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Summary

In this report, the relationship of integrated circuit cost to
electronic system cost is developed using models for integrated circuit
cost which are based on design/fabrication approach. Emphasis is on
understanding the relationship between cost and volume for custom
circuits sutiable for NASA applications. In this regard, reliability
is a major consideration in the models developed. Results are given
for several typical IC designs using off-the-shelf, full-custom, and

semi-custom IC's with single and double-level metallization.

viii



I. INTRODUCTION

The purpose of this report is to examine the relationship of inte-
grated circuit cost to electronic system cost, to develop models to
predict integrated circuit cost and thus resulting electronic system cost
and to examine the various paramecers which affect integr.ted circuit
cost. The emphasis of this report is on the development of an understanding
of the cost of VLSI (very large scale integrated circuits) and in partic-
ulur the effects of low volume and large die area on cost.

A simple macroscopic cost model of an electronic system is developed
in which it is assumed that the system under consideration is to be par-
titioned into subsystems consisting of integrated circuit chips. The
aim is to examine the resulting system cost due to variation in the naram-
eters which affect LSI die cost. Since emphasis is to be placed on the
factors which affect die cost, the systems calculations and modeling are
kept to a minimum.

A macroscopic cost model for an inteorated circuit is developed which
is intended to be sufficiently general to include all aspects of IC manu-
facture such as choice of deice type, choice of process technology, choice
of packaging and effects of both quantity manufactured and die area. The
report includes discussions of present r~ocess and fabrication alternatives
and their potential impact on chip cost.

Although cost models developed are general in nature, the purpose is

to examine the costs of low volume, custom integrated circuits suitable



for NASA applications. In this regard reliability will be a major consid-
eration in the choice of design/process alternatives and as much as pos-
sible the impact of reliability will be included in the modeling.

It is not the purpose of this phase of the effort to treat the sub-
ject of integrated electronics cost in detail but to establish the ini-
tial framework from which further, more detailed, work can proceed. Also,
it is not the purpose of the report to treat the cost of an electronic
system in detai! but to establish the trends and guidelines necessary for
further work. Thus, detailed analysis of system costs are not included
herein.

The trend in the design of electronic systems is clearly toward com-
bining more and more electronic functions into smaller and smaller volumes.
The gains in reliability, weight reduction, speed, etc. are well known.
The rate at which large electronic systems have been "inter.ated" and
the total number of components reduced has been equally off=<" vy increases
in system complexity. The continued development of sophisticated elec-
tronics systems recuires the continued use of int-gration of more and
more electronic functions on single integrated circuit chips. We have
moved rapidly in a period of twenty years from discrete solid state de-
vices to Very Large Scale Integrated rircuits (VLSI) containing as many
as 75,000 transistors today as shown in Figure 1 [1].

Most applications of integrated electronics during the ceriod 1960-
1970 were evolutionary in nature, leading to essentially the same type of
equipment but with improved performance, and/or lower cost and smalier
physical size. An example was the introduction of minicomputers in the

late 1960's, which had essentially the same computing power as some of the
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larger computers of earlier years. Similar changes were taking place in
the factory; for example, in control equipment for machine tools, with
each succeeding generation having performance advantages relative to its
predecessor. The first such equipment appeared in 1955, using electron
tubes and electromechanical components; five years later discrete tran-
sistors were employed; and the third generation of equipment, introduced
in 1967, used integrated circuits of relatively small complexity, termed
SSI (Small-Scale Integration).

However, as the degree of integration continued to increase into what
came to be known as LSI (Large-Scale Integration), some evolutionary
developments began to occur. It became possible to fabricate complete
system functions in one or a series of LSI chips, making possible a
product that simply was not feasible if constructed by other approaches.

Perhaps the most widely known example of LSI leading to an entire
new class of product is the personal, hand-held calculator. The develop-
ment of this product, which has continued beyond the 1960's and into the
present, has been another, somewhat different, example of the evolution
brought about by LSI is in the area of memories for digital computers.

In this case, perfectly satisfactory memory components (magnetic cores)
have been used in digital computers since about 1953, whereas the first
memory components fabricated in a semiconductor chip were more expensive
than cores. However, following the patterns indicated in Fig. 1, the
complexity of memory chips increased steadily from the 256 bits available
in 1970 to the 64K bits available in 1979.

The cost of semiconductor memory has at the same time decreased below
that of magnetic memory components by the use of high technology and high

volume production as shown in Fig. 2.
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Although the examples cited above were very successful, practical
applications of LSI technology, they happened to have a certain unique
property in that they were needed in large volumes. Earliest SSI digital
integrated circuits and their somewhat more complex successors, termed
MSI (Medium-Scale Integration) circuits were basic building blocks that
could be used in a wide variety of applications. However, as the degree
of potential integration increased into LSI and VLSI, the resulting, com-
plex circuits tended to be very specialized, each with only one or a few
possible applications. If the specialized application happens to involve
a large volume of usage, as is the case with the personal calculator and
with the semiconductor memory chip, then fixed costs such as those of
design and of developing test programs can be amortized over a large
number of chips, and the chip can be produced in large volume, which
is a requisite for lowest cost. On the other hand, in applications
that do not require a large volume of usage, costs are substantially
larger.

Electronic systems for NASA will use a mix of high volume and Tow
volume integrated circuits. The choice of the optimum mix for each partic-
ular system is a complex problem with parameters which change rapidly. It
is therefore imperative to have a practical model of system cost to assist
in defining and designing minimum cost systems. The cost of high volume
off-the-shelf parts is available from manufacturers price 1ists. The cost
of integrating these standard parts into the system is not included in
depth in this work. The designer should plan various levels of usage of
off-the-shelf parts and determine their purchase costs. Then the com-

plementary levels of remaining electronics should be defined as "systems"

6



to the following cost model. Within each level plan, parameters which are
a function of partitioning and technology can be exercised.

At this point we have several system approaches defined (level plans
plus their implementation sub-plans) with the parts ccsts for each approach
determined including chip design and test costs. The designer must now
estimate the cost of the electronic design (including microprogramming
if applicable) and overall testing for each approach. Finally, the cost
of packaging the above parts must be determined through the use of a
packaging cost model being developed by Hughes Aircraft Company under
NAS8-32607. Simple addition will provide the cost of each approach from

which design decisions can be made.
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II. MACROSCOPIC MODEL OF ELECTRONIC SYSTEM COST

A. Basic Assumptions

In this analysis we assume that we have an electronic system which
is partitioned in some way into LSI chips. The system is assumed to be
composed of sub assemblies which contain the LSI in some degree (SSI, MSI,
LSI, etc.). The cost of the entire system is then related to sub assembly
cost. The number of sub assemblies is a variable depending on the level

of integration.

B. System Cost Factors

Additional understanding of the impact of VLSI on electronic sys-
tems is realized through definition of the various cost factors at the
system level. These cost factors are simply the sum total of the various
costs that accrue during the creating and manufacturing of an electronic
system. These factors are:

1. Component cost. This cost includes electronic elements such

as resistors, diodes, TTL, LSI Chips, etc. Mechanical components
are also part of these expenditures.

2. Tooling cost. This item encompasses engineering labor costs

and materials expenses such as printed circuit board layout and
procurement. Basically it is a one-time engineering charge.

3. Assembly cost. This expense is incurred in the physical struc-

turing of the system.

4, System testing. Included in this item are debugging of system

operation and establishment of system reliability.

oo



5. System repair and maintenance.
6. Inventory. This expense arises from the requirement for stock-
ing component spare parts for the system.
Each of the above six factors must be considered for any electrical
system that is to be produced. The relative importance of each of the sys-
tem cost factors depends, of course, upon the particular system to be

manufactured and the total number of systems to be built.

C. Mathematical Model

In this section a mathematical model is presented for the cost of an
electronic system composed of assemblies of IC's grouped on subsystems or
modules such as pc boards with connectors. We make the following defin-
itions:

N = total number of gates per system
(NG)i= total number of gates per ith IC where 1<i<NI
NES = total number of electronic systems for the total program
NESS = total number of electronic subsystems or modules per program
NI = total number of IC's per system
To be general we assume subsystem types are not identical and label them

as subsystem type 1, 2...1; Thus we have

(NESS). = total number of type i electronic subsystems or modules per

i
program. By definition

J
NESS = 2 (NESS); where there are j type subsystems or modules (1)
1=1

The total cost of a single electronic system (the direct life cycle
cost) can be expressed as:

$T = SA + $S + $R (2)



where

SA = initial aquisition cost or initial cost of manufacture of
the system per system

§S = cost per system of spare parts

SR = system repair or module replacement cost

SA, the initial cost of manufacture, is determined by cost factors
1-4, SS, the cost of spare parts is determined by cost factor 1 and 6
and SR, the system repair cost, is determined by cost factors 4 and 5.

Let the fajlure rate associated with the ith iC be )i. Then we define:
= L
(MTBF)i -Xi (3)

(MTBF)i is the mean time before failure associated with the ith IC.

If a system is composed of NI IC's, the corresponding system MTBF becomes:

-
System MTBF NI . Ag (4)
<
j=1

if we assume all component associated failures are independent, that

the system does not have fault-tolerant design to circumvent the effects
of an IC associated failure and that each xj includes a share of the
interconnection scheme. Alternative equations can be developed to
describe the MTBF of systems with fault-tolerant design. [38] These

will not be presented in this report. IC associated failure rates are
dependent on the number of pads of an LSI chip because most IC failures
(non-infant) are associated with the mechanical portions of the de-

vice - pins, tabs, connectors, etc. However, since the number of

pads does not increase as rapidly as the gate count, the move

10
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from S.S.I. to V.L.S.I. can result in an improvement in reliability by
the resulting net reduction in apparent failure rate/gate. This is shown
in Figure 3. Curve (1) demonstrates that the failure rate of a chip is
proportional to the number of pads which is in turn proportional to the
/NG.

Thus,

Also, in Figure 3 is indicated another factcr, curve (2) which shows the
effect of pushing the degree of integration beyond the capability of the
technology. This is related to LSI process technology and design rules.
[9] Another estimate of the apparent individual IC failure rate, " ° is
given by 2.5 X ;g log (NG)i if the failure rate of the board and its con-
nector is included. [2] This simply shows that system failure is mainly
a function of the number of IC packages.

The number of spare modules which must be available for replacement
(NSM), is determined by the proportion of module failures which are not

repairable, B. If the total operational 1ife of the electronic system

is TL, then
NSM = B-x -TL-NES (5)
and the number of spare connectors and boards for repairable modules is
NSCB = (1-B)«x +TL-NES (6)

The total cost of spare parts ($S:NES) is then

NES

$S+NES = SA-NSM-NESS

+ $CB-NSCB (7)

N
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where

A
SCB = cost of spare connectors and boards

Thus, the total spare parts cost per cvstem is

§5 = [B-NE2e +SA + (1-8)SCB]-TLex (8)

In general, the number of IC's per module is independent of the level of
integration of the IC's. Therefore, the level of integration of IC's
determines the number of modules per system and the major reliability
problem is module board, its connectors, and the interconnection scheme.
This can be seen in Fig. 3, curve (3) to be the predominant reliability
factor. Actual chip failures are insignificant by comparison.

In terms of the level of integration, NG (number of gates per IC)

we have
e NI
g NES ¢
§S = [Bermz= veee *SA + (1-8)SCB]-TL- ;g; 3 (9)
and substituting for kj we get:
3. NES . =0
§5 = [8-yg2e <34 + (1-B)SCB]-TL-§E%(2.5 € 10) Tog (NG), (10)

In equation (10) NI is a function of the level of integration, NG.
To simplify the analysis we assume each subsystem and each system is
made up of IC's with the same level of integration, NG: and thus all
IC's will have the same failure rate. Then

-6

55 = [B-§%§§ :SA + (1-B)SCB]-TL+1= .2.5X10 log- (NG) (1)

ﬂG

Where we assume N is a constant.
13
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To complete the cost of an electronic system, we must be able to
determine the repair costs and the initial acquisition cost.

We assume total acquisitinn cost to be given by

NES+$A = SDM-MU-NES-NI + SCA-NES (12)
where
A
$OM = LSI device manufacturing cost
Here, SCA is the total cost, excluding IC cost, of all system
components and all assembly, design, faprication and testing cost.
Again if we assume all IC's t:ve approximately the same level of in-
tegration then:

so = SOM-MU-N
304 #0-N

N + SCA (13)

The to*.1 system repair cost SR is proportiona! to the total number
of failures over the 1ife of the system and will depend on the repair

cost of each failed system.
NES-$R = AS-TL-NES~[B-SRPL + (1-B)-SRPR] (14)

Where
)
SRPL = cost to replace a module
SRPR 5 cost to repair a module
SRPL and SRPR include all cos's of repair or replacement other than

parts costs which have been included in $S.

14



Again assuming all IC's have approximately the same level of inte-
gration,
N -6
SR = [B-SRPL + (I-B)-SRPR]-TL-Ng 2.5 X 10 1log (NG) (15)

The total system cost per gate becomes

-6
576 « 31 » [B:SRPL + (1-8):SRRL-TL 5.6 5 10 1og (NG)
-6
SOM-MU . SCA | -y, BNES - N
+ ( NG + N ) L] + -ﬁE?S— 'TL'E « 2.5X10 109 (NG)]

, 7 (1-B)-5CB-2.5 X 10_1log (NG)
NG (16)

Equation (16) contains the terms of importance related to electronic
system cost per gate. Since SDM, the die manufacturing cost, is a strong
function of degree of integration, NG, it is not obvious from equation
(16) how STG varies with NG.

In the following section, a model for IC chip cost will be developed.
The model will allow the estimation of SDM and its dependence on NG, the
integration level. The model will also consider chip design/fab approach

in establishing SDM.
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ITI. MACROSCOPIC MODEL OF INTEGRATED CIRCUIT CHIP COST

A. Basic Assumptions and Background

The design and manufacture of an IC is a ccstly, time consuming
process with hundreds of sequential steps. The difficulty and level of
sophistication of the manufacturing process can only be realized by noting
the fact that a "small" error in any one of the hundre s of sequential
steps may cause total irreversable circuit failure. Taus, in the manu-
facture of IC's, the manufacturer strives to improve control and reduce

errors by use cf such things as:

-automated equipment under computer or microprocessor control
-redundancy or fault tolerance in the actual fabrication process
(eg. double contacts, flowed glass, thick overcoat passivation,
iso-planar oxide isolated structures, etc).
-close supervision and monitoring of all work in process
-increased operator training (use of higher skill levels)
-fault tolerant or process variation tolerant circuit designs.
This analysis is restricted to MOS (metal-oxide-semi conductor)
integrated circuits. A general literature search on topics related to
the design, fabrication, assembly and testing of MDS integrated cir-
cuits is attached to this report as Appendix A. Also, the results of
a literature search on topics related to the cost of integrated circuits
is attached as Appendix B.
A block diagram showing the major steps in the cesign and manufac-

ture of an integrated circuit is shown in Figure 4. Each block repre-

16
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sents considerable detail. Because of the major investment reguired in
capital equipment and high technology personnel in order to manufacture
IC's, it would be totally impractical to consider, for example, the

Tow volume manufacture of LSI in a low volume Tine.

Another major cost is in equipment to manufacture LSI. Growth in
alignment equipment costs over the past few years is shown in Figure 5.
This is typical of other eauioment also.

Improvements in IC technology have permitted higher and higher levels
of integration which have resulted in reduced system (which use non-
custom LSI) costs as shown in Figure 6. These cost reductions have been
possible by the use of high volume coupled with advancing technology.

The level of integration has increased as costs have declined at the IC
level as shown in Figure 7. For high volume production, the IC cost/gate
vs NG is shown in Figures 8 and 9 for different products. Cost is

also a strong fuctions of performance as shown in Figure 10.

A1l of the above data is for large volume production. When one con-
siders low volume, custom LSI, the IC cost curves change considerably.
The effects of NRE (non Recurring Expense) costs are dominant for very
Tow volume LSI. For example, an LSI logic array could have a $50,000
Mt cost.

Since equipment costs are so large, the manufacture of lTow volume,
custom LSI is always accomplished in a manufacturing line running a large
volume of product. Thus a boundary cendition for this work has been
established that although the design will allow VLSI custom, the pro-
duction Tine will be required to handle a large volume of wafers. This
means the production line will be required to handle a large quantity of

product types.
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If the manuficturing line is handling a large volume of product,
even thouth this volume is in small runs of custom product, then “some'
of the large fixed costs (NRE - non-recurring expense) can be amortized
over many volumes of product. In this way, custom manufacturing in
wafer fab can approach volume fabrication costs. It will never be the
same because of extra paper work involved in tracing lots in the fab
line but should be similar to a typical hi-rel line (which requires lot
trace) with a large product mix.

In this analysis we assume that the mfg. line is to operate as a
"lot traceable" line with a large product mix and perhaps a few different
processes in one fab area. We will leave the fab volume as a variable.

To reduct design/layout (d/1) costs we must move toward computer
designs with standard gate arrays or standard logic cells which the com-
puter will interconnect. (This is discussed in more detail in the next
section.) These generally will result in larger (non-optimum in compaction)
die.

Manufacturing yield can easily be related to active die area: [10]

Yo = 0 . (17
n

D. = defects/unit area produced by the ith masking level

3
"

active die area for ith masking level

D_ = average defect density over all n masking levels

A = active die area

n = number of defect producing, yield Timiting photo masking

onerations.
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Figure 11 shows plots of equation (17) for different values of
active die area vs defect density. Figure 12 shows a plot of equation
(17) vs. the DnA product for various n values and Figure 13 shows yield
vs. active die area for various devect densities.

Dn, the defect density (defects per unit area) is a manufacturing
and techrology problem. At any given time in the fab area for a chosen
technology we can assume it is a constant. Die area Ad is determined
by the (d/1) cycle, including the device technology.

The rele ~“ '‘nship of chip area to degree of integration is strongly
depenient on several fartors:

-layout strategy and efficiency

-levels of interconnect

-active chip area to total chip area ratio

-type of circuit (random logic or memory)

Figure 14 a and b gives the typical characteristics of the more im-
portant LSI technologies and an estimated active chip area for the indi-
cated typical NG. Tnis data cannot be used to develop even an empirical
relationsnip between chip area and NG since there is considerable
variation in the gate density (or gate area) between processes. Also,
the active chip area estimate assumes the entire active circuit is made
up of "gate" of average size. This would only be accurate for estimating
the size of random logic chips and would not work for memories or other
ordered logic.

An empirical equation has been presented by Cunningham and Jaffe
relating the die area Ad of MOS memory chips to the number of bits in the

memory, NO (113
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-6 1/2

A.=1.7 310 (N0 + 69NO

’ + 2400) in® (18)

This equation assumes n-channel silicon-gate technology with stand-
ard 6-micrometer design rules and a typical one-transistor cell. In the
summation term in parenthesis, the first term, N0 relates to the total
storage-cell area. The second term, 69N0]/2, essentiallyv relates to the
area required by decoders and sense amplifiers and other areas that depend
on column or row length. The third term, 2,400, is a constant because it
accounts for unused periphery and circuits, such as buffers, that do not

depend on cell area. [11]

For memories, this equation can be generalized somewhat as fcllows:

172

A=A (N +R N + R2) (19)

d

where

>
"

) = area of a single memory storage cell

(=

e
"

1 coefficient to determine area contribution by row and

column decode and sense circuitry

R2 coefficient to determine peripherial area contribution

In summary then, the relationship between NG (degree of integration)
and die area is different between random logic circuitry and memory. For
random logic one can estimate die area by assuming a linear relation-
ship between die area and NG whereas an equation similar to equation
(19) must be used for memories. Specifically, in this work, we will
assume that for random logic with a large number of gates that the area
required for interconnecting gates and peripheral area to reach the bond
pads and the area of bond pads is:
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1/2

B -NG-Kp + BP-Kp-(NG) (20)

1
Thus, total die area becomes:

A=A, +NG+B, « KL+ NG+BP - KP . WG (21)

G 1

where

average pins per gate

average gate area

ne ne nes

bond area pad

B. Fabricaticn Alternatives

There are basically two alternatives to the design and fabrication
of custom electronic systems with LSI:

1. Use of full-custom designed LSI

2. Use of semi-custom LSI and standard transistor arrays

Full-custom LSI integrated circuits can offer advantages when the
volume of circuits needed or some other parameter can justify the initial
high cost of tooling and laycut design. In this approach, the IC is
unique at all mask levels and therefore can offer the highest performance
and/or smallest die size (depending on the design goals).

The volume of integrated circuits needed to amortize a full-custom
design depends very strongly on the actual circuit since the initial en-
ginearing costs depend heavily on the circuit design and its complexity.

The time fequired for the design and fabrication phase is often a
very important aspect which affects the choice of fabrication alternative.
A typical full-custom IC design and layout will take 15 weeks and then

another 13 weeks will be needed to obtain finished parts.
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A good discussion of the semi-custom alternative to full-custom LSI
fabrication has been presented by Edge [7]. In this paper, the cost and
fabrication time advantages of the semi-custom approaches are discussed
as well as the disadvantages of Timited availability of basic chip designs.

Key disadvantages of the single-metal semi-custom apprc. th are the
performance, packing density and circuit complexity available. Full-
custom MOS LSI is capable of 10 MHZ operation whereas single-metal semi-
custom is limited to the 2-5 MHZ range. The relatively small gate arrays
available for single-metal semi-custom designs will 1imit the complexity
and packing density achievable using this :2> :-.ach. Packing density
differences of 2:1 are common for LSI designs using these two approaches.
Double-metal semi-custom has none of the above disadvantages, however,

design and fabrication are more complex than single-metal semi-custom.

C. Generalized Model for Chip Cost

In this section, a mathematical model is developed for IC die cost
in terms of manufacturing parameters and degree of integration as it is
related to die area. The objective is to estabiish an expression for
SDM as used in equation (16).

Die cost is determined to a Targe extend by yield. For a fixed
volume of product in the manufacturing line, die cost is inversely pro-

portional to yield.
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Where $W

cost per wafer out of fab

YD = die probe yield
ND = total number of die on a wafer

$D

cost per good die out of fab

The dependence of $D on Ad can then be calculated as:

$D = SW (23)

N total number of die of area A4 on a round
wafer of diameter d.

n
3D a Ad(l ¥ Dn-A)

A/

n -
and D<A (1+ Dn-Ka-Ad) where Ka = Ad (24)

d

Thus $D will vary slightiy more rapidly than linearly with Ad if Dn is not

too large. If Dn is large,

n+1

$DaAd

(25)

and can vary very rapidly as n is typically 6-10. We can express it as

$D o Adm 1 <m< n+l (26)

For VLSI at today's defect densi.ies of 5-7 defects/inz, the term Dn-A -Ka

d
would not be much larger than unity as shown by a sample calculation.

2
Assuming 5 defects/in~ and Ka = ,8:

- 1 = 2 s & s
Let Dn-Ka-Ad = 1, then Ad ol in® = .25in" die
—— = .5 19n x .5 in
D about 2x the largest die built

| today in any volume
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A die thic size would yield (for n = 5, Dn = 5)

Y, = —L—— = 3.1% a Tow yield, high $D. (27)

d n
(1+DnA)

For a fixed wafer diameter, d, $W the wafer fab cost is a constant,
independent of die area A. Figure 15 shows how normalized die cost,

$D varies with die area, A. If we assume a CMOS process and a random

logic chip, then using AG=4-10"in’ from Figure 14 and Ad=5%iﬁ§ = 5.107°.NG
a
we can convert equation (23) into
5 = SW (28)

7 4
< 1 \"___ nd?
P ‘ ~
1+ 0 [4.0x107IN6 ) 4[5.0¢107InG

where Dn is expressed in defects/inz.

Equation (28) is shown plotted in Figure 16 and clearly indicates
the effect of degree of integration, NG, on die fab cost. In this fig-
ure, die cost has been normalized by wafer fab cost which has been
assumed constant. The move toward low volume VLSI will most certainly
result in a greatly increased die cost unless $W is decreased or wafer
diameter, d is increased.

Die area is critical to $D; but so is (d/%) cost. For a given level
of integration and a fixed set of design rules,

$(d/2)+ as Ay ¥

competing roles -
$D v as Ad v

$D + $(d/2) must be as low as possible to minimize final die cost. As a
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general rule, we want Ad as small as possible for a given level of integra-
tion. This tends to increase $(d/2). $(D/2) and $D can be optimized by
use of CAC routing, computer assisted layout, etc. and of course more
efficient routing techniques.

The total cost to manufacture an LSI device can be expressed as:

oom = SF 4 $d/2 . SAC . STC (29)

N N YatYer Yer

where we define
SOM @ total manufacturing cost per IC successfully completing manufacture
$d/ 28 design/layout cost (fixed NRE)
SAC - assembly cost per IC successfully completing manufacture

$TC

| =2

total test cost per successful IC

[ =3

N

= total number of successful IC's of this type manufactured

| =2

Y total yield = YF . YD . YA . YFT where

T

-<
n

r wafer fab yield

1
n

(1+DnA)

<
"

0 wafer probe yield =

-
L}

A assembly yield

-<<
|

T = final test yield

©
o
I

= total cost for fab of all wafers (good & bad) with volume Nm

where $F = f(Nm)

- average die defect density

> o
] =3 =

d die area A = active die area

| =g

number of critical mask levels

Equation 29 can be rewritten as:

aA
SW n, $d/2 $SAC $TC
Y,V (T+D A+ J=* vy *+y (30)

DM = . 4
ATFT nd A" TET FT
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where
SW = fab cost per wafer out of fab.

For the condition that Nm is small compared to the total volume
of material being processed in the LSI fab line, then SW will be essen-
tially a constant, independent of Nm. Also, under this condition $AC
and STC will be essentially independent of Nm' The sketch in Fig. 17
indicates the relative effect of the $(D/L) term on costs and thus clearly
indicates the cost effect of Tow volumes.

Calculations of typical costs and a survey of present industry
custom LSI manufacturers indicates that the $(D/L) term dominates for
Nm below 20-40 thousand depending on the complexity of the LSI chip.
This will be discussed further in Section IV.

The dependence of equation 30 on die area, A , is not obvious until

4’
the dependence of the $(D/L) term is included as well as the S$TC and SAC
terms. In a custom VLSI design/layout, a CAD system is often used to
simplify design time and Tower costs. Following this CAD layout will
usually be a period of manual or semi-manual die size optimization be-
cause of the inadequacy of present day CAD software.

A model has been developed to predict die area in terms of three
constants or boundary conditions as presented below. We assume the com-
puter generated layout yields a chip of area Ama and the absolute theor-

X

etical minimum valve of die area is Ami (zero wasted chip area). The

n
manuai labor to reduce die area is assumed to result in an exponential
relationship between time spent in optomization vs. area reduction.

This is shown in Figure 18.
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The model is:

) e Bt 4 A (31)

A(t) = (Amax - A min

min

The constant 28 is determined by the efficiency with which the
manual effort car reduce Ad from Amax’ 0f course, Amax is directly
affected by the efficiency of the computer in doing a compact layout

in the first place. 8 is dependent of NG. We assume § = ?T%QTNG

P
where f is the number of mask levels to be minimized.

The $d/i dependence on area can now be established by noting that
§d/e = SCR + SL + SR (32)

where
scr & circuit design cost

sL & layout cost

$R & reticle fab costs
and
SCR & SCE-t_ (33)
where
SCE = burdened cost per unit time for circuit designer
tC = circuit design time
SL = SCAD - tCAD + SML - tML (34)
where

SCAD £ cost for layout per unit time

Sean & CAD layout time
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SML = cost per unit time for manual layout optomization
tML = manual layout time

Thus:

$d/2 = SCE - % ? SCAD + t 0t SML - t, + SR (35)

CA ML

An expression for tML is available from equation 3.

tw, - %1n A - Am1n = %ln Amax - Amin (36)
HmAx '“min d ~ "min

We assume that the circuit design time, tc. the CAD layout time,

tCAD and SR, the reticle cost are related to NG as:

1
= K,oK NG+ (1= — 37
t “’G(]JW:) (37)
teap * Kp-NG-[1n(NG)-(K21 - K22-Kp) - K23-nr] (38)
and SR = K3-KpoNGonr (39)
where n. £ number of reticles required

These assumpcions are most valid for VLSI. For small area die,
fixed costs will make tc’ tCAD and SR essentially independent of NG.

Thus for VLSI,

1

9 = . . . . - = . . - / . .
$(d/2) = SCEK, Kp NG+ (1- —-) + SCAD Kp NG-[1n/NG) (K21+K22 Kp) +

vNG

SML-f-K_+NG A - A
K3 Kp NG n,+ p 1nf -Max min (40)
8o R " AL
min
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The costs of making master and working photolithography masks are
assumed to .2 contained in the previous $W term. The reticle fab costs
are assumed to be contained in the SR term. The reticle fab costs are
assumed to contain all costs to go from the layout, however, it is done
to the printed reticles. For a computer-aided layout done on a CAD
system, the major cost of reticle generation, (for VLSI), will be the
time required on a pattern generator to generate a circuit of complexity
f-Kp-NG. The assumption tk t SR = f-Kp-NG will be valid under these
conditions.

The constants K], KZ], K22, K23, and K3 must be obtained by experience
curves and will be highly dependent on the LSI manufacturer, the labor
skills and equipment available. They will also depend strongly on the
design fabrication approach chosen. For example, the constants will be
significantly smaller for a "semi-custom" design where only the design of
one or two mask levels is involved.

To complete the present model for cost we must develop the depen-
dence of SAC and $TCL on level of integration, NG, or die area, Ay- The
die assembly cost will be composed of a fixed cost related to processing
a die through the assembly operation and other cost components which will
vary with die area and NG to some extent. A complete assembly operation,
and test sequence is shown in Figure 19. Those assembly operations
which have some dependence on die area are:

-wafer scribe

-optical inspection prior to die attach
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The area dependence of the rest of the operations is small and
depends mostly on the number of pins on the chip package or the number
of bond pads on the chip. The level of integration is in general
related to the square of the number of pin-outs. The overall assembiy
cost of an IC is dominated by the number of bonds required, the package
cost and fixed labor costs and overhead. For this analysis, it is assumed
that the assembly cost, $SAC, is proportional to Kp/ﬁﬁ.

The testing ccst of complex IC's is a complicated function of many
factors. The dominant factors are

-equipment costs (NRE)

-labor

-circuit complexity and design which determines test times

The number of gates, NG, enters the cost function in that more complex
functions are more difficult to test and test time increases. Test time
is more dependent on the number of pins on the IC package than on actual
die area. In a volume testing situation, the cost $TC will be totally
determined by test time. [12]

In this analysis it will be assumed that the number of pins will
determine test cost and that the test cost $TC varies as vaﬁﬁl

Equation (30) along with equation (40) can now be used to estimate
SOM vs A .. Inserting equation (21) to eliminate die area and express the

d
cost SOM in terms of the level of integration we get:
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4 + BeK -« - oK o
0 » SW . [AGNG B Kp NG + BP KP /NGI.
Yae Ve nd?
"
(1 + Dn-Ka-[AGNG % 81-Kp-NG + BP'Kp°“NGj‘ +
1
p Nm [SCE (1 - NFG) . K] + SCAD [1n(NG) (K21+K22°Kp) + K23-nr] +
B mx/B mn -
SML NG SAC STC

Koen ]+ K _of = Tn ) + (41)
3 r p Bo m ( an - YA YFT YFT

where:

Kp-NG-B]mx routing area maximum (before hand optimization of routing)

Kp-NG-B1mn theoretical minimum routing area

-+
"

number of critical mask levels which are hand optimized
to reduce layout area

The number, Nm, of IC chips manufactured of any one type is mainly
the product of the numbcr of electronic systems, NES, and the number of
applications of the chip per system, NA.

-6

NES .1(. N 2.5:10 -1og(NG)] (42)

N = NA-NES-[1 + B-3F&. NESS”
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IV. DIE & SYSTEM COST CURVES

A. Introduction

In this section we examine briefly the values of $DM and S$TG vs
level of integration, NG. In order to do the analysis we must make
assumptions which provide the necessary constants in equation (16) and
(41). Specific values will of course vary widely among manufacturers.
However, some general trends can be observed.

The basic assumptions are given in Section IV-B and Section IV-C
presents a cost analysis along with a discussion of key results. The
basis language computer program which was used in the analysis is presented

in Appendix D.

B. Assumptions

To study the dependence of $DM and $TG we assume that the LSI chip
under consideration is of the order of the 10 gate level or higher since
some fundamental assumption in the development of equation (40) will be
invalid otherwise. (These assumptions have all been discussed in Section
[11-A and C.) We also assume that the LSI chips are to be manufactured
in an existing volume fabrication area that is typically found in the
semiconductor industry today at custom LSI manufacturers (eg. A.M.I.)

Four cases will be taken:
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Case I. A full custom, 7 mask level, CMOS LSI design, including
all Tevels from iogic design to final packaged parts.

Case II. Standard off-the-shelf chips for the sake of reference.

Case III. A semi-custom, 9 mask Tevel CMOS LSI design being a
double-metal standard transistor array chip (eg. STAR)
and custom design of three mask levels.

Case IV. A semi-custom, 7 mask level CMOS LSI design being a
single-metal standard gate array and custom design of
one mask level.

In all cases, $DM/NG vs NG and $TG vs NG will be presented.

Case I: Full custom CMOS LSI

We assume:

AG = .025 mm° (40 gates/mm°)

d =100 mm

D, = 10 defects/in® = .0155 defects/mn’

Ky = .8

SW = $200.00, Y, = .95, Yo = .90

Ky = 3

Bymn < By < Bypy» B adjusted for minimum STG
BP = .0375 mm?

$CE = $15.00/hr
K] = 1 hr/gate-pin

SCAD = $220/hr
=2 -4 2

Kyy = 1.4410 , K22 =7.0-10 , K23 = 1.8:10

21
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= $1/gate-pin
SML = $10.00/hr
= 3 gate-pin-lev/hr

/B1mn 4

AG

B‘lmn 2K K

SAC S.10-Kp- /NG

ST

S.ZO-Kp- /NG

SRPL = 5200 + §2-K + (1 + %)

$CA NES

SRPR = SRPL + =% 0 "NESS

B=.05
TL = 45,000 hr

MU = 2
f =6
NA = 1
K
= N e, K (1= 10 o ' -
$C8 = $50.00, SCA-NG V {SCE K1 (1 P + SCAD-[1n(NC) (K21+K22 Kc) +
SML NESS 5000
3'K23* i i} « (2:K, + 750 + i +

In(3
prr

where Kc = Kp ’NG pads per chip and
~ - N NES |
NC = NG NESS IC's per module
N = 10,000
NES = 50
_ N
NESS = NES G

n =6 (bond pad assumed non-critical masking level)
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CASE II: Standard CMOS LSI (same as Case I except no charge for $d/2)
CASE III: Semi-Custom CMOS LSI in double-metal (STAR) nr=3, n=8, f=3
CASE IV: Semi-Custom CMOS LSI in single-metal

We assume (parameters not listed are same as above)
AG = .1 mn®

B = AG/K

p

C. Analysis and Results

Figure 21 displays the total system cost per gate for all four cases.
As expected, the minimum system cost occurs with the use of standard off-
the-shelf IC's with a level of integration of greater than 77 gates per
chip. Standard IC's with NG less than 77 can economically be replaced
with single-metal semi-custom IC's. Standard IC's with NG less than 55 can be
replaced by full-custom IC's. Standard NG's less than 74 can be replaced with
double-metal semi-custom IC's. For example, a system with standard IC's
of NG=22 could be replaced with a system with double-metal IC's of NG=630
for one-half the system cost. This in spite of the fact that only 53
copies of each IC type will be produced at a cost of over $4,000 per
individual chip.

The benefit-to-cost ratio (B/C) is a popular tool for decision making.
Figure 22 displays the B/C for replacing standard MSI and SSI devices with
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the var,jus custom device types. Note that a B/C of 1 represents the
break even point. B/C is plotted as a function of the desired number of
electronic systems where each custom design is used only once per system.
Below 5 systems standard SSI is more economical than any custom approach.
For 5 to 45 systems, single-metal semi-custom is more economical than
standard SSI but not standard MSI. From 45 to 500 systems, double-
metal semi-custom STAR devices are the least :xpensive approach. For
greater than 500 systems, full-custom device:; are the best choice.

Figure 23 displays the actual cost savings per system relevant

to the B/C plotted in Figure 22.
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