
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



► "'Made availa, , ie ;,;: '	 IN ', :a sponsorship
in the ie!:	 ^^ ^'s'	 E82 0064semination o` `,r:.	 Survey 
Program irt_ rc .:	 .4 ;;;;bout liability
for any use made kr A f-or."	 V^

EVALUATION OF HCMM SATELLITE DATA FOR

ESTUARINE TIDAL CIRCULATION PATTERNS AND

THERMAL INERTIA SOIL MOISTURE MEASUREMENTS

Donald R. Wiesnet
	

Principal Investigator
David F. McGinnis, Jr.	 Co-Investigator
Michael Matson
	

Associate
John A. Pritchard
	

Associate

(Edl-10064) EVALUA`IION OF HCH6 SATELLITE	 N8 —20587

DATA FUR ESTUARINE TILAL CIRCULATIGN	 aC' 
n O^ ^3 Llo'

PATTERNS AND THEfiMAL INERTIA SCIL MOISTUEiE
REASUREBENTS Fiaai Report (bational Cceanic	 U-c.Las

and Atmospheric Administraticn) 79 p	 G3/43 00064

National Oceanic and Atmospheric Administration
National Earth Satellite Service

Earth Sciences Laboratory, Land Sciences Branch
Washington, D.C. 20233

June 1531

FINAL REPORT

Prepared for: GODDARD SPACE FLIGHT CENTER,
	 RECEIVED

GREENBELT, MARYLAND 20771
	

/

'N'

h`"^ T

T^ -Nal



^	 1

•	 A

`.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iv

PREFACE vi ii

ACKNOWLEDGEMENTS viii

EXECUTIVE SUMMARY X

PART A:	 TIDAL CURRENT CIRCULATION PATTERNS IN ESTUARIES 1

Introduction 1

Currents 2

Delaware Bay 3

Potomac River Estuary 3

The 1.355 Luca: Time (1855Z) HCMM Image of 16 March 1979 6

The 1459 Local Time (19592) AVHRR Image of 16 March 1979 9

The 1313 Local Time (1813Z) HCMM Image of 17 March 1979 11

Cooper River 16

References 20

PART B:	 SOIL MOISTURE 21

Introduction 21

Concept of Thermal Inertia 21

Objective of the Study 21

Selection of a Test Site--Luverne, Minnesota 22

RSCh Gage 22

Selection  of HCMM Coverage 25

Literature Review 27

Field Surveys 32

October 20, 1977 32

May 20, 1978 34

December 20, 1978 and December 6, 1979 36

Summary of First Four Field Surveys 36



TABLE OF CONTENTS (cont'd)

Detailed Summary of 13 June 1979 Field Survey	 36

Collection of Soil Samples, Soil Temperatures,
Aircraft and Satellite Data	 36

Analysis of Data	 37

Summary--Significant Results 	 58

References	 59

PART C: A COMPARISON OF HCMR AND AVHRR IMAGES OF URBAN HEAT ISLANDS 	 61

APPENDIX A - Heat Capacity Mapping Mission (H0N) Thermal Surface Water

Mapping of Lack Anna, Va., and its Correlation to Landsat,

by Dr. Alden P. Colvocoresses, U.S. Geological Survey. 	 64

j

i

0

x

171



I

LIST OF ILLUSTRATIONS

Figure 1.	 HCMM thermal image of 11 June 1978 (1430 hours local) of the

Delaware Bay estuary. The cold (light-toned) Atlantic marine
water is flowing into the Bay at the onset of a flood tide.

Upriver, the Delaware is still at ebb flow.

Figure 2. This sketch map of the Delaware Bay was taken from National

Ocean Survey Charts based on current measurements two hours

before maximum flood. Compare with Figure 1.

Figure 3.	 Index map ofthe Potomac River test site showing localities

mentioned in the report.

Figure 4.	 HCMM daytime thermal image of 16 March 1979 (1755Z) (1255

local time) of the Potomac River estuary. Dark areas are
cold; white areas are hot. The estuary is in mid-flood stage.

The change in tone indicates the approximate position of the

tidal "front".

Figure 5.	 AVHRR da ytime thermal image of 16 March 1979 (1959Z) (1459

local time). This NOAA TIROS-N image was taken two hours

after Figure 4. Mid-flood conditions pertain, but high water

slack is occurring off Maryland Point where the water appears
slightly warmer owing to a lessening turbulent flow.

Figure 6.	 HCMM daytime thermal image of 17 March 1979 (1813Z) (1313 local

time). A flood tide is in evidence in the lower estuary. Warm

upland water lies off the mouths of the Potomac and the

Rappahannock Rivers, discharged by the previous ebb tidal
outflow.

Figure 7.	 A thermal surface digital map of the Lower Potomac River

estuary prepared from HCMM computer tapes.

Figure 8.	 Thermal surface digital map of the narrows at Big Bend in

the Potomac River showing the location of the power plant and

the direction of flow.

Figure 9.	 Index map of the Cooper River test site showing localities

mentioned in the report.

Figure 10. Thermal surface printout of uncorrected digital count values
showing the ability to distinguish water temperatures and to

determine tidal stage (flood).

Figure 11.	 Location of Luverne, Minnesota.

Figure 12.	 Location of flight lines at Luverne, Minnesota test site.

Figure 13.	 Amplitude of diurnal surface soil temperature wave vs. volu-
metric soil water content (After Idso, et al., 1975).

N

iv



ORIGINAL PAGE IS

OF POOR QUALITY

Figure 14.	 Volumetric soil water content vs. soil water pressure

potential for four different soils (After Idso, et al., 1975).

Figure 15.	 Amplitude of diurnal surface soil temperature wave vs. mean

daylight soil water pressure potential of the 0-2-cm depth

for four different soils (After Idso, et al., 1975).

Figure 16.	 Location of data sampling points at Luverne test site, 10/20/77.

Figure 17.	 Location of data sampling points at Luverne test site, 5/20/78.

Figure 18.	 Diurnal variation of wind speed and direction, air temperature,
and relative humidity at RSGh gage site from 1800 CDT 6/12/79
to 1700 CDT, 6/13/79.

Figure 19.	 Variation of surfa e. _emperatures at Lucerne test site, 6/13/79.

Figure 20.	 Location of data sampling points at Luverne test site, 6/13/79.

Figure 21.	 Variation of temperatures at 10-cm depth at Laverne test site,
6/13/79.

Figure 22.	 Distribution of soil moistLtre..content,in percent, of soil
samples collected at Luverne test site, 6/13/79.

Figure 23.	 Surface temperature vs. s0 l moisture content, 6/13/79 data
set.

Figure 24.	 Temperature at 10-cm depth vs. soil moisture content, 6/13/79

data set.

Figure 25.	 Gamma-ray flight lines ai: t;u verne test site, 6/13/79.

Figure 26.	 Nighttime (0303 CDT) WB57 HCM thermal-IR image of Luverne test

site, 6/13/79, (Approximately 1:90,000).

Figure 27.	 Daytime (1358 CDT) WB57 HCM thermal-IR image of Luverne test
site, 6/13/79, (Approximately 1:90,000).

Figure 28.	 WB57 HCM visible image (1358 CDT) of Luverne test site, 6/13/74.
(Approximately 1:90,000).

Figure 29.	 WB57 Zeiss false color-IR photograph (1358 CDT) of Luverne test
site, 6/13/79, (Approximately 1:95,000).

Figure 30.	 HCi,'M HCMR visible image (1:4,000,000) of Luverne test siLe,
Scene ID A041318570.

Figure 31.	 HCMM HCMR thermal-IR image (1:4,000,000) of Luverne test site,
Scene A041318570.

Figure 32.	 HCMM HCMR thermal-IR image (1:1,000,000) of Luverne test site,
Scene ID A041318570.

r 

v



V

Figure 33.

	

	 Enlarged HCMM HCMR thermal-IR image (6/13/79) overlaid on

drainage network of Luverne vicinity.

Figure 34.

	

	 Digital thermal display of HCMM HCMR data (Scene ID
A041318570) annotated with drainage network and flight lines

of Luverne test site.

Figure 35.

	

	 NOAA-6 llum AVHRR image of the Washington, D.C. and Baltimore

area taken on March 16, 1979, at 1959 GMT. The warmer urban

and suburban areas show up as dark gray shades. Resolution
As 1.1 km.

Figure 36. HCMM llum image of the Washington, D.C. and Baltimore area
taken on March 16, 1979, at 0100 GMT. The warmer urban and
suburban areas show up as dark gray shades. Resolution is

0.5 km.

I I I	 v i



LIST OF TABLES

Table 1.	 HCMM coverage of Luverne, Minnesota test site, 4/27/78 - 5/31/79.

Table 2.	 Ground data summary for 5/20/78 field survey.

Table 3.	 Comparison of airborne (gamma ray) derived soil moisture content
with ground t soil samples) values, 6/13/79.

vii



PREFACE

This report was prepared under the sponsorship of a grant to the NationAl

Oceanic and Atmospheric Administration/National Earth Satellite Service

(Investigation No. HCM 045, Contract No.S-40229-B). It is prepared in three

sections: Part A, pertaining to tidal circulation patterns in estuaries;

Part B, pertaining ti soil moisture; and Part C, pertaining to urban heat

islands. Appendix A pertains to the effects of powerplant waste-water

emissions on lake temperatures. Another area of investigation considered in

the original proposal dealt with snowpack properties. Unfortunately no air-

craft data were obtained to provide Dr. Arthur Eschner of the State University

of New York/Syracuse the necessary information required for his snow study of

the Cranberry Lake region in the Adirondack Mountains. Part C and Appendix

A were not in the original proposal but have been added to provide further

examples of useful applications of HCMR data. The purpose of this report is

to evaluate the ability to extract useful information from the HC'-LM (Heat

Capacity Mapping Mission) satellite's }iCMR (Heat Capacity Mapping Radiometer)

data.

The authorship of this report is a team effort, but nevertheless certain

sections are primarily authored by individuals. Part A was written by Wiesnet,

Part B by McGinnis and Part C by Matson. Please note that references are

found at the end of each section for the readers' convenience.
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EXECUTIVE SUN24ARY

CONCLUSIONS

Part A. Tidal Circulation Patterns

1. Digital thermal maps of the Potomac River estuary and the Cooper

River estuary were prepared from HCf4M HCMR tapes.

2. Tidal phase (flood or ebb) was correctly interpreted from gray

scale thermal images and digital printouts and was later verified by tidal

records.

3. Synoptic surface circulation patterns have been charted by

locating thermal fronts and water-mass boundaries within the estuaries.

4. Thermal anomalies were detected adjacent to a conventional

power plant on the Potomac as well as near certain communities along the

Potomac.

5. Under optimum conditions, estuaries as small as the Cooper River

(i.e,, approximately 100hn2) can be monitored for generalized tidal/thermal

circulation patterns by I1 AIN—type IR Sensors.

Part B. Soil Moisture

1. Computer programs were developed to enlarge and enhance HCMR data.

Imagery may be produced at scale's of 1:5,000,000; 1:4,000,000; 1:2,500,000;

1:1,000,000; and 1:500,000. The data are also available in character printout

at the same scales as well as 1:250,000.

2. Digital thermal maps of the Luverne test site were prepared from

HcI'LH IICbiR tames.

3. The IICP,IM thermal inertia approach to soil moisture estimation is

unsatisfactory as a NESS operational satellite technique for temperate regions

such as Luverne (in the Corn Belt) because of the }sigh incidence of interferring

cloud cover. However, the approach may wolf be suitable in semiarid regions

such as the Southwest.
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4. Because the thermal inertia technique for estimating soil

moisture as exemplified by the HDIM experiment is unsatisfactory, in our view,

as an operational system, we would recommend an all-weather system such as

passive or active microwave for NESS if it required a soil-moisture sensor.

Part C. Urban Heat Island

1. HOM HCMR thermal-IR data reveal similar structure of the

Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR

data.

2. Small suburban and industrial areas can also be identified on

each image.

Appendix A. Nuclear Power'Pldnt Waste eater

1. Thermal anomalies resulting-from warm'discharge water of a

nuclear power plant were mapped in Lake Anna (S2.bsq. km ), Va.

Xi



PART A: TIDAL CURRENT CIRCULATION PATTERNS IN ESTUARIES

INTRODUCTION

Increased awareness of the ecological importance of estuaries in terms of

marine life, public health, and coastal pollution problems has led government

officials and environmentalists to seek improved techniques for monitoring the

fragile estuarine ecosystems of our coastal zone. With the belief that the

high spatial and thermal resolution of the hCKM satellite could perhaps contri-

bute to the monitoring of the surface current patterns in estuaries, several

test sites were Eelected for study. Previous studies of estuarine circulation

dynamics, primarily by aircraft thermal imagery, had been successful (Wiesnet

and Cotton, 1967; Hartwell, 1970; and Wiesnet, 1972). Further, in 1973, Mairs

and Clark (1.973) used thermal-IR in conjunction with dye studies and aircraft

N

A

sequential photography to measure the movement of water fronts and to prepare	 ,

streamline analysis charts of circulation for the Patuxent River estuary in

Maryland.

Launched in 1972, both the NOAA-2 and Landsat-1 satellites were instrumen-

tal in profoundly changing our approach to observing water bodies. NOAH-2's

VHRR was capable of revealing details of large scale ocean current dynamics

through the use of its therms: channel. In fact, the charting of the Culf

Stream soon became an operational task of NO:ti.."'ESS oceanographers, who were

able to include phenomena previously seldom observed and poorly understood,

e.g., cold and warm eddy motio::. Landsat-1, which collected little data over

the open oci-an, nvvertheluss col lectod ( . io i.; (,uanti*_ iv; of cult isp r-ctral dzta

over U.S. coastal regions. Klemas (1974) reported on his findings from multi-

spectral analysis of images of Delaware Bay. By using turbidity as a tracer

and other techniques he was able to demonstrate clearly that one can observe a

1



variety of current indicators from the visible band data and that a synoptic

current chart could be derived from these interpretations. Klemas (1980) in a

subsequent paper was able to use Landsat data to identify fronts, which

materially affect oil - slick movement, and incorporate these frontal locations	
.\

into an oil drift and dispersion model thus to improve the model ' s performance.

But the advent of HCMM in April 1978, provided a potentially better tool

for monitoring estuarine circulation patters. 1'CMM was better because it per-

Attld both nighttime observations, and more frequent observations. It provided

the best thermal resolution (0.5 0C) combined with the best spatial resolution

(600 m) thus far available from any NOAA or NASA unmanned satellite, l/

CURRENTS

Currents are commonly classified as tidal and nontidal, but in reality all

local currents are a combinp^tion of botl- tidal and nontidal forces. The currents

described in this study are primarily tidal and arise from astronomically pro-

duced tidal changes of water level. Meteorologic;;l factors, especially wind,

can cause significant changes in both water levels and currents.

Tidal currents may be further subdivided into rotary or r •rersing. Tidal

currents in rivers and straits are reversing as their confinement changes the

resolution of force.-, from rotational to an upriver/downriver situation, known

in nautical parlance as flood or ebb currents. In this report, our concern is

with these rather dynamic reversing currents and their changing distribution

throughout the tidal cycle.

Reversing tidal current cycles may be thought of as "beginning" at h+;;^

slack 4;it_or.	 .'t' l	 1):1 ,...	 t, C.	 - _ J.. .1	 .' .:l .r. ,	 i... .

1. high slack water	 3. low -Aa,''k mater
'.	 ebb f l ow	 4.	 f 1 0 ')d l- 1 01.4

l/	 Tl • e Landsat--3 thermal 1,a:td (Price, 1 t)S0) had a ::;,at ial rt :ol,it L'n of ?'),) m
but poor tliori:ial rer;olut ion.	 it w• ts rievur fttl ly ups rat ion::'_.
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Obviously, there is a gradual transition from phase to phase with accompanying

gradual changes in current speeds and current directions.
	 k

Chesapeake Bay and its tributaries represent moderately stratified

estuaries as does the estuarine portion of the Delaware River--but not the wider

portion of Delaware Bay--and the harbor of Charleston, South Carolina.

In the moderately stratified est-ary,the dominant mixing agent is turbulence

caused by tidal action rather than velocity shear at the interface between the

salt water and the overlying freshwater layer (Pritchard, 1967).

DELAWARE BAY

Although our HCMM test sites do not include Delaware Bay, we did receive

a very fine cloud-free image of Delaware Bay in 1979. The image was an

11 June 1978 nighttime IR image. Using programs developed by John Pritchard of

NESS, especially for HCMM CCT data, an enhanced 1:1,000,000 image was prepared

c	 at NOAA/NESS using the Digital Muirhead Device (DMD) (Ficj. 1).

Although not a NESS/HCMM test site, we wanted to test our thesis that

the thermal patterns in an estuary could be used to determine the tidal current

circulation patterns from satellite IR imagery. The interpretation of the

pattern shown in the Delaware Bay estuary clearly shows cool sea water invading

the estuary. The warmer upland (fresh) water is restricted to the upper portions

of the bay. A mid- or early-flood situation was estimated in the lower bay.

Fig. 2 is a chart prepared from NOAA tidal current charts that shows, by means

of arrows, the current as determined by current meters, two hours before maxi-

mum flood at the Bay entrance. The chart appears to be in correspondence with

the surface truth and circulation patterns as interpreted from HCMM data.

POTOMAC RIVER ESTUARY

The Potomac River is an estuary in its lower portion from the

Chesapeake Bay upstream to Washington, D.C. Tidal effects are detectable all

3



Figure 1.	 HCMM thermal image of it June 1978 (1430 hours local) of the
Delaware B.iy estuary. The cold (light-toned) Atlantic rarine
water is flowing into the Bay at the onset of a flood tide.
Upriver, the Delaware is still at ebb flow.
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Figure 2. This sketch map of the Delaware Bay was taken from National
Ocean Survey Charts based on current measurements two hours
before maximum flood. Compare with Figure 1.
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the way to Great Falls, but our study will concern itself only with the lower-

most Potomac (see Fig. 3) as only this portion is wide enough to be easily

detected by HCMM. A sequence of images on 16-17 March 1979, •ias been selected

to demonstrate how thermal data may be used to detect estuarine circulation

patterns from satellites with high thermal sensitivity (i.e., able to detect

At's as small^as 0.50C) and moderately good spatial res6lution (i.e., as high

1
as I km). The following three images will b analyzed:

a t ime IR 	 16 March	 (Fig. 41. HCMM HCMR D	 ^855zy i79 ( g	 )

2. TIROS-N AVHRR Daytime IR	 1959Z	 16 March 79 (Fig. 5)

3. HCMM HCMR Daytime IR	 1813Z	 17 March 79 (Fig. 6)

These essentia l ly cloud-free images were selected from hundreds of HCMM

images examined. As may be expected, cloudiness is a considerable problem in

	

satellite thermal-IR studies, especially in the temperate zone.	 In fact, it

renders this technique ineffective as an operational scheme. Nevertheless, as

will be pointed out, a considerable amount of information may be deduced from

careful analysis of the imagery, and the information may be applied to estuaries

that are insufficiently studied for a better understanding of the dynamics of

circulation under varying conditions.

The 1355 (1855Z) local time HCMM image of 16 March'1979

In this image (Fig. 4) dark is hot; white is cold. Note the rather uni-

form temperature of Chesapeake Bay. Although a few patches of sea water

(coldest) are afloat in the bay, the temperature of both the Potomac--downriver

from Coles Point--and the bay are identical. From Coles Point upriver the

temperature is also very uniform, but warmer. This simple straightforward

condition is interpreted as an example of the s ,:a water (Chesapeake Bay water

will be referred to as sea water) moving upriver on a rising tide. The currents

are flooding, moving upstream, in the sea water portion of the estuary. The

6
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abrupt temperature change delineates the approximate position of the tidal front

(Fig. 4).

This interpretation of the thermal image is in agreement with the pre-'

dicted tidal levels and currents 
I
(NOAA, 1979). In mid-channel off Cornfield Pt.

flood currents are approaching maximum flood velocity, in excess of 0.4 knots,

a condition that will exist in 19 minutes, at 1416. Upstream at the Potomac

River Bridge (Rte. 301) (Fig.4) currents are decreasing and slack low water

will occur in one hour at 1455. Upstream at Maryland Point, ebb =urrents

reached their maximum about 2 hours earlier (1140). In summary, as the flooding

cooler sea water moves upriver, slack water (warmer) precedes it and upriver

ebb currents become increasingly weak.

The 1459 local time (1959Z) AVHRR image of 16 March 1979

We secured a tape of the TIROS-N AVHRR pass over the Potomac River that

occurred about two hours later than the HCMM image. The thermal patterns had

changed. At the mouth of the river the image (Fig. 5) reveals a temperature

change between the colder bay water and the warmer river water. A flooding

situation is still in progress with water levels rising in the lower Potomac

estuary, and this situation will pertain for several hours. But upstream at

the U.S. Route 301 Potomac River Bridge, slack water is occurring. At Colonial

Beach, high tide is about an hour away, but in the main channel, currents as

far upriver as Maryland Point are entering the high water slack that will be

followed by the onrushing ebb as the river discharge gradually overcomes the

tidal forces. The water is warm in the narrow reach of the river at Maryland

Point; it is cooler at Big Bend; it is warmer again as it passes under the U.S.

Route 301 Bridge. It is believed (lacking apprr ,,riate ground truth) that the

i
water off Maryland Point is warmed by the slack water change, i.e., turbulence

is greatly reduced during this interval. Turbulent flow brings up cooler water

from depth. The ;.idal front is thus judged to be just downstream. The warming

9
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Figure 5.	 AVHRR daytime thermal image of 16 March 1919 (1959Z) (1459

local time). This NOAA TIROS-N image was taken two hours

after Figure 4. Mid-flood conditions pertain, but high water

slack is occurring off Maryland Point where the water apppdrs

slightly warmer owing to a lesseni r, turbulent flow.

10	 BLACK AN!^ : 'G 1 E 	 , P,a.PH



that takes place in the U.S. Route 301 Bridge area is believed due to the

spreading of the warm water discharge of the power plant at Morgantown.

Ordinarily during times of turbulent flow this warm effluent is quickly mixed

vertically. At times of slack water or weak current it can spread more

extensively over the surface. The slightly warmer water from Morgantown to

Breton Bay appears to be the result of this discharge. This interpretation

was not verified by ground truth.

The 1313 local time i
	

HCMM ima g e of 17 March 1919

The third image (Fig. 6) is perhaps the most interesting of the three.

As in the previous day's HCMM image, the temeprature of the sea water and lower

river water are identical. Along the north side of the estuary above Breton

Bay and opposite Colonial Beach, the sea water has penetrated farther than

along the south shore. During flood flows (looking upstream), this right-hand

movement of the sea water is characteristic of Northern Hemisphere estuaries

and it is caused by the coriolis force.

Dynamically, currents are flooding in the main channel at the river mouth

and are increasing in strength. At the Potomac River U.S. Route 301 Bridge

the ebb currents are diminishing from their peak an hour earlier at 1216. The

same is true of the main channel at Maryland Point where maximum flood occurred

at 1231--42 minutes prior to the overpass. It is interesting, but hardly

unexpected, to note that the thermal patterns in the Patuxent and Rappahannock

are quite similar. Both their tidal cycles are likewise quite similar to that

of the Potomac River.

Just off the Potomac River mouth is a lar g e ;,ia^ ,; of .-4arm wat;!r al;nost

bifurcated by cooler bay water. The same thermal phenomenon occurs off the

mouth of the Rappahannock. In our view these water masses represent the prior

cycles' discharge of upland river water expended into the bay for eventual

assimilation. Again these observations are speculative, but similar features

11
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have been noted--but net recorded--by the writer in the Merrimac River estuary

of Massachusetts (Wiesnet and Cotton, 1967). An experiment to identify these

water masses and verify their existence is hig h ly recommended. Aircraft could

be utilized to monitor the movement and assimilation of these presumably some-

what polluted river-discharged water masses.

It is further speculated that pollutants from the easterly flowing rivers

into the Chesapeake Bay would result in concentrations of pollutants along the

western shore that were higher than those on the eastern shore. Slugs of water

dischargea from the Potomac are warmer and less dense and hence will float as

identifiable water masses retaining their characteristics for some undertermined

time. It is possible to track these slugs of water by aircraft equipped with

thermal scanners of appropriate sensitivity. Efforts to study the Chesapeake

Bay plume'iin 1980 did make use of aircraft that were equipped with thermal

radiometers and other instruments as well (Janet Campbell, 20 November 1980,!

informal communication).

Using a NOAA computer program, a series of microfilm printouts was prepared

from the 17 March 1979 HCMM CCT's (Fig. 7). Assembling these arrays of thermal

data, on which isopleths had been automatically drawn by an IBM-360 program,

a thermal map of the data over the lower Potomac was prepared as a mosaic. It

outlines the river well, except at the very mouth.

Fig. 8 is an illustration of the quantitative capability of the HCMM print-

out. These temperatures are based on preflight calibration data, not the

absolute temperatures. However, the temperature differences are significant.

The river flow is at ebb as described previously. Ordinarily, the river con-

striction produces great turbulence at the water is squeezed through the

narrows. Yet the printout shows the temperatures to be higher than those above

and below. The location of a p±:wer plant is shown by the black square. It is
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THERMAL MAP OF	 POTOMAC R. NEAR DAHLGREN

i

Figure f..	 Thermal surface digi-.al map of the narrows at Big Bend in
the Potomac River showing the location of the power plant and

the direction of flow.
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just south of the U.S. Route 301 Potomac River Bridge.

The higher temperatures recorded by the HCMM HCMR may be due to:

1. pixel contamination by land portions.

2. pixel contamination by the U.S. Route 301 Bridge.

3. warm water produced either naturally, or by the ou •.flow from

the steam-generating plant.

We believe the most likely explanation is that while all three causes

play a role, that the wide spreed nature of the warming indicates the third

cause is the most important.	 If this is true, the HCMM satellite has demon-

strated its ability to detect even the small rise in temperature caused by

the power plant effluent.

COOPER RIVER

The poet of Charleston, S.C., is a commercial aid naval shipping center

located at the confluence of the Cooper River, the Wando River, and the Ashley

River (Fig. 9). In 1967, an extensive effort was made to study the tidal

current circulation patterns in this complex estuary by means of photogrammetric

methods (U.S. Dept. of .Commerce, 1967).

Despite the small size of this estuary, it was decided to attempt a study

under what we regarded as "worst-case" conditions. That is, only a few HCMM

pixels would be discernible. The thesis was that given a sufficient At between

sea water and upland (fresh' _iter, it should be possible to detect the tidal

stage and perhaps infer generalized current patterns from the thermal pattern

in the estuary.	 We had re;uVa-,ced- -but failed to rc:cnive--aircraft overfl;ghts

that would have provided synoptic thermal maps at "great" or at least reason-

able detail.	 In fact, onc- scientist on the selection panel wa y quite skeptical

about this test site.. The scientist stated "The panel knew that your real
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COOPER 'LIVER
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CHARLESTON HARBOR

ATLANTIC OCEAN

nautical miles

Figure 9.	 Index map of the Cooper River test site showing localities

mentioned in the report.
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!i,terest was in securing the aircraft imagery, because you'll get only a half

dozen pixels from the satellite, and that won't show you a thing." The panel

scientist's comment was partly correct, but we did hold out some hope for the

satellite data.

Fig. 10 is a printout of raw values that delineates the estuary on 10 Jan.

1979 (nighttime Scene ID A025906550). The scene has been isolined at 10, 20,

and 30 counts--raw data values. Note Chat the three rivers, the Cooper, the

Ashley, and the Wando--are detectable. Note also the warm sea water and the

much cooler upland water. Coldest of all are the land surface areas. We

interpreted the pattern as indicating a mid-flood condition. Tide tables

were used to determine that the scene was recorded 3 hours after low tide at

the Charleston Harbor entrance, thus verifying our interpretation. 	 It is felt

that this chart has furnished proof of concept that the HCMM HCMR can monitor

tidal changes in small estuaries under appropriate thermal and atmospheric

conditions.
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Figure 10. Thermal surface printout of uncorrected digital count values

showing the ability to distinguish water temperatures and to
determine tidal stage (flood).
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PART B: SOIL MOISTURE

INTRODUCTION

The crude approximations for soil moisture used in hydrologic design	 ^'ta

(USDA, Soil Conservation Service, 1957) and streamflow estimates (Burnash, et

al., 1973) demonstrate the need for improved soil -moisture estimates. Most

soil moisture values are actually based on weighted or accumulated precipitation

measurements from rain gages. Soil -moisture measurements are rarely taken in

situ and when taken, represent point values that are not likely a representative

indication of true basin soil moisture. There is a real need for areally

averaged soil moisture values that accurately reflect the condition of the water-

shed and its response to rainfall.

CONCEPT OF THER.%1a1, INERTIA

One of the techniques that provides soil moisture information is thermal

inertia. Thermal inertia is a measure of the resistence of matter to a change

in its temperature. As explained by Gillespie and Kahle (1977) thermal inertia

is a volume property and can thus sense below the ground surface, permitting

discrimination among different materials whose surfaces are similar. With re-

gard to soil moisture, for a given soil, changes in its moisture profile will

result in thermal-inertia changes. The high specific heat of water (much higher

than the soil) results in increased thermal inertia as soil-moisture content

increases.

In terms of changes in surface soil temperatures, high thermal inertia

(wet soils) produces a small diurnal variation or amplitude of temperature; low

thermal inertia (dry soils) produces a large diurnal variation. Thermal inertia

changes are affected by the amount of moisture in the soil, distribution of

moisture within the profile, soil type, sun angle, and vegetative cover.

OBJECTIVE OF THE STUDY

The objective of the study was to evaluate the thermal-inertia technique

21



e	 1

for soil moisture. The HCMM satellite was launched in orbit to provide, at regular

i
intervals, night and day coverage of a given location near the time minimum and

maximum surface temperatures are generally encountered (approximatel y 0200 and 1300

LST), times critical for the evaluation of thermal inertia.

SELECTION OF A TEST SITE-LUVERNE MINNESOTA

The Luverne, Minnesota, test site (Fig.'s 11 and 12) has been used for NOAA

gamma ray airborne experiments with an established network of soil sampling sites

since the spring of 1969 (Peck, et al., 1971). At present local Soil Conservation

Service (SCS) USDA soil scientists are available to collect data upon reimbursement

by the NOAA under a NWS contract. The area comprises flat to rolling farmland with

few trees. During spring (April to early June) large tracts (65 to 260 hectares,

160 to 640 `acres) are planted principally with corn and soybeans. These fields remain

bare until emergenceof the crop which may take from one to three weeks depending

upon weather conditions and type of crop. With a pixel resolution of 0.6 x 0.6 km

in the infrared, the H0LM Heat Capacity Mapping Radiometer (HCMR) could image areas

as small as 36 hectares (90 acres). Thus these large bare tracts could fill as many

as seven pixels arid-therefore be monitored by the HCMR on board HC:LM.

The site would provide ground truth for satellite overflights in which thermal

data were collected and thermal inertia maps were prepared. Repeated observations

during spring (bare fields) , summer (vegetative fields) , and fall (fallow, harvested

fields) would provide material for evaluation and comparison with thermal data. It

was hoped that HCMM data plus ground observations would also provide information on

the more complex signature of activly growing crops plus soil moisture.

RSG ^ GAGE

To provide a continuous source of information regarding changes in soil mois-

ture at the Luverne, Minnesota, test site, an RSG'- snow and soil moisture gage

22
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Figure 11.	 Location of Luverne, Minnesota.
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was installed in December 1978. The gage site is located on flight

line W (Fig. 12), approximately 1 km (0.6 miles) north of the Iowa-Minnesota border 	 ^N

at the crest of a small hill, 15 meters west of U.S. Route 75. In December, 1979 a

LaBarge data collection platform (DCP) was linked electronically to the RSCh gage to

provide soil moisture from 0 to 10cm (0 to 4 in), snow water equivalent, air tempera-

ture, and battery voltage daily at 6-hour intervals. Such information is transmitted

via the GOES (Geostationary Operational Environmental Satellite) to computers in the

World Weather Building in Camp Springs, MD. Unfortunately the desired data have been

difficult to obtain, as a result of equipment failures and calibration delays. This

failure precluded an analysis of whether a single data point could be related to

average soil moisture conditions along a flight line of over : region. Such a rela-

In
tion would be useful in relating ground information, based on a single point, to the

0.6 km HC:iR data and a possible thermal inertia relationship.
f

SELECTION OF HCiNDI COVERAGE

Data from the months of February, March, August, October and November gave

coverage during dormancy, peak growing season, and post-harvest--a large variety of

surface conditions for thermal-inertia evaluation. Though the test site was viewed

by the HCILM satellite on five days in the 16-day cycle, cloud cover as well as data

acquisition problems limited the data actually available. Table 1 provides pertinent

information regarding coverage for the Luverne soil moisture study. During the first

cycle of 13 months only one third of the day scenes received were clear; half of the

night images were clear. The fall and winter months had a much higher incidence of

cloud cover than Au.-ust. Overall, of the total possible scenes X67 day and 67 night)

only 15 days (227) and 17 nights (25%) were sufficiently devoid of clouds to be use-

ful for analysis---rather discouraging. Only six pairs of image sequences (night/day)

received were clear and have potential use for thermal inertia. The only sequence,
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when adequate ground and aircraft data were collected, 13 June 1979, was negated

when the nighttime pass could not be processed by NASA.

LITERATURE REVIEW

Satellites and aircraft offer remote platforms that have the greatest potential

for basin-wide soil moisture estimates. Sensors scanning in such portions of the

electromagnetic spectrum as the near -IR (Merritt and Hall, 1973), thermal (Idso,

et al., 1975, Jackson, et al., 1976), gamma ray (Feimster, et al., 1975) and micro-

wave (Schmugge, 1976b; Schmugge, et al., 1976a; Schmugge, et al., 1976b; Wang, et Al.,

1980) have been used in an attempt to obtain basin-wide soil moisture. An extensive

study of active microwave work with soil moisture has been done by Batlivala and

Ulaby (1977), while work by Schmugge, et al. (1976a) covers the passive microwave

area. Unfortunately the resolution of satellite-borne passive microwave data is

currently limited to approximately 25 km. A paper by Schmugge, et al. (1980)

summarizes various methods for soil moisture determination, including in situ as well

as remote sensing techniques currently in use. Wiesnet et al. (1978) studied the

use of Landsat MSS data to estimate soil moisture in Phoenix, Arizona, and Luverne,

Minnesota.

A short survey paper by Blanchard, et al. (1974) disc;_..ses the possibility of

using remote thermal measurements of soil surfaces to assess seasonal soil moisture

changes to depths of 10cm. The authors caution that remote radiometric temperature

measurements of soil do not equal actual soil temperatures because soils have

emissivities less than one (0.7 to 0.9 depending on texture, grain size, and

mine raIo..-,,,) . Soil emissivity increases as soil moisture increases (Fuchs and' Tanner,

1968). However, for Cie same soil type and given conditions, radiometrically,

measured temperature chan„es are the same as actual

27
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Extensive studies conducted at the U.S. Water Conservation Laboratory in

Phoenix, Arizona show the utility of surface temperature measurements for the 	
t%

remote sensing of surface (up to 4cm depth) soil moisture. Idso et al. (1975)

found good correlation between the amplitude of the diurnal soil temperature

wave (ie. Tsoilmax-Tsoilmin) and the volumetric soil water content for Avondale

loam soil (see Figure 13). Unfortunately the same relationship could not be

varified for other soil types such as Navajo clay, gran sandy (loam, and cashion

silty clay. However, by using the moisture characteristic curves of each soil

I
to traiAsform water content into pressure potential (see Figure 14), it was found

that soil water pressure potential could be determined without prior knowledge

of soil type (See Figure 15) thereby significantly enhancing the value of thermal

inertia as a potential global soil water survey tool.
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FIELD SURVEYS

Primary field surveys for data collection were held on 20 October 1977,

20 May 1978, and 13 June 1979. Secondary efforts were scheduled for 19 December 1978,

and 6 December 1979 to coincide with the RSG^ soil moisture gage installation and the

data c071L^r_ ;.ion platform installation, respectively.

20 October 1977
It

The purpose of the 20 October 1977 Luverne experiment was to collect sufficient

ground information to evaluate the aircraft (U-2) HCMR data, which was to be flown

concurrently. It wL.-	 typical prelaunch experiment designed to test the instruments

and techniques specified and locate any problems that might develop.

The field party consisted of four persons, two from NOAA/NESS (Wiesnet and

McGinnis) and two from the SCS at Marshall, Minn. (Hokanson and Nelson).

A recording meteorological station was set up on the test site. t:i •.id direction,

-d speed, air temperature, and relative humidity were continuously recorded at this

site. Additional daily data for the preceding month were obtained from the local NTWS

cooperative observer.

On the survey date (20 Oct) a total of 18 soil moisture samples were collected;

soil temperatures at the surface and at dep,:h, via a probe (0-5cm), were taken at each

sampling site. Sample sites included:

1. bare soil
2. soybean field
3. cornfield (standing corn)
4. cornfield (stubble)
5. disked field
6. plowed field
7. soybean stubble

On 21 October Wiesnet and McGinnis extended the ground-based observations by

taking 8 more samples and temperatures. This made a total of 26 soil moisture

samples. The location of these samples is shown in Figure 16. Note that the collec-

tion time of each soil sample is given in CDT. Collection sites without dates were

sampled on 20 October. Sites marked by an 'X' only were sampled durin the morning

of 20 October between 0900 and 1200.
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Skin temperature ranged from 23.OoC to 31.00C on 20 October; from 16.5 0C to

25.60C on 21 October. Soil temperature at depth (5 cm) ranged from 9.81C to

15.90C on 20 October, and from 8.40C to 13.90C the following day.

Soil moisture values were obtained from the Twin City Testing Laboratory, Sioux

Falls, S.D. They ranged from 19.6% to 49.2% on 20 October, and from 21.6% to 28.0%

cn 21 October.

Air temperature ranged from 190C to 210C during the period of data collection on

20 October, and from 90C to 100C on 21 October.

Two problems were noted: (1) a drive or clock mechanism on the weather
1

station drum was not accurate and (2) some of the probe measurements were apparently

done without waiting for the probe to reach equilibrium with the deeper soil tempera-

ture. Both problems are correctable.

20 May, 1978

The purpose of the 20 May 1978 Luverne experiment was to collect soil moisture

and soil temperature data coincidental with the early morning and afternoon HCMM

satellite overpass. The field party was to consist of four persons, two from the

NOAA/NESS and two from the SCS at Marshall, Minnesota. Due to morning cloudiness and

the NWS forecast that the cloudiness would persist into the early afternoon, the two

SCS personnel were notified that they would not be required to assist in collecting

ground data. The clouds, however, dissipated in the late morning and the two NESS

personnel proceeded to the test site to collect ground data.

On the survey date (20th May) a total of eight soil moisture samples were collected;

eight pairs of soil temperatures at the surface and at a depth of 11.5 cm were taken at

i
each sampling site. The location of the samples , is shown in Figure 17. Times given are

in CDT. Table 2 lists the ground data obtained at each of the eight sites.
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Table 2. Ground data summary for 5/20/78 field survey.

Field ID # % Soil Moisture Soil Temp. ( oQ Air Temp (oC) Field
_ Surface 11.5 cm Description

lEl 25.4 34.8 16.2 21.0 Bare Field
3D1 31.7 30.9 14.6 20.7 Bare Field
3E1 24.2 26.7 15.2 23.0 Bare Field
3W2 23.3 33.2 14.9 19.0 Bare Field

Wea. Station 19.7 27.5 16.0 18.0 Bare Field
6E1 25.0 33.9 17.9 25.6 Bare Field
6W1 24.3 35.2 16.3 24.8 Bare Field
7D1 20.1 35.2 16.0 23.0 Bare Field

4N

20 December 1978 and 6 December 1979

A problem in over half 4of the HCMM images of Luverne, clouds prevented

collection of useful imagery on 20 December 1978, and during the afternoon of

6 December 1979. Further, the clear predawn HC2 1I scene of 6 December could not

be processed. Fortunately no massive collection of surface and subsurface

information had been planned in lieu of the primary mission of gage (20 December
	 I W

1978) or data collection platform (6 December 1979) installation.

Summary

For the four data collection surveys described above, no useable aircraft

data were obtained. HCMMM imagery were unavailable due to clouds or could not

be processed for the three dates when HCMM was operationally in orbit. Limits

in man power and funds prevented further field missions other than that Gf

13 June ; 1979.

Detailed Summary of 13 June, 1979 Field Survey

Collection of soil samples, soil temperatures, aircraft, and satellite data.

On Wednesday 13 June 1979, HCMN passed over the Luverne test site on a

night/day sequence (0303CT and 1358 CDT respectively). A major data collection

effort was carefully planned inconjunction with the IICNL%I overpasses. The effort

involved the cooperation of personnel from NESS and NWS's Office of Hydrology,

NASA/JSC and USDA/Soil Conservation Service. Limited ground data, 6 locations

only, were collected with the predawn overpass. These data included 10-cm

R,#
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(4-inch) soil samples, surface temperatues, and 10-cm temperatures. Extensive

ground-based data were collected during the day. Over 60 soil samples and

30 sets (surface and 10-cm depth) of soil temperatures were obtained by two,
a

two-man teams between 100 CDT and 1700 CDT. During the collection, four

satellites acquired data over the test site: NASA's Heat Capacity Mapping

Mission (HCMM) satellite and Landsat-2 and the NOAH-operated TIROS-N and SMS-2

satellites. Data from the four satellites comprised 500-meter visible

(055 to l.lum) and 600-meter thermal (10.5 to 12.5um) from HC61M; the four-band

Multispectral Scanner Subsystem (MSS) on Landsat at 80-meter resolution in

band widths of 0.5 to 0.6um, 0.6 to 0.7ym, 0.7 to 0.8pu to l.lum; the Advanced

Very High Resolution Radiometer (AVHRR) on TIROS-N at l.lkm resolution in band

widths of 0.55 to 0.90urn, 0.725 to l.lum, 3.55 to 3.93µm, and 10.5 to 11.5um;

and the Visible Infrared Spin-Scan Radiometer (VISSR) on SMS-2 at 0.8km resolu-

tion in the visible band (0.55 to 0.70µm) and 8.Okm resolution in the thermal

band (10.5-12.6pm). Aircraft from NASA and N01A collected data in the visible

and thermal-IR and gamma ray portions of the spectrum respectively.

Analysis of data

A portable recording weather station (Meteorology Research Incorporated,

Model No. 1087) collected continuous values of ambient temperature, wind

direction and speed, and relative humidity. Figure 18 shows the variation of

these parameters hour by hour for 13 June 1979. 	 The wind direction was rather

constant, prevailing from the west or northwest at all times except at 0300 CDT.

The wind speed had a pronounced diurnal variation, being least (less than lOkph)

From nidni Int through 0600 CDT, th ,, :n i.;t r ,: sir,; to a peak of 	 .5 kph at 1300 and

1400 CDT and remaining at or above 20kph until 1700 CDT when the weather station

was disassembled. The ambient (air) temperature followed a similar diurnal

pattern, reflecting the strong heating 	 unof the surer sun under clear skies.

Temperatures climbed steadily from a minimum of 8 o (47 o f) at 0500 Cr)T to 270C
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to 1700 DT, 6/13/79.
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(81oF) by 13 CDT. Thereafter the temperature rose slightly to a maximum of 30oC

(860F) at 1700 CDT when the weather station readings were discontinued. As would be

expected, the diurnal variation of the relative humidity was opposite that of the

temperature, being maximum at 0500 and 0600 CDT, 82 percent, and minimum at 1700 CDT,

53 percent.

Figure 19 shows the variation of land surface temperatures as a function of time.

The temperatures were obtained from various points along the flight lines as located

in Figure 20. Collection times are given in CDT. A three-point, equal weight moving

average (solid line) smooths the variability in the actual data and clearly indicates

a rapid warming of the surface (from 34 0C to 410C, 930F to 1060F) between noon and

1300 CDT. Temperatures remained at this high level (near 40
0
C, 104

3
F) during the

afternoon, dropping to 386C (1000F) after 1500 CDT. The variability in the data from

the diurnal cycle is likely due to changes in soil moisture, slope, aspect, and/or

soil type. The range of soil temperatures at the 10-cm depth (Figure 21) is much less

than that experienced at the surface (7 0 C versus 13 0C, 130 F versus 230F). The 10-cm

depth temperature increase occurs more slowly and slightly later than that at the

surface, the result of the damping and inertial lag of solar radiation with depth in

the soil. Deviations of actual data (dashed line) from the three-point moving average

is related to those variables noted previously for surface temperature.

The range of soil moisture content in the top 10-cm (Figure 22) resembles a

normal distribution with a slight positive skew. (There are a few values in excess

of 32 percent.) When plotted against temperature, soil moisture shows little corre-

lation with surface temperatures, r 2 = 0.06, or with 10-cm tem epratures, r 2 = 0.19

(Figures 23 and 24). An analysis of the ground lata showed that soil moisture varia-

tions are also independent of elevation.

The gamma ray flights coordinated by Dr. Thomas Carroll, National Weather

Service, River Forecast Center, Minneapolis, Minnesota, resulted in soil mois-
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ture data that agreed closely with that obtained from soil samples. Table 3

(Carroll, 1980) compares the two. Flight lines are indicated in Figure 25,

The overall root mean s quare error is 0.9, average bias is -0.3 and percent

bias is -1.3. The gamma rav system has been thoroughly tested at the Luverne

site since 1970 (Peck, et al., 1980) and the results have a high degree of

reliability.	 i

Table 3. Comparison of airborne (gamma ray) derived soil moisture content
with ground (soil samples) values, 6/11/79.

Airborne Ground

Flight GSM Standard Standard
Line Deviation GSM Deviation

A 27.5 1.8 27.1 3.5

S 26.1 2.4 25.6 2.3

C 24.5 2.7 24.4 2.6
D 25.3 2.7 26.3 0.5

W 24.9 2.4 26.6 2.1

An unexpected, but well received source of data was that collected by

the RS-18-MS flown on the NASA 1057. This flight was not anticipated but

resulted from the need for other aircraft missions in the northern plains.

Data were collected coincident with the HCMM overpasses of the Luv erne test

site at 0303 and 1358 CDT on June 13, 1979. Data collected in the predawn

flight were limited to the thermal band (10.5-12.5um). Figure 26 is the

portion of the thermal data covering the Luverne flight lines. In the image,

warm surfaces appear in light tones; cool surfaces in dark tones. Readily

seen in the image are the Rock River, the town of Luverne, Interstate 90 (I-90)

and the sewage treatment ponds--all warmer than the surrounding countryside.

Thermal differences are also noted in the fields surrounding Luvarne, however,

the noise pattern, appearing NE to SW across the image contaiminated the data

sufficiently that any useful information was lost. This lost information proved

to be a real setback when it was impossible to process the nighttime HUD!

data, thereby precluding any possible thermal inertial analysis. Thermal data

collected during the afternoon suffered from extreme noise contamination
I
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(see Figure 27). Ironically, visible and false color-IR data (Figures 28 and 29,

respectively) were almost noise-free. The experience with NASA-acquired air-

craft data taught us that the investigator should contract for such data himself,

thereby permitting more flexibility and a greater chance of obtaining useful

data.

After a lengthy effort by the HCMM staff at the Goddard Space Flight

Center (GSFC), only the daytime HCMM pass could be processed. Figures 30 and

31 are the 1:4,000,000 visible and thermal-IR images respectively, of the 1358

CDT HCM overpass of the Luverne test site. The area in the immediate

vicinity of Luverne is relatively cloud-free, except for a NW to SE band of

so-called "invisible cirrus" (because the cloud is not apparent in the visible

image) about 25km west of Luverne. The cloud locations are more easily estab-

lished in the 1:1,000,000 blow-up shown in Figure 32. These images (Figures 30,

31, 32) have been computer processed to enhance the data for best optical con-

trast. With further enlargement to a scale of approximately 1:360,000 it is

possible to overlay the satellite thermal data onto the drainage of the two

major rivers in the Luverne vicinity, viz. the Rock River and the Big Sioux River.

Figure 33 shows that the land surfaces adjacent to the river systems are cooler

than those at higher elevations. This thermal difference is likely due to high

water tables and the resultant higher soil moisture content and higher thermal

inertia--all of which would contribute to reduced warming during the day (cooler

surfaces) and reduced cooling at night (warmer surfaces) .

Using digital microfilm printout at full resolution it is possible to com-

pare satellite temperatures (pre-launch calibration) to those measured on the

ground during the afternoon of June 13, 1979. The numbers in Figure 34 are in

degrees Centigrade. Temperature along the Rock River and its tributaries ranged

from 240 C to 290C. At the same time, temperatures at the higher elevations sur-

rounding the drainage network usually fell between 30 0C and 33 0 C. Comparison

49	 {
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Daytime (1358 CDT) WBb7 HCh1 thermal- IR image of I.uverne test

site, 6/13/79, (Approximate ly 1:90,000).
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Figure 22.

	

	 b1Q57 HUM visible image (1353 CDT) of Luverne test site, 6113/79.
(Approximately 1:90,000).
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Figure 29.	 WB57 Zeiss false color-IR photograph (1358 CD -f) of luverne test
site, 6/13/19,	 (Approximately 1:95,000).
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Figure 30.	 HCM M KKR visible image (1:4,000,000) of Luverne test site,
Scene ID A04131E570.

OR'I nIN"L PAGIE

53
	 BLACK AND WHITE- PHOTO Ff O; f

r



BLACK E.

Figure 31.	 H O 'l HCMR thermal-IR image (1:4,000,000) of LuvernF test site,
Scene A041318570.
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Figure 32.	 HCM'•1 HCMR themal- 1R image (1:1,000,000) of Luvernr test site,
Scene 10 A041318510.
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Figure 34. Digital thermal display of HCMK HC^K data (Scene ID
&041318570) annotated with drainagc network and flight lines
of Luverne test site'
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with ground-acquired observations ,showed that HCMR temperatures were consistently

A

100C lower than actual surface temperatures. The scale of the data shown in

Figure 34 is approximately 1:210,000, indicating that HOM HC,iR da ,̂ a could be

easily mapped to conventional scales of 1:250,000 and even 1:125,000--useful

scales for many water resource and land use applications.

SL40MY - SIGNIFICXNT RESULTS

Based on the experiences in working witr HCM.M H OM data, the following

important points must be stressed:

1. Computer programs were developed to enlarge and enhance HCMR data.

Imagery may be produced at scales of 1:5,000,000, 1:4,000,000;

1:2;500,000; 1:1,000,000; and 1:500,000. The data are also avail-

able in character printout at the Same scales as well as 1:250,000.

2. Digital thermal maps (Figure 34) of the Luverne test site were

prepared from HMV tapes.

3. The HCMM thermal inertial approach to soil moisture estimation is

unsatisfactory as a NESS operational satellite technique for tem-

perate regions such as Luverne (in the Corn Belt) because of the

high incidence of interfering cloud cover. The anproach may well

be suitable in semiarid regions such as the Southwest.

4. The thermal-inertia technique for estimating soil moisture as

ex%mpl3.fied by the IICMM experiment is unsatisfa ctory , as an opera-

tionai system due to frequent cloud cover as well as difficulties

in ^S 11CCr;S L •.1'̀ ; tlh-J data.	 if t\FS:^ ` • 'rl! tU ro'iu fro ;i '; 1^ — .^c) t'tt lC^

sensor, we %vuld recommend an all.-weather system such as pa..sive

or active microwave.
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PART C: A COMPARISON OF HCaiR AND AVHRR IMAGES OF

URBAN HEAT ISLANDS

On the night of March 16-17, 1979, both HCN1M and NOAA-6 thermal-IR

(10.5-11.5µm) imagery were taken over the Washington, D.C. and Baltimore, bid.

area. The NOAA-6 image (Figure A was taken on the evening of March 16 ut

2000 EST and the HCM1%1 image (Figure 36) was taken 6 hours later at 0200 EST

in the early morning of March 17. Both images were computer enlarged to

1:1,000,000. Although each satellite has a different resolution (l.lkm for

NOAA-6 and 0.6km for HCMM), the urb?.n heat island structure of Washington, D.C.

and Baltimore are remarkably similar in both images. In each the warmest

(darkest) urban areas run southwest-north-east in Washington, D.C. and southeast-
^.

northwest in

temperatures

14.0-15.5°C.

6.0-8.0°C fo

Baltimore. On the NOAA-6 image the highest satellite-measured

for the D.C. area range from 12.4 -13.4°C and for Baltimore from

Six hours later the highest HCD^i brightness temperatures were

r Washington, D.C. and 8.0-12.0°C for Baltimore. The cooling over

this six-hour period, however, may not be as great as indicated because of

calibration problems with the HCbLy data. Pre-flight calibration was used to

generate the brightness temperatures used here.

Temperatures outside the warmest rbar. areas ranged from 9.7-11.9°C on the

NOAA-6 image and from 4.0-6.0°C on the HCMM image. Several industrial and

suburban areas can also be identified on each image: (1) Sparrows Point steel

plant, (2) Glen Burnie, Md., (3) Laurtl, Md., (4) Fort Meade, bid, (5) Bowie, Md..

(6) Sprinbfiuld, Va. , and (7) r;anassas.
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Figure 35.	 NOAH-6 llpm AVHRR i;aage of the Washington, D.C. and Baltimore,
area taken on March 16, 1979, at 1959 GMT. The warder urban
and suburban areas show up as dark gray shades. Resolution
is 1 .1 krn .
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Figure 35.	 NOAA-6 llum AVHRR image of the Washington, D.C. and Baltimore
area taken on March 16, 1979, at 1959 GMT. The warmer urban
and suburban arras show up as dark gray shades. Resolution
is 1.1 km.
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Figure 36. HCMM llp;n image of the Washington, D.C. and Sal tim ore area
ti ► ken on March 16, 1979, at 0100 GAIT. The warmer urban and
siburban areas shop up as dark gray shades. P.esolution is
0.5 kr,.
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APPENDIX A

HEAT CAPACITY MAPPING MISSION (HCMM) THERMAL SURFACE WATER

MAPPING OF LAKE ANNA, VA. AND ITS CORRELATION TO LANDSAT
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GEOLOGICAL SURVEY
RESTON, VA. 22092
	

M
National Center, MS 522

March 3, 1980

Memorandun for the Record (EC-74-Landsat)

By:	 EROS Coordinator, !National Mapping Division

Subject: Heat Capacity Napping Mission (Ha*l) then al surface water
mapping and its correlation to Landsat

The Heat Capacity Mapping Mission (HC01) involves a rala*_ively simple
satellite recording the radiation from the Earth in the thermal bard
(10.5 to 12.5 um) using an instantaneous field-of-view (IFOV, "footprint"
or pixel) of 600 x 600 m. The enclosed graphics illustrate HC:-LM thermal
napping of water bodies as applied to Lake Anna. The HCtiLM digital data
were produced by NASA and processed by the National Oceanographic and
Atmospheric Administration/National Environmental Satellite Service
(NOAH/NTESS) into image and line-printer form for the
U.S. Geological Survey. A Landsat image of Lake Anna illustrates the
relationship between the Landsat multispectral scanner (MSS) and the HC:-L`^
data as now processed by NASA through their Image Processing Facility
(IPF) which transforms the data to the same distortion.-free Hotine
Oblique Mercator (LOM) nap projection. Spatial correlation of the two
images is relatively simple by either analog or digital means and the
HCM,M image has a potential accuracy (root-mean-s quare error--rinse)
approaching the 80 m of the original Landsat data.

Lake Anna was built and filled during 1968-72 to provide cooling for a
nuclear power plant. The lake covers about 5,300 hectares (13,000 acres),
but because of its dendritic shape, it is hard to find open reaches of
more than 2 or 3 kr... Ap proximately 1,200 hectares (3,000 acres) comprise
the actual cooling ponds for the nuclear reactors, and they again ara
broken into odd shapes with open reaches ganerall; iirdted to I or 2 km..
The HCM.M IFOV is a nominal 600 x 600 m, and the data. have been resampled
by cubic convolution which alters original I OV response both
geometrically and radiometrically. Thus it is difficult to get a *_hernial
reading of the cooling ponds which has not been diluted by radiation from
the considerably cooler adjacent land areas.

On the figure teat displays both image and lire-printer HCH,"t date:, the

image for-1 fails to display the subtic temperature differences because of
the ranc_e and contrast used in the reproduction process. Howe ver, the
digital data as indicated by 

t
he line printer discla ys = we different

temperatures, all of -which re present open.-water areas. again, the narrow
portions of the lake fail to sl.ota suitable readings because the lnnu ar?a
dilutes the response of the 600- x 600-m foot print? near t`ie s.^.oreline.

USGS OPEN FI :,E REPORT, X00-265
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On June 11, 1978, when the HCMM data were obtained, thermometers were
recording temperatures (surface, mid- and bottom depths) at no fewer than
nine locations distributed throughout the lake. The thermometer readings
clearly indicated that the pre-launch H=4 calibration data could not be
applied directly to Lake Anna readings. Where thermometers indicated
surface temperatures of 23.7 0 C, the HC:4M reading based on pre-launch
calibration recorded 14.3 0 C. Thus, 9.40 C were added to the pre-launch-
based values. The resulting correlation indicates that, where the water-
surface response was not diluted by land areas, the temperature difference
recorded by the HGMM correspond to the in situ temperature readings with
rinse on the order of 1 0 C. Thus, the temperature gradients in the larger
areas of c%oling ponds and main lake body are recorded in useable and
relatively accurate form.

Other sites of known surface-water temperature must be tested before
conclusions can be reached as to the areal and temporal frequency of
calibration needed to effectively map water-surface temperature with HOLM
data. .'Moreover, the atmosphere and surface conditions under which such
thermal sensing is or is not practical remain to l ,e defined. It is
considered significant that a satellite with as coarse a footprint as the
HC%U4 can provide meaningful data of a water body as small and irregular as
Lake Anna and that the data can be spatially correlated with other data	 4a
sets such as those of Landsat.

`Alden P. Colvocoresses

Enclosures 2
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