DESIGN APPROACH FOR A MICROPROCESSOR-BASED
GPS TIME TRANSFER RECEIVER

P.C. Ould and R.J. Van Wechel, Interstate Electronics Corporation, Anaheim, California

ABSTRACT

This paper describes the design concept and characteristics of a self-contained microprocessor-based GPS time transfer receiver. A prototype of this unit is currently in the test phase. It employs two-bit digital baseband correlation rather than analog IF correlation of the signals with the reference code. The correlator, numerically controlled oscillators (NCO) and code generator are implemented in a special-purpose digital signal processor. The time is recovered in the digital code tracking loop, and final corrections are applied in the control processor. By means of asynchronous sampling techniques for the digital correlator and NCO, the time transfer resolution limit is 2^{-N} part of a code chip period, where N is 32 for a 32-bit accumulator in the NCO. Other features of this design are: drift-free digital mechanization, high reliability of digital circuits, flexible control capability of the microprocessor, and potential for a high degree of digital VLSI chip development leading to compact, low-cost units.

A description is given of the process by which the precise measurement is made between user clock and received signal code. The user-clock-derived sample times in the code tracking loop yield high-resolution uncorrected time sample words. These uncorrected time words are corrected for range to the satellite, satellite clock error, ionospheric error, and relativistic errors. They are then differenced with the user clock to yield user-clock error estimates.

User-clock outputs consist of 1-pps, time readout, and direct digital outputs of time and time error of the user clock.

Test data on random error of the approach are also presented.
INTRODUCTION

The GPS receiver described in this paper consists of a baseband RF converter, digital signal processor, and general-purpose microprocessor. The design approach and components have been developed at Interstate Electronics during the past four years as part of an internally funded GPS applications research program. The goal of this research effort is to develop a reliable, low-cost, and highly accurate modular system that can be configured to satisfy a wide range of requirements in the areas of timing, tracking, and navigation.

Our design approach is primarily digital in that the received signal is converted to baseband and digitized before any signal processing is attempted. We intend to achieve reliability and low cost by employing the latest gate-array and custom-VLSI (Reference 1) techniques. System accuracy is achieved through use of digital correlation techniques (Reference 2) with asynchronous sampling to attain very high measurement resolution, and by using long (i.e., 32-bit) word lengths.

This paper emphasizes the characteristics of the digital signal processor that provide the capability of extracting time from the received signal directly as a numerical value.

Evaluation of this GPS time transfer technique is currently in progress at Interstate, and the results of initial tests of the system's tracking accuracy are included in the paper.

BACKGROUND

Our work with GPS receivers began in the middle of the last decade with development of the Flight Test Support System (FTSS) for the Navy's Trident I (C4) strategic weapon system (Reference 3). The FTSS employed the early GPS satellites for metric (postflight analysis) tracking and time division multiple access (TDMA), pseudorandom-noise (PRN)-coded ground transmissions for range safety tracking. Many of the digital-baseband processing techniques we are now using for GPS processing originated in the FTSS.

We subsequently developed a breadboard GPS system that was used for test and evaluation at our facility about two years ago. This GPS receiving system employed clear/acquisition (C/A)-code, one-bit digital baseband correlation and was an all-digital system (Reference 2) except for the RF converter, which converted the received signal to baseband for digitization. The system's central processing unit was a Digital Equipment Corporation PDP-11 computer.

The time transfer receiver described here is a microprocessor-based system using a Motorola Corporation MC68000 as its central processing
unit. This version is a combined C/A- and P-code GPS receiver, with the P-code capability added to determine and compare the time-transfer accuracy and reliability achievable with each code, and to satisfy requirements for other applications.

GENERAL DESCRIPTION

Figure 1 is a functional block diagram of the GPS time transfer receiver. The RF converter is a straightforward, double-conversion device for L1. The carrier numerically controlled oscillator (NCO) drives the baseband converter to tune the receiver to the signal plus Doppler. (The structure of this second-order phase-locked loop is described later.) The digitizer (Figure 1) has been mechanized as either a one- or two-bit (Reference 2) analog-to-digital converter sampling at a rate slightly higher than twice the code chip rate.

The correlator processes the digitized in-phase (I) and quadrature (Q) data to generate a tracking-error signal. In response to the delay tracking error, the delay tracking filter drives the code NCO and code generator. This loop is the time transfer mechanism (described later in more detail with the clock and its associated components).

The integrated correlation data and loop feedback signals are sampled at 250 Hz.

In our system, the microprocessor accomplishes most of the signal processing. Figure 2 illustrates the algorithms and process flow. Note that the code generator is mechanized in a separate microprocessor (Reference 2) and that basic signal acquisition is not shown.

All computations except clock correction are completed in less than 4 milliseconds. Clock correction operates continuously on a priority basis.

CARRIER AND CODE TRACKING

Figure 3 shows the basic operation of the carrier and code tracking loops.

In acquisition, the carrier NCO and code generator are operated in a search pattern that results in a correlation function being centered in the early/on-time/late correlator output. The on-time correlator complex (I and Q) outputs are used for carrier tracking, and an estimate of the angle of these coefficients yields the carrier-loop phase error. This is analogous to conventional Costas-loop carrier tracking. The carrier-loop error is filtered in the loop filter for second-order carrier-loop tracking. The carrier frequency estimate controls the
carrier NCO and also is scaled to control the code NCO frequency, and
to provide dynamic aiding for the first-order code tracking loop.

The code loop derives its delay error signal from the difference of the
magnitudes of the early and late correlation coefficients, in the manner
of a noncoherent code tracking loop. The code loop is first-order, with
aiding from the carrier loop, and controls the delay of the code NCO/
code generator directly rather than the more usual process of controll-
ing the code chip frequency. This control mechanism offers some
significant advantages in achieving very-high-resolution time transfer
measurement.

BASIC APPROACH TO TIME TRANSFER

Figure 4 is a functional block diagram of the GPS time transfer process,
the basic element of which is the code track loop that keeps a local
reference code synchronously tracking the received code. The initial
phase or time delay of the reference code is controlled at the start of
each loop iteration (4 milliseconds) by the feedback from the code loop
filter. The control word from the loop filter is split into integer and
fractional parts in terms of code chip units; the integer part sets the
starting chip number of the code generator, and the fractional part sets
the starting phase of the NCO.

This control mechanism for the combined NCO/code generator is very
precise and eliminates the need for a high-resolution time interval
counter to perform the basic time difference measurement between refer-
ence time and received code epochs. Figure 5 illustrates how the
43-bit integer delay sets the starting code chip, and a 32-bit control
word initializes the NCO starting phase. This, in effect, sets the
starting phase to a resolution of 2^{-N} part of a code chip, where N is
32 for a 32-bit accumulator in the NCO.

Figure 6 outlines the form of the NCO for this process. The NCO con-
stitutes an accumulator register that can be preset by the fractional
chip phase command word from the code loop filter whenever each loop
filter iteration begins. The frequency command word is then added to
the accumulator on each clock time, causing the accumulator to overflow
at an average frequency equal to the desired chip frequency. It is
important in this process to maintain an asynchronous relationship
between the NCO output frequency and the NCO accumulation rate over the
entire Doppler range. When this is done, it is found that only the most
significant bit (MSB) from the accumulator needs to be used as an NCO
output, and it then advances the code generator a chip on each overflow
of the NCO accumulator.
Although it may appear at first that such a code generation process would yield unacceptably high jitter in the code loop, this has not been the case, because of the broad spectral distribution of the NCO phase jitter. We use the same process in the carrier and code loops and see a phase jitter of about 2 degrees rms (for high-SNR signals) in the carrier track loop, as shown in Figure 7. Code track results are shown in Figure 8, which is a time history of the combined code NCO/code generator control words plotted for an actual satellite pass. No smoothing was used on the plotted data, in order to illustrate the resolution of the raw delay measurements.

Referring again to Figure 4, it can be observed that the nominal 4-millisecond loop iteration rate of the code loop is derived from the user clock. On each 4-millisecond loop iteration, an uncorrected time word in units of integer and fractional code chips is extracted from the code loop. This time word consists of the raw uncorrected time measurements that can be corrected for range, ionospheric error, relativistic error, satellite clock error, etc. They can be used as measurement values input to a Kalman filter to model various systematic and random clock errors. User clock error is determined by differencing with the user clock value at the same iteration time mark. The clock can be set to null the error by a combination of setting the clock counter in 200-nanosecond increments and, in finer increments, by phase control of the reference frequency input. Note (Figure 4) that uncorrected time measurements have a different significance, depending on whether the tracking mode is C/A- or P-code. In the P-code mode, the code state represents the time of the week (TOW) in direct unambiguous form. In the C/A-code mode, the TOW establishment and maintenance is somewhat less direct in that it involves a combination of measured C/A delay and resolution of the 1-millisecond C/A-code ambiguity.

DESIGN APPROACH

The components of the signal processor described in Figure 1 are designed to interface with the Motorola VERSAbus*. Figure 9 shows the particular configuration used for the P-code time transfer processor.

The VERSAbus concept provides a dedicated section for the microprocessor functions and a user-definable section.

The microprocessor bus supports a multiprocessor system that can be used to support auxiliary processors for navigation, clock error estimation, and special-purpose I/O and display functions.

Figure 10 is a photograph of the enclosure for this design. Typical circuit boards, which have the physical characteristics of a Motorola EXORmacs* board, are shown in Figures 11 and 12. The RF converter is

*Registered trademarks of Motorola Corporation.
packaged in a module so that it plugs into the enclosure in the same manner as the processor boards. The present design includes a CRT, disk, and printer in addition to the basic control panel.

This modular design approach provides extensive flexibility to define systems for custom applications.

REFERENCES

Fig. 1—Functional block diagram of GPS time transfer receiver

Fig. 2—Process flow chart
Fig. 4—Simplified block diagram of GPS time transfer process
Hardware	Software
Correlator | "Loop Filter"

Code Select
 Integer Part of Delay 0 to 6×10^6 Chips (43 Bits)

Code NCO
 Fractional Part of Delay 0 to 0.999999 Chips (32 Bits)

Fig. 5-NCO/code generator control

Fractional Chip Code Delay Command from CPU

Phase Command Register

Digital Code Command Frequency from CPU

Frequency Command Register

Multiplexer

32-Bit Accumulator

MSB

Reference Code to Correlators

Code Generator

Integral Chip Code Delay Command from CPU

Fig. 6-Code NCO function
Fig. 7- Measured phase jitter and random Doppler error vs loop bandwidth

Fig. 8-Typical time-delay measurement test results
Fig. 9-System architecture