_ .. ""PIlll'l __ "4S"",.'II!P"'. illS ......... I11111"1! ... ' .... --'!'·1.!J !!!i!!~.~l!!E!e~~A~-~'._.,. 

i 

> ; st&&b G e" 

, __ .... h 

No 

-119-
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Fig. 5. ~ Flow Cbar"t. of Subroutine EX?LOR 

.U.40 

... 

; I 

J 
,~ 

I' 
t 

I 



Pfl . Ii a, 44 £3 £ .. a:s- us ( ;pet. Ole a £,_ ." .. ;~, 

-lZl.-

otherwise, certain parameters may acquire values that are physically mean

Llgless, such as negative lengths, or values that are physically mean1 ngful, 

but are difficult to be realized in practice. 

(2) An accelerating factor is included in makj ng the pattezu Jloves, 

i. e., each new move' is always larger than the previous move in step size. 

() In subroutine DIRECT, after an optimization process is term1 nated 

when the step size smaller ~ a prescribed minimum value,. it can be 

restarted from a new 'basepoint generated randomly by subroutine RANroM. 

This can be repeated as many times as the user wishes. 

( 4) The now c..~-t in Fig. 5.4 only indicates the exploratory move 

for one parameter. Actually, each time subroutine En'LOR is called, all 

N parameters are explored at once. This is easily accomplished by a 

IXl-loop. 

5.1.4 Subroutine S&'~IT. The effect on transducer power gain by 

the va..-1a.tion of a paxa.meter X is called the gain sensitivity with respect 
G

t 
to parameter X, Sx • and is given by 

OG x t 
=~. ax (5.3) 

where x is the nominal value of parameter X. In subroutine SEMi!T I wr.ich 

per.f'oms sensitivity analysis, the partial dif'ferentiation is carried out 

numerically by 

CG t = Gtlx-Gtlx+~ 
ax ~x 

-I 
I 
I 

-j 

1 
1 
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or 

_CG~t_ = Gtl x - Gtl x - 4X 

dX AU 
(S.4b) 

.:_er& A.X is taken to be ~ of the nollLinal. parameter value. The calculated 

sensitivities are expressed in tens of percentage gain variation with 

respect to one per cent va.r1a.tion in nolllinaJ. parameter value. 

5.1.5 Subroutines GRAPH. DIS PLY , and OUTPUT. This group of subroutines 

does most of the printouts. 

Subroutine GRAPH plots the gain versus frequency. response 

Subroutine DISPLY pr1nt& out optimized p8..'""alII.eter va.lues, number of 

i-terations, number of functions eva.luated, and error. Entry DISP prints 

out new basepoint. 

Subroutine OUTPUT tabulates the gain versus f.=equency response. 

).2 Design Exa.:ntlles 

Figure 5.5 shows the basic circuit topology chosen for degene-~te 

amplliiers to be designed by CADDAC. Quarter-wavelength open-circuited 

transmission lines are placed in shunt one quarter-wavele~...h behind. 

the diode at botb. the pump and the signal frequencies. These lines a..."'"e 

intended to block pump frequency power from reaching the signal output 

port, and tb.e signal frequency power from reac..~ the pump port. 'The 

com b1zled insertion losses of these lllles together with the respect! ve 

'c:6.!ld-pass filters ife-"'"e measured to be nearly 45 dB at the signal output 

port for pump frequency power, and in excess of .50 dB at pump port ~cr 

_ ... -...-li ________ ~_.~.1>o:o.. _____ .... ___ IIoIjJ8t_. tI!JIt zt ... __ , _S ....... liIItn.;;;.-ttllill="".."...,..,,-....... ~· __ ---"'.·~ ___ « •• ftC'" 
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signal frequency power. 1'her also provide a verr high impedance in para-

llel with the diode at the respective frequencies so that c1rcuit elements 

behind the diode need not be considered in des1gn1ng the matching networks. 

This means the signal matching network and the pump matching network can 

be designed independentl.1. The pump matching network design can be 

read1ly &CcOIlpllsned with a Sla1th Chart, or by experimental techniques 

[q,lJ. It w1ll not be covered hare. 

For signal matching network design, program CADDAC is used. Al~'1ough, 

the program was also used successfully in designing amplif1ers opera. ted 

at l.q, GHz using a Motorola. MY 186)0 varactor, the discussion in this 

section will be l1m1 ted to only the 5.5 GHz ampllf'1ers which employ the 

MA 48509E va.ra.ctors listed in Tables 2.1 and 2.2. In the design exalllples 

to be given below, varactor #2 was used. Parameters of this varactor at 

1.5 volts bias and 9" pumping (a = 0.95) axe: 

C. = 0.)7q, 
J 

pF 

R = 0.82 Q 
s 

L = O.)2q, nH s 

Cpl = 0.2.51 pF 

Cp2 = 0.04.6 pF 

Co = 0.5)0 pF 

'(1 = 0.)67 

The parameter constraints were set as follows: 

Im.peda.nc~ 

Length 

15 G ~ Z ~ 100 Q o 

0.1 ~ ~ l ~ 0.5 ~ 
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where l is referred to a frequency at the center of the .signal. frequency 

l:and. 

,5.2.1 Example 1. In the first example, a simple circuit containing 

two series sections of tra.n.D1ssion lines and a pan.l.J.el tuning stub a.s 

shown in Fig. 5.6 is 0008811 as the s1gnaJ matcb1ng network. 

The desired response is 15 dB power gain in the frequency range of 

5.4 GHz to 5.6 GHz. Arbitra.ry initial. parameter values of 60 ohllls and 

0.3 wa.velength were assigned to each element. Ta.b?-e 5.1 shows the 

initial and the opt1m1zed parameter values. The calculat.ed frequency 

response is plotted in Fig. 5.7. Power gain of this amplifier fluct'UR.tes 

between 14.3 dB and 15.1 dB. 
/ 

In caJ.cuJ..a.tiIlg the frequency response, the condition of short-cir-

cui ted hal::Ilonics was a.ssumed for the pumped diode'. U sing the optimized 

parameter values, an analysis was made, assuming the condition of open-

circuited haJ::nonics, which yielded a lower gain and a narrower btuldw1dth. 

The frequency response is also plottod in Fig. 5.7. 

Ta.ble 5.1 Initial and Optimized Pa.rameter Values of the Signal 

Matching Network in Fig. 5.6 

Pa.ra.meters In! tial Values Optimized Values 

Zl' .;. 60 n, 0.3 A 25.0 0, 0.2115 ;.., 

ZZ' .t2 60 C, 0.3 ;.., 68.1 0, 0.2787 A 

ZJ' ") 60 C, 0.3 A 25.0 0, 0.4102 ;.., 
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5.2.2 Example 2. In this example, the s1gml matching uetifor!t 

contains two more elements than the previous case, i. e., thr$e series 

transmission line sections and two parallel tuning stubs, as shown in 

Fig. 5. 8. The 0 bjecti ve function j.s 18 dB power ga.1n in the frequency . 
ra.np of 5.4 GHz to 5.6 GHz. The initial and the optimized parameter 

values are given in Table 5.2, and. calculated frequency response is 

plotted in Fig. 5.9. In the frequency racge of interest, ga.1.n nuctuates 

between 17 dB and 19.1 dB. 

Table 5.2 Init1aJ. and IJpt1m1zed Parameter Values of the Signal. 

Match.iDg N~"t· .. ·ork in Fig. 5.8 

Parameters Initial Values Optimized Values 

Zl' .;, 55 n. 0.,3 A 52.,36 n. 0.,304 l. 

Z2' .£2 55 Q, 0.,3 }. ,36.6.3 n. 0.,346 l 

Z.3' l.3 55 n. 0.) A 52.48 O. 0.441 l 

Zlj.' .£lj. 55 ~.~, 0.) l 20.11 n • 0.168 A 

Z5' l5 55 n, 0.,3 A 5.3.,34 n, 0.488 A 

In t.lU.s example, the sensitiVity azJa.l.ysis ~ been perfoDlled. 

Figure 5.10 shows the gain sensitiVity with respect to the matching 

network elemen~s, While Fig. 5.11 shows the gain sensitiVities with 

1 
! 
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respect to the diode parameters. 

In view of these figures, one obvious conclusion can be immediately 

drawn; & de8enente aapl1f1er 1s indeed a very sens1t1ve device. The 

power gain 1s sens1 t1 ve to both the c1rcui t and the diode paraaeters. 

Tb.1s is not 1.1111 ted to this particular c1rcui t. For the nUlierous ampll-

t1er c1rcu1 tades1gned in this st~, all with d1tterent topolO81es and 

different object1ve funct1ons, the gain sensitivit1es with respect to one 

or lIlore parameters invariably possess some values in e%C8SS of 15. There-

fore. not only lIlust the diode parameters be prec1sely lIleasured, but also 

extreme care lIlust be exercised in the realizat10n of amplif1er circuits. 

This point can be ea.s1ly demonstrated by consi~rl.ng. for example. curve 

'5 in Fig. 5.10(b). 

The gain sans! t1 rt ty with nsp8ct to the length of element #5 (see 

Fig. 5.8) 1s approximately J8 at 5.5 GHz where the amplifier has a nominal 

gain of 18.)4 dB. The nQll!1naJ leng'"..h of element #5 is 0.4881 at 5.5 GHz 

which c~spond.s to an actual length (on & Duro1d substrate wi th E ~f= 
e1 

1.88 for Z = 53.JU 0) of approxillla.tely 1.94 em. Thus, the power gain o 

of this amplifier would decrease from 18. J4 dB to 11. J7 dB 1£ the length 

of element '5 1s in~d by 1% of 1.94 em, or 0.194 1IlIIl. Th1s should 

serve the purposes of 1llustrating the importance of precisely determining 

the aicrootrip discontinuity effects. 

The COllputLlg time for the first e.xample in which six parameters 

were optimized, ranged frOIl 20 to 30 seconds with an IIft 360/75 computer. 

For the second eDlllple, in which ten parameters ilare optimized, 1 t usually 
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took 70 to 100 seconds. 

5.3 Experimental Results of an MIC Degenerate AlIlpllfier 

'l'b%'oU8hout this study, several dielectn.c m&ter1als with dielectric 

conatants in the 1011 to ud1um 1."8Jl88 were invest1ga. ted and compared. 

Specifically, thsy were quartz (e
r 

= 3.82), polyolefin (er = 2.32), and 

Duroid (er = 2.22). Kater1als with high dielectric conatants, such as 

alumira (e = 9.0 - 10.0). were not considered because of their more 
r 

profound d.1spersi·re chaxacter1stics and tighter tolerance requirements. 

Of the three subst:ate III&ter1als considered, Duroid has the ad~-:'..n~e 

over quartz in that the dielectric constant is lower, it is much easier 

to lII&Ch1ne and fabricate, and the cost is much lower. However, the lower 

loss of quartz may 2lake it more attractive at higher frequencies. The 

polyolefin material was found to be less stable mechan1ca.lly than the 

Duroid, and var1a.tions in substrate thickness were considerably in excess 

of specified tolerances. 

The uplifier described in Section 5.2.1 was rea.llzed on a Duroid 

substrat.e with a thickness of 0.508 D. A photograph of this amplifier, 

housed. in a 10 em by 10 em aluminum cas1 ng, is shown in Fig. 5.12. Bias 

voltage was applied through a high impedance line (z = 120 0) connected 
o 

to the pump c1rcui t. Quarter-wavelength open-c1.rcui ted tra.nsm.1ssion lines, 

serving a.s RF chokes, were placed on the b1a.s line one quarter-wavelength 

a.way frOlll the ma.1n line a· both the signa.l. and the pump frequencies. The 

aleasured insertion losses, .!.rom sig:'la-l port to b1.as port at .5 • .5 GH z, and 



Fig. 5.12 Pho\.ogravh of a 5.5 GHz MIC Degenerate Amplifier on Durold Substrate 
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f:rom pump port to bias port at 11 GH z, are both in excess of 30 dE. 

The pump source employed a Varian X-13 klystron which can deliver an 

output power of 300 mil at 11 GHz. The signa.l port was connected to a 

Mel.a.bs XH-421. circulator with an insertion loss of 0.3 dE from 4.5 GHz 

to 6.5 GHz, and an isolation ranging bebei!n 20 d:B and 33 dB over the 

same frequency range. Isolation was 24 dB at 5.5 GHz. The characteristics 

of the am)lll!"ier were measured with a Hewlett-Packard Swept AJIlpll tude 

Analyzer (!iF c-/5.5A). 

~e amplifier frequency response curve ::-eproduced in ?ig. 5.13 was 

the re sul t of operation wi ~h a bias of 1. 5 vol:'s and a pump power level 

of approx:iJla.tely j2 m\Il at a frequency of 10.995 GHz. Amplifier gain was 

observed to be 17 dE ! 1 dB over a frequency range of approximately 70 MHz. 

By increasing the pump power level to J8 mW, amplifier gain was raised to 

19.5 dB~ 1 dB over a frequency of 50 MHz before oscillation occurred. 

!he frequency ag"..llty was demonstrated by successfully operating the 

amplifier over a pump frequency range of 10.7 GHz to 11.14 GHz with bias 

voltage =anging from 0.05 to 3.07 volts, and '~~h a minimum ga!n of 10 dB. 

The ampl.1f1er gain characteristics in ?ig. 5.13 were recorded at a 

signal power level of -IS d3m (0.016 mW). -t was observed that below 

the s!.gna1. power level of -15 dBm, amplifier gain changed insignificantly 

w:th respect to the variations in signal power level, while above -15 dEm, 

ampli!"ier gain was decreasing noticeably with increasing sig:lal power, 

and when the signal power was above approxima. tely -9 cUlm, amplifier ga.i:. 

ceased to exist. 
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The single-sideband noise figure for the amplifier was calculated. 

for the operating conditions under which the gain curve in Fig. 5.13 was 

recorded, a.t a. diode temperature of 305 ~ with a resulting figure of 

J.3 em. This calculation, however, did not include the transm1s~ion loss 

in the signal filter (about 0.5 em), matching network loss (about 1 dB), 

and circulator loss (a.bout 0.3 dB). Due to the lack of noise source in 

the frequency ra.nge of interest. a uoise figure measurement was made u:3i.ng 

the s1mpl~ and crude "signal generator" method [ J7] with a resulting 

figure of 5.7 dB. This method requires that the noise output of the 

amplifier be measured with zero power input and tha.t the power input to 

double ~e output be measured. The output detexm.ina. tions in the presence 

of noise ~ere difficult to accomplished accurately, and hence the accuracy 

of this measurement was estimated to be ! 1 dB. 

Certain discrepancies betwebn the act ual and t he calculated responses 

were observed. When the amplii'ier was first constructed using paralIle t er 

val ue s f r Ol!l Table 5.1, ampli.fier gain was 0 bserved t o be only 7 dB at 5. 5 

Gilz over a frequency range of about 22 MHz . Addi t ional element s were 

needed t o adjus t the gain t o t hat shown in Fig . 5.13. These elements 

(the short. s tub behind the 5.5 GHz ba.nd-pass filter . and the l ong s-tub 

next to the diode as shown in the photog:-aph in Fig. 5.12) were a.rrived 

at experimentally. This discrepancy may be caused by the non-ideal cha

racteristics of the circulator and the microstrip to SMA connector tran

si-:ion. The asymmetrical T- junction near the diode is another possible 

so cree 0: trou~e. 
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Another discrepancy exists in the bandwidths, namely, the actual 
. 

't:ancbddth was only one-third of that predicted. This may be part1al..ly 

a t tributed to the fact that the simple structure used to separate the 

pump c1rcul. from the 31 gna1 circui t is only functional over a ra. ther 

narrow frequency range centered a.t 5.5 GHz, outs1de this frequency range, 

the loading effect of the pump circuit on the s1gnal. circuit becomes 

s1gnificant, and thus can not be ignored outright. These discrepancies 

w1l..l be exa.m.ined in mora detail in Chapter VI together with poss! ble . 

remedies. 

I 



CHAPTER VI SUMMSRY, CONCLUSIONS Al'fD RECOMMENDATIONS FOR FURTHER STUDY 

6.1 Summary and C'onclusions 

The purpose of this study has been to investigate the feasibility of 

designing IIlicrowave para.metr1c amplifiers by computer-aided optimization 

techniques, with special emphasis placed upon amplifiers in I!l1crowave 

integrated circuit form. That such an approach is feasible has been 

demonstrat'o!d. The salient features of this study can be summarized as 

follows: 

(1) A precision measurement technique has been developed for varactor 

cna.."'"acterization. In implementing this technique, a diode test mount 

much can accommodate various types of diode packages ., has been designed, 

and the test mount equivalent circuit has been accurately determined. 

Measurements have been ~de of the driving-point impedances of several 

MA 48509E varactors over a wide frequency range. 

(2) A number of lumped-element equivalent cueui ts for packaged va.ra.c

tors valid at various frequency ranges have been proposed. Cireui t elements 

and diode parameters have been successfully determined f=om the measured 

impedance data by computer-aided optimization techniques . 

(3) Expressions of power gain and noise figure for parametric ampli

fiers employing a iIlore realistic equivalent circuit have been derived. 

These expression:l have been presented in such a manner to facilitate 

computer prog:amming. 

(4) Elect=1ca2. characteristics and ctiscon";lnui ty e!'!'ects of :n!.crostr1? 

-141-
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transmission lines have been investigated. Analysis and synthesis methods 

for parallel-coupled microstrip band-pass filters have been present ed. 

It has been found that the syntheds . method usually results in extremely 

high impedances which are difficult to rea.l1ze in practice. This defi

ciency has been removed by employing computer-aided optimization tech

niques to perturb the impedances caJ.culated from the synthesis method. 

Band-pass fUte"t"s with moderate1:andwidth have been successfully des1gned 

and fa bricated at 5.5 GHz and 11 GHz. Actual and calculat ed responses 

have been 0 bserved t o be in excellent ~ement . 

(5) A computer program, CADDAC, has 'ceen developed f or degenerat e 

parametric amplifier designs . It ~mpl.oys an improved "d.1.rect sea.cch" 

method to perfom circ\Ut optimizat ion which has 'ceen observed t o reduce 

the computing time considerably when compared wit h other algorit hms. 

·I'he program req,::1..res very li t Ue computer memory , and thus can be modi.f1ed 

for a mini- computer . 

(6) All MIC degenerate amplifier has 'ceea construct ed on a Duroid 

subs t."'"ate. The ampll.fiex has a power ga.1..n of 1';" . 5 dB ~ · 1 dB over a fre

queocy range of 7Q !'!Hz . The single- sideband noise figure of this ampli 

fier has beeo measured to be pproximate1y 5.7 dB. 

6 . 2 Recommendations for Further Study 

For the degeoerate amplifier constructed in this study, the pump 

source and the circulator have not been inte~~ted 1n~o ·he same substrate 

on '.m!.ch the ampli!'iex was fabricated. Since ciIcui ~ !D.iniaturlzat1o .. .:.~ 
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a major advantage of MlC technolog'/, the integration 1s .issirable, and 

it can be accomplished by using solid- state devi.:es such as IMPATT diode 

osc1.lla tors [100 J, and microstrip r - .iunction circulators [lOlJ. Besides 

ach.1erlIlg c1rcui t m.1n1a. turiza tion, the integra. tion also serves another 

purpose: it enables one to predict the amplifier response more accurately 

by including the circula.tor model, either a.na.lytical or experiJllental, in 

the computer program, and thus remove some of the discrepancies between 

the actual and the calculated responses as d.1s~ussed 1n Section .5.3. 

The adcrostrip T-junction model developed in Section 4.3 is only 

applicable to symmetrical junctions, 1. e., t he main line impedances are 

identical on both sides 01. the stub. For. a symmetrical junct ions, t he 

model of Menzel and " olff [ 87J , in which t he T-junction i s characterized 

in teDns of scattering parameters, seems t o be adequate. Howev-er, f or 

comrut er-aided design purposes, t his model suff ers from two ma jor draw

backs: one, that the calculations of these pa..rameters a..'"'e relatively tiJne 

consuming, and two, i hat these pa..ramet ers are calculat ed from line widths 

i ns t ead of line impedances. This impl1 es that should this model be di

rectly tnplemeat ed in a computer- aided design ,rogram, physical pa--ame

ters, not electrical pa.ra.lI1eters from which c1=cui t responses are calculat

ed, would be optimized, and thus computing tae would be increased dras

tically . A pos sible approach is to first optimize the electrical paraJlle

tars by simply neglecting the junction effects, Next, optimized electrical 

pa.raJI1eters a...-e converted to physical paramete::s, and scattering parameters 

for all junctions 1l: "'±e circu:.:. are calculated a: f=equencies of :"''1 eres:.. 
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Optimization process is then restarted, but t~is time' only the length of 

each element is to be optimized S0 that the s~atter1ng parameters remain 

valid and need not be calculated over and over again during the opt1.m.1-

zation process. However, it is not certain that convergence to objec

tive function is achievable . 

Al though the cOl1lputer program can perform 'broadbB.nd amplifier designs, 

'broad1&nd amplifier real1zations were not attempted in this study. As 

discussed in Section 5.), the simple structure used to separate the pump 

circui t from the sigIla.l circuit is only functional over a rather narrow 

frequency range. For broad1::and ampll.fiers, different structures must 

be used. It is also worthllh11e to pobt out that in the case of lJroad

'c:and amplifier design, the computing time can be reduced considerably 

if the initial parameter values are obtained from one of the conventional 

synthesis methods discussed in Chapter I [102J . 

Finally, on diode cha.ra.cterization, it is highly desirable to have 

the diode measured ~ situ. Intuitively, the lumped-element equivalent 

circuit derived from slotted-line measurement ~th the diode ~ounted in 

a coax:1aJ. test ~ount should rema..1ll valid when the diode is shunt :nounted 

in a mic:rostnp if the diameter of the diode package is much sm.aller 

than the microstrip linewidth. However, li the diameter of the diode 

packa.4Je is comparable to, or even larger than the microstrip U!lewid:t.h, 

ti1e validity of the lumped-element equivalent cL-cuit is doubtful. In 

order to iIIeasure the diode in 51 tu, .. he launc±ers, 1. e., the coa.xial-

to-mic:"os"t=ip t=ansi tiona, :nust !,irst be precisely cha--a.cter..ze ' . :'0 
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APP&''IDIX A REPRESE.'ITATION OF riO-poRT NETiORKS BY ABCD PARAMETERS 

The purpose of this appendix is to g1 va a brief review on ABeD pa.ra.

meters (also referred as general. circuit puametersj t which are often 

~d in t1l0-po..-t netwon representations. 

In ta.~s o~ Fig. A.l, the ABeD parameters L.""e defined by the ~ollow'1Dg 

equations 

V1 :: AV.., -+- BI? .. -

or in. :natrix notation 

T 
~l .. 

B] 
D 

I ... 

:'wo-Port 
Network 

.. -
--

Fig. A.1 :e:-ir.it!.on of Voltages and CUt"!"en~s 
for T"IiO-?c="t ~etiol'orks 
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B = Z 
o Z o 

A = 1 

o C = 0 D = 1 o 

A = 1 B = 0 

C = y D = 1 

0 0 A = D = cosh(y~) 

Z B = Z sinh(y1) 
0 0 

0 0 C = s1.:lh( Y O/Z 
0 

~ 1 'I = propagat ion constant 

Z = cha...-a.cteristic impedance 
0 

?1g . A. 2 A.3CD Parame ers of Some ammon St=uc:.uce s 
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For certain types of networks. ~~e ABCD parameters are interrelated 

1n the folloldng special ways: If the network 1s reciprocal 

AD-BC=l (A.4) 

If the network is symJIletr1cal. 

A = D 

If the network is lossless. A and J are purely real. and. B and C are 

purely Uagi.nary. Figure A.2 gives t he ABeD parameters :or several 

common structures. 

These pa..ra.meters are particularly useful in relating the performance 

of cascaded networks t o the performance of each network when opera. ted 

ind.1 vidua.ll.y . The ABeD parame ters of N cascaded ne tworks as shown in 

~ig. A. J a..."'"9 g1 van by 

A B 

= (A .6) 
c D 

The 1.!lput ilIlpedance ;Nl defined in Fig. A. 4 can be expressed in 

terms of the ABCD parameters and ~~e ter:n.ination Z2 ' 

~~l = (A.7) 
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Simll arly, for the input imp'dance Zuz 1:1 F1g. A.4, 

AZ2+B 

CZ 2 +D 
(A .8) 
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and 

~ = 0.205 

From Fig. 3 of Getsinger [103J, Cf,/E is found to 'be 

hence 

B.2 Evaluation of Lc 

L is the coaxial inductance due to the magnetic field in the volume c 

outside an ~ continuation of the inner conductor over the length, 
/ 

h.. If it is assumed that the fields are not affected by the actual 

configuration of the package, then L is 
c 

where ~ is the peneabillty 1;1 a.1.r and is equal to 4'1T xlO-7 Him. 

Substitution of numerical values into Eq. B.4 yields 

B.) 

L = 0.118 nH c 

Evaluation of Crl~r2' and Lr 

(3.4) 

The admittance pa.-ameters of a radial line pi-network are given by 

Marcuvitz ~J2_. Special 11l'lear combinat ions of Bessel function ~ve been 

defined pa:ticularl:r :or t his problem, and nume~ica1 values a.=e giver. 

graphically. :rowever, if bot h h and 1)i are small in t erms of wavelengths, 



-15J-

the pi-network elements can be ~ound from a ~ple coaxial line approxi-

mation [JlJ, 

Lr = ~ In(Di/d) 

1f(D2 _ d2 ) 
1 

Cr1 + Cr2 = Cr = E 4h 

S ubst1 tution of numerical values into Eqs. B. 5 and B. 6 y-1elds 

L = 0.05"17 nH r 

C = 0.050 pF 
r . 

(B .6) 

The problem of divid.1..ng Cr into Cr1 and Cr2 is not a. simple matter. 

However, in the present case, this problem may be avo1ded by observing 

that at the highest frequency of interest, L e., 12 GHz, 

Thus the position of Lr and that of either Cr1 or Cr2 are interchangeable, 

as discussed previously in Scetion 2.3. It follows that no matter how 

C
r 

is divided between Cr1 and CrZ ' the enor rlll always be negli~bly 

small. Therefore, it is possible to u'bitxarily set 

Cr1 = Cr2 = 0.025 pF 



APPENDIX C' CADDAC COMPUTER PR(x;RAM 

C.l Purpose 

This program peti'ODlS analysis md/or synthesis of lumped-element 

a;D.d/or ctistributed-element degenerate parametric amplifier circuits. 

C .2 S tructttt'e 

Thl.s program recognizes ten d.1.fferent structures. These structures 

are list ed below t ogether wit h their type ident1£1cation numbers and 

required p.:\ralIle t ers. All impedances are in ohms, capacitances in pico

farads, inductances in nanohenries, md lengths in fractional wavelengths 

refened to a center frequency in C;Hz. A negative value for any para

meter indicates that this parameter is t o be optimized. However, diodo 

paramet ers, source impedance, and band-pass filt er paramet ers may not be 

optimized. A type number of 0 ( zero) indicates t he end of ne twork con

f i guration. 

( 1) Series-parallel RLC 

T;roe 1 

Da ta R, L , C 

( 2) Parallel-parallel RLC 

Type 2 

Cata Rt L t C 

0---0 -+--8 o 

o o 
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... , 



(J) Series-series RLC 

Type 1 J 

Data R. L, C 

(4) Parallel-series RLC 

Type 4 

Data R, L, C 

(5) Series transmission line 

TJ1)8 5 

Data Z , 1. 
0 

( 6) Parallel open-cirelli ted 

transmission line 

Tne 6 

(?) Parallel short-circuited 

transmission line 

TYJle I 7 

Da ta Z , 1. o 

( 8) ?umped var'd.ctor 

T:rpe 8 

Ja -:.a. ,., 
Y1' ~ , L , ... 

0' s s 
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00-----------------------0 

0 
T o 

0 o 

0 o 

: ~ : ." 
pl ' p2 
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( 9) Sour::e impedance 

Type I 9 

Datal R g 

(10) Parallel-coupled 

band-pass filter : t: Type 10 

Da.ta See Section C.4 

C • 3 Lim.1 ta. tions 

(1) Number of total c1=cui t parameters S. 100 • 

(2) Number of circuit parameters to be optilll1zed !f 50 

(3) -Number of sections !f .50 

(4) Number of frequency points !f 101 

C.4 Input Data CaJ'd.s 

Varia ole Colum.."l3 -esc...---1.ution 

FL-st card 

FCEN'I'R 1-10 Center ::requency (GHz) 

FSTART ll-20 Starting frequency (GHz) 

FSTOP 21-30 Stopping ~equency (GHz) 

FDEL 31-40 Frequency inc..."'"ement (GHz) 

FPUMP !.i.1-50 Pump frequency (GHz) 

Second ca=d 

'z"dI 1-l0 lJ?per lui: of Z ( ohms) 
0 

.. 



Thlrd card , 

ZLO 

BHI 

BLO 

ALPHA 

GAINO 

DELTA 

DRAl'IO 

TOL 
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11-20 

21-)0 

)1-40 

41-.50 

.51-60 

1-10 

11-20 

21-)0 

31-40 

Lower limit of Zo (ohms) 

Upper limit of length (~) 

Lower limit of length (l) 

Line loss (em/l) 

Desired power gain (dB) 

Initial step size 

Minimum step size 

Step size reducing factor 

Minimum error 

Description of circuit topology starts from t he fourth card which 

must t::e the source impedance card (tne 9). Except for the 1:a.nd-pass 

f11ter, each section takes one card and all parameter values are 1n 

F110.O for.na.t. 1'he end of circuit topology description is indicated by 

a type 0 (zero ) card. 

For a band-pass fUter, a type 10 card is placed in its nor.na.l 

posit1on relative to the other sections. Following the type 0 card, 

the parameter:: of the band-pass are thet: gi'Ten . For a f1lter with N 

sect1ons, N+l cards are requi-..-.ed. The rust card contains: the number 

of sec~1ons , the conductivity of center conductor (lO-6mho/ cm), the 

conductivity of ground. plane (10-6mho/ cm). The second card descr1bes 

the first sect1on, the third card describes the second section, and so 

on. Each card contains, even-mode impedance ( ohms ) , odd- mode upedance 

( ohms) , even-mode ef~ec~ive dielectric constant, odd-mode ef~ect~ve 
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dielectric constant, line width (em), length (em), gap width ( mm) I open

circuit equivalent capacitance (pr). 

Follow1.ng the f1lter cards, two more cards are requ1-'T"8d. The first 

card indicates whether a sensitivity analysis is desired. A letter Y on 

the first column indicates sensitivity analysis 1s desired, otherwise the 

card is left Ola.nk. The second card indicates whether a. plot of frequency 

response (usually with smaller freq.uency increment and wider frequency 

range) is desired. Again, a. letter Y on the first column 1.ndica.tes 

"yes", and ~ otherrlse. In t he first case, FSTART I FSTOP, and FDEL 

must also be specified 1.n F10.O fo~t starting from column 11. 

A set of data cards used for the analY: lis of the amplliier described 

in Section 5.2.2 are given in"Fig. C.l. 



~'lg. C.1 Swnp1e Da ta Cards for Program CADDAC 
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c 
c 
c 

c 
C ••• a •• **a •••• *~ •••••• *.*.***.* ••• *.* ••••• _.* 
C •• * •••• a~.*** •••• ~ ••• *.* •• * •• __ * •••• * ••••• s 
C •••• * .*.** 
C .. ~.* ***** 
C ***cx OEG~N~RAT~ P~R4METRIC A~PLrFIERS aa. __ 

***** 
C ••••• 
C .s~x •••••• *~.*x~**.***. * •••••• __ c.c •• **.a ••• 

*~.:~ ••••••••••• *,* ••••••• 2 ••••• 2* ••••••• * •• 
c 
c 
c P~r:J-"" '" FIJI( _=~!GNI 'lJG 5IG/\,1L CI~CLI r (F _Pl 
(" 

C 
C 
C 
C 

c 
c 

c 
c 
c 

$ ' :;::;UTIN ~S "' = r.:~p ~c: 
1. ;;~SO ~J 

2. a!;' =CT 
"J -. , 
~. 

:; X?LC.~ 
:; ~'LG \I 

EVlL 
6. GP ~o~ 
7 . _ PL T 
8 . _!5?LY 
<;. S E; SIT 

10 . 9 D eLi 
'" -~ I-A>i.. _ ~ 

c ~! ! ' I :l ~O G'~ 0. '04 

C .-.. =- ., r " 
- • - • - ... .- 1 

C~ .!. 
C ~ VI.' _f,j 

C_"''1 ':
CC'1' ~ 

CC\4'A _ j 

C:~'" ) 
c.CJ\oolp ... ~X 
C ~ 'J "I :t, 
~ = :; 

I ,,~ :: 
1 '!u"'S=C=': 

, - ' : ' \ f_ ,,"" - - -.., 

P!~(:':} ,~ l '4E T( ~ · l,,,,(!. 1 ) 
~ Y=~ I ~), 

~ I Gr-; ( : - ) , P A? "' .U ( 5 ' I ,F l ~ ~ I ~ ( 5\) I 
P l~~~ ( !.CC}, i YP:::( 5·J) , LI 51(5 ) 
FP ... p , r C=NT~ ,- ~TA~-, FC:L , G ~ I 10 

::> ~;;~>"t\L S , Lt.rI~EC , . = VAL,~C:"'=" 
C~l ! ,_=~~I~,TCL,~RA TIC,dL~H A 

d~( lCl) , ~;:( 1 1) ,CF=( lel) , O ~ClD ) 
AF,eF,CF,:C: 

• . ---..::.'1 _ ~ 

• • • 'I . ~ . . 

.. 

. . . . . 
-~- ---- _. . . ~ 

- -- =------- -~- .. 

>~ 



r ... 
C 
( 
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KB? ~ o;;. J 
READ( R,:C '':,=Nv=C;C;C;l FCENT~,FST~Q.T,FSTQP,;:!)EL,FPU"'P 
R=~:(rR,5CO) -: : ',lL~,eHt,sLC,AL?HA,GAINCJ 
R:AC(IM,5CO) C=LTA,CEL~I~,OPAT!O,TCL 

500 FCRMAT(3~lJ.J) 

WRITE(IW,61CC) F~TA~T,FSTCP,FP~MP 
61JO FCR~AT( IH1,II,2e~ PARA~ETRIC A~PLI~IE~ ~ESIGN,/, 

+ lS~ SIGNAL ~ET~ORK,/I, 
+ 3C~ FR;OLENCleS OF r~TEREST ••••• ,!, 
+ 12~ SIGNAL • •••• ,FE.3,4H TC ,F8.3,4H GHZ,/. 
+ 13H PU~OING ••••• ,Fa.3,4H GHZ,/) 

WICIT:( Iw, ~20u) SA It-fC,ALPH4,ZHI ,ZLC,8HI,3LO 
620J FC Q.'''lT(t7'-! ol)~=~ GloP., ••••• ,FS.2,3H oed, 

11) 

2J 
3J 
6CJ 

50 

6 
6~ 

c2 

63 

+ l~~ L1N~ LC~5 ••••• ,F7.4 - 1CH D8/LA~8CA,/, 
+ 2Et-- Pl~l""=T=Q CC:\j~TRAI~TS •••• • ,1, 
+ ltt-- 1~F;OA~C= ••••• ,1, 
+ 2 C ... L ? P = R 3 C UN!J .....,;: 3 • 2 , 5 H :H '" S , / , 
+ 2 '~H L:~ER eculta ••••• ,FS.2,5H CH"4S'/, 
+ 131-' L=~GTr ••••• ,/, 
+ 2CH LP?ER 3CLNO ••••• 'r9.3,7 ... L4~9~~,/, 
+ 20h LC~ER qCLN~ ••••• ,FS.3,7H LAMBDA,//) 

ALoHA=t.LP r~/8 .tEf 
NF,<~Q= (~~TQ~-F 5HR '1) /;:o~ L+l. 6 
l<:: A C ( i ~ , 5 C J ) T YP = , ( = v,,= .~IT ( I ) , I =1 , c) 

INTVPE=T'fPE+C.l 
IF(!~TYP=) 3CdlC,2C 
IF( I'l YOE-IJ) ~ ':,~C,3t.: 
"';: IT:( 1 .. ,6CI)) 
FC:<,l,4lT(f//,13r !f\~ALr'J C~Ra T'fP~,I,IS,3F9.4,/f) 
GO J SSg 
G· 0 (t:C,~G,6C,eC,;C,7C,7c,<;o,ao,<;s) ,r"'TYP~ 

r =(CL\4='J-Cl)) tZ,cl,c2 
~L ... : : : C· I = .!:- C 
C[ 64 I = 1.3 
~ P ~ =< to "I = .. , PAR A .... + 
IC(EL~~~T(I») t~,f4,c4 

LIST=~LrST+1 
l ISTU L ISi)=NFA~4~ 
p A~ 'i\ A X ( , LI S T 1= 1: C c • • A B S ( :: L \I E ~ (r I ) 
p - ~ '1 .. ' ('J L • S T 1-= J • C : 1 * .l:! S ( :: L ~ = ~H (r I ) 

t. 4 P !. ~. l '-1 ( ' ! ::> ~ ~ .1 "I I = .1 ~ ~ ( ~ L ,II : N T ( I I ) 
• - 'l ,- -

GC7:' I e ... 

ORIGINAL PAGE IS 
OF POOR ('Iff"'~ 



Elli 
ORIG AL P t\~ 
OF pOOR QU -162-

C 

-\.. 

70 CO 7c 1=1,2 
NPlRA ,It!=NP~RA ,"'1+ 1 
IF ( clo'1 E~l T ( {), 7:' ,H , i c 

72 NLIST=NLIST+L 
LtS T (NLISTJ=NP~~A~ 
IF (I • EQ. U GO TC i 5 
PAR ~~XCNLIST)=9~r 
PARM1NCNLIST)=aLC 
GOTO 76 

75 P~R~AX(NLIST)=z ~ r 
PAR~ !NC'JL rST)=ZLC 

76 PAR,.v., ( JPAP ~ ,'1 ):Aa S( :L:"cNrc I) J 
1\= 2 
GOT) I e ; 

8:) I;: ( \ U,'1 S :: C +!'.j P ~ I( A'" +,., L r ~ T) E 1 , E 2 , El 
e:. .. FI7:([ff,61JJ 

61J F:~~l (//,36H ~:L~C~ C~~ O ~LST BE TH ~ ~ CUQT~ C l ~O ) 
GOT'J C;<;2 

9 Z NP 4:; A,"'1= ;'jP ~p.:,~ + 1 
p ~~ ! I"I ( 'I;:> .!. R :' .'1 ) =.! 35 ( E U" E j TC U ) 
N= 1 
;"~I =([ .. ,eZ:J 

(2) FOR'1 l T (Z8 1-l I NPLT NETIoORK C2 , FIG UR ATICT\,//, 
+ 2SH 5=CT ..,0: PAR.A~ETcRS,1l 

CGTJ lCJ 

c eI'J J : C!F J 
gO N=6 

DC 0 4 r = 1 ,'~ 
\lP.l~ l .lol: "IP ~~ A.'1 + 1 

g 4 0 F .l fA ( I P A ~ l ,"I 1 = l 3 5 ( :: L " :: ~ I T ( I ) ) 
~U "' .) =C= '~L"-4 5: C ... 
ITYPcC NUf"'S='"'l=I' '1PE 
v-!;IT =(!",63J ) NL; \4SEC ,I TY P=,{EL"'E T( ),.=1,1) 

5 30 F:=~AT(214,6~13.4) 
(OTO 10 

j,C, -=(I~,t35) I U"~=C,r 'T'fP: 
t 3 :5 F: '.: l - ( 2 I 4 , 2 11- ~ A , :; ~ A 5 5 F . L ': ~ I 
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GeT ::) 10 
100 NlJ,~S=C=:'H •. "'S=C+l 

I Typ ~ UIl .. '" S~C ) = IN T'Y P'= 
WRIT = ( [W, 6 3 a ) N IJ M SEC , [N T Y p,= , ( '= L ME'" T( I ) , [ = 1 , ~ ) 
GOTJ lC 

110 IFHIU"'1ScC-5C) 13Ctl3Ctl2C 
l~O W~ IT:( Iw,t40) NL~S=C 
640 FCR~AT(I/,29H Toe ~d~~ SECTIC~S IN NETwORK,IS,I/) 

GiJ TO c;t; 9 
130 IF (N PAR l.104 -1 CO) 1: C , 1 ~ C , 14 C 
14J WRIT=(I~,c:OI NPAR~~ 
6:J FDR."1AT( II, 20H T·J'= "'~N'y PA~A."'ETEc, S ,IS,II) 

GC j~ <;c; e 
1 5.) r F (. ! LIS T - : 0) 1C:, u ~ ,1 t c 
16J ... ,,[,=( [:",660) ,\j LIST 
c6J FC ~ ,'.I lT(/ / .l 9H i CC ~A~Y \j..li" !! Sl=5,I5,11l 

GOT'] 99.B 
( 

C PFI~T ~~T a~NGP!!~ FILT=Q CC~FrGU~27IC~ 
( ANO ST J~= 46CC ~ATQIX C~ FILT~~ AT 
C F R =Q U EN C Y P r] ! ~ T S C;: I ~ T E Q EST. 
C 

( 

( 

c 

u: 5 1;= (K ep F • EQ. C) G: T':' 17 C 
KFIL T=O 
CALL aPFrLT(KFIL 1) 
KF!L T= 1 

1 7) CAL L "L TP L T 
I F (.'1 L r S T e' lEe C) G C i ~ 1 9 C 
",PF=(rw,c7~) 

67J ;=C~MAT(III,l6~ END CF A~AL~SIS,II) 
Gu T _ 2 2~ 

c Sy T~E 5 S q =.L· ~=C 

C 
130 CC 1<;J 1= 1, J r 5i 

J=LISi(I) 
190 P':' ~ (II=P A ,''! ,··1(JI 

(ALL DrRcCT(PA~,F ,"E F. IT) 

I;=ICI.1E~IT-TO L) 2CC,~CC,21 C 
2JJ Wf:IT =II"I,62 J ) 
6 a ) F· ;; ' .. ..l T ( I I I, 1 e ~ 5 = A t;' C ~ s v : c :: s S ;: L L ) 

GC - J 22) 
21) "'; T=( I"c , ~C;O) 
6 C; J : -.:. . ~ ( I I I , ~ 2 ~ =" =. ~ ~ 8 : v:: C L:: :.! C = ) 
_2J c.::: - I I = 



C 
C 
( 

G · IS ORl 1 ••.. . ' ... .... u 
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WANT A SENSITr~IT' A~~LY~rS? INDICATE Y~S G~ NO. 

225 

230 
C 

RE~C(rR,51J) CH~Ct< 

IF(C~ECK-~Y~S) ~4C,Z;C,24C 
CALL SE.lJSIT 

C 
C 
C 
C 

C 

c 

24J 
51J 

~!~T A FREQUE~C~ RESPCNSE wITH FI~c~ INCR~M~NT PLOTTE[ 
INOICAT: YES OR NO. 
r;: YES, S P : C r F y. F S T to R T ,F S T C F ,A NO F O ·~ L • 

~E~O(IR,510) C~ECK.FSTART,;:5TCP,FCEL 
FO~~~T(41,9X,7FIC.C) 

IF(CHECK-qy:S) 'iC,Z~C.27C 

2:) Nr~EO=(::Snp-FST~~ )J~D=L"'l.c 

IF ( K ep f • =Q. oJ ) G:: TO 2 ~: 
C.1L L e P F I L T ( K F I L T ) 

255 ' F~=Q=FST':'RT 

CO 260 I=l,NFQ==O 
II= I 
C~LL P:SPON(GC I),FR=C,II) / 

26) F~~Q=FR~O+=DEL 

NF=NF~~~ 

CALL GiUPH(CSTAR T,FCEL,G,r..F) 
270 CL"ITI~uE 

GO - J 1 
9<;3 w~ IT:( IW, 7eO) 
70 J Fe;;'" .H ( / I , 29 H Q Cl L j ! '~ E T = Q '" I ~ A T =!) 8 Y :; R 0 Q S , / / ) 

GCiO 1 
~C;9 ST ::P 

EN] 
SU8c~ UT · ~E ~E~PC~(GArN,F~='.t<5r) 

( !~IS SU2~J0TIN= CALCLL~T~~ GAIN CHA~ACT=;.S7IC3 
C CF ,-, =- e\jE=<l7' ~ Ol~l~=TQ rc A~I=LIFI :=5 

CI.IA=~SI::;~ 

CO"!~:JN 

CO!o1 ."1 .... 'J 
C') ,"1:-1G~ 

C:,"I.'-1QN 
CJ'1"'J'I 
CC'" PL x 
C:::'VL x 
C .... 'A?L X 
CC"1 PL X 
CT04 P X 

EETAIZ) 
5!~N C~C),P4~"'AX(50) ,PA~~I l(50) 
p~~A .... rlCC),I1'fPE(50) ,LIST(5 0 ) 
FPU~P.FC=NTR,F~T~RT,FJ=L,G~INO 

N PA~A~. NLIST '~~""SEC,~Ev~L. N F~=O 
~~LTA , OEL""IN ,rCL,JKATI~,~LoHA 

Z:.,Z12,Z21.lZ2, l IP,lEC ,lI .l l . • ~H 
G.! "4"'.l , ': ~ ! "' .... . c: e SH ,e T d \H • C ... O LX ,:: nJJG , : J 
! ( .2) , r: ( £) " ( £) ,C ( 2) ,.12 ( 2 ) .e2 (2) • Z ( ), Y ( 
! • ( £ ) , ~ 1 ( ), C !. ( 2 J ' "_ !. I 2) • S J ( .2) ,S J' (2) 
~ =(lCl).~F(l:Ll.Cr( Cll.-Flt ) 



c 

C 

c 
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AF,8F,CF,QC 

CJ=(O.,l.) 
FIJLE~:FPU~P-FR=Q 

PI=3.141S«;Z654 
Of'4EGAS=Z.lIP I*FREQ 
GMEGAI=Z •• PI*FICLER 
eET~( l)=a~cGAS/FCE~TR 
BETA(Z)=CMEGAI/FCENTR 
SJ(l)=CJ-OMI.:GAS 
SJ(2)=CJ·~Mt:GAI 
SJ l( 1 )=SJ ( U* 1.2-! 
SJ:(Z)=5J(2)-1.=-; 
CO 2 1= 1, Z 
AUI)=l. 
el!l)=O. 
C1I11=0. 

2 C1<I'=l. 
I p'J PH = 1 
Nt'u X-=NUM S EC-l 
IFU~ ' .. L~X-1) 2CC,2CC,3 

$ CO 180 J=2,N~AX 
JTYP == IT'Y? = ( J ) 

ORIGINAL PA;"~ l:J 
OF POOR QU/\L\ I'Y 

GC' i:J (1 J , 2 a , 3 a , 4 C , : c , c C , ie, 1 2 C ,1 8 C ,8 0), J Ty P E 

C LU~P=C ••• SEPl=~ PARALLEL 
C 

c 

10 CO 15 1=1,2 
Z( I '=l./P.A~A ,"1( IPCINT+l} ~ . /( SJ( I' $PAP-AM( lPCl 1'OT+2)' 

1.5 Z(I)=l.!(Z( IJ+SJlC r)-OARA~(!PCI~T+3) 
r P'] I ~H = r P:J I .. IT • ; 

C L U ~?E'J ••• PAR~LL=L D!qALL~L 
C 

c 

20 CC 2~ 1=1 2 
'Y(l)=l./P.A~At-4( .PCI N +1I+1./(SJCI) *PARA"'CIPCI'~T+2») 

25 Y (r)=Y(!)+SJ1Ir)·PAR.l~(IPC1 T+3) 
IPSI~T=lPalNT+3 : 
GG TO leC ' 

C L U~PE C ••• SER ! =S 5=~1ES 

C 
:; CC 3 5 r = 1,2 

Z( [)= p .. P~ "1 ( P C ~' T+}) + SJ(l )"PA ~ li"( I F CI~ T "?) 

35 Z ( '= Z([ l+~./(SJ!(l)*P~ R !"'( pcr : T+3» 



c 

ORIGINAL PAGE I 
OF P R UALITY 

IP)H.T=lPOI.IT+; 

-166-

• 

C L u .... P cO. •• PAR. t. L L = L S: ~ I = S 
C 

c 

40 CO 45 t = 1 , 2 
Y( !)2PARA."1( 1POHn+l)+~J(! )*PARAM( IPCII\T+21 

45 Y( I )=1./(Y( I )+1./( ~Jl( I ).P.1~,V'I(I PCINT+3lll 
IPOINTs1P'JINT+~ 

GO TO 16C 

C TP~NSMISSIIJN LINe: ••• SERI:S SECTICN 
C 

c 

50 CO 55 1=1,2 
dL?HAL=!LP~~.P~~A~(tPCI T+2) 
e~T':'L=a=~H r )·p~R~"'( !~C1 . r~2) 

G:"~ loi ~ = CW L X ( ~ L P HA L, 8 = TAL I 
t ( ! ) = C ':'J S H G:. W-Al ) 
C(!)=A(i) 
e( r )=CSI~"'(G.lo"''''l) 
C( i )=!3( r l/P!\i\.A~( !PCI~i+1) 

55 8( I )=S( I 1·i>~QA.'-1( IPC!NT+l) 
IP'JI NT=!POI NT+2 
GC TCl 17 J 

C T~~~..jSi'''ISSIQ~ LINE ••• ~HL~T CFEN 
C 

C 

6~ CO c5 1=1,2 
~L~n~L=.lLP~A*P~qA~C1PCINT+21 

EE7!L=3cT~( I )·P~i{A"( IPCI HZl 
GAM .... A=C~PL X .1LP HA L,2:TAL) 

t5 YO )=CT..1 NI-CG .AMM·U/PAq.1~( IFCI~T+l) 
IF)I~T=IPSI JT+2 
GC 7C 1 c: 

C T;:;~ :';S o""rSSIJ o'l L!"'~ ••• SHU, - SHC~T::; 

C 

C 

7 oJ C- 75 1= 1, 2 
~LPr-':'L=!LPH!·P~::'~t,q IFCINT+Z) 
e:i..1L=9=T.Ht ,*PAPA,,( !PCt~T+2) 
G_~MA=C~PLX(ALPHAL,~ETAL) 

75 YCII=_./CC ~NHG~~" . ..1)·PAFU"(IFCIN t +ll) 
IPO INT= !p .] PH + 2 
GC T 15 J 

C CG:..JPL =) l! J= ~! · SP.l5~ FIL : ~ . 

c 



c 

CO 35 1= 1 ,2 
~(I):AF(ISF) 

ECI'=BFCISF) 
C(I)zCFCISF) 
C( I )=OF( ISF) 

85 ISF:NF~cQ-KSF+l 
GOTO 170 

-167- ORIGIi'~ f,!, P;".l~f ~ 
OF POOR QlH L .Y 

C ABCO MAT~IX OF SERI=S SECTTCN 
C 

c 

150 00 15: 1=1,2 
A(!)=1. 
e(f)=ZCI) 
(I'=O. 

155 C(I'=l. 
GC i~ 17_ 

( ABCD ,1.1~i"R IX 'JF O.l~ALLEL SECTicN 
C 

C 

: c J CO 1. 65 I = ~ , 2 
A(I)=l. 
E(l)=O. 
C(I)=Y(!l 

165 C(II::1. 

C MAT~IX ~ULTIPLIC~TIC~ ••• N=T.CRKS IN CASCADE 

1 7 J CO 1 7 5 I = 1 , 2 
A 2 ( I I:: ~ l( I ) * A ( I ) + ~ 1 ( I ) .C C I ) 
e l. ( I ) = L\ 1 ( I , .. E C I l+ eu I ) ·0 ( r ) 
Al(t)::~2(I) 

C 2 ( r , = C i ( I ). ~ ( I , +0 1 ( I )·C ( t I 
C lC I ) = C l( I)" e ( HQ l( I ) ·0 ( II 

175 ClCII=C2{!) 
1 : J CU. I i 'I Jj = 

~ G= p A~ l"l ( : ) 

i<L=~G 

ZI:;= ( lC 2 )*~L .. 31( ~)) I(CU 2) *RL+A1 (2») 
Z I ~= 1 • I Z I I) .. S J l( 2 ) * PA R A ~ C r PC! NT .. 5 ) 
l IJ:: 1 • / lID .. S J { {, , ... P ! 0 ,HI ( I ~ C I ~ T + 4 ) 
l I J= 1 • / lID" S J 1C 2 ) • PA w A ,.. ( [ Fe IN T +6 ) 
ZL = 1./Z IC+PARA ,"'( IPCtNT + ;) 
ZI;:>= CC'J JG(ZI O ) 
A l..! X = 1 • - PAR A ,~ ( I 0 C I 'Ii .. (, ) ... P ~ ~ A ;.' ( r p 'J I , T .. 2 ) 
Z t=l ./( ~JLC 1l.P:'OA ,\oI(IP Clr-.i +ll"~ LX ) 
Z 12 = P ! ~ .:. ' ,A ( lor; I ,'J T .. 2 ) I ( ~ J 1 ( 2 ) • 0.1 ~ ! ~ ( I" C I I'; T .. 1 ) * ~IJ X ) 
Z 2 =- Z ,., ? l ~ .:. ,\01 ( ~ F -:: ,j .. 2 ) 
ZZ2=-Z 2/ Dl ~~ "( iFCI ,'J .. ~ , 
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c 

c 
c 

lEQ~lll-l12·l21/(ZIP+l221 

l =Q= l::.J +P ~R '\0"1 ( I!' CIT + 3 I 
ZEQ= l./ZEQ+SJ l! 1 )*1=6R~ ,··1( rpCINT~6' 

l~~:l./Z:Q+SJ( ll*Pt.~d"'( 1I=CI/\T+41 
Z=Q=l.ll=Q+SJU 11*PARA}oI(IPCr~T+5) 
ZEQ:l./ZEQ 
lI~: (Al( 1 ).ZE'+8 U l»)I( Cl( U*ZEQ+Cl( 1») 
RHO: (Z IN-RG) I (Z IN+RG) 
~RHO. C~B S (RHO) 
GA l~: AR HO.A~ He 
GAtN:10.·ALOGIC(GAI~) 

20) RETURN 
END 
SU3 ~OUTINE gOFILT(KI 

i~I5 SUQPOUT!N= C~LCLL~T=~ ~9CJ D~~~~=T=:S _F ~ 
CCUDL;O LI~E eA~CPASS FILTEQ AT ALL F~~CUE~CY par~TS. 

cr 'o'~ fOlsrc~ 

'<.E.!.L 
CC"4:JLEX 
Cu :~PL=X 

CC"1 PL ::X 
CC~"'ON 
CC"1I.A GN 
C OMM~~J 

CC"1"1 0N 
CC"'''iml 
CCMDL =X 
cC.'-1 I"i ml 
I R= 5 
Y°I'/=6 
VC=29.S79Z5 
p I 2= 6 • 2 E 3 1 E 5 
CJ=( J .,l.) 

Z="EN( lC) ,ZCC~( lC)"W!DTHCl)) ,G~D(2)i 
K = V!: N ( 1 J ) , K C DO ( 1 C, , L = 1\G T H ( 1 J } , C C p ( ~ I) I 
Z 1, Z 2, Z ; , l4 , Z 1 P , Z2 0 , Z3 p , Z4 P , x, Y , Z 
f;. , e , C , C , A 1 , C 1 ,C J , Z T E ~ F , C ~ P LX 
csrNH,CT~~H,GAM~AG,GA~~AE 

SIGN(:() ,i'Ai(t-~)(50) ,PAR(-IPH50) 
o'\~A"'( lCC), r TYF=( 50) ,LI S1(5JI 
FP U1P,FCENTi( ,FSiA~T,FC=L,G!!NC 
"H' '" I~ A.w , /\ LIS T , N L ~ SEC ,1\i: v ~ L , ~;: R = Q 

CELTA, DELf'l1N ,TCL,D~ATIC,ALPHA 
A~( lCl) ,eF(lCl) ,Cr( l(:U ,l)F(lu.) 
f;.F,aF,c~,('F 

IF ( I< .'::. J) Q T o~ ~: 

RcIlC(P.,:ll RN ,~rGC,~IGG 

~,~ ~ 1+0.1 
FACTOF = O .CCl*pr2·(~O~ T(1./SIGC)+SC~T(1./SIGG)) 
\ltPli=(1 , .. ,61) 

61 FOR~6T(///,20X,2C~FILTE~ C "FIG URET ! C~ ,II, 

+ 4 : ~ s ~ C T Z E '-IE N Z cn 0 KE vE N l( 00 C) , 

+ 3w~ ~1 T~ L~ °GTH GlP ,I,l O X,3 HC ~~, 

+ 6Xt3HCt- "',~e:X,2~CIol.7 X,2 CM,l~ X , 2H"'''''!/) 

L _' .. ) 1= :, "l 
c;:':'':(P.,511 ZE v : r-. ( r),z~c (I1,I<Ev=~(!), i<: _ (I), 

+ 'iii ! :; -:- \.. ( ! ) , L ~ G i (I) ,G A 0 ( I 1 , C :? ( ) 
5 . F: ~"ll-(3C:_).O I 
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w R I i = ( t", 6 2) I, l = 'v E ~ ! ( I ) ,Z CD C ( I ) , K EVE N (t I ,K ODD ( ! I , 
+ l,.dOTH( tl,LEr\GTH({) ,G.lP(!) 

62 FCP.~ AT(IS,2F9.3,2F~.4,F1C.4,F10.3,F10.4) 
10 COP(I)~C.C01*COP({) 
15 F~EQsF5TART 

CO 30 I=l,NF~EC 
AF(I):l. 
eF(II=O. 
CF( r )=0. 
CFtt)=l. 
:J~EGA=PI2"FRcC 
RS=FACTO~*SQRT(FRE'I 
DO 20 J~ 1 ,~I 
AL P H A c= 'J. 5-1\ S " '" Ie H· ( J ) ·Z E 'IE N ( J) ) * LE NG T~ ( J ) 
!LPH~C=lLP HAE*Z=vEN(J)/ZC08(JI 
~ tJ X=SC ~ i( K =VEN(J I) 
2cTlS=J ~ =GAaAL)*L=~Gl~(J)/VC 
eE' ~ O =3~TAE.SQ~ T (KCC O (J) )/:'LX 
G~~~~==C~PLX(tLPMAc,eETAE) 
GtMM~C=CM PLX(ALP~AC.BE T AC) 
Zl?= ZEV~~J(J) ICHNH Gt.~"'AE) 
Z2P= ZODD(J)/CT~ N ~(GA~~AC) 
Z 3~ = Z = V =N (J ) 1 C : I N H G A ~ II A E ) 
Z~= Z ~ DC(J )/C~I~H(GA~~~O) 
Zl=O.S-(ZlP+ZZP) 
Z2=0. 5"( Z lP-Z ,P) 
Z3= o. S- ( Z 3P-Z 4? ) 
Z 4= V • 5- ( Z 3 P + Z 4 P ) 
IT:~P=ll+l.I(CJ·C ~ EGA.C Q P(J) I 
Z=Z3·Z3/ZT=~o-ZT~~P 
X= l2-Z 3*Z 4/Z TE.\I P 
Y=Z 4-Z2-Z;/ZTE~P 
l P = Zl + ( Z 2- x + Z 4 w '1 ) I Z 
Z2\)= l3+(Z 2*'f+Z 4"X III 
~= Z ~o 1 l z'o 
c= l 
e=( Z 1P-Z 1P -l 2F- Z , P) Il2 P 
(= 1 .ll2° 
A 1 ~ A F ( t ) :II A +8 F ( ! ) * C 
e Ft I 1=.1:::( I )* S +gF ( 1)*0 
AF ( r ) = ,l. 
Cl= CF( )~A+ D F( I ).C 

C F ( I ) = C ~ ( I ) • '3 +0 F ( I ) • C 
CF ( I I= C l 

2 0 (C, T t l U E 
F:; ='J = F~ =0 + F:) :: L 

:3 oJ C- \ - . ~ . J ~ 
~ ~ - 'J c , 
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=~I D 
CC~PlEX FUNCTICN C51 'HZ) 

C 
C t-YP!:RB'JLIC SIf'olE ;:U'ICTICN ~[TH COMFLEX A~GUMC:Nr. 
C 

C 

COMPLEX Z,CE)P , 
CSINHa(CcXP(Z )-CE)P(:-ZJ) 12. 
RETURN 
END 
COM P LEX F liN C T I ~ N C C C S ro ( l » 

C t-YPER2'JLrC COSINE FL~CTICN ~ITH CC~PLEX ARGUME NT, 
C 

c 

c 

C 
C 

CC~OL~X Z, CE)P 
ceo S t-= ( '= E XP ( l ) +C C X!= ( - Z 1 ) 12. 
R =TURN 
ENO 
CC,'"' PLE X FI..:'JCTI C~'I C T A ~ Hl) 

CC~PlEX Z,C~PLX 

X= ~ = AL ( l ) 
'1= A U'" ~ G ( Z I 
I F ( ( Y • G T. 4. 7 1 23) • ,:. f\ D. ('T • L T, 4. 712 4 )) Y ~1. , 712 3 
t F ( ('1 , G T . 1,: 7 C 7) • A ~ U • (Y ,L T, 1 .57 09» Y = 1. 5 707 
C T i \j H= C M P L X ( T A, I-' ( , ) t T,l ('T) Ie ,iii PL X { 1. t T A 'lH ( X ) * T A H Y I ) 
R : i'.JR rJ 
END 
S U~~CU T rN = O I R = C l( P A ~ P, F \IIF) 

C CP7! YIl ATIJN SL aQO LT!N E -- OIP=CT s=~;C ~ 

C 
C 

Tt-IS SJ'3f'QUTH' = P =::C ,= : "' 5 c r~ CL T CPTI " Ilt.TIJ I 

C c Y 'J S " ~ ~ C I R :: C T ~ E 1 ; C I-: ~ E TH CD . I ~ H = S :: A ; C H 
C F ~ ~ T t-~ QRtG I ~l L e!SE P :I ~ T ~=ACHES A~ 

C U~SATrSF A CTOR'T ~ ~~ LL T, TH I ~ SL 2~CLTIN ~ ~rLL 
C G~~=~ATE A NE ~ 3A~EPCINT PANDC ~LY ~NO R=STAqT 
C T ~ E SEARCI-' ~D L TINE . THIS ~ I LL 3= REPEATED 
C ~ P~NJU TIM~S , 

C 
C 

C I 'A ~ S I"J I 

C:: .... 1_ 

C:'" '-l _ ~ , 
~ : ", . ~ .... ~I 

P 1F P { : ~ l t D l ~ (3 C ) , P A Q 8 ( 5 J) 

SI G J ( :_1 ,PA~\I:'X(501 ,PAR~ 1\(5 ) 
P!' :{ ~"' ( :C~I.ITY ~ E(5 .J I,L!S ( ., I 
:D tJ 'AP,t:C=:"'T;;' ,r~TjQ , FOEL , ~l 1-

ORIGlNAL PAGE 1 
OF P R QUALITY 



c 

CC I'~,\AO~J 

C'J~""JN 
CCMPLEX 
COt-4~ON 
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NPlRA~, LIST,NLMSEC,~EVAL,NFqEQ 
C=L TA,u:L~r~,TCL,DRATIC,ALP~A 
A F ( tel I ,B F ( let) ,C;: ( t C u ,OF (t 0 t » 

AF,AF,CF,OF 

C INITIATION 
C 

~RANOU24 

'wPtTE( h, leI 
U FO Q ~ A T ( 1 H 1 , / I / I , 

+ 37~ OPTt~IZATIC~ F~C~ CRIGINAL 8AS2PQINT,/I) 

C 

I X= 77777 
CALL ~~i~CCI1( D,I'1,~ C) 
I X= ! Y 
K~lNOU=C 
C~l !'IT=I")EL 7l 

N ='/ ~L = 0 
CC 2 0 I = 1 ,01 L I ~ i 

2:J P ~;< a ( I I ~ ., AR ° ( I ) 
CALL EVAL(F~B,P~R~) 

~EV~L=NEVAL+l 

N IT= 1 
.:..J CO 50 I·l,NLI~T 

S I G. J ( • ) = 1 • 
50 P£.~ ~J ( i. )=PAP,P( I) 

C ~L EV! L(F~N,P~RN) 
J::v ~_ =N=VAL +1 
IF(F"1N-Tr:JLI scC,~CC,EC 

90 F:'1?-= F,IA ~ I 

C!LL EXPLC~(FM~,P~~N) 
IF(=o'-1P-F"1N) 4:C,"~C.l:C 

1 : ) I ~ (=,101 - iC L) ~ : C , E : C , 1 t C 
It) FAC ~~ =1.2 
• 7 F~ ';)= c,'''' N 

c 

c 

CC 3 a 0 1= 1 ,R 1ST 
i C;u p:: p ~ ~ p ( t , 
P~ . ;> ( r ) -= P AR N ( f ) 
eEL P ~ ~ - P ~ R ~ ( I ) - T C;'" P 
P l - . ! ( I ) = P ~;;' ( I 1 + _ E L P ! c. ;: A C _ Q 

c C~:::K ::)~ =>lP!· ... = E= I~ CC ~ q!I , is 

: ( :>.1;: 'I ( I ) _0 "C 'A .l ) ( ! )) i. : C f 2 C _ f 3 ~ 
3. 0,1- ' ( • )=oli'. -1 !;Q ) 
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2~J IF(PAF j( I I-PAR!'1It-.( I I) ~5C,::CC,3uO 
25 ') P.J.KJ(I'=PI1R!'oIIt\(I) 
3 C J C ... 01 r p~ u: 

CALL cVAL(F~N,P~RN) 

N EV lL~ '~=VAL +1 
IF(F~N-TQL) e~C,E~C,;C~ 

305 IF(FMN-F~P) 31C,1~C,~2C 
; 1) F ~ C TOR a ~ A C TO R t C • ~ 

IF(FACTJR .GT. ;.) FACTOR a 3. 
GOTIJ 1 7C 

C I~ rH~ PATTcR~ "'O'-lE I:~IL~, =,.CK UF -N: ST=~ 
C Af' '1::':< = ":' ,\JC T~~:' E ~p L CPA TCQ. 'f ,\lCV: 
C 

32.1 ;: .\oI'I=:=~ p 
CO ':"JO I= 1, "~L I ST 

40) p~~ 'J(r)=PA~?(II 

C":'LL =XPLCR(C;!-I~,F~~ · ' ) 

I F ( C:'~ , - T 0 L) 8: C , E : C , I.. 2 C 
2) IFI~'~P-C:I-1N) 4:C,I.~C,ltC 

C 
eRE au C: S T E PSI l : 
C 
45) C:L rA= O:L TA*DRl. T C 

C IS ST:~ SIlE ~~ALL ~ ~ CLGH7 
C 

c 

C 

IF( : ~Lr~- OELMI.II HC,tCC,:CC 
5J) C ' : - ! N,JE 

. =. T + 1 
CCi S ~ 

~ ~ ) c ~ tJ4 i=l, ~ L 5 
L=L 1STi ) 

o 4 P ! J ,1"1( )= P A~O( I ) 
C!l L DIS PL'fC-loIo,'d 
C~ OUT P T 

C S=~~CH c: q,O "1 pc= vtC L ~ SE T CF 9 AS=P CI ITS '-I!.S FAIL=D , 
G = ' :: - ! T = A 'I:: \Il 5 E T r: ~ B l ~ E ~ C I /II T S :( l NO'" L Y A D 

C ~: - !R iH= S : .J,~C r Q~Lr E 

! c: ( = '.\ ~ - : 'A Pic C ~ , t C C; t t &: 

6; C: 'J ~=: ~ 

: : :')6 .=: , ' L 5 
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6'6 o~~:)(.)=P.1RO(t) 

ORIGINt.l ?:.c-= . ~ 
Of POOR ') 'A,_ -Y. 

6_q I( ,~~ ~ SU =K RANOU"l 
IF(~q~~~U-~PlNCU) tlC,E e ,sec 

61J ""~ I :;( '",,930' .(~ANOL 
9 ~ J FQ - "i A ( ~ 1 , 

.. /11/,3~r GE~=qlTE ! 1'\=" SET CF 6~3cPt:I'J·S'/, 

.. 1 € H • * • t. T T E \01 P T NO . t I 2 ,4H .* .. , I I ) 
CO 6 ~ J 1=1, ILIST 
CALL qANDGM( D,I~,PNC) 
IX= n 
P,lpo (I )=0.::-( A~"'A)( I )+PAq ,-'IN( I" +PA PF( [J .( q lO-~.51 
I=P:'R~(I) -i'AR"!:D(I») 62C,615,615 

t15 P:'=D(!I=':>lR~t.){II 

GC - t 
62J r?(?~RP(r)-D A=I'''_~{ ») tZ~,c25,650 
c2S P~~.?(t) = Pl,~""_ . (I) 
6 5 'J e '.j 7" IN Ij :: 

eEL 7.1= .... = t' 
J 660 != • L!~ '

L=L ' S {'} 
06 J :) X~ l :" (L ):: P A:; 0 ( I ) 

... R! = ( I '"" <;4 ~ ) 
94J FC~~! (/1,17H ~E~ 2A~~PGI\T,/I, 

.. 23J-1 5=CT l'tP= . FA~A"'~T=RS,//) 
C~LL 0 S? 
~CT-:: 4 ·J 

'= 5 ) C: a 6 u I :: 1, lIS T 
06 ': p;:.~? ( _ )=P.1R.'j ( I) 

F',P '= != .... ~ 
cc (; 7 G = ,'~L I S j 
L=LI5 T ( 

~ 7 ) P ..l - _ .... (L ) = P :1::( P ( T I 
GCT .... C;9~ 

c:; C .) rr ,-' T :: 1, :>1 L S T 
p ~::> ( • ) :: P .1~ : ( 

L= 

' ... ?--=( .. ,<;2;' 
<;2) F:~ ~! (_ ', II , Ir ••• 3=~1 BE ···, /1) 

F .... P= C:M~ 
9<;) (J II.: 

CA 5P y(=uJ,\. 
?L7 
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C T IS S U8~ 'JUTI /~ "'AKC:~ E)(PLC~ATr:::RY ~CVES 
C T JECD'= 'rH= u IR~eT! O" -C~ ~Ar-=o~ MCV::S. 

C 
C 

o I."! =f-l$ IO~ 
CO 104 '-4 ON 
C '/o1\1QN 
CC"l\1 0N 
CO· .. MON 
eG, ... ~aN 
COMPL eX 
CC"\"1 l,)"/ 

P .liH.l ~ C) 
~ 1u~( :c J ,PA~"'~X( 5C) ,PA~'4IN(5 J ) 

P ~R A~ ( ~ c C ) , I TV P: ( 50) ,LI S T( 5 0 ) 
FP UMP,FCENTR,:=~TART,FD=L,GA! 10 
NPAR!~,~LI5T,NL~~EC,N=VAL,~FR=Q 
CELTA,CEL'''H;,TCl D"ATIO,AL?H4 
Ai=( le!) ,8F( leu ,eFt lell ,CF(lOl) 
AF,9F,C~,Of= 

CCl ~)~ I =_, 'IL I~i 
T=· ... o=? VN ( ) 

? ! ~ ' I ( ! ) = T :: ... p * ( 1 . + ~ • G ~ ( i ) • C = T.l ) 
IF(?lF'H I)-:l~~lo4l:X( I) )l:,lC,_C 
p !;: '. ( . ) = p ~~ ~ .l. X ( t ) 
G:: ;-, 25 
IC(?l;~(I)-:llR"'!~( I» ZO,ZG,25 
o!.~ (I )=ol~"'tN(!) 
e~L =V L( =Io4 I ,Pl~ ~ ) 

N =V ~L = 'I = '/ l + .. 
t~(- ... -- · .. P) 3 ,4(,4C 
r;.".~ = ~104 " 

S I'::;~ : I. )=-5 TGN ( 
P~P"\I)=T ="1 P ·( .+~I· (I)-CELTA) 
I F ( -' ! r ~ ( t )-;) l R " l :x ( I » t C , : - • 5 -
013.=' (I )="~';"IlX( ') 

-c-c 7 
= ( ;:; ~ ~ I ( I ) _i> l:<!'1 ! ,,( ) f; 5, C , 7 C 

;:l .:.~ ' ,( ) = ° ! ~ ~ ., ( : ) 

EV!L(="" ~ ,::>!G ) 
'4 :; ' .l L = \1 = V ~ L + • 
:F (='1t.J-C:"'~) s e,s ,SC 
FI,IO= =~'J 

.... 
I ~ :.! .::'" ( :..,. , : 'r ,:) : ) 
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OF POOR Qur UTY 

CC '4 " l ': ~1 S IG ,.( ~:l ,PAR~ A )(5 0 1 ,PAK~I N (,O) 
CC'-1 "1 0 PA _~ .!~(lCC).rlYPE(50' ,LISH, -) 
C C:'~ ~A IJ _ I FOL"'P,;:CEN T~ ,.=START,FOEL,GA I W 
CO·~ ,"' G . N P~ R A~,~UST,~I..~SE'= , N=VAL,~F~EQ 
ca~~CN CELTA, n EL~IN,TCL,ORATIC,4LPHA 
CC~PLEX AF( lell ,I3F( lel) ,CF( 10l) ,DF(lOll 
CC~MON AF,9F,(F,DF 
IY: IX.eS=~9 
IF(IY) 10,20"C 

10 IY=IY+2147483t47+1 
20 Q.NO= I Y 

P N 0 = Q ~J 0 * • 4 C = eel 3 E- ~ 
~ = TU q, :"j E 1 __ 

S U ~ !; 0 -i r \J = = 1I .a1 L ( c:" ,;:> ~ R ) 

CI'1 2 P!~ \ : ( l 

c::: '" ',1 ~ G N ( ~.: ) ,P ~ R ~ A X ( 50 ) , J: A - MIN ( 5'J ) 
CG.'-t ... ~ . P! ~ .l ~ ( 1 C C) ,r 1 Y P E ( 50) ,LI S TC 5 0 ) 
CC~ MJN F? L ,YP , FC i: NTP ,F STA RT , FOEL ,G~! 10 
c _~"'m: N P ~ StAr"' ''Lt ST, - L: ~S=C, EVAl, NF Rt; O 
C_.-1 "1_'~ CEl 1A ' v EL~I ,TCL,O ~ATrC,~l oH A 
CC\IPL =X AF ( l e l) , 3F{ l e l) ,(F{ l e l) , DF(l Oll 
((~~ -~ AF, 8 F, CF,1 F 
CI.; 5 I = 1 , ~J LI S T 
L=_ sr I ' ) 

5 ~ ! ~"'(L )= P ~ R { I ) 

;= "'= • 
F=\ = ... = F 5 T .1 ~T 

=_ :J i = l ,' I F ~E~ 
I ' = . 
c ~ L ~ :: 50 .J :"I( t; .! ' , F :; = C , r r ) 
T:: .. ~ = .. ~ . - .1.\ : _ -
;.104 = = ~ .. - =-.t.4 ? • :: 1.4 p 

1) = ~ = ') = ::~ E .. ~: I) E L 

F'1 = 0 ;:: ( c"1/~ ::~=Q) 

~ =7 Jf'. ' 1 

C : 
sua=,I- u - - AP "' ( ~ , C .x ,y, ~) 

: U : \5 . ~' 'If '. - - --, . :: -' :: " i :: V ? , =~Fl , v~~l/~ II ,S A ~ / _ ~ . I 
". - - - .... 
t ~ : ..; = . ': :: I C; _ ) I ... . ~ : C; * n , • / 

S . G' ( ~ ; ) , P A ~" x ( 5':) , ~ .l :( ~ ' : I :; ) -- ~".' a. _ _ _ t 
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CO"1I-101 P .l~A~ (lCC).,ITYP=(5u) ,LIST(5 0 ) 
CC.,.4!J FPU"'P ,FC:: n q ,F ST~ ~T ,FIJ=L ,GAI NG 
CCM~1N NP~q.l~,NLrST,NL~S~C,~EVAL,~F~EO 

COM~~N C~LT~, CEL ~ IN ,TCL, C~AT IC,4LPH A 

cc· ... P L ~ x A F ( 1 C 1 ) ,B F ( 1 ell, C F ( 1 C 1) ,C F ( 1 J 1 ) 
CC'~ I-1C~1 A F, e F ,C F ,OF 
I'-'~ 6 
\lj: IT2( I;.,~c6) 

666 FOR ,~.1 T( U-l) 
YM~X=Y(U 

'YM IN= YM AX 
CO 1') 1=2,!P 
IF (Y(!).GT.YMA)() 'tMA)=V(I) 

LJ IF (y(t).Li.Y~T~) VM N=Y(1) 
C I ::F= y ; .. ~ X-Y'" I tv 
I F r 'J t c: : .N E • ',J) ~ C T 2 ~ C 
.,.F( rT:( I .... , 300) 'yI4A'1 

3-,)0 C:C~~o1T(lX,'FO!( llL V.lLL:S OF X, Y EC;U~LS ',1;>:12.5) 
c;C J 3'" 

2) ... :;r ~(I~,lJ) 
1 J 0 FC eM! r (1 f- / / / Z :; :x , c: 1 ( '. • ) ) 

IF(Y"'~X.LT.C.CR.'r~.q I.GT.C ) GCTO 50 
IZ=90.J·(-Y~IN)/CIFF.l.5 

T =~ p Z = L I.J : ( I Z ) 
-L I, =( IZ )=VERi 

50 CO 60 t=l,~P 
1'1=90.:;-('1'( I)-Y"'T'l)/JIFF+l.: 
T~~P=L I'~~ (IV) 
LI:\iE( tY)=$TAR 
xx=x+( t-1)cJX 
... f:IT=( I,-"ZOiJ ) ;O,V(! ),LI"'= 

2 G _, FC P 'A to T' (1 X, 2 G 12 • : , 4)1 , S l.l 1 ) 
cJ l!' ! =( I Y)= =~o 

... ~I :( [ ',0/,4) 0 ) 

4"" ) .=c c;, '-4 l T (2 S X , C; 1 ( , • ' ) ) 
. F (Y"'lX . ,= .• ;1 '~ :.'y\l. j'lj . ::.C) l' , c([l) =T :\lP 

3,) ~=T IJ = N 

C T. IS S 9R Ui ~= PRI . 15 JlT F~ECUE~CY q:S?C S=. 
C 

SII"N( ~C) fPlP~AX(SC) ,r::ll",Io4I'J(S O ) 
p l ~ ! 101 ( : ) ,! Y ~:: ( 50 I ,l 1ST ( 5 u ) 
FOU"o,I=CE , R,FS ~RT,F~EL,GA ,~ 

i>.l:U ."', LI _ T" L'~S=C, ::V~ l, ~~~= O 
C: lA. _ =L~r ,:"r-L,:)=-A ! ' ,~ Lo~ _ 

A~( 1:') ,3F( ~C_l, =( ~.) , ~~( 



-177-
" ~. r ~( OR\Gh,.. r~ .• ' 

OF POOR QU:~L 

CC:~'·lJN A'F,BF,CF,wF 
I .,.~ 6 
W~ rr~( I~. 6JO) 

60J FG~~4T(////,1~,lErFR=Q~ENCY ~ESPCNS=,i/, 
• 19~ FREQUEN_~ GAIN,/, 
.. lC;t-I (GHl) u::e,,/n 

FR =Q: F 5 TAR T 
CO loe I=l,NFREQ 
I I: I 
CALL R ESPON (GA IN, FREO, II) 
~iHT=( 114. (10) F~=C,G4IN 

61J FG~~Ai{2F1J.3) 

ZJ F~=:J=F~cQ+~::i=L 

R =TU;<'~ I 
E:·J; 

C TH S SJ5~GUir~= Cr~?L~)S C?TI~rlEQ ?A~A~ET=~S. 
( 

C !"\ 2:-.1 5' IJN 
CC'4~ 'JN 
ca~t-1CN 

CQ"4I"'CN 
CO'· l.llJ~ 

CJ"40.4CN 
CO'-l PL =x 
1 .... = 6 

eUFF:R( IC) 
~IGN(:C),OAR"'4X(5') ,PAR~IN(5J) 

P~AM(lCC),ITYP={:~» ,LIST(S'J) 
FPL~P ,FC!:NT!< ,F START ,FQEl ,GlI NO 
N P ~ ~ A,., , ~ LIS T ,~. ~ ~ 5 =C ,~E V A L, \ F ~ E 0 
eEL TA,CEl~I~,TCl,D~~T1C,AL?HA 
AF( LCll,2F( 1(11 ,CF( lell ,CF(1011 

'tf ~ 7':: ( I.,., e 'J J ) 
F' <:< \,4 AT ( / / / , 23 r-

IT, =\~L,F ."P 

~C. CF !T=qATI'"'/\ = ,[;,/, 
Fl C TICI\S EvALl~TEC = ,IS';, 

=;:;K_~ = ,E.3.6) 
.. 23~ 

.. 23 f-
'tf~' T =( r ... , c ·~) 

6 • J Fe; '.4 ~ ( / / / I , 2 1 t-' C P 1 I Y l '= Q P:l ~ .! 1":: T = q S • / / , 
.. 2:~ S~ C T 1'Y P:: ~ l ~ l .... = :: '" s , / / ) 

C ="1 F. '( P ~ ~I T 
C 
c 

:; I'IT Q, '( ) I SP 
JLIST=l 
I ='" P= J 
C It J C = 1 , ~j f.A 5 c C 
= (J L S T - t..l L S T I ; C .: ~,4 L .:: 

3 J : J=. vt=:(!) 
-:c - -: (::: - ,; , :: • C, ;: , ; _ , ; 2'" , 3 - J , 33 ,3- "' , ~ J ) , J 

; ':3 



;2~ 

;;:) 

340 
350 

C 
355 
36·J 

c 
c 
C 

,. ... 

37J 

38 ,) 

3<;0 

(;4) 

4C:J 
41J 

GC'TJ ;50 
~ =2 

GOT;:) 3,0 
~12 5 
GCTa 35C 
N21 
N""AX= ITE~P+N 
J FLAGaO 

-178-

wAS THIS ELE~ENT VARIABL~ 
IF(LtsTeJLIST)-N""A) 360,36C,370 
JLIST2JLIST~1 

JFtAG=l 
IF(Jl 15T-~LrST) ;~~,;:=,37C 

IT="'P=f\ .... !X 
IF(JFL~G) 'tJO,4CC,~EC 
I T=.\04 p= I TE",P-'l 
C~ 39 ': K= 1,N 
IT=~P=IT="'P"'l 
euF~=~(K )=PAPA""( ITE"'F) 
W Fe IT:: ( I W , e':'O) I, J , ( B l,. ~ F:: ~ (Ll ,L = 1 , ~) 
F C ~ ;" ,H ( I 4, I 4, : F 1: C • 4 ) 
CC\jT!IU= 
K=TUQ\j 
~ J 0 
SU9FeJLTINE SE ' SIT 

.... . . 

C T~ I~ S U B~ O UTI N ~ PE~FC~~S 5E~SITIVITY ~~ALYSIS. 

c. 
C: .... "I~~1 
:.::; 'A" _ I 

C:J ' ,4 OJ:'~ 

CO .... "IJN 
C .... !ot.\04 '] 
CG .... P~ ::X 
CC .... "IJN 
[ '''= 6 

toll< I ::( r",6 ~) 

S I ' 0 ( : ), P l ~ "'..4 X ( 5 C) , c ~ R. ftA I ' I ( 50) ) 
P:'~.1"'( CC),t T'l'D~(5 0 ) ,LIS (5 ) 
F° l,.t-'o ,FCE f\TR , F S TA;(T, Fi:El ,GlI \j ] 

\j D l- l ~,~ L IST , L~SEC, NEVAL"~~E Q 

C~L TA ,: ~L"' I N, CL,DRlTr:,~L~ l 
= ( 1 1 , SF ( 1 C ) ,C F ( 1 C 1) ,CF (1 1) 

A ~ ,e :=, r.F , F 

6 ) J ;::; ~ .... l T ( 1 ~ 1 , / / / , 2 ~ ( 1 ~ • ) ,/ , 
i- 21: - ~= ~ T!\ TY ! ALYSI S ••• , / ,23(l H*» 

t ~ ) ": - ~ ... l . ( / / " , ~ :; t- ••• c f. :: ..1 .... E ... : ~ '"" ,Z , 
+- :Zr Il'- ~ = ,F=<; ... ,l..1-l .... ,.., // , 
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~ 3e~ FREQL~NCY GAIN GAIN-~ G~IN-M, 
+ 24M 5:N5IT~P S2NSIT-~,/, 
+ 3X,5HCGHZ),eX,4MCOBj ,4X,41-4(0'3) ,6X,4H(!JB), 
+ 5X,lCHCP:R CENT),2X,lOHCPER CE~T>'//) 

FR:Q = F STAR T 
CO 40 0 J: 1 , N ;: R E C 
JJ=J 
TE~P:PlRAM( I) 
C~LL RESPON(OeJ,FREQ,JJ) 
PAR.AM C I )= 1.02.TE~P 

CALL RESPON(OBJP,FREC,JJ) 
PARAI'1( I )=C.9a*T~~F 
CALL ~~SPON(OBJ~,F~~Q.JJ) 
SENT YP=5 0 . a (OeJ- CS JP)/C9J 
SE~TY~=50.~(~eJ-CeJ~)/c~J 
~~IT5{[-,6Z0) ~REC, Ce~ ,~3JP,CBJM,SE Typ,SE~?Y~ 

62) FOR~~T(~1:.3,Fe.;,ZF1C.3,2F12.2) 
p AR ~ .'1 ( I ) = T ~ ~ 0 

F~ =0= R =0 +FJ~L 
40) CO'HIN 'Jc 
50J C~NTr NUc: 

RE"U~N 
E~IO 
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APPENDIX B APPROXIMA'IE EVALUATION OF DIODE TEST MOUNT 

EQUIVALENT CIRCUIT E1»!EN'I'S 

Numerical values for the diode test mount equivalent circuit elements 

in Fig. 2.11(b) w1l.l be evaluated here. Th'J physical dimensions in 

Fig. 2.11(a.) are u follows: 

B.l Evalua ~ion of C
f 

d = 2.03 IDIIl 

h= 0.71 IDIIl 

01 = 3.04 !DIll 

o = 7.00 IDIIl o 

The f =inging capaci~ce. C
f

• 1s given by Getsinger [103J as 

C = 1f ED [ efe (_5_ -.:L)] 
foE b' b 

For the structure in Fig. 2 .li( a) • 

s _ 2h 
b - D - d 

o 

Substitu-t:!.on of numerical vaJ.ues into Eqs. B.2 and B.3 yields 

s b = 0 .287 

-1.51-

(B.l) 

(3.2) 

(B.3) 
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