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SUMMARY 

The objective of this program was to design and fabricate large brazed 

Rene'41 honeycomb panels, to establish a test plan to subject the panels to 

cyclic thermal gradients and mechanical loads equivalent to those imposed on 

an advanced space transportation vehicle during its boost and entry trajec

tories, and to design and fabricate a test fixture for the cyclic tests. 

Two Rene'41 brazed honeycomb panels were designed and fabricated. The 

panels were sized to be subjected to combined cyclic thermal and mechanical 

loads and combined thermal and ultimate mechanical laods. The panels will be 

tested to measure and evaluate stresses induced by thermal gradients and 

mechanical loads. Test conditions include both high thermal and high mechan

ical loads typical of integral cryogenic tank hot structures space vehicle 

boost conditions and moderate thermal and low mechanical loads of typical high 

temperature entry conditions. Analysis data and discussion of the design 

conditions are included in this report. The analysis data will be compared 

later to the test data. 

AI\11 937 used in Phase I and II of this contract is the selected braze 

alloy. The panels are 30.48 cm (12 inches) by 182.88 cm (72 inches) by 

3.05 em (1.2 inches) deep. The panels were designed to be supported at four 

locations providing three spans, two outer spans of 45.72 cm (18 inches) and 

one inner span of 76.2 cm (30 inches). The middle span provides a represen

tation of thermal and mechanical stress levels and distributions found in the 

continuous spans in a typical multiframe/spar bay hot structures entry space 

vehicle. The two panels are sized to give different stress levels in the 

"interior support areas. 
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INTRODUCTION 

The objective of this program was to design and fabricate large brazed 

Rene '41 honeycomb panels and establish a test plan to subject the panels to 

cyclic thermal gradients and mechanical loads equivalent to those imposed on 

an advanced space transportation vehicle, Ref. 1, during its boost and entry 

trajectories. Further, the test fixtures were to be fabricated. 

Various programs of advanced space transportation systems have included 

hot structures designs, with ~ef. 2) and without metal-heat shields (Refs. 1 

and 3). The Reference 1 and 3 studies used the body and wing of the entry 

vehicle to house the fuel and oxidizer to feed the propulsion system required 

for orbital insertion. The conditions imposed on the panels built under 

this program match those for a low wing loading entry vehicle with liquid 

hydrogen and liquid oxygen integral tanks and no external heat shields. The 

data would also be applicable to a lesser extent to higher wing loading entry 

vehicles with some form of thermal protection system. 

The subsequent future test program will record the separate and inte

grated strains induced by thermal gradients and mechanical loads. A vehicle 

life time of boost and entry cycles will be imposed on the panels. At the 

end of the cyclic program, the panels will be mechanically loaded to failure 

at peak boost thermal conditions. 

PANEL DESIGN 

Panel elements were selected to be representative of the surface panels 

on an advanced space transportation vehicle (Ref. 1) with low wing loading 

during entry from orbit. The external surface requires no additional thermal 



protection and the inside surfaces form the containers for liquid hydrogen 

fuel or liquid oxygen. Jhe Ref. 1 vehicle has a design life of 500 cycles. 

A three span test configuration was chosen to simulate the multiple 

spans of surface panels over frames and spars on the lower surface of an 

advanced entry vehicle. The middle span of 76.2 cm (30 in.) matches the 

frame and spar spacing of the Ref. 1 vehicle. The outside span lengths are 

chosen to permit development of a load distribution that results in panel 

stresses representative of those experienced on a flight vehicle. The 

overall shears and moments and skin stress levels in the middle span are 

comparable to those in the continuous spans of the entry vehicle. 

The sizing and mechanical loading of the two specimens were designed to 

provide a higher stress level in Specimen 2 than that in Specimen 1. The 

same thermal input is imposed on both specimens, but Specimen 1 has chem

milled pads to locally reduce the stress levels imposed by thermal and 

mechanical loads. 

The stress levels for Specimen 1 were selected to follow design 

criteria established for the Reference 1 vehicle (i.e. stress levels equal to 

or less than the proportional limit) and are based on the following limit and 

ultimate stress levels. Design limit tension stress for Rene ' 41 structure 

is selected to be 689 MPa (100 ksi) at 88K (-3000 F) and design limit compres

sion stress is selected to be 607 MPa (88 ksi) at 455 K (3600 F). Design 

ultimate compression stress is selected to be 758 MPa (110 ksi) and .0058 

strain at ultimate load at 455 K (360°F). The proportional limit is taken to 

be 869 MPa (126 ksi) in tension at 77 K (-3200 F) and 613 MPa (88.9 ksi) in 

compression at 455 K (3600 F). Typical longitudinal core shear failure stress 
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determined from limited test data for the 150.6 kg/m3 (9.4 lb/ft3) core used in 

both panels is 3.37 MPa (490 psi) at room temperature. 

The Specimen 2 skin compression stress levels are increased above the 

Specimen 1 levels to evaluate the effect of sustaining operating stresses above 

the proportional limit but less than 0.2 percent offset yield stress. Imposing 

stresses above the proportional limit on Specimen 2 at the inner supports will 

allow an assessment of the effect of the thermal environment imposing strains 

rather than stresses on the specimen and what this effect may have on cyclic 

loading. 

Figure 1 illustrates the stress and strain effects of combined mechanical 

and thermal loads application at the inner supports during the course of ultimate 

load testing after cyclic tests. Above the compression yield stress an elastic 

combination of mechanical and thermal stresses in the spanwise direction may be 

computed which will be somewhat greater than the actual combined stress level, 

Figure 1. The combined actual compression strain level will significantly 

exceed the addition of mechanically and thermally induced compression elastic 

strain levels at the supports. The plastic strain generated will contribute 

to a reduction of the overall thermal strain imposed on the specimen. This 

thermal strain reduction will be manifested as a significant stress change in 

elastically stressed areas away from the supports on the test specimen and a 

small reduction of stress at the support where the specimen is stressed into 

the plastic range as shown in Figure 1. At the center of the test specimen 

inner span where thermal stress subtracts from the mechanical stress, less 

thermal stress will be subtracted from the mechanical stress as plastic strains 

increase at the supports. 
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In the hot structure vehicle design, it is important to determine how close 

normal operating stress levels may approach, or in the case of short lived vehicles, 

the extent they may exceed the proportional limit without developing excessive 

deformation on successive cycles. Specimen 2 will be subjected to stress level 

of 83 MPa (12 ksi) above proportional limit while Specimen 1 will be subjected to 

a stress level of 55 MPa (8 ksi) below the proportional limit. 

It is also important to determine ultimate load and stress level after 

imposing a life time of operating stress levels. Ultimate design criteria for a 

hot structure design will 'likely include compression design criteria for pres

surized structure such as: liThe stress at 2.0 times the operating pressure stress 

plus 1.25 times the thermal stress should not exceed the allowable compression 

stress". This type of criteria may be adequate at the supports where thermal 

stresses add to the pressure stresses. The ultimate design criteria may have to 

be modified for panel structure between the points of counterflexure on the inner 

span where thermal stresses reduced by plasticity at the supports subtract from 

pressure stresses. 

Significant weight savings in hot structures designed for low cyclic life can 

be achieved by exposing the compression structure to operating stresses near the 

proportional limit. Ultimate skin design criteria may be less critical than the 

operating criteria in a ductile material such as Rene'41 if full advantage is 

taken of strain design and strain allowables in considering internal loads 

'imposed by the thermal envi ronment. 

Panel details are shown in Figures 2 and 3. In Figure 2, Specimen 1 is 

distinguished from Specimen 2 by its two .0635 cm (.025 in.) thick by 19.05 cm 

(7.5 in.) wide chern-milled pads in the hot side or outer skin. The basic 

skin gage of 'both panels is .053 cm (.021 in.) gage. The .127-.229 cm 

(.05-.09 in.) wide slot in the hot side skin in the longitudinal center of 

each specimen shown in Figure 3 provides relief from thermal stresses/strains. 
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Specimen 2 has additional 15.24 cm (6 in.) long slots located mid-way between 

the edge and the continuous center slot. These two short slots are located so 

that they are bisected by the test fixture interior supports centerlines. The 

short slots are so placed to evaluate the effect of additional relief of 

transverse core shear and core axial stresses caused by constraint of thermally 

induced deformations at panel support points. Slot effects on panel skin and 

core stresses are discussed in the section entitled "Panel Design Analysis". 

PANEL DESIGN LOAD CONDITIONS 

Mechanical loads plus thermal conditions will be imposed on the panels so 

that stresses in inner and outer skins at the interior support locations will 

simulate stress levels that would be experienced during a spaceflight vehicle 

operation. 

Mechanical loads will be applied equally by a load distribution system at 

four locations on the panel. Load locations and support points are shown in 

Figure 4. The three span configuration and the magnitude and locations of the 

test mechanical loads were chosen to simulate structural arrangement and the 

internal pressures generated by LH2 fuel containment of the Reference 1 vehicle. 

The magnitudes of the mechanical loads required to obtain the desired stresses 

are given in the section "Panel Design Analysis". 

The input temperatures were determined by the boost and entry thermal condi

tions sustained by the Reference 1 vehicle. Although entry temperatures influence 

material selection, boost conditions are critical to sizing on the Reference 1 

vehicle. Boost conditions have higher differential temperatures between inner 

and outer skins which will generate higher thermal stresses than occur during 

entry. Fuel tank pressures are higher during boost than during entry. The fuel 

is exhausted from the tank at the end of the boost period. A comparison of boost 
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and entry conditions is shown in Figure 5. Figure 5 also presents a comparison 

of thermally induced lower surface skin stresses during boost and entry, assuming 

equal inner and outer skin gages. The vehicle design temperatures were modified 

for the panel tests so that appropriate thermal differences will occur even 

though liquid nitrogen (LN2) at 77.3 K (-3200 F) will be substituted for the 

vehicle's LH2 fuel at 20 K (-4230 F). The temperatures were also modified to 

account for increases in thermal strains in the center span which are calculated 

to be approximately 14% greater than that calculated for a continuous panel 

which spans many supports uniformily spaced at 76.2 cm (30 in.). 

Consequently, test thermal stresses and strains will be induced by simulated 

boost conditions with a peak 455.2 K (360oF) hotside temperature and a 88.4 K 

(-3000 F) cold side temperature and by simulated entry temperatures on the hotside 

to a maximum 1033.6 K (14000 F). The panel test temperature profiles for boost 

and entry conditions are shown in Figures 6 and 7 respectively. Mechanical 

loads will be combined with these thermal loads during the tests. In Figure 6, 

it is specified that the outer skin should be cooled to the temperature range 

of 166 K (-160oF) to 255 K (OoF) following the attainment of the peak temperature 

and prior to initiating heating for the next cycle. This broad range is speci-

fied in order to minimize test costs and time rather than to wait for the 

E!ntire outer skin to come to a uniform equilibrium temperature. It means that 

absolute minimum stresses in the cycle could be up to 103 MPa (15 ksi) higher 

than if outer skin equilibrium temperatures were attained before a subsequent 

cycle was initiated. The more time efficient conduct of the test is considered 

more important than the small increase in the minimum cyclic thermal stress. 
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PANEL DESIGN ANALYSIS 

Separate and combined loads and stresses for the panels are shown in 

Figures 8 through 16. Boost environment shear and moment diagrams are shown 

for Specimen 1 in Figure 8. Thermal shears and moments for Specimen 2 will be 

virtually the same as for Specimen 1. Specimen 2 has a mechanical load input of 

7006 N (1575 lb.) per point and its shear and moment diagrams developed for 

mechanical loads will be proportionately increased over those of Specimen 1 which 

has a 4359 N (980 lb.) per point input. 

A finite element analysis was conducted on Specimen 2 by Mr. James Robinson 

of NASA Langley Research Center. The computer analysis was run prior to the 

addition of the two 15.24 cm (6 in.) long slots which were centered on the 

interior support locations (See Figure 3). The accuracy of the analysis remains 

unchanged on the side of the panel which has six inch slot spacing with no 

intermediate slots. Hot side boost peak temperature of 472 K (390oF) was incor

porated in the analysis which was later modified to 455 K (360oF) for the test. 

The computer model'is shown in Figure 17. 

The computer analysis fixed the vertical displacement of the nodes across 

the width of the specimen on the hot side at the supports. In the test fixture, 

the test specimen will be forced againstrigidized fiberfrax (silica fibers) 

pads, approximately 0.254 cm (0.10 in.) thick, which separate the panel from the 

supports on the hot side as shown in Figure 4. The pads serve as insulators to 

prevent heat loss from the hot skin to the cold support. The pads will not 

restrain lateral 'expansion of the skins due to temperature change but will support 

the panel by bearing reaction only, and their lower spring rate will tend to 

permit the panel to compress the pads, allowing the panel to assume a more freely 

deformed shape under test thermal and mechanical load environments than is assumed 

in the computer analysii. 
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In the Ref .. 1 vehicle, the surface panel is restrained by the integrally 

attached frame at the cold inner skin, whereas the test panel is reacted in 

bearing on the ho~ outer skin against the padded test fixture. Skin stresses for 

the model are similar in magnitude and variation to those for the Ref. 1 vehicle. 

However, core normal stresses at the vehicle frame are opposite in sign to those 

at the model support because of the way the loads are applied and reacted. The 

Ref. 1 vehicle fuel pressure imposes a net tension force on the core at the frame 

as contrasted by the test reactions causing a net compression force in the core. 

Additional comparisons of vehicle, model and test panel loads, reactions and 

stresses follow in later sections. 

Face Sheet Stresses 

A finite element analysis was conducted on a model simulating the six-inch 

slot spacing and sizing of Specimen 2. The finite element model was constrained 

as shown in Figure 17 in the Z direction on all nodes on its width at X = 0 and 

X = 45.72 cm (18 in.). This constraint affects panel behavior in a similar manner 

as a stiff frame. The constraint, like a very stiff frame, provides resistance 

to the panel bowing in the Y direction caused by the thermal gradients imposed 

on the panel. This constraint causes a sharp peaking of X-direction thermal skin 

stresses midway between the six-inch slots at the supports as shown in Figure 9. 

The influence of constraint at the supports on the mechanically applied load 

induced skin stresses is relatively minor as shown in Figure 9 and as evidenced 

by the more uniform level of stresses across the width of the specimen at the 

support. 

The results of hand analyses of the panels shown in Figures 10 and 11 for 

Specimens 1 and 2 respectively, assume support at the frame but do not assume 

that the panel is constrained from bowing in the Y direction at the supports. 

An effort was made to estimate the peaking of stresses at the supports caused by 
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vertical constraint across the width based on the Specimen 2 finite element 

analysis, as indicated by the dashed lines in Figures 10 and 11. The hand analysis 

assumes that the panels will behave as a beam rather than a wide panel because of 

the six-inch slot spacing. General agreement of the hand analysis and the finite 

element analysis away from the frame proves this assumption. The purpose of the 

six-inch slot spacing is to reduce core shear stresses, to reduce V-direction skin 

thermal stresses to negligible values, and to reduce X-direction skin thermal 

stresses approximately 30% by reducing the Poisson ratio influence found in wide 

plates. The intermediate six inch long slots over the supports (see Figure 3) have 

virtually no additional effect on X-direction skin stresses but further reduce core 

shear stresses. The influence of slots on core shear stress is discussed in the 

section entitled "Core Stresses". 

Specimen 1 as shown in Figure 10 is sized and loaded to provide at the 

interior supports a skin compression stress of approximately -572 MPa (-83 ksi) 

and a tension stress of 689 MPa (100 ksi) if full constraint is available at the 

support. If the panel bowing due to thermal distortion in the V-direction is not 

constrained, the skin compression stress will be -482 MPa (-70 ksi) and the skin 

tension stress will be 607 MPa (88 ksi). The influence of the skin pad on outer 

. skin stress levels over the support is shown in Figure 10. 

Specimen 2 is sized and loaded to provide an elastic skin compression stress 

of -807 MPa (-117 ksi) as shown in Figure 11 if full constraint is available or 

-710 MPa (-103 ksi) if full panel thermal distortion in the V-direction occurs. The 

elastic tension skin stresses for Specimen 2 will be 807 MPa (117 ksi) as shown in 

Figure 11 if constrained and 117 MPa (103 ksi) if not constrained. As mentioned 

previously, the compression operating stress level of the Specimen 2 outer skin is 

above the proportional limit of approximately -613 MPA (-88.9 ksi), see Figure 1. 

This will result in a small amount of loca'i plasticity at the support on the 
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compression skin which will cause a small amount of thermal strain relief. The 

unconstrained stress levels shown in Figure 11 are more likely to be achieved 

because the panel is supportE!d in bearing against the support. There may be a 

small reduction in peak stresses due to so~e redistribution of stress across the 

width of the specimen and a small amount of thermal strain relief caused by 

operating in the plastic range. 

The hand analysis which assumes no constraint of panel thermal distortion in 

the V-direction and the computer analysis which provides full Z-direction con

straint at the support establish the bounds or limits of the maximum skin stress 

levels that will occur over the supports during the test. As indicated previously, 

the test panels will be forced against the rigidized fiberfrax bearing and insula

tion pads on the test fixture supports by the reaction forces of the mechanically 

applied "loads and the thermal environment. It is anticipated that the mechanical 

forces may affect the bowing in the V-direction at the support which is discussed 

in more detail in the section lIeOre Stresses ll
• It is recognized that the Z-direc

tion constraint of the finite element model more closely reflects the direct 

attachment to a frame immersed in LH2 fuel of the reference vehicle. The test 

skiin stresses can be modified to equal the stress levels indicated by the finite 

element model at the supports by increasing the mechanically applied loads as 

necessary. 

Ultimate panel mechanica"1 loads with the boost thermal environment imposed on 

Specimens 1 and 2 are shown in Figure 12. Face skin compression failure stresses 

over the support were assumed to be at the compression yield stress of 758 MPa 

(110 ksi) and .0058 strain at 455.2 K (360oF). The .053 cm (.021 in.) gage of 

Spe~cimen 2 may cause failure at a slightly lower stress than the stress on 

the .064 cm (.025 in.) gage of Specimen 1. The .064 cm (.025 in.) gage skin 
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on Specimen 1 will be capable of sustaining significantly more strain than the 

.053 cm (.021 in.) gage skin on Specimen 2 at the interior supports because 

Specimen 1 has a small intracell buckling stability advantage over Specimen 2. 

For example, if a given skin gage and core combination fails at FC ' as shown in 
Y 

Figure 1, a small gain in stress failure level by changing skin gage may 

result in a large increase in allowable strain level. These facts may alter 

the mechanically induced failure loads - raising the load on Specimen 1 

relative to the load on Specimen 2. The possibility of not achieving the 

mechanical load levels shown in Figure 12 because of core failure is discussed 

in section "Core Stresses". 

CORE STRESSES 

A hand core shear analysis was conducted on the honeycomb core of Specimens 

1 and 2. The results are tabulated in Figure 13. The assumptions involved in 

the analysis include uniform and unconstrained support of the panel at the 

support points shown in Figure 4 and uniform distribution of core shear stress 

through the depth and across the width (Y-direction) of the specimens. The 

analysis shows zero core shear stress in the inside span core due to thermal 

loading because no external shear load is applied by thermal loading between 

interior support points. The analysis shows a decrease in thermally induced 

longitudinal core shear stress from limit load to ultimate load in the outside 

span. This phenomena is caused by the reduction of skin stress and thermally 

induced internal load when the combination of mechanical and thermally induced 

loads increase the skin stress level above the proportional limit stress. This 

subject is also discussed in the sections entitled "Face Skin Stress" and 

"Panel Design" and is shown in Figures 1, 9 and 11. The reduction of thermally 

induced skin stress and .load at ultimate load also results in a reduction of 
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thermally induced moment and a consequent reduction of the equal and opposite 

sign shear reactions at outer and inner support points shown in the limit shear 

plot in Figure 8. The core shear stress in the outer span is directly proportional 

to the outer support point shear reaction load. The hand analysis results, for 

mechanical loads, as shown in Figure 13, indicate that the inside span of each 

specimen has more highly loaded core than the outside spans but that the core 

shear stress on either specimen does not exceed the core shear strength of 3.37 

MPa (490 psi) of the honeycomb core. 

The finite element model used to analyze Specimen 2 included only the slot 

on the panel longitudinal (X-direction) centerline outer skin. The core shear 

stress results of the computer analysis data are shown in Figures 14 and 15 for 

the thermally induced and mechanical loads respectively. The core shear results 

reflect the influence of the Z-direction constraint at the supports. The Z

constraint closely matches the behavior of panel attachment to a frame held at 

the same temperature as the inner skin. As shown in Figure 14, the thermally 

induced longitudinal core shear stress (XZ plane) on the inner span averages zero 

as in the hand analysis but varies from 4.8 MPa (696 psi) near a slot to -2.74 

f'lIPa (-397 psi) midway between slots. Similar results are shown for the outer span. 

The thermally induced transverse core shear stress varies from -3.6 MPa (-522 psi) 

near a slot to 3.6 MPa (522 psi) at the next adjacent slot and zero midway between 

slots. The transverse stress and the wide positive and negative variation of 

longitudinal stress ;s caused by the combination of Z-direction restraint and· 

the expansion of the hot outer skin between the slots (in the V-direction) and 

the contraction of the cold inner skin in the V-direction. Figure 16 displays 

the mechani~al and thermal load caused core.normal stress at an interior support 

poi nt. These stresses include the reaction load 'compression stresses (repre

sented by the average stresses) as well as the tension and compression stresses 

13 



generated by theZ-direction constraint which prevents out of plane thermally 

induced displacement at the interior support. The peak thermally induced 

longitudinal and transverse core shear stresses falloff rapidly with increasing 

X-direction distance from the support. The affects of the constraint on the 

mechanically induced core shear stresses displayed in Figure 15 show less 

deviation from the hand analysis than the thermally induced core shear stresses. 

The hand analysis and the finite element analysis bracket the possible core 

shear and core axial load stresses that can be generated in the test specimens. 

The finite element model results indicate that a total of 26.9 kN (6040 lb.) 

tension loads are adjacent to the slot and edges required to constrain the 

thermally induced out of plane displacement of Specimen 2 at the interior support. 

The interior support reaction load due to the limit mechanical loads of Specimen 

1 and Specimen 2 are 8 kN (1800 lb.) and 12.9 (2890 lb.) respectively. The 

mechanical loads imposed during the test will tend to flatten the displacement 

caused by thermal distortion. If this flattening is proportional to the reaction 

-loads caused by the mechanical loads divided by the thermally induced reaction 

tension loads indicated by the finite element model, then Specimen 1 may be 

influenced to approximately 30% and Specimen 2 to 48% of the level of full 

constraint at the interior supports at limit loads. These percentages are 

probably reduced to a certain extent by the spring rate of the rigidized fiberfrax 

support insulation pads. 

The 150.6 kg/m3 (9.4 lb/ft3) honeycomb core available for this program has 

an ultimate core shear stress of approximately 3.38 MPa (490 psi) at room tempera

ture. The ultimate core crushing stress is estimated to be at least 5.86 MPa 

(850 psi). If the panels when subjected to higher mechanically applied loads 

during ultimate load tests approach the constraint at the supports which was used 

in the finite element model, then the ultimate mechanical loads shown in 
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Figure 12 (based on face skin failure) may be reduced by approximately 42% 

(ultimate core crushing stress divided by normal core stress at support, see 

Figure 16). Near full Z-direction constraint, the panels will be critical in 

core shear or core crushing or a combination of core shear and core crushing 

rather than being skin critical. 

The method in which the test panels react the mechanically and thermally 

induced loads in the area of constraint relative to the method in which panels 

of the Ref. 1 vehicle react mechanically and thermally induced loads in the 

area of a vehicle frame have been discussed. Other factors of difference 

,between the Reference 1 vehicle and the test configuration include the following. 

In the typical interior frame of a series of regularly space frames in the Ref. 1 

vehicle there is no significant net reaction load to thermally induced panel 

moments. The positive and negative longitudinal core shear stresses similar to 

those shown in Figure 14 must balance to zero average core shear. stress. The 

thermally induced core axial stresses at the frame must balance to zero between 

the slots and are in compression near the slots and in tension midway between 

the slots. 

PANEL FABRICATION 

Materials and processes specifications for the panels are noted in Figure 2. 

The panels utilize 150 kg/m3 (9.4 1b/cu. ft.) Rene'4l honeycomb core throughout 

each panel in order to not incur the cost of splicing lighter cores in the low 

shear zones. 

AMI 937 (developed as 930 FOB) braze alloy was used. A braze alloy weight 

of 1860 gm/m2 (1.2 gm/sq. in.) on the top surface (hot side) and 1550 gm/m2 

(1.0 gm/sq. in.) on the lower surface were selected in order to reduce develop

mental costs in refining the braze weight to the least amount required for 
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.48 cm (3/16 in.) cell size core. Previous development would indicate that at 

least a 20% reduction from this braze weight on this cell size core could be 

anticipated. 

Braze temperature was 1353 K (19750 F). Following brazing, the panel tempera

ture was dropped to 1200 K (1700oF) and held for one hour and then cooled to 

room temperature. Typical room temperature tensile properties following brazing 

and also following subsequent exposure to 500 simulated entry cycles to a 

maximum of 1006 K (13500 F) are shown in Figure 18. The tensile data, taken 

from Reference 4, shows that additional aging has occurred during cyclic 

exposure to the entry cycles. 

Figure 19 shows sheet measurements on the as-received upper face sheet of 

Specimen 1 prior to chem-milling. Figure 20 shows the same sheet thicknesses 

after chem-milling. 

A cold spot developed during the brazing of both panels in virtually the 

same location and size area. A furnace element was found to be missing in the 

furnace base. The graphite base fixture plates conducted sufficient heat to 

affected areas to just initiate flow. The areas were located in the outer spans 

where they will be subjected to low face skin and core stresses. A pattern of 

bolts was placed in the affected areas as shown in Figure 21 and 22. The 

affected zone was determined by examination of X-rays. 

A strip of tooling core used around the edges of the test panels, extended 

into the structural area of Specimen 2. The tooling core was fabricated from 

rejected Rene ' 41 foil which was supplied by an alternate rolling mill. This 

foil exhibited varying hues of surface oxidation. This variable surface oxide 

caused inconsistent results in acceptance test braze operations. The tooling 

core was used because of the limited quantity of acceptable Rene ' 41 honeycomb 
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core available for this contract. A 1.02 cm (0.4) inch strip was cut from 

Specimen 2 as shown in Figure 22 along its long edge to eliminate the tooling 

core thereby reducing panel width from 30.48 cm (12 in.) to 29.46 cm (11.6 in.). 

TEST FIXTURE DESIGN AND FABRICATION 

A test fixture was designed and fabricated to meet ultimate load require

ments shown in Figure 12, to provide space for radiant heat lamps to meet the 

temperature and heating rate requirements of Figures 6 and 7 and to provide 

the general loading and reaction points configuration of Figure 4. 

The test fixture shown in Figure 23 was built about a frame consisting 

of a 292 cm (115 in.) long beam supported by two vertical columns welded to 

2.54 X 61 X 91.4 cm (1 X 24 X 36 inch) base plates. The beam and columns were 

fabricated from standard A-36 W12 X 65 shapes. The beam height was 135 cm 

(53 in.) from the floor. The reaction pOints consisted of welded built up 

beams supported from the underside of the basic frame beam. The four reaction 

points interface with the panel as shown in Detail A in Figure 4. The mechanical 

loads were applied from the underside of the test panel at the four locations 

shown in Figure 4 by an evener system consisting of three beams on each side of 

the panel. The evener system was connected on one side to a hydraulic load 

actuator and on the other side to a reacting load cell. The actuator and 

load cell were pin connected to cross beams which were in turn, pin connected to 

a support welded to the top of the frame beam at its center of span. 

An open aluminum welded tub 42 X 194 X 71 cm (16~5 X 76.5 X 28 in.) deep 

was provided to contain the liquid nitrogen (LN2) used to simulate the Ref. 1 

vehicle LH2 fuel. The NASA Dryden Flight Research Center (DFRC) provided 

15.2 cm (6 in.) of poured styrafoam insulation around the closed sides of the 
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LN2 tub. The styrofoam was incased in a mating welded aluminum box. The LN2 
container was to be positioned so that the LN2 level would come to mid-core 
height of the edge sealed panel. DFRC established that an aluminum tape 
provided satisfactory edge seals to prevent LN2 contact against the core. 

DFRC designed and provided the radiant heat lamps to impose on the test 
panels the boost and entry temperatures and heating rates shown in Figures 6 and 
7. 

CONCLUDING REMARKS 

Two Rene ' 4l brazed HIC panels were designed and fabricated. A test plan 
was established to subject the panels to cyclic thermal gradients and mechanical 
loads equivalent to those imposed on an advanced space transportation vehicle 
during its boost and entry trajectories. A test fixture for the cyclic tests 
was designed and fabricated. Test conditions include both high thermal and high 
mechanical loads typical of integral cryogenic tank hot structures space vehicle 
boost conditions and moderate thermal and low mechanical loads of typical high 
temperature entry conditions. Analysis data for these conditions are included 
in this report. The panels, test plan and test fixture were delivered to NASA. 

18 



REFERENCES 

1. Hepler, A. K., and Bangsund, E. L.: "Technology Requirements for 

Advanced Earth Orbital Transportation Systems". NASA Contractor 

Report 2879, Boeing Aerospace Company, 1977. 

2. X-20 Dynasoar Program, Air Force Contract AF-33(657)-7l32, The 

Boeing Company, 1963. 

3. Taylor, Allan H., and Jackson, L. Robert: "Thermostructural Analysis 

of Three Structural Concepts for Reusable Space Vehicles". AIAA 

Paper 79-0874, presented at AIAA/NASA Conference on Advanced Technology 

for Future Space Systems, Hampton, Virginia, May 8-10, 1979. 

4. Lenhart, Herbert G: "Rene'4l Sheet Heat Treat Study" Boeing Aerospace 

Company, Structural Test Materials Laboratory Tension Lab Data Sheet 

2-7800-1 3/69, April 30, 1979. 

19 



20 

o 

20 

4 
COMBINED STRAIN --... 

THERMAL STRAIN 
2 

O&-________ --d---~-----d~------~------~------~--~--o .001 .oo~ .003 

STRAIN .... £ 

.004 .005 

Figure 1. Specimen 2 Compression Stress and $train 
of Outer Skin at Interior Supports 

.006 



4 7 10 

$ 11 

6 12 

----~----~-----------, I 

13 

p5 (-2 AUY) 
-4 H ASSY) 

lD.48 
m.O) 

I. 

~ .061 (.024) 'Uni ..... Skin Thickness 
.OS1 (.020) 
RemaiAiRg thicknesses to be IS 

'Chea-"I11ed but not less thln.OSt 
(.020) (OIIly One Place In EAtire 
"Inel IIeed Conto ... to .061 \.024) 
Dll'INl .051 \.020) 

6> .069 (.027) At "ini_ 'ad Thickness 
.064 (.025) 
--'in1Rg Thicknesses to be as 
ClMillt-Mllled - but ROt less than.064 
(.025) (OIIly OM 'lace ill loth Pads 
IeiIed Conte ... to .069 (.027) 

.064 (.025) 

Ii> ~ Thh:lIIIHs of -5 PIIM1 After 
CiIe 111111"" ift 21 Locs as 51tcom 

8> -5 Slth! OIIly 

8> Inz, '11l1li1 hi" bing I'I-ocIIss s,ec -
VICII\IIII Brazing ligllt lletgltt IteM'''! 
1IDIIIt~ " ... ls ,....,.......,..,....,l r~~flM 

~~~-=--~~===..,.,;...-+-----~===:.A--;~"7.Y7fiJ (1, .203) 3.06 COII£ IlEIGIIT 

(1.1117) 3.04 

112.11 ______ ,....... __ ~II t 

rt> T.lenmee ~ .152 (.06) U111_s Ott!mrise IIoted 

~ ~1taoj I.Iy rIohI- to IIPIS 11 0 - Cere to 
I:V lie llelded m 110"" "- 802-0703 WEl 

dated Feb 14, 11178 to Boelng AerosPACe 
Cclap&ny 

J----------- (72.0) 

1 -5 

1 2 -4 

1 1 -3 

- -2 

- -1 

QTY QTY PAIIT OR 
REQO REQO ID£1ITIFYllIIi MO. 

. 
aene'.l 35.6 I 188 (14 I 74) sti ... 076 (.OlD) SlIt m AMS 5545 As Su\lltl1ed I.Iy Boe1"" 

lcme'41 35.6 X 188 (14 X 74) 
, 

stin .053 (.021) Stlt m ms 5545 As Supplied By blng. 

Core 1D5 (1.2) Hlg11 RCa 3-15 Rene'41 Hone~ Core 
35.6 X 188 !14 X 74) 

"IMI Assy (Test) p 
"IMI Assy, (Test) \6.> 

IIOMEIIClAME OR D£SCltII'TIOR, 'MAT'ERIAL AND SPECIFICATION 

Figure 2., Panel Assemblies 

IillUSICIIS 
CII (In.) 

-- ---P~NEL t.!.SE.""'e.I..V 
~~T ONl.."t 



N 
N 

B 

A-A 

. B-B 
1.n: 11
•
70

) >--

(.O~) .23 
(.05).13L 

f 
~ .... 
c-c 

EN 1) 

UT 

rTt«:lUT PADS) 

~"I"Et!. 
254-20710-2 
SLOT TO BE C 
THRU -5 SKI~ 
(i.e. SKIN Ie' 

C .... 
f 

SLOT 30.5 

c,.,.. -\, 
t~.~) 15.2 

(REF) (12.0) 

~ 
A-A FOR END r" ----182.9 (REFl-----I'1 

(72.0) 

or SLOT (TVI' FOR SHORT SLOTS) ----r-
f C....... . 30.5 (REF) (12.0) 

I------.;...."':!"J'---~_:_'------------_i c SLOT I"" -1.-,- . c:'" rI (6.0) ~5.2 

45.7 --J 15.2!-- ~ 15.2l--
(l8.0) (6.0) . (6.0) J----------....... 121.9 

(48.0) 

-8 SlOTTED IWC£l 

Slomo PANEL 

1.62 (3.CI) 
em) 

~irRIAl AMD SPECIFICATION 

Figure 3. Slot Configuntions - Panel AuemblitJ$ 

-7 (SPECIMEN 2) 
254-20710-1 
CUT SlOTS THROUGH 
.,. SUltFACE 

DIMEIISIOIIS 
an (in.) 



N 
eN 

SYM 
ABOUT 

7~2em(3IN) t 

t---83.B2 em{33 IN) -! 
I. I 

1 45.72 em (18 IN) -F 76.2 em (30 IN)] 
. 30.48 em ----t I 

RADIANT HEAT APPLIED 
EVENLY TO ENTIRE 
TOP sIDe 

LOAD REACTION 
4 PLACES ~
SUPPORT 

(12 IN) I 
-~==~~~~~==~~~-~~~~==~ 

L,~ em J 

I rETAllA 

1(9 IN) I --

1111 r 
2.54 em n.o IN} 

LIQUID NITROGEN 
(BOOST CONDITION) 

...... ---

SUPPORT 

=rop SKIN 

I -- I 

O.254cm (0.10 IN) COMI'ftQRO 
FIBERFRAX PAD 

--

DETAIL A 

Figure 4. P;me/ r.t Fixture ScIHItmItic 

LOAD INPUT 
4 PLACES 

LN CONTAINER 
USED FOR 
BOOST CYCLE 
ONLY 



24 

ENTRY 

UNITS BOOST AT 
MAX. TEMP. 

RATE 

K 20 156 
TEMP (INNER SKIN) (oF) (-423) (280) 

K 478 672 TEMP (OUTER SKIN) (oF) (400) (750) 

% [Eo ( a.ll T)crEj 4.allT).J 
(FOR CONDITION COM. . MPa 472 310 
PARISON ONLY; ASSUMES (KSI) (68) (45) 
EOUAllNR & OTR 
SKIN GA.1 

N/m2 1.16x105 4 
FUEL TANK PRESSURE 1.03xl0 , 

(PSI) (16.8) (1.5) 

Figuntl 5. Advanced Space Transportation Vehicle (Ref 1) 
Boost and Entry Condition Comparison 

AT 
MAX. TEMP. 

995 
(1330) 

1034 
(1400) 

1.3 
(1.2) 

' l.03xl04 
(1.1;) 



500 

400 250 
0 

~ u. 
\ J 
w w 
ex: ex: 
:::> :::> 
~ 300 I--

e( 
ex: ex: 
w w 

0 Q. Q. 
~ ~ 
w w 
I-- I--
z z 
~ ~ 
(I) (I) 

-250 

o 
-500 

TO .. 455.3K (3600 F) 
MAX. TEST 
BOOST TEMP 

OUTER SI(IN * 27.8K(:t500F) 

INNER SKIN 
Ti .. 88.4K (-300 OF) LN 

TIME-SEC 

Figure 6. Boost Profile 
• 

NATURAL COOL DOWN 

~ 
TEMP, RANGE 
TO START 
NEXT CYCLE 

t 

25 



26 

1200 

1000 

~ 

J 
w 
IX: BOO 
::I 
!;;: 
IX: 
W 

~j 
W 
.... 600 
z 
~ 

~400 

200 

LL 
o 
J 
w 
IX: 
::I 
!;;: 
IX: 
W, 
III. 
::E 
w .... 
~ 
~ en 

1500 

1000 

500 

0 
0 

OUTER SKIN 
TEMP. TOLERANCES 
+27.8K (+500 F) 
-13.9K -250 F 

E) -- 1034K (14000F) 

e - .. ~~ -922K (12000 F) 

/ ,''''' . , '.,.. 
" + , 

- @ j+ \ 

/ '\ 
t \ 
I \ 
I INNER SKIN 

I , (TEMP. NOT CONTROLLED) 

1000 2000 

TIME-SEC 

I I I I 
5 10 26 36 

TIME,- MIN. 

Figure 7. Entry Profile 

3000 

J 

\J 

I 
56 



1200-
IiOOO 

1000 
4000 

800 

3000 
eoo 

2000 
400-

wo 1000 

5 0 z 0 
I ~ 

~ 
.200 ~ ·1000 

9 
III: 0400 

~ -·2000 < 
til 

3 .4)00 ~ 
t:: I- -JOOO 
::I! ~ :i .4)00- ...I 

-4000 

·1000 

-5000 

-2000 

11 

10 
-1000 

G 

ld: 0 

! E 
z 

l 
-6 1 

l- I-:z z 
~. w 

:IE -1000 
~. ·10 i 
I:: t:: 
:i ~ ::i ·HI ...I 

-2000 
-20 

·2i 
~OOO. 

o (91NI 
22.88 CM 

1-----

6 10 
_--l...-

20 

" , 

16 

40 

'THERMAl~' 

'j7 

(1BINI 
45.72 CM 

-, 

430N 
(980 LBI 

t I 
(30 INI I 
76.2CM I 

SYM 
ABOUT 

t. 

V-THERMAL 

SPAN-IN 
(CENTER ., 

20 26 30 36 
)( DIRECTION 

60 100 

SPAN -em 

80

1 

V-MECHANI CAL 

MECH. LD· .auN 
(980 LSSI PE R POINT, 

MECHANICAL LOAD - 444.5 Kg (HO LBlIPT 
TEMP; OUnlDE SKIN 465.21< (360°':) 
INSIDE SKIN 88.6,K (-300oFI 

I 
"'---- -1 

Figure 8. Specimen 1 Limit Shear &. Moment Di8flrwns 

27 



600 

400 
., 

/l.. 
~ 

1 

fa 
w 200 ex: 
lii 
z 
~ 
(I) 

w 
() 0 <C 
u. 
!:: 
~ 
::::i 

-200 

-400 

-600 

28 

700GN 
. (1575 LS) 

f 
(9 IN) 
22.86 OM 

AT Y = 5.715 CM (2.26 IN) 

(18IN) 
45.72 CM 

7006N 
(1575 LB) 

. t !, 
(30 IN) I 
76.2 CM 

.._..".----- (71) 

THERMAL 

THERMAL 
_~ __ ---(.7H 

r-- 15.24 CM I (6 IN) 463K 
(3900F) 

AT X· 45.08 CM 
,.,. ADJACENT TO 

(86.3), .... ~PORT 

THERMAL 

WIDTH, Y-CM 

I I ! ! 

0 Ii 10 15 

-------MECHANICAL 

(-86.3) \L.MAL 
SYMBOL 
(KSI) 

NASA LANGLEY RESEARCH CENTER FINITE ELEMENT 
(SPAR) ANALYSIS 

HOTSIDE 463K (390°F) 

COLDSIDE 88.6K (-3QOoF) 

Figure 9. SpecimtJn 2 Limit Face Skin Stresses - Finite Element Analysis 



120 
,800 

100 

600 

60 400 

Ui 40 
::.!! 

'" l Q. 200 
~ ~ 
w 

20 
l 

0:: ~ In w 
0:: 

Z In ~ 
(/) 0 Z 0 
w ~ () (/) « w u. () 

I::: -20 « 
:::l: u. 
:::i 1:::.200 

:::l: 
:::i 

-40 

·400 
·60 

-80 
-600 

·100 

:800 
'1~ 

435QN 

J~J 

(9 IN) 
22.88 em 

UNCONSTRAINED 
ELASTIC STRESS 

v 
(18 IN) 
45.72 em 

[l>CONs'iRAINED ELASTIC STRESS 
. PEAKING OF THERMAL 
STRESSES OVER SUPPORT-ESTIMATED 
FROM FINITE ELEMENT ANALYSIS 
OF SPECIMEN 2. 

(30 INI I 
76.2 em 

UNCONSTRAINED 
ELASTIC STRESS 

CM 

-COLDSIDE THERMAL 
STR~SS 

COMBINED LIMIT 
MECHANICAL & THERMAL 
STRESS 

MECHANICAL STRESS 

LENGTH, X 

100 ' 

COMBIN£O LIMIT 
MECHANICAL & THERMAL 
STRESS 

-------~ tHERMAL STRESS 
HOTSIDE 

FOR ANALYSIS: 
SPECIMEN NO.1 
BASIC SKIN GAGE-

0.533 em (.021 IN) 
PADS .0635 em (.025 IN) 
CORE DEPTH, 3.048 em ~,.2 IN) , 
CORE DENSITY 160Kg/m (9.4 LBSIFT3); 
HOTSIDE 463K (3900 F) 
COLDSIDE 88.6K (-3O()OF) 

Figure 10. Specimen 1 Limit Face Skin Stresses 
at Y = 5.715 em (2.25 in.) . 

29 



120 

'1,00 

80 

40 
en 
,~ 

l 
~ 20 
w 
a: 
tn 
z 0 Q 

,CI) 
W 
u' c( 

-20 u.. 
t::: 

.:IE 
:J 

-40 

·60 

~100 

-120. 

30 

7006N 
(1575 l.8} 

V t v 
0 (91Nl (18 IN) 

7006 N (15.1:1 
--~----~ __________ L-________ (_~I~ I 

~X 22.88 em (46.Y2 em' 

ll>~\ 
76.2 em, I 

:800 
'\ 
I 
I 

UNCO...r""INED 
ELASTaQ STRESS 

'iOQ 

~. 

., 
~ :~ 

.~ . 

; 
! P 
~ 
~ 

~ u. 

1.200 -.... 
' -'4OP 

D> 

UNCONSTRAINED-_-.lll~ 
ELASTIC STRESS 

~CONSTRAINED ELASTIC STRESS 
. P EAKINS OF THERMAL 

,STRESS AT SUPPORT ESTIMATED 
'fROM FINITE ELEMENT ANALYSIS 
OF SPECIMEN 2 

Figure i 1. $pecimfJn 2 Limit Face Skin Stresses 
at Y - 5.715 em (2.25/N) 

,COLD SIDE THERMAL 
ST~ESS 

COMBINED LIMIT 
MECHANICAL & THERMAL 
STRESSES 

MECHANICAL STR68S r:: SYM ABOUT t 

IN LENGTH, X 

CM 

MECHANicAL STRESS , 

COMBINED LIMIT 
':MECHANICAL & THERMAL 
:STRESSES 

. HOtS)DE. THERMAL 
STRESS .. -

FOR ANALYSIS: 
SPECIMEN 2 
SKIN GAGE .0533 C:1fI(.021 IN) , 
CORE DEPTH 3.048 em (1.2 IN) ... 
CORE DENSITY 160K~3 (9.4 LEIS/Fi3) 
HOTSIDE 463K (390°F) - .' 
COLDS!DE BB.6K (-3OQOF) 



MECHANICAL SKIN TEMPERATURE 
SPECIMEN [>- FAILURE LOADS' 
NUMBER PER LOAD POINT HOT SIDE COLD SIDE 

N LB K of K of 

1 280n 6312 4155.2 360 a. -JOO 

2 23584 5302 456.2 380 ••• ~300 

ASSUMES LOCAL FACE SKIN FAILURE AT FCY - 758 MPa (110 kin AND .0061 STRAIN ON HOT SIDE 
AT INTERIOR SUPPORTS 

Figum 12. Test Specimens Ultimate LOIIds 

31 



W 
N 

, 
, ZECIMEci' 

1 

2 

1 

-

2 

INSIDE SPAN OUTSIDE SPAN 
MECHANICAL ItI~BM~ MECHANJCAl THERP<! At 

MPa .f!!.L MPa ' 
..f!!l. .J4f.L 1 nl. MP., , J!!!U.. - -

1 MIT LON< ~ffUDIHA .. CORESH EAR STRaiS (AVER~:3E) 

';'.461 H56.9) Q 0 .387 ~~.1) .563 (80.2) 

-.741 (-107.5) 0 0 .122 (90.2) .553 (10.2) 

.uLTIMATE LONGIT,UOI~Al COR E 'SHEAR STRESS (SKIN CRITICAU 

-2.91 , f-431) 0, 0 2.49 C361) .546 ' (79.2) 

.. 2.50 ' (-362) 0- 0 2.08 (303) , .4. (72.2) 

TYPICAL ULTIMATE CORE SHEAR STRESS (FAILURE)" 3.38 MPa (480 PSO 

Figure 13. Longitudinal Core Shear Stress (Hand Analysis) 
at Support X :: 45. 72 em 

lOAD/PT 

N JJ.!l... -
4359 (9tQ ' 

7006 (1575t 

28077 t8312) 

235M (5302) 



eN 
eN 

i? 
l 

~ 
w 
a: 
t; 
a: 
c( 
w 
::I: 
CI) 

w 
a: 
0 
() 

II 
L 
:E 
I 
CI) 
CI) 
w 

0 a: 
t; 
a: 
c( 

·200 
w 
::I: 
CI) 

w 
a: 
0 

~ 
() 

-«lO 

-100 

i 

4 

3 

:I 

1 

0 

., 
·2 

-3 

-4 .. 

~VERAGE CORE SHEAR STRESS (HAND ANALYSIs) 

/~ 

/' IN 

CM 

NASA lANGLEY RESEARCH 
CENTER FINITE ELEMENT 
PROGRAM RfSULTS 
HOTSU)E 4alK (390°f) 
COlDSIDE 88.IK (-3QO'»f~ 
CORE DENSITY 150KgIm (9.4 LlSIfT'l 
CORE DEI'TH 3.041 em (1.2 IN) 
SKIN GAGE .0533 em (.D21 IN, 

Figure 14. Specimen 2 Core Stresses Adjacent to or at X = 45. 72 em 
Support Due to Thermal Loads 

11 



w 
~ 

f 
l 
~ 
w 
a:: 
ti; 
a:: 
« w 
V5 

400 

200 

o 

w -200 
a:: 
8 

-400 

3, 

~ 
2 

::E 
l 

en 
en 
w 
a:: 
t; 0 
ex: « 
&II -\ J: 
en 
w 
a:: -2 
0 u 

~3 --i 

7006 N 7006 N 
(1575 LS) (1575 LS) 

V t v t I 

~x 
(9 IN) 
22.86 eM 

(18 IN) 
45.nCM 

(30 IN) I 
76.2 CM 

SYM 

MO~ u~ IT> i 
OUTER SPAN 
LONGITUDINAL 

IN - -
2 3 4 6 WIDTH, Y 

10 12 14 
eM 

16 

- ---
~[3> 

INNER SPAN 
LONGITUDINAL 

'- TRANSVERSE X'" 45.7 CM (18 IN) 

AT SUPPORT 

[!> NASA LANGLEY RESEARCH CENTER FINITE ELEMENT (SPAR) ANALYSIS 
USING 7006 N (1575LB) AT FOUR LOAD POINTS 

Il> HAND ANALYSIS 

Figure 15. SpecifT'lfln 2 Core Shear St,.,. lit IntBrior Support 
Due to Mechanical Loads 



w 
CJ1 

c;; 
0.. 

l 
~ 

.W 
a:: 
t; 
-J 
« 
:lE 
a:: 
0 z 
w 
a:: 
0 

,U 

2000-1 

1600"" 

1200-1 

.. 
0.. 

400 
:lE 
C 

en en 
w 
a:: 

0 t; 
-J « 
:lE 
a:: 

-400 0 z 
w 
a:: 
0 

-800 
u 

.1200-1 

·1600-1-

·2000~ 

141 
7006 I'll 70061'11 

ii575 LSi (1575 LBlj 

121 \ g 1 :sz 1 I 
(911'11) (18 !N) (JO IN) I 

~X 
22.86 CM 45.72 CM. 76.2CM. 

10-1 \ SYM'ABOUT 
t. 

8 

:j \ 
THERMAL LOADS 

r AVERAGE STRESSES 
(HAND ANALYSES) 

2 I ,\ /2/ / /5 

IN 
WIDTH, Y 3 4 6 

0 
~ ~ J -6- - .8- -10'&'" 12- - -14- 16 

-~--·2 ------ --E CM 
' -

~CHANICAl--4 
LOADS 

X" 45.72 CM (18 IN) 
-6 

FINITE ELEMENT 
RESULTS 

·8 j CORE NORMAL STRESS CALCULATlO", 
·10 

NASA LANGLEY RESEARCH fN = RN/dW (FINITE ELEMENT RESULTS) 
CENTER FINITE ELEMENT 

-12 f N " CORE NORMAL STRESS AT A NODE PROGRAM RESULTS 
HOTSIDE 463K (39()°F) 

.14~ 

RN " REACTION LOAD AT A SUPPORT NODE (Z DIRECTION) 
COLDSIDE 88.6K (.3QOoF) 

d '" SUM 1/2 DISTANCES TO ADJACENT NODES (Y D1RECTION) ,CORE DENSITY 150 Kg/m3 (9.4 LBS/FT3) 
W '" WIDTH OF PAD ON SUPPORT == 2.5401 (1.0 IN) CORE·DEPTH 3.048 CM (1.2 IN) 

SKIN GAGE .0533 CM (.021 IN) 
LOAD PER POINT 7006 N (1575 LB) 

Figure 16. SptJCimen 2 Core Normal Stresses at Interior Support 
Due to Mechanical and Thermal Loads 



W 
0'1 

SUP 
, 

V'· 0). I (5) 

TEST { 
SPEC~MEN 
DIM. ( 
SYSTEM 

JOINT 
NO:S 

Y, 

i 
z 

1-

I 249 

247 

245 ! 

243 I 

241 

241 

242 

~ 

'(15: ~ 20 30 

(10) 
I 

J -

JOINT FIXITY 

50 
I 

(20) 
I 

PLAN E OF SYM: 

60 10 80 
I , 

(25) (30) 
I 

COLDSIDE (NON-5LOTTED) 

EL 

I 
em 

(33)( IN) 

:~ 
4 SPACES 

5 3.81cm 
0.5 IN). :_1-
t.5~ em 
(.611N) 

t :=t 
(-.61 IN) 
-1.55cm 

JOINT NO. 6x OyOZ 6X 6y 6z SPAR FINITE ELEMENT ANAL 
JAMES ROBINSON NASA LaRC 

2 1 1 0 1 1 t } PANELCI. SKIN GA •• 0533 em (.021 IN) 

1 ,~,4,5,6.7 .1.9.10' 1 0 0 1 1 1 PLANE OF SYM. CORE DEPTH 3.048 em (1.2 IN) 
CORE DENSITY 150 Kg/m3 3 

12 T.HRU 242 BY 10 0 0 1 1 1 COLD SURFACE ~ INE$. PlANE ()F SYM (9.4 LBIFT 

111,113,115,117,119 0 0 1 1 1 1 (INTERIOR SUl'PQRT NODES) 

241,243,245,247,249 0 0 1 1 1 , (END SUPPORT NODES) 

OTHERS 0 0 0 1 1 1 

Figure 17. Finite Element Modfll - NASA Langley Research Center' 
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.on CM (.D3IN.) GAGE RENE '41 SHEET SUBJECTED TO BRAZE AND ~ CYCLE 

ROOM TEMPERATURE TENSION STRESS (TYP.) 
NO. OF 

ENTRY CYCLE 

ULTIMATE 

MPa 

1289 

1420 

ELONGATION 
YIELD MAX. TEMPERATURE 

ENTRY 

KSI MPa KSI % CYClES DC 

187 869 126 24 - -. 
206 1020 148 14 500 1006 

FigcH'fl 18. Room TempenltcJlle T.". Propertift of RflM '41 Shftt • .wcSld 
to BTUflllnd A(JfI Cycle lind Entry Cydfl ThINmIII ExD08.llW 

of 

-

1350 



w 
co 

SHEET HARKED .081 em (.032 11'1) III 5III'I'lISt 

• 0288) {III 
.0732 

(.029Of'lIl 
.0737 

(.0296) Ix 
.0752 

C0300) Ix 
.0762 

(.0285) (.0285) (.0280) (.0275) 
.0724 .0724 .0711 .0698 

x _ l!i • 

( .0274) 
.0696 

JII 

243.8 (96) 04 

(.0273) (.0276) 
.0693 .0701 

• sa 

( .0277) 
.0704 

a 

(.6!s3) 
.0719 

• 
( •0284t 
.0721 

. x 

( .0291) 
.0739 

• 
(.0295) 

.0749 

x 

.. (.OHOl 
.rrT37 

XI·(·03OO) 
.0762 

\.0298)1. 
91.44 .0757 _I (.0300) 

. "'t .0762 (36) 
(.0295) a.. 
.0749 .... 

(.0295) Ix 
.0749 

(.0294) Ix 
.0747 

lIItl (.0300) 
.0762 

xl (.0300) 
.0762 

(.0291)( 
.0739 

(.0286). ;I , II • ,- I II I • II III. -1 (.0295) 
.0726 . .0749 

.07a4 .0724 .0711 .0701 .8693 .0701 .0711 
(.0285) (.0285) (.0280) (.0276) (.om) (.OZ7S) (.O28O) 

.0721 
(.0284) 

.0724 
(.0285) 

.0749 .0749 .0749 .0751 
(.0295) (.0295) (.0Z95){ .0298) 

SYM80l 011 (IN) 

Fi(lUnl 19. SptJcimtm 1 HotMJII Faa She« Thick"., Prior to a.m.MillinB 



DRAWING THICKNESS CHEM MILLED, 
LOCATION 

'THICKNESS FiEF. 'MIN MAX MIN MAX 
FIGURE 2 

em em (IN) (IN) em (IN) 

1 .051 .061 .020 .024 .058 .023 

2 

1 1 1 
.058 .023 

3 .058 .023 

4 .OM 0.69 .025 .021 ' .066 .026 

5 

1 1 1 1 
.064 .025 

6 .064 .025 

1 .061 .061 0.20 .024 .058 .023 

8 .058 .023 

9 .058 .023 

10 .058 .023 

11 .057 .02~6 

12 .066 .022 

13 .051 .0225 

15 .055 .0215 

14 .055 :0215 

16 .064 .069 .025 .027 .064 .025 

17 

1 ! 1 1 
.064 .025 

18 .064 .025 

19 .051 .061 .025 .027 .058 .023 

20 

1 1 ! 1 
.056 .022 

21 .056 .022 

Figure 2a Spt/Jeirmm 1 Hotside File" Sheet Thickntm After Chern-Milling 
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A~; (.051 REF 
r----I,..------, 

+1 + + ~ + -+- -V. -----4---"--

+8 -+ t t t + 
\ 

~. + + + 
'\ t + 

23 + t 
+21 .I 

l 
~ 

I 

TYP. 
HOLE 

1 
7 
8 
14 
15 
20 

23 
26 
28 

INCHES 
LOCATION ±.03 

A B C 
4.30 .82 

3.0 .82 
4.0 4.0 

2.75 4.0 
3.12 5.83 

2.56 5.83 
1.98 B.50 

2.08 B.12 
.40 9.9 

'--4--INSTALL 28 FASTENERS 
- SEE SECTION 0-0 

~~LlGHT BRAZE ZONE 
CORE TO FACE SHEETS 

.493 (.194) 01A. HOLE 

.483 (.180) 
BAC B30U 3U22 
BOLT 

WASHERS It:> 
AN960 C10L • 
AN960 C518L 
AN960 C716 

TYP 
HOLE 

1 

7 
B 

14 
15 
20 

23 
26 
28 

CENTIMETERS 

LOCATION±.078 

A B C 
10.92 2..os 

7.62 2.08 
10.16 10.1~ 

6.9B 10.1~ 
7.92 14.81 

6.50 14.81 
5.00 21.59 

5.28 20.6~ 
1.02 25.15 

rt> .WASHERS SAME 
ON 80TH FACE SKINS 

I BAC N1OGW3A 
0-0 TORQUE NUT 1.36-1.69 N·m (12-15 IN. LBS) 

Figure 21. St»cimen 1 Bolt httem il1 Light Brutl Zone 



B 

--I4oo"~f---+ .• 127 (.05) REF 

'------+-' INSTALL 16 
FASTENERS 
- SEE SEC 0-0 
FIGURE 18 

LIGHT BRAZE ZONE - CORE TO FACE SHEETS 

CENTIMETERS INCHES 
TYP. lOCATION +.076 LOCATION +.03 
HOLE 

A 8 C A B C 

1 1.02 10.03 .4 3.95 

4 6.27 10.03 2.47 3.95 

7 6.35 14.66 2.50 5.77 

8 4.70 16.13 1.85 6.35 

12 4.42 21.54 1.74 8.48 

15 5.21 20.47 2.05 8.06 
16 3.68 25.02 1.46 9.85 

FigtJl'622. Specimen 2 Bolt Pattern in Light Braze Zone 
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