NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Final Technical Report

STEAM RANKINE SOLAR RECEIVER
PHASE II

80-17627
November 23, 1981

Prepared for
California Institute of Technology
Jet Propulsion Laboratory
Pasadena, California

AIRESEARCH MANUFACTURING COMPANY
FOREWORD

This final report is submitted by the AiResearch Manufacturing Company, a division of The Garrett Corporation, in fulfillment of Phase II of Contract No. NAS7-100/955157 with the Jet Propulsion Laboratory of the California Institute of Technology. The report is a discussion of the design and development of a Steam Rankine Solar Receiver (SRSR).
ABSTRACT

The goal of the Phase II project was to design and develop a Steam Rankine Solar Receiver (SRSR) based on the tubular concept recommended in Phase I of the program. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam would then be used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy.

The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0-inches in diameter and 21.5-inches long. The tube size is 7/16-inch I.D. x 0.070-inch wall for the Primary, and 3/4-inch I.D. x 0.125-inch wall for the Reheat section. The materials used were Corrosion Resistant Steel (CRES) Type 321 and type 347 stainless steel. The core is insulated with 6-inches of Cerabrandel Insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400°F and 2550 psig.

An additional application for the system was investigated. This consisted of Process Heat involving two techniques utilizing the SRSR to produce steam: (a) Pressurized Water Receiver (PWR); and (b) Recirculation Boiler Receiver (RBR).

The study of the SRSR included symmetrical and asymmetrical solar power input into the receiver. The symmetrical cases involved the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are caused by reduced solar energy input from one half of the concentrator, or by receiver offset of ±1 inch from the concentrator optical axis.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>Iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Summary</td>
<td>1-1</td>
</tr>
<tr>
<td>2. STEAM RANKINE SOLAR RECEIVER (SRSR) DESCRIPTION</td>
<td>2-1</td>
</tr>
<tr>
<td>3. SRSR ANALYSIS</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Thermal Analysis</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.1 Optical Modeling</td>
<td>3-12</td>
</tr>
<tr>
<td>3.1.2 Final Design</td>
<td>3-15</td>
</tr>
<tr>
<td>3.1.3 Heat Flux Sensitivity Analysis</td>
<td>3-28</td>
</tr>
<tr>
<td>3.1.4 Process Heat Applications</td>
<td>3-28</td>
</tr>
<tr>
<td>3.1.5 One-Half Power Foreshortened Coil</td>
<td>3-36</td>
</tr>
<tr>
<td>3.1.6 Adequacy of Heat Transfer Area Margins</td>
<td>3-36</td>
</tr>
<tr>
<td>3.1.7 Pressure Drop Requirements</td>
<td>3-38</td>
</tr>
<tr>
<td>3.2 Structural Analysis</td>
<td>3-42</td>
</tr>
<tr>
<td>3.2.1 Internal Pressure and Thermal Load Analysis</td>
<td>3-42</td>
</tr>
<tr>
<td>3.2.2 Life Prediction</td>
<td>3-42</td>
</tr>
<tr>
<td>3.2.3 Inertial Load Analysis</td>
<td>3-42</td>
</tr>
<tr>
<td>4. SRSR FABRICATION</td>
<td>4-1</td>
</tr>
<tr>
<td>5. SRSR TESTING PROCEDURES AND RESULTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Leakage Test</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Proof Pressure Test</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3 Pressure Drop Test</td>
<td>5-1</td>
</tr>
</tbody>
</table>

Appendix

| A. STEAM RANKINE SOLAR RECEIVER DETAIL DESIGN DRAWINGS | A-1 |
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Parabolic Solar Concentrator</td>
<td>1-2</td>
</tr>
<tr>
<td>1-2</td>
<td>Steam Rankine Cycle Schematic</td>
<td>1-4</td>
</tr>
<tr>
<td>1-3</td>
<td>Steam Rankine Solar Receiver (SRSR)</td>
<td>1-6</td>
</tr>
<tr>
<td>2-1</td>
<td>Steam Rankine Solar Receiver (SRSR) Cutaway</td>
<td>2-2</td>
</tr>
<tr>
<td>3-1</td>
<td>Steam/Electric Modes, Primary - Reheat and All-Primary Modes</td>
<td>3-2</td>
</tr>
<tr>
<td>3-2</td>
<td>Thermodynamic Process Paths</td>
<td>3-3</td>
</tr>
<tr>
<td>3-3</td>
<td>Concentrator and Receiver Optics</td>
<td>3-5</td>
</tr>
<tr>
<td>3-4</td>
<td>Optical Flux Parameters</td>
<td>3-7</td>
</tr>
<tr>
<td>3-5</td>
<td>Comparison of Parallel Ray and Cone Optics Models</td>
<td>3-9</td>
</tr>
<tr>
<td>3-6</td>
<td>Comparison of AiResearch and JPL Flux Plots</td>
<td>3-10</td>
</tr>
<tr>
<td>3-7</td>
<td>Aperture Flux Plots. Concentration Ratios vs Radius of Receiver Opening</td>
<td>3-11</td>
</tr>
<tr>
<td>3-8</td>
<td>Computer Model for Thermal Analysis</td>
<td>3-14</td>
</tr>
<tr>
<td>3-9</td>
<td>Baseline Heat Flux Distribution, Primary-Reheat Mode</td>
<td>3-17</td>
</tr>
<tr>
<td>3-10</td>
<td>Temperature Profiles for Baseline Flux</td>
<td>3-18</td>
</tr>
<tr>
<td>3-11</td>
<td>Axially Shifted Flux Distribution</td>
<td>3-20</td>
</tr>
<tr>
<td>3-12</td>
<td>Temperature Profile Mismatch</td>
<td>3-22</td>
</tr>
<tr>
<td>3-13</td>
<td>Temperature Profile Correction</td>
<td>3-23</td>
</tr>
<tr>
<td>3-14</td>
<td>Movable Reflector Plate</td>
<td>3-24</td>
</tr>
<tr>
<td>3-15</td>
<td>Asymmetrically Shifted Flux Distribution, 1-Inch Cavity Offset</td>
<td>3-25</td>
</tr>
<tr>
<td>3-16</td>
<td>Baseline Heat Flux Distribution, All-Primary Mode</td>
<td>3-29</td>
</tr>
<tr>
<td>3-17</td>
<td>Temperature Profiles for Baseline Flux, All-Primary Mode</td>
<td>3-30</td>
</tr>
<tr>
<td>3-18</td>
<td>Pressurized Water Receiver Schematic (PWR)</td>
<td>3-31</td>
</tr>
<tr>
<td>3-19</td>
<td>Pressurized Water Receiver Process Path</td>
<td>3-32</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>3-20</td>
<td>Steam Generator Used with PWR</td>
<td>3-33</td>
</tr>
<tr>
<td>3-21</td>
<td>Steam Generator Hardware</td>
<td>3-34</td>
</tr>
<tr>
<td>3-22</td>
<td>Recirculation Boiler Receiver Schematic</td>
<td>3-35</td>
</tr>
<tr>
<td>3-23</td>
<td>Heat Transfer Area Margins</td>
<td>3-57</td>
</tr>
<tr>
<td>3-24</td>
<td>SRSR Computer Models for Stress Analysis</td>
<td>3-41</td>
</tr>
<tr>
<td>3-25</td>
<td>Combined Temperature and Pressure Stresses</td>
<td>3-43</td>
</tr>
<tr>
<td>3-26</td>
<td>Coll Bending Moment</td>
<td>3-44</td>
</tr>
<tr>
<td>3-27</td>
<td>Low-Cycle Fatigue Analysis</td>
<td>3-45</td>
</tr>
<tr>
<td>3-28</td>
<td>SRSR Inertial Load Analysis</td>
<td>3-47</td>
</tr>
<tr>
<td>4-1</td>
<td>Brazed Primary Core</td>
<td>4-3</td>
</tr>
<tr>
<td>4-2</td>
<td>Brazed Reheat Core</td>
<td>4-4</td>
</tr>
<tr>
<td>4-3</td>
<td>Assembled SRSR Core</td>
<td>4-5</td>
</tr>
<tr>
<td>4-4</td>
<td>Ceramic Aperture Assembly</td>
<td>4-6</td>
</tr>
<tr>
<td>4-5</td>
<td>Ceramic Reflector Assembly</td>
<td>4-7</td>
</tr>
<tr>
<td>4-6</td>
<td>SRSR Final Assembly</td>
<td>4-8</td>
</tr>
<tr>
<td>5-1</td>
<td>SRSR Leakage Test Setup</td>
<td>5-2</td>
</tr>
<tr>
<td>5-2</td>
<td>SRSR Pressure Drop Test Setup</td>
<td>5-3</td>
</tr>
<tr>
<td>5-3</td>
<td>Isothermal Pressure Drop/Primary Section. Core S/N 1</td>
<td>5-6</td>
</tr>
<tr>
<td>5-4</td>
<td>Isothermal Pressure Drop/Reheat Section. Core S/N 1</td>
<td>5-7</td>
</tr>
<tr>
<td>5-5</td>
<td>Isothermal Pressure Drop/Primary Section. Core S/N 2</td>
<td>5-8</td>
</tr>
<tr>
<td>5-6</td>
<td>Isothermal Pressure Drop/Reheat Section. Core S/N 2</td>
<td>5-9</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Solar Concentrator Characteristics</td>
<td>1-3</td>
</tr>
<tr>
<td>1-2</td>
<td>SRSR Phase II Problem Statement</td>
<td>1-5</td>
</tr>
<tr>
<td>1-3</td>
<td>SRSR Thermal Performance Summary</td>
<td>1-7</td>
</tr>
<tr>
<td>3-1</td>
<td>SRSR Selected for Detailed Analysis</td>
<td>3-13</td>
</tr>
<tr>
<td>3-2</td>
<td>Computer Program Model</td>
<td>3-16</td>
</tr>
<tr>
<td>3-3</td>
<td>Tube Wall Temperatures for Baseline Heat Flux Distribution</td>
<td>3-19</td>
</tr>
<tr>
<td>3-4</td>
<td>Asymmetric Flux Input Distribution Effects</td>
<td>3-24</td>
</tr>
<tr>
<td>3-5</td>
<td>Reduced Input From One-Half of Concentrator</td>
<td>3-27</td>
</tr>
<tr>
<td>3-6</td>
<td>Structural Evaluation and Analysis</td>
<td>3-39</td>
</tr>
<tr>
<td>3-7</td>
<td>CRES 321 Properties</td>
<td>3-40</td>
</tr>
<tr>
<td>5-1</td>
<td>Test Results Core S/N 1</td>
<td>5-4</td>
</tr>
<tr>
<td>5-2</td>
<td>Test Results Core S/N 2</td>
<td>5-5</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

This report records work done by AIResearch during Phase II of the Steam Rankine Solar Receiver (SRSR) development program. The Phase I study, (also performed by AIResearch for the Jet Propulsion Laboratory, under Contract NAS7-100/955157), created and analyzed various concepts for a solar receiver for a steam Rankine cycle. It was designed to operate in conjunction with a point focus concentrator, making steam for the generation of electricity. Figure 1-1 shows the parabolic concentrator of solar energy, while Table 1-1 summarizes its general characteristics. The steam Rankine cycle schematic is presented in Figure 1-2. The Phase I study resulted in the recommendation of a specific design. It consisted of a cylindrical coiled tube heat exchanger, set inside a cylindrical outer containment shell. The front end of the containment shell had an aperture of approximately 10-inches in diameter. The concentrated insolation, approximately 85 kwth (kw, thermal), entered through the aperture, and impinged on the interior wall of the cavity formed by the coiled tube heat exchanger. After radiation interchange had occurred, the absorbed heat flux was transferred to the water flowing through the tube. The Phase I SRSR featured: a) an Inconel 625 heat exchanger with primary and reheat sections; b) a removable ceramic aperture structure; c) a flat closed end of RA-330; d) kaowool insulation; e) an outer containment shell of mild steel; and f) a six-point thin strap support mechanism for the coil. Phase I also studied thermal storage devices and advised the use of lithium chloride as an energy storage medium. The results of Phase I were presented in AIResearch Report No. 79-15663.

Subsequently, work on Phase II commenced. The design was completed according to a revised problem statement submitted by JPL. AIResearch fabricated two complete SRSRs, two extra coils, and other spare parts, designed and purchased test equipment, and performed acceptance tests on the first two cores. This report documents work performed by AIResearch on the Steam Rankine Solar Receiver during Phase II of JPL Contract NAS7-100/955157.

1.1 SUMMARY

At the beginning of Phase II, AIResearch received a revised Phase I problem statement. See Table 1-2. The SRSR was to have a dual mode capability, performing in the all-primary mode and in the primary-reheat mode, i.e., as a once through boiler with and without reheat. Also, an analysis of process heat applications was requested, along with a study of the effect of heat flux irregularities inside the cavity due to unknown concentrator characteristics. The thermal energy storage device was excluded from further study.

The design of the Steam Rankine Solar Receiver was altered by these new requirements. See Figure 1-3. The basic concept remained the same, but several new features were incorporated into the Phase II design. The tubing wall sizes...
Figure 1-1. Parabolic Solar Concentrator
TABLE 1-1

SOLAR CONCENTRATOR CHARACTERISTICS

Type: two axis, tracking, faceted parabolic dish
Size: 11-meter aperture
Reflectivity: 0.86 to 0.94 (maximum)
Peak thermal energy at focus: 85 kw
Tracking error: 0.1 deg
Tracking system: evaluation/azimuth
Slew rates: elevation 400 deg/hr approximate
azimuth 150 deg/hr approximate
Focal length: 0.6 diameter
Slope error: 1 to 2 milliradians (0.1 deg nominal)

were changed. A movable backplate was included in order to equalize steam
outlet temperatures from the primary and reheat sections for the primary-reheat
mode (in case of flux irregularities inside the cavity). Expansion coils were
added at either end of the primary and reheat sections to allow for thermal
growth. A hinged joint replaced a solid braze joint between the primary and
reheat section to relieve thermally induced bending moment stresses. An 8 point
rigid support system which allows for radial and axial thermal growth replaces
the 6 point thin strap support mechanism for the heat exchanger. The completed
hardware incorporated these features.

The SRSR receives 85 kwth from the concentrator through the aperture, and
converts 80 kw of this energy to the working fluid, water. Table 1-3 summarizes
the thermal performance of the receiver. The receiver efficiency is estimated
at 94% and the pressure drop through the unit is less than 10%.

Creep deformation was dominant over life cycle fatigue as the limiting
factor in establishing the expected life of the unit. The design life of
the unit was based on 1% creep of the core. The Phase II design, using an
Inconel 625 core, has an expected life of 10,000 hours and 1500 cycles.
AIResearch fabricated two spare coils of Inconel 625. The first two units
used Corrosion Resistant Steel (CRES) type 321 cores for initial testing
of the SRSR concept. The CRES 321 have a limited life but should be adequate
for shakedown testing of the concentrator-receiver system. Operation of the
CRES 321 core at maximum temperatures and pressures could result in rupture
within a few hundred hours and less than 100 cycles.
Figure 1-2. Steam Rankine Cycle Schematic
TABLE 1-2
SRSR PHASE II PROBLEM STATEMENT

Solar Power Input
- Average sunny Spring day
- 85 kwth peak
- Receiver must accept input irregularities
 - Symmetrical, axially shifted incident flux profile due to mirror slope errors
 - Asymmetric incident flux profile due to receiver offset of ±1 in. or reduced input (10 percent less total power) from one-half of mirror

Applications
- Process Heat
- Steam/electric with dual mode operating capability
- Size receiver for steam/electric system

Peak Thermal Operating Conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Feedwater Temp, F (Inlet Press, psi)</th>
<th>Process Heat (Up to)</th>
<th>Steam/Electric (Calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Section</td>
<td>Feedwater Temp, F (Inlet Press, psi)</td>
<td>Up to 300 Calc.</td>
<td>200 - 300 Calc.</td>
</tr>
<tr>
<td>Steam Outlet Temp, F (Outlet Press, psi)</td>
<td>Up to 1300</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>Steam Outlet Temp, F (Outlet Press, psi)</td>
<td>Up to 2500</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>Reheat Section</td>
<td>Steam Temp, F (Inlet Press, psi)</td>
<td>Up to 1300 Calc.</td>
<td>650 Calc.</td>
</tr>
<tr>
<td>Steam Outlet Temp, F (Outlet Press, psi)</td>
<td>Up to 2500</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

Allowable pressure drop, $\Delta P/P_{sys} = 10\%$

Ceramic Aperture
- Design for convenient change for experimental purpose.
Figure 1-3. Steam Rankine Solar Receiver (SRSR)
TABLE 1-3

SRSR THERMAL PERFORMANCE SUMMARY

- SOLAR INPUT _________________________ 85 KWTH
- APERTURE (9 IN. DIA) RADIATION LOSS__ 1.3
- INSULATION LOSS _____________________ 1.2
- ASSUMED APERTURE ASSEMBLY ________ 2.5
 CONVECTION AND RADIATION LOSS
- THERMAL POWER TO FLUID ____________ 80
- RECEIVER EFFICIENCY ________________ 94%
- FLOW RATE _________________________ 157 LB/HR
- PRESSURE DROP
 PRIMARY ______________________________ 2%
 REHEAT ______________________________ 10%
- PRIMARY Mode ONLY
 FLOW RATE __________________________ 196 LB/HR
 PRESSURE DROP_______________________ 3%
Acceptance tests were performed on the two CRES 321 cores prior to delivery. They passed proof pressure, leakage, and pressure drop tests.
2. STEAM RANKINE SOLAR RECEIVER (SRSR) DESCRIPTION

The cutaway drawing of the SRSR is shown in Figure 2-1. The main components of the SRSR are a CRES 321 cylindrical tube-coil heat exchanger assembly, an adjustable aperture assembly, and a rear plate assembly.

The tube-core heat exchanger assembly consists of 34 turns of 7/16-inch O.D. by 0.070-inch wall primary section tubing and 10 turns of 3/4-inch O.D. by 0.125-inch wall reheat section tubing. An additional turn of tubing at the ends of each section allows for thermal contraction and expansion of the assembly. Straight runs of tubing are used to route the water or steam to and from the coil. The inner surface of the coil is oxide-coated to produce a surface emissivity of about 0.8. The primary and reheat coils are independent brazements which are mechanically attached to each other. The two coil sections may be connected either in series (for operation in primary mode only) or, parallel to each other (for operation in the primary plus reheat mode). In the latter case, the primary and reheat outlets are adjacent to each other. The core assembly is 17-inches in diameter and 21.5-inches in length.

The aperture assembly consists of: a) a Silicon Carbide (SIC) ceramic plate, 0.28-inch thick; b) an RA-330 stainless steel aperture support skirt; c) an Inconel 625 aperture mount plate; and d) a Type 347 stainless steel aperture support ring assembly. The assembly can be adjusted to incorporate two different ceramic plates with 8-inch and 10-inch diameter openings. The aperture plate also serves to reflect the re-radiated energy back into the receiver cavity.

The rear plate is also adjustable as it can be moved axially up to 3-inches. Originally it was a 0.28-inch thick SIC plate, but as a result of test experience, it was changed to a 0.375-inch thick chromium nickel steel (RA-330). Furthermore, the rear plate assembly consists of an Inconel 625 support structure and a mild steel rear outer shell.

The cylindrical core is insulated with 6-inches of Cerablanket insulation wrapped around the core's outer wall. It lies within a 0.188-inch thick, carbon steel (1020) case.

The outer case has a maximum diameter of 30.9-inches and an overall length of 38-inches.

The approximate weight of the ABSR was determined to be 476 lbs.

Detailed design drawings of the entire unit are provided in Appendix A at the end of this report.
Figure 2-1. Steam Rankine Solar Receiver (SRSR) Cutaway
3. SRSR ANALYSIS

Analysis of the Steam Rankine Solar Receiver (SRSR) included both a thermal analysis of the SRSR to ensure the adequacy of its thermal performance characteristics, and a structural analysis to ensure that the desired lifetime of the receiver is reached.

3.1 THERMAL ANALYSIS

The revised work statement issued by JPL led to study in several areas during Phase II of the SRSR program. Optical modeling of the concentrator-receiver system was performed to determine the thermal inputs to the receiver cavity for concentrators with different characteristics. The final design enables the receiver to accept substantial flux irregularities. Required options included the ability to operate in either the primary-reheat or all-primary configuration while in the steam electric mode. See Figure 3-1. Process heat applications requiring lower pressures and temperatures than the steam-electric configurations were to be analyzed. The receiver was to be sized for the steam-electric function.

The design points specified in Table 1-2 for the steam-electric mode led to the thermodynamic process paths shown in Figure 3-2. The flowrates were determined by the energy balance calculation. The path consists of 28 percent liquid heating, 20 percent boiling, 32 percent superheating, and 20 percent reheating.

The calculated thermal and pressure-drop performance of the receiver under design conditions is summarized in Table 1-3. 94 percent of the 85 kwth solar thermal input is absorbed by the working fluid (water). This produces primary steam at 2500 psia and 1300°F or, both primary steam at the same conditions and reheat steam at 175 psia and 1300°F. As a result of the Phase I parametric study and the Phase II reevaluation, a receiver was chosen for detailed analysis. The detail analysis of the selected receiver included heat flux sensitivity analysis, process heat applications, changes required for 1/2 total power input, and adequacy of heat transfer area margins.

3.1.1 Optical Modeling

The total design power directed toward the receiver by the concentrator was defined as 85 kwth. An estimated distribution of the normal heat flux on planes parallel to the focal plane was provided by JPL from two different concentrators. The concentrators had slope errors of 1- and 2-milliradians (mrad). An additional vertical distribution was provided for the 2-mrad concentrator.
Figure 3-1. Steam/Electric Modes. Primary-Reheat and All-Primary Modes
Figure 3-2. Thermodynamic Process Paths
In order to accurately evaluate the performance of a receiver design of Phase II, not only the total incident flux must be known, but also its distribution over the interior surfaces of the cavity. This flux distribution depends on a number of factors, including: (a) the characterization of the optical source; (b) the overall geometry of the concentrator (surface shape and speed, i.e., the smaller the angular size of the source, the slower the optical system). AIResearch had the availability of a mathematical solar simulator program developed by Dr. George Schrenk and supplied through Scientific Time Sharing Corporation (STSC). This program properly treats the sun as a source of finite angular dimensions and uses an efficient cone-optics method of evaluating the incident concentrated-flux, rather than using a ray-trace technique (which is used in analyzing image producing optical systems). The effects of concentrator slope errors and of radiation due to atmospheric scattering are taken into account by specifying an effective sun half-angle (α_{eff}) which is larger than the actual half-angle (α).

A simple but effective model was used to determine the receiver heat inputs for the parametric study of Phase I of the program. The results from this model were seen to be essentially indistinguishable from those obtained via the STSC program.

Figure 3-3 illustrates the optical differences between a very distant point source (resulting in parallel incident rays) and a source of finite angular dimensions. The paraboloidal concentrator shown has an f/D ratio of 0.6. On the right hand side of the figure, the paths of the incident and reflected rays from a finite source are shown being reflected from selected points on the reflecting surface. Similarly, the left hand side shows the results for flux incident from a distant point source. The drawing is to scale and the paths of the reflected rays were determined by an exact ray trace program. Two observations can be made:

1. For a distant point source on the optical axis, a paraboloid of revolution focuses all the incident rays through the prime focus. Thus, the aperture flux distribution is a poor approximation to the actual flux distribution from an extended source.

2. For regions away from the focal plane, the character of the flux field produced by the distant point source is not substantially different from that for an extended source.

By adopting the distant point source approximation (simple model), the flux in the cavity can now be represented by a simple vector field. The flux vector, \mathbf{F}, is fully described once its magnitude F and polar angle θ are specified (there being azimuthal symmetry). At a location (r, z) in the cavity, F and θ are given by

$$F(r, z) = \frac{\rho \text{SRH} \cos (\arctan (R/2f))}{\cos (\arctan (r/z) - \arctan (R/2f)) \sqrt{r^2 + z^2}}$$

(3-1)
where
\[H = \sqrt{R^2 + (f - R^2/4f)^2} \]
(3-2)

and
\[R = \begin{cases} \frac{2f}{(r/z)} \left(\sqrt{1 + \frac{r^2}{z^2}} - 1 \right), & r/z > 0, \\ 0, & r/z = 0, \end{cases} \]
(3-3)

and
\[\theta(r/z) = \arctan \left(\frac{r}{z} \right). \]
(3-5)

The geometric quantities \(r, \theta, r, H, \) and \(f \) are defined in Figure 3-4. The physical quantities \(\rho \) and \(S \) are the concentrator reflectivity and the direct normal incident solar radiation, respectively. \(F \) will have the same units as \(S \) (e.g., \(\text{kW/m}^2 \)) if all the geometric quantities use the same linear unit (e.g., meters).

The effect of the concentrator diameter, \(D \), is applied through the additional constraint
\[F = 0 \text{ if } \theta > \theta_{\max} \]
(3-6)

where
\[\theta_{\max} = \arctan \frac{D/2}{f-d} \]
(3-7)

and
\[s = \frac{1}{4f} (D/2)^2 \]
(3-8)

Also, shadowing by the receiver itself results in the constraint
\[F = 0 \text{ if } \theta < \theta_{\min} \]
(3-9)

where
\[\theta_{\min} = \arctan \frac{D_r/2}{f-d} \]
(3-10)

and
\[d = \frac{1}{4f} (D_r/2)^2 \]
(3-11)

Finally, the incident energy per unit area of cavity wall, \(q \), is
\[q = (r,z) \cdot \hat{n}(r,z) \]
(3-12)

where \(\hat{n} \) is the outward directed unit vector normal to the cavity wall at the point of interest.
A comparison of \(q \) determined by both the STSC program and this simple approximation is shown in the upper portion of Figure 3-5. The results shown are for the typical cavity represented in the insert at the lower portion of the figure. The simple model's sharp cutoff occurs at \(\theta = \theta_{\text{max}} \). The fact that the peak value of the simple model curve is quite a bit higher than the STSC curve is really of little concern. What is of importance here is not the instantaneous value of \(q (z, r) \), but the integral of this quantity over the finite area of a wall element (the cavity is divided into six finite elements). The lower portion of Figure 3-5 shows two superimposed histograms. They give the total energy incident upon each element, using both the STSC program (solid line) and the distant point source model (dashed line). The difference between the two is seen to be rather small, with a maximum difference of 12.0 percent. Because of radiation effects, the absorbed power curve is more smeared out than the incident power curve. This serves to further reduce the importance of choosing the more exact flux model. The final and most important result is that the wall temperature distribution and peak temperature value are not significantly influenced by using the simpler flux model.

The effect of the concentrator imperfections is to apply a smoothing function to the distribution that would otherwise result from reflection from a perfect mirror. Thus, the simple model histogram can be improved by applying a smoothing technique which employs two empirically determined parameters, \(N \) and \(S_j \). \(N \) is the number of times the smoothing is applied to the histogram. \(S_j \) measures the amount of smoothing per pass. The optical input for the thermal analysis of the receiver under development was obtained using the distant point source model and the smoothing function.

Figure 3-6 compares the vertical flux distribution given in Exhibit II of the JPL work statement with a histogram obtained in the described manner. The excellent agreement far from the aperture is as expected; nearer the aperture, the Exhibit II curve seems to be deficient in integrated power.

Knowledge of the flux distribution across the focal plane is necessary in order to establish the receiver aperture size. Figure 3-7 is a collection of aperture flux plots presented as concentration ratio vs the radius \(R_1 \). The plots on the right side of the figure are a continuation of the plots on the left side on a greatly expanded scale. The rectangular "simple optics" plot ignores all optical aberrations that accompany non-paraxial rays and fast optical systems. It does, however, provide a convenient datum against which all others can be compared. The Schrenk" plot was generated by the STSC program. The 1.7 factor was chosen to give reasonable agreement with the "1.75 mrad" curve which was supplied by JPL for the Phase I proposal effort. The curves labeled "1 mrad" and "2 mrad" are from the Exhibit II supplied in Phase II; interpolation between these two gives the "1.75 Interpolated" curve for the specified nominal value of 1.75 mrad. The new curves clearly are in disagreement with the older 1.75 mrad curve and, especially for the 1 mrad case, exhibit unusual behavior for small \(R_1 \). Based on these considerations, a conservative value of \(R_1 = 5 \) inches was chosen for the baseline aperture size for the analysis, but the actual receiver was provided with aperture size adjusting features.
Figure 3-5. Comparison of Parallel Ray and Cone Optics Models
Figure 3-6. Comparison of AIResearch and JPL Flux Plots for a 12-in. Radius Cylinder
Figure 3-7. Aperture Flux Plots
3.1.2 Final Design

The SRSR was designed with several objectives in mind: The maximum cavity efficiency was desired. The metal temperatures had to be kept under certain limits for acceptable receiver life. The pressure drop was intended to be below a certain value so that system performance would not be significantly affected. The weight of the unit was kept to a minimum to keep the receiver support system simple. The basic parametric analysis of the receiver involving these variables was performed during Phase I.

Phase II specifications required changes in the receiver; these alterations were guided with the aid of the parametric study. As a result, a solar receiver was defined which had the characteristics shown in Table 3-1.

Conduction, convection, and radiation losses were calculated. Conduction losses through the insulation were calculated to total approximately 1.2 kWth. External convection and radiation losses to the air environment were estimated at 2.5 kWth. Radiation losses from a 9-inch diameter aperture were approximately 1.3 kWth. These figures were based on an 85 kWth input from a concentrator with a receiver efficiency of 94%.

The pressure drop calculated for the primary-reheat mode and primary mode only were in the range of 2- to -10 percent per coil. These numbers satisfied the conditions required in the problem statement for Phase II.

A finite element method of analysis was used to estimate the receiver performance. AIResearch developed a computer program that uses the SRSR model shown in Figure 3-8.

Incident solar flux on the inner surfaces of the receiver was computed by assuming parallel rays from the sun (point source) as being reflected from a perfect parabolic concentrator. The resulting flux profile was smoothed out (Section 3.1.1 Optical Modeling) and represented in a histogram input to the computer program for computation of the radiation interchange, fluid heat transfer, and pressure drop.

The computer program handles liquid heating, boiling, and vapor superheating heat transfer modes on the cylindrical core with uncooled front and back ends. Radiation interchange computations were based on the assumption of flat surfaces, an equal solar absorptance and infrared emittance of 0.80, and diffuse radiation (both reflected solar and emitted infrared). Also, the heated surface of the tubes was assumed to be one-third (120 deg) of the total tube outside area.

Heat transfer to the fluid inside the tube in the subcooled liquid and the superheated vapor regions was computed from Colburn modulus versus Reynolds number data for flow in round tubes. A tube-length-to-diameter ratio of L/D = 25 was used to account for the effects of tube coil curvature. In the boiling region, the John Chen correlation was used for a steam quality of up to 70 percent. Vapor heat transfer coefficients were used thereafter.
TABLE 3-1
RECEIVER SELECTED FOR DETAILED ANALYSIS

As a result of Phase I Parametric Study and Phase II Reevaluation

- **Cavity Size**
 - $D_{cyli} = 17$ in.
 - $L_{cyli} = 21.5$ in.
 - $L_o = 2.5$ to 4
 - $D_a = 7$ to 12 in.

- **Insulation Thickness**
 - Open end and cylinder (t_c), 4 in.
 - Closed end (t_e), 6 in.

- **Tube Size**
 - Primary: 7/16 in. OD x 0.070 in. wall
 - Reheat: 3/4 in. OD x 0.125 in. wall

- **Location of Reheat Outlet**
 - Adjacent to primary outlet

- **Materials**
 - Tubes, Inconel 625
 - Insulation, cerablanket 8 lb/ft3
 - Aperture plate, 0.28 in. SIC ceramic
 - Reflector plate, 0.28 in. SIC ceramic

- **Surface Emissivity**, 0.80

- **Outside Environment**
 - 70°F and 30 mph wind
Pressure drop in the liquid and vapor regions was computed from Fanning friction factor versus Reynolds number data for round tubes having an L/D = 25. Pressure drop in the boiling region resulting from momentum change and friction losses was computed with the Lockhart and Martinelli correlation for two-phase flow pressure drop. Stable and homogeneous flow was assumed.

The program is capable of handling several modes of operation as described in Table 3-2.

3.1.3 Heat Flux Sensitivity Analysis

The smoothed incident flux profile described in Section 3.1.2 (Final Design) of this report constitutes the baseline flux. It was used for the sensitivity analysis of various possible incident flux profiles caused by concentrator irregularities.

This analysis examined the effect of both symmetric (flux profiles which vary in the axial direction only) and asymmetric incident solar fluxes on the receiver. The symmetric incident fluxes include the baseline flux and axially shifted flux profiles with reduced peak flux patterns. The asymmetric flux patterns, in one case, offset the receiver ±1 inch, and in another case, reduced the input (10% less total power) from one-half of the concentrator.

A sensitivity analysis based on two assumed symmetrical incident flux profiles was performed; it considered the cylindrical section of the receiver only, with no ends involved.

The first or baseline flux profile, (Figure 3-9) approximates the input from a collector having a slope error of approximately 2-mrad. This results in a receiver design in which the primary and reheat outlets are located about 14.6-inches from the front end of the cylindrical section. The cavity wall temperature profile resulting from this baseline flux is shown in Figure 3-10. Tube wall nodal temperatures along the cavity wall are summarized in Table 3-3 for the baseline flux, primary-reheat configuration. The second flux profile is a greatly exaggerated maldistributed incident heat flux profile—the peak flux was reduced by 25 percent and shifted about 8-inches further toward the closed end. This distribution results in a location of the two outlets at about 16.9-inches from the front end, (2.3-inches closer to the closed end than in the first coil). This situation seemed to indicate that axial variation in incident solar flux can be accommodated by using a separate design for each type of solar flux input or by installing a movable coil that can be adjusted either forward or aft to a position that results in equal steam outlet temperatures from the primary and reheat coils.

A revised analysis based on a third heat flux profile was also made. This profile was similar to the first profile mentioned above except that the incident peak flux was lowered by about 20 percent; the location of the peak was shifted axially about 3-inches further toward the closed end; and the incident flux on the rear portion of the cylindrical section was increased by about 50 percent. Figure 3-11. In this case, the two steam outlets must be located about 15.6-inches from the front end of the cylinder to obtain equal outlet steam temperatures. If the two steam outlets are not relocated, but are
<table>
<thead>
<tr>
<th>Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary only</td>
</tr>
<tr>
<td></td>
<td>Dual Mode</td>
</tr>
<tr>
<td></td>
<td>- Primary plus reheat</td>
</tr>
<tr>
<td></td>
<td>Reheat inlet at closed end</td>
</tr>
<tr>
<td></td>
<td>Reheat exit at closed end</td>
</tr>
<tr>
<td></td>
<td>- Equal or unequal tube sizes</td>
</tr>
<tr>
<td></td>
<td>- Primary and reheat coils in series</td>
</tr>
<tr>
<td>Heat Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Smoothed point source from collector</td>
</tr>
<tr>
<td></td>
<td>- Arbitrary symmetrical heat rate input for each surface node</td>
</tr>
<tr>
<td>Heat Transfer and Pressure Drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tubes heated on one side (1/3 of surface)</td>
</tr>
<tr>
<td></td>
<td>- Radiation interchange based on grey body radiosity network</td>
</tr>
<tr>
<td></td>
<td>- Axial heat conduction neglected</td>
</tr>
<tr>
<td></td>
<td>- Single phase heat transfer</td>
</tr>
<tr>
<td></td>
<td>- Basic flow friction and heat transfer</td>
</tr>
<tr>
<td></td>
<td>- Boiling</td>
</tr>
<tr>
<td></td>
<td>- Chen correlation with completely wetted wall to 70% quality</td>
</tr>
<tr>
<td></td>
<td>- Lockhart/Martinelli two phase flow ΔP</td>
</tr>
</tbody>
</table>
TABLE 3-3

SUMMARY OF AXIAL AND CIRCUMFERENTIAL TUBE WALL TEMPERATURES FOR THE BASELINE AVERAGED HEAT FLUX DISTRIBUTION CASE

<table>
<thead>
<tr>
<th>Axial Distance From Primary Inlet (in.)</th>
<th>Fluid Temp °F</th>
<th>Wall Temps at Indicated Nodes, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>280</td>
<td>295</td>
</tr>
<tr>
<td>1.3</td>
<td>318</td>
<td>340</td>
</tr>
<tr>
<td>3.9</td>
<td>481</td>
<td>538</td>
</tr>
<tr>
<td>6.7</td>
<td>670</td>
<td>704</td>
</tr>
<tr>
<td>9.6</td>
<td>740</td>
<td>854</td>
</tr>
<tr>
<td>12.1</td>
<td>1080</td>
<td>1181</td>
</tr>
<tr>
<td>14.4</td>
<td>1300</td>
<td>1353</td>
</tr>
<tr>
<td>14.9</td>
<td>1300</td>
<td>1420</td>
</tr>
<tr>
<td>17.2</td>
<td>1066</td>
<td>1188</td>
</tr>
<tr>
<td>20.3</td>
<td>785</td>
<td>941</td>
</tr>
<tr>
<td>21.1</td>
<td>650</td>
<td>850</td>
</tr>
</tbody>
</table>

Diagram:

- Unheated and Insulated Rear Half of Tube Wall
- Heat Portion of Tube Wall

80-17527
Page 3-19
Figure 3-11. Axially Shifted Heat Flux Distribution

Axially Shifted Heat Flux Distribution on Spherical Wall of SAEX

M = 0.1
A = 0.0

Distance along Cylinder Wall in Inches

Heat Flux, Btu/hr/ft²
left the same as for the baseline flux case (14.6-inches from the front of the
cylinder), a temperature mismatch of about 210°F will exist between the reheat
and primary steam outlets. Also, the reheat maximum wall temperature will be
increased from 1440°F to 1570°F. Figure 3-12.

The solution to any temperature mismatch resulting from axially shifting
the incident heat flux is to install a movable back plate at the closed end
of the cavity. The large mismatch described above can be eliminated by moving
the back wall forward by only about 1.5-inches. Figure 3-13. The final design
will incorporate a movable back plate so that a portion of the reheat coil can
be covered or uncovered by the amount needed to equalize the steam outlet
temperatures. Figure 3-14. Thus, any axial shift in incident heat flux dis-
tribution can be accepted.

The effects of asymmetric heat flux caused by a +1 inch offset of the
receiver from the optical axis are acceptable. The resulting absorbed heat
profiles are plotted in Figure 3-15, and wall temperatures in Table 3-4.

The cavity was divided into 12 axial nodes of equal length and 12 circum-
ferential equal nodes. The No.1 circumferential node is the closest to the
focal point. The absorbed heat flux is very pronounced at axial node No. 3
(boiling regime) and it is here that the peak flux takes place. The heat
distribution for any axial node behaves symmetrically with respect to the
 circumferential node No. 1. In the superheating region, the heat is more uni-
formly distributed among the circumferential nodes. For example, axial node
No. 9 shows an absorbed heat variation of from 1150 Btu/hr to 1550 Btu/hr.
For this same axial location, the baseline flux shows a constant heat Input
of about 1375 Btu/hr (Figure 3-9). By comparing these two cases, a circum-
ferential variation between +12.7% and -16.3% is determined; thus, approxi-
mately the same total heat Input applies to both symmetrical and 1-inch offset
asymmetrical cases.

The flux distribution curves for nodes 4 through 12 in Figure 3-15 also
show a depression along the circumferential node No. 1. This is caused by the
apparent shifting effect that the heat distribution on the two halves of the
receiver undergoes with respect to each other (the closest and furthest halves
to the focal point). This is due to the offsetting of the cavity.

The second asymmetric flux input analyzed had a heat input reduction origi-
nating from half of the concentrator, with full power input originating from
the other half of the concentrator. The total power input to the receiver was
decreased by 10%. In this case, the working fluid flow must be reduced in order
to maintain the required outlet temperature. It is also evident that the maxi-
mum tube wall temperature occurs on the side of the cavity that receives the
normal (non-reduced) heat flux. This case has less effect on the receiver than
the 1-inch offset condition, which was acceptable. This analysis is summarized
in Table 3-5. Canting of the receiver at an angle of ±0.25° from the optical
axis is also acceptable. Any combination of the above mentioned axially shifted
and asymmetric incident heat flux profiles can be accepted, provided the back
plate is positioned to equalize the primary and reheat steam outlet temperatures.
SOLUTION TO TEMPERATURE MISMATCH AT PRIMARY AND REHEAT OUTLETS

Cause: Axially Shifted Incident Heat Flux

Solution: Movable Back Plate

Baseline heat flux with back plate in 1.5 in.

Slightly higher tube wall temps

Same ΔP

Figure 3-14. Movable Reflector Plate
Figure 3-15. Asymmetrically Shifted Heat Flux Distribution Due to One-Inch Cavity Offset at Baseline Incident Heat Flux Condition
TABLE 3-4
ASYMMETRIC HEAT FLUX INPUT DISTRIBUTION EFFECTS

- Incident flux determined by smoothing of point source flux from perfect parabolic concentrator
- Concentrator characteristics
 - Diameter = 37.2 ft
 - Focal length/diameter = 0.60
 - Reflectivity = 0.86
 - Solar flux = 310.5 Btu/hr
 - Total power reflected = 85 kwth
- Receiver offset ±1 in. from optical axis

![Coil Diagram]

Flux Patterns

CIRCUMFERENTIAL TEMPERATURE VARIATIONS (°F)

<table>
<thead>
<tr>
<th>Region</th>
<th>Boiling</th>
<th>Primary Outlet</th>
<th>Reheat Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular Position, θ</td>
<td>0 180</td>
<td>0 180</td>
<td>0 180</td>
</tr>
<tr>
<td>1. Heated surface</td>
<td>670 - 740</td>
<td>1345 - 1360</td>
<td>1400 - 1440</td>
</tr>
<tr>
<td>3. Fluid side</td>
<td>670 - 675</td>
<td>1330 - 1345</td>
<td>1385 - 1415</td>
</tr>
<tr>
<td>5. Back wall</td>
<td>670 - 670</td>
<td>1305 - 1315</td>
<td>1360 - 1385</td>
</tr>
</tbody>
</table>
TABLE 3-5

REDUCED INPUT FROM ONE-HALF OF CONCENTRATOR

- EFFECTS ON RECEIVER
 - 10% REDUCTION IN FLOW TO MAINTAIN SAME STEAM OUT TEMP
 - MAX WALL TO FLUID ΔT DECREASED BY 2 °F (0 TO 180 DEG)
 - MAX WALL TO FLUID ΔT INCREASED BY 9 °F (0 TO -180 DEG)
 - LESS THAN OFFSET RECEIVER
For the all-primary configuration in the steam-electric application, the receiver is less sensitive to heat flux irregularities. Since the primary section outlet steam is returned directly to the adjacent reheater tube and exits the reheater from the closed end, there is no temperature mismatch between the primary and reheater sections. The baseline flux profile is shown in Figure 3-16, and the resultant temperatures in Figure 3-17.

3.1.4 Process Heat Applications

AirResearch was asked to examine ways in which the Steam Rankine Solar Receiver (SRSR) could be used to produce process heat for various industrial uses. The conditions supplied by JPL were inlet water at 70°F, and outlet steam at 50, 100 and 150 psia with 50 and 100°F superheat at each pressure.

Two techniques utilizing the SRSR to produce process steam were studied. One technique, called Pressurized Water Receiver (PWR), uses the existing receiver to heat water at 2500 psia to 668°F. The flow-rate is increased from 157 lb/hr (the steam/electric application flow-rate) to 640 lb/hr to prevent fouling in the receiver. The hot, pressurized water is pumped through a steam generator, which boils and superheats treated tap water to produce 227 lb/hr of process steam at the conditions described. The cooled pressurized water from the steam generator is pumped back to the receiver in a closed loop. The relationship of the receiver in the pressurized water receiver system is shown in Figure 3-18. The thermodynamic process path for the PWR is shown in Figure 3-19. The steam generator used in the PWR system is detailed in Figures 3-20 and 3-21.

The other technique, called a Recirculation Boiler Receiver (RBR), uses the same receiver except for a new coil. Treated tap water is pumped into the receiver, boiled to 15 percent quality, and piped to a vapor/liquid separator. The vapor is separated and piped back to the receiver super heat section to produce process steam. The water from the separator is pumped back to the receiver, where it is mixed with make up tap water before undergoing the boiling process. The new coil consists of 1/2-Inch O.D. x .049 wall tubing having a mean diameter of about 19-inches and an overall length of 24-inches. The operating pressure is about 250 psia, which can be throttled down at the exit to produce the desired process steam conditions. Figure 3-22. The coil material is 304 stainless steel. Both of these techniques require the use of a liquid/vapor separator.

3.1.5 One-Half Power Foreshortened Coil

The capacity of the receiver can be reduced by up to 50 percent (42.5 Kwth) by removing and replacing the tubular coil with a new foreshortened coil and by adding insulation in the closed end. The mean diameter of the coil would remain the same (17-3/4 inches). Also, the movable back plate mechanism would have to be repositioned to accommodate the foreshortened coil.

The overall length of the new coil is one-half that of the full power coil, and the tubing size must be reduced to maintain the same fluid mass velocities. Consequently, the primary coil tube size must be reduced from 7/16 O.D. x 0.070 wall to 5/16 O.D. x 0.048 wall, and the reheat coil tube size must be reduced.
Figure 3-17. Temperature Profiles for Baseline Heat Flux, All-Primary Mode
Figure 3-18. Pressurized Water Receiver (PWR) Schematic, For Process Steam
PWR FLOW = 640 LB/HR
STEAM FLOW = 227 LB/HR

<table>
<thead>
<tr>
<th>STATE POINT</th>
<th>PRESS PSIA</th>
<th>TEMP °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,510</td>
<td>305</td>
</tr>
<tr>
<td>2</td>
<td>2,500</td>
<td>668</td>
</tr>
<tr>
<td>A</td>
<td>14.7</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td>450</td>
</tr>
</tbody>
</table>

Figure 3-19. PWR Thermodynamic Process Path
Figure 3-20. High Pressure Water Steam Generator
Used with PWR
Figure 3-21. High Pressure Steam Generator Hardware
Figure 3-22. Recirculation Boiler Receiver Schematic, for Process Steam
from 3/4 O.D. x 0.120 wall to 9/16 O.D. x 0.090 wall. The foreshortened coil design can accept variations in the incident heat flux, provided the movable end plate is relocated.

Although the capacity of the receiver can be reduced by using a foreshortened coil, a better solution to reduced power input is to use the full length coil without any changes. The full length coil actually does operate at one-half power for short periods (one in the morning and the other in the afternoon) as a consequence of the normal diurnal solar input.

3.1.6 Adequacy of Heat Transfer Area Margins

A review of the heat transfer in the single phase and especially the boiling regions of the coil was made for the baseline heat flux input. An analysis of the boiling region was made by assuming the heated half of the tube was dry and the boiling liquid wetted only the insulated (back side) half. The tube wall temperatures were higher than normal, but acceptable. Higher stress results, but these were structurally acceptable too. It was concluded that the area was adequate.

In the single phase region a maximum wall temperature of 1400°F at the primary steam outlet is the limiting design factor. Figure 3-23 summarizes the analysis performed by AiResearch on the margins.

3.1.7 Pressure Drop Requirements

The allowable pressure drop established by JPL for the SRSR was 10%. The primary coil diameter and wall thickness were increased from Phase I to allow for higher steam pressures and temperatures. The pressure drop remained well under 10%. The reheater I.D. was increased in order to stay within the 10% pressure drop limit when the Phase II work statement indicated a lower reheater inlet pressure in the primary-reheat mode. The reheater also had the requirement of operating in the all-primary mode with significantly higher pressures, and the tube wall thicknesses were increased accordingly.

These changes in the tubing dimensions and the addition of the movable back plate were the major design changes brought about by the thermal analysis performed by AiResearch in Phase II.

3.2 STRUCTURAL ANALYSIS

Structural analysis of the Steam Rankine Solar Receiver (SRSR) was conducted to determine the design stresses and expected operational life. The solar receiver unit was designed to withstand the operational and test pressures and temperatures and the environmental conditions under normal operation (as specified in the design requirements outlined in Exhibit II of the Phase II contract). Normal operational conditions include wind conditions of 30-mph steady-state, with a 20-percent gust factor; temperature and humidity extremes (0° to 125°F and 0 to 100 percent, respectively); blowing dust; and altitude conditions of 0 to 6000 ft. In addition, survival environmental conditions such as 100-mph winds, seismic lateral loads, and snow and ice loads were considered. Codes and standards such as the ASME Boiler and Pressure Vessel Code...
BOILING REGION

Q/A = 62,000 BTU/HR FT

VAPOR 50% BY VOL

48% BY WT

- **INSULATED HALF**
 - $h_1 = 2,000$ BTU/HR FT2 $^\circ$F
 - $h_v = 650$ BTU/HR FT2 $^\circ$F
 - $T_1 = T_v = 688$ °F
 - $T_1 = 758$ °F WALL $\Delta T_1 = 42$ °F
 - $T_2 = 702$ °F
 - $T_3 = 669$ °F

- **HEATED HALF**
 - $h_v = 400$ BTU/HR FT2 $^\circ$F
 - $T_1 = 807$ °F
 - $T_2 = 748$ °F
 - $T_3 = 688$ °F

- **VAPOR ANNULUS**

Higher, but acceptable tube wall temperature

Area is adequate

Figure 3-23. Adequacy of Heat Transfer Area Margins
as well as the Safety Regulations of the California Occupational Safety and Health Administration are also recognized. The major areas of study included:

- the combined pressure and thermal loads in the tubing walls;
- thermal stresses in the cavity walls;
- inertial load in the core mounting structure; and
- the solar receiver housing assembly.

The SRSR was subsequently designed to withstand several factors. These include:

- internal pressure load of 2550 psig;
- thermal loads associated with the 85 KWth peak input;
- realistic combinations of these two load conditions to determine the stresses that would cause cumulative fatigue and creep damage to the unit in operation; and
- inertial loads of 3 g's (nonoperating), resulting in a life of 10,000 hours and 1500 cycles.

Table 3-6 summarizes the analyses performed by AIResearch on various components of the SRSR.

3.2.1 Internal Pressure and Thermal Load Analysis

The core design life of 10,000 hours and 1500 cycles applies to a core of Inconel 625, a nickel-chromium alloy. Creep deformation appears to be more restrictive on the receiver life than cycle fatigue. The design life is based on 1-percent creep deformation of the core while operating at the maximum temperature and pressure of 1400°F and 2550 psig. Design changes would be necessary to increase the expected life of future units to 100,000 hours. Two Inconel 625 cores and two CRES 321 cores were fabricated by AIResearch. The CRES 321 cores have a significantly shorter life than the Inconel 625 cores and are to be used for testing of the SRSR. The expected life of the CRES cores, based on creep rupture data at the maximum operating temperature and pressure, is a few hundred hours. Less than 100 cycles can be expected from the CRES unit at those maximum conditions. Table 3-7 shows strength properties, estimated maximum stresses and time to rupture for the CRES 321 cores.

Computer models were utilized in the analysis of the SRSR. Figure 3-24 depicts the models used to determine tube wall stresses and the cavity wall stresses. The computer model of the coiled tube heat exchanger core assembly shows that the internal pressure will cause an equivalent stress of 8300 psi in the tube wall. At the high temperature region of the coil, where metal temperatures exceed approximately 1250°F, the creep strength of the Inconel 625 tubing limits the life of the solar receiver core. Although localized creep deformations in the prototype core will exceed 1.0 percent at the 10,000
<table>
<thead>
<tr>
<th>INTERNAL PRESSURE LOAD ANALYSIS:</th>
<th>PRIMARY TUBE REHEAT TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL LOAD ANALYSIS:</td>
<td>CYLINDRICAL SHELL MODEL WITH LONGITUDINAL TEMPERATURE DISTRIBUTION (ANSYS)</td>
</tr>
<tr>
<td></td>
<td>TUBE CROSS SECTION MODEL WITH CIRCUMFERENTIAL TEMPERATURE DISTRIBUTION (ANSYS)</td>
</tr>
<tr>
<td></td>
<td>LOW CYCLE FATIGUE (AIRESERCH X0875)</td>
</tr>
<tr>
<td>INERTIA LOAD ANALYSIS:</td>
<td>CORE HINGE CONNECTION CORE SUPPORT STRUCTURE HOUSING</td>
</tr>
</tbody>
</table>
TABLE 3-7
CRES 321 PROPERTIES

Yield and Ultimate Strengths of Type 321 Stainless Steel

<table>
<thead>
<tr>
<th>Metal Temperature, °F</th>
<th>1,000</th>
<th>1,100</th>
<th>1,200</th>
<th>1,300</th>
<th>1,400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>21,000</td>
<td>20,400</td>
<td>19,500</td>
<td>18,300</td>
<td>16,500</td>
</tr>
<tr>
<td>Minimum</td>
<td>14,400</td>
<td>16,300</td>
<td>15,600</td>
<td>14,500</td>
<td>13,300</td>
</tr>
<tr>
<td>Ultimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>57,000</td>
<td>53,000</td>
<td>47,000</td>
<td>38,300</td>
<td>30,000</td>
</tr>
<tr>
<td>Minimum</td>
<td>48,500</td>
<td>44,000</td>
<td>36,500</td>
<td>30,000</td>
<td>23,800</td>
</tr>
</tbody>
</table>

SRSR ESTIMATED TUBE WALL MAXIMUM STRESS AND TIME TO RUPTURE

Reheat Coil (0.750 in. OD x 0.120 in. wall)
Type 321 Stainless Steel

Pressure, P = 2500 psi
Combined Maximum Wall Stress = 8300 psi*

<table>
<thead>
<tr>
<th>Wall Temp, °F</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Rupture, hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td>6.85 x 10^8</td>
<td>9.71 x 10^6</td>
<td>2.30 x 10^5</td>
<td>8300</td>
<td>430</td>
</tr>
<tr>
<td>Minimum</td>
<td>7.07 x 10^6</td>
<td>1.34 x 10^5</td>
<td>4100</td>
<td>187</td>
<td>12</td>
</tr>
</tbody>
</table>

*The maximum wall hoop stress is

\[S = P \left[\frac{(D_0/D_1)^2 + 1}{(D_0/D_1)^2 - 1} \right] = 2.72 \times 2500 = 6800 \text{ psi} \]

The combined stress is the result of the fluid pressure and thermal gradients in the tube wall at baseline incident solar flux conditions.
Figure 3-24. ANSYS Computer Models of SRSR Core for Stress Analysis
hour life, the margin on rupture stress is 63 percent. This margin is considered satisfactory for the prototype, but production units with 100,000 hour life will require a design change to increase the tubing strength in the high temperature region of the core.

Thermal stresses in the coil assembly will reach a maximum in the boiling region. Under the most adverse boiling condition with a dry wall in two phase flow, the tube wall maximum stress is 22,300 psi at 700°F. Figure 3-25. Creep is not a factor at this temperature and the stress is less than the 45,000 psi yield strength. Thermal stresses are low in the high temperature region of the coil where tube wall gradients are small, and the pressure stress dominates.

A thermal stress analysis of the coil was made with an ANSYS finite element computer model of an equivalent stiffness cylindrical shell. The results showed that a large bending moment will occur with a rigid connection between the steam generation coil and the reheat coil. Therefore, the two coils are joined with pin connections that will minimize moments by allowing small local rotations. The bending moment reduction is shown in Figure 3-26.

The expansion coils added to the inlet and outlet of both the primary and reheat sections relieve stresses in the core and in the SRSR housing at the entry-exit point of the inlet and outlet tubes, and also allow the end of the tubes to be fixed relative to the housing.

3.2.2 Life Prediction

An effort was made to predict the fatigue life in the areas where the calculated transient stresses obtained with an elastic stress analysis exceed the yield strength of the material. To do so, AiResearch uses the latest, state-of-the-art, elastic-plastic analysis. The Wetzel-Morrow method, employing Neuber hyperbolas, is used to establish the stabilized total cyclic strain range; this strain range is input to the Manson-Coffin equation to predict the cyclic life. Some of the details involved in this method, which were computerized and thoroughly checked out by AiResearch (digital program X0870), are shown in Figure 3-27.

To ascertain the effects of cumulative fatigue and creep damage, the intensity, duration, and frequency of the various imposed loadings are established. The number of cycles to failure and the time to failure at a given stress condition are then calculated. The two effects are then combined for any number of load conditions by using a linear damage function law (such as the Miner-Palmgren rule) where

\[\Sigma = \sum_{i=1}^{n} \left(\frac{N_i \text{ actual}}{N_i \text{ predicted}} + \frac{T_i \text{ actual}}{T_i \text{ predicted, creep}} \right) \leq 1.0 \]

3.2.3 Inertial Load Analysis

Analysis of the solar receiver housing assembly, including the core mounting structure, was analyzed for a 3 g shock load condition. Hat section rings
Figure 3-25. Combined Temperature and Pressure Stresses
Figure 3-26. Coiling Bending Moment

WITH RIGID ATTACHMENT OF THE TWO COILS

0 50 100 150 200
BENDING MOMENT - IN-LB

0 5 10 15 20
AXIAL DISTANCE - IN

S = 42532
PREDICTION OF UNIT LIFE FROM LEVELS OF APPARENT ELASTIC STRESS REACHED DURING TRANSIENT LOADINGS (AIRESWARCH COMPUTER PROGRAM X0870)

- Wetzel-Morrow Elastic-Plastic Analysis using Neuber Hyperbolas to obtain stabilized cyclic strain range.
- Number of cycles to crack initiation obtained using Manson-Hirschberg equation or modified Manson-Coffin equation.

\[\varepsilon_{\text{TOT}} = 3.5 \left(\frac{\sigma_f^1}{E} \right)^{0.12} + \left(\frac{\varepsilon_f^1}{N_f} \right)^{0.6} \]

WHERE \(\sigma_f^1 \) = True Ult. Failure Stress from Pull Test
\(\varepsilon_f^1 \) = Failure Strain
\(n \) = Strain Hardening Exponent

- Accumulative fatigue damage. (Miner-Palmgren Rule)

\[\sum_{i=1}^{n} \frac{N_{\text{actual}}}{N_{\text{predicted, fatigue}}} \leq 1.0 \]

Figure 3-27. Low-Cycle Fatigue Analysis
and longitudinal stiffeners were added to the outer cylindrical shell to resist potential buckling at load concentrations. Figure 3-28 shows margins of safety for the major load points of the assembly. The margins of safety are high and indicate that the receiver will have a good tolerance for mechanical loads.

Significant features were incorporated into the SRSR design as a result of the structural analysis. The Phase I solid braze joint between the primary and reheat sections was replaced with pin connections to minimize bending moments at the junction. Expansion coils were added to the primary and reheat sections for stress relief and to isolate the inlet and outlet tubes' system interface from the thermal growth of the core. The core support system was simplified. Various stiffeners were added in the housing structure to meet the inertial load requirements.
Figure 3-25. SRSR inertia Load Analysis Results
4. **SRSR FABRICATION**

Fabrication efforts by AlResearch commenced on the Steam Rankine Solar Receiver (SRSR) once the Phase II final design was completed. Two Inconel 625 cores and two CRES 321 cores were fabricated by AlResearch. The SRSR is composed of several sub-assemblies that bolt onto the outer shell. The brazed core, the aperture assembly, and the reflector plate assembly individually attach to the outer shell in the final assembly. This allows for greater accessibility to the aperture plate and reflector plate components. Since these sub-assemblies do not attach directly to each other in the final assembly, the individual components can grow thermally at different rates without interference.

The core assembly was fabricated from a series of random length tubes which were welded together. The welds were X-rayed and reworked if necessary until they passed the X-ray inspection. The tube was then coiled into the desired cylindrical shape and brazed. The inlet and outlet tubes were welded onto the primary and reheat sections, and the welds were inspected. The two sections were attached to each other with the pin connection. The core was then ready for final assembly into the outer shell.

Final assembly of the SRSR occurs in three stages. (1) The complete heat exchanger assembly is wrapped in insulation, slipped inside of, and attached to, the outer housing. The core mounting structure was designed to allow unrestrained thermal deformation in all directions. The Phase I hook and tee arrangement for receiver coil suspension has been changed. The coil is suspended using eight tubes, four each located at the center of gravity of the primary and secondary coils. The tubes are fixed at one end to the receiver enclosure, extend radially inwards toward the receiver coil, and are slotted at the other end. Longitudinal keys are located on the receiver coil and mate the slots at the support tube end. On the primary coil, this part is a longitudinal strip which allows for radial and longitudinal growth of the receiver. On the reheat coil, intersecting keys in the form of a cross mate with corresponding slots at the ends of the support tubes. This restrains the coil from longitudinal and lateral motion while allowing radial growth. (2) The aperture plate assembly is bolted to the aperture end of the outer shell. (3) The reflector plate assembly is bolted to the other end of the outer shell. The inlet and outlet ducts are guided through holes in the rear outlet shell of the reflector plate assembly for hookup with the rest of the system. Tube retainers anchor the inlet and outlet tubes to the rear cover.

Insulation was filled in all gaps in the receiver as the final assembly progressed.

Connection to the solar concentrator is made by means of a mounting ring with six mount points. Mounting shims are provided to allow for 8-inches of adjustment along the optical line of the concentrator.
Figures 4-1 through 4-5 show the various stages of fabrication, and Figure 4-6 represents the SRSR final assembly.

The materials used in the fabrication of the SRSR, as well as the general dimensions and parts that constitute the unit, are referred to in Section 2 of this report (SRSR description) and in the detailed drawings of Appendix A.
Figure 4-2. Brazed Reheat Core
Figure 4-3. Assembled SRSR Core
Figure 4-5. Ceramic Reflector Assembly
Figure 4-6. SRSR Final Assembly
5. SRSR TESTING PROCEDURES AND RESULTS

Acceptance tests were performed on the two Solar Receiver CRES 321 core assemblies. They included leakage, proof pressure, and pressure drop tests.

5.1 LEAKAGE TEST

The leakage test consisted of applying a pneumatic pressure of 500 psig to the primary and reheat coil sections. The pressure in the system was held for 5 minutes. The sections were observed for any evidence of leakage. No leakage was observed from any of the tested units. Figure 5-1 shows the test setup.

5.2 PROOF PRESSURE TEST

The proof pressure test procedure included applying hydrostatic pressure of 5400 psig to the primary and reheat sections. The proof pressure value is greater than the operating pressure of 2500 psig in order to compensate for testing at room temperature. During the testing of the cores the hydrostatic pressure was held for 5 minutes. The coil sections were observed under pressure for any deformation or leakage. No evidence of leakage or permanent deformation was noted in any of the tested units. The proof pressure and leakage test determine the structural integrity of the tubes and the welds.

5.3 PRESSURE DROP TEST

This was an isothermal pressure drop test that consisted of passing air through the primary and reheat coil sections of the cores at various flow rates, while measuring the inlet pressure and pressure difference across each coil. The schematic of the test setup is shown in Figure 5-2.

The test results for the two cores tested are reported in Tables 5-1 and 5-2. It was observed that the test results were approximately the same as the predicted values. This holds true for both the primary and reheat coils. See Figures 5-3, 5-4, 5-5 and 5-6.
PNEUMATIC AT AMBIENT TEMPERATURE, 500 PSIA

Figure 5-1. SRSR Leakage Test Setup
TEST CONDITIONS

ALL-PRIMARY CONFIGURATION

AMBIENT TEMPERATURE

FLOWRATE

2.0 LB/MIN UP TO
10.0 LB/MIN
5 POINTS

Figure 5-2. SRSR Pressure Drop Test Setup
TABLE 5-1

TEST RESULTS CORE S/N 1

HEAT TRANSFER
LAB DATA SHEET
EOO 3420-25563-07-0297
DATE 5/3/80
TEST PURPOSE STEAM RANKINE SOLAR RECEIVER CORE
P/R 79306-7
BARRON 29.79°F
ISO THERMAL PRESSURE DROP
TEMP 660°F
TEST PERS. D. CLIFFORD

<table>
<thead>
<tr>
<th>NO.</th>
<th>PRIMARY</th>
<th>REHEAT</th>
<th>STP ORIFICE</th>
<th>AP</th>
<th>T</th>
<th>FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INLET PRESS.</td>
<td>OUTLET PRESS.</td>
<td>INLET PRESS.</td>
<td>OUTLET PRESS.</td>
<td>AP</td>
<td>STP</td>
</tr>
<tr>
<td>1</td>
<td>75.7</td>
<td>241</td>
<td>128.2</td>
<td>293.5</td>
<td>60.0</td>
<td>925</td>
</tr>
<tr>
<td>2</td>
<td>35.4</td>
<td>14.0</td>
<td>77.0</td>
<td>805</td>
<td>12.4</td>
<td>12.3</td>
</tr>
<tr>
<td>3</td>
<td>56.7</td>
<td>7.7</td>
<td>67.2</td>
<td>39.0</td>
<td>6.8</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>11.3</td>
<td>2.9</td>
<td>36.5</td>
<td>55.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>13.6</td>
<td>1.9</td>
<td>15.8</td>
<td>38.9</td>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td>6</td>
<td>9.2</td>
<td>1.1</td>
<td>17.0</td>
<td>22.6</td>
<td>1.02</td>
<td>1.02</td>
</tr>
</tbody>
</table>

REMARKS
- \(\delta = \text{Part } + \text{Part} \)
- \(\delta = 0.004 \times (\text{Part } + \text{Part}) \)
- \(\delta = 5.26 \times 10^{-4} \)
- \(\delta = 14.7 \times 10^{-2} \)
<table>
<thead>
<tr>
<th>No.</th>
<th>Primary Inlet</th>
<th>Primary Outlet</th>
<th>Reheat Inlet</th>
<th>Reheat Outlet</th>
<th>Heater Press.</th>
<th>Heat Press.</th>
<th>STP.</th>
<th>STP.</th>
<th>AP</th>
<th>JAP</th>
<th>ORIFICE</th>
<th>AP</th>
<th>JAP</th>
<th>FLUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65.0</td>
<td>56.10</td>
<td>127.5</td>
<td>147.5</td>
<td>117.5</td>
<td>147.5</td>
<td>104</td>
<td>9.05</td>
<td>74.0</td>
<td>15</td>
<td>0.375</td>
<td>48.2</td>
<td>0.173</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>54.0</td>
<td>51.15</td>
<td>98.7</td>
<td>128.8</td>
<td>148.8</td>
<td>128.8</td>
<td>110</td>
<td>7.40</td>
<td>74.0</td>
<td>15</td>
<td>0.327</td>
<td>38.7</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>39.0</td>
<td>36.70</td>
<td>77.9</td>
<td>107.9</td>
<td>137.9</td>
<td>107.9</td>
<td>110</td>
<td>5.90</td>
<td>74.0</td>
<td>15</td>
<td>0.267</td>
<td>18.9</td>
<td>0.607</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25.0</td>
<td>22.90</td>
<td>47.1</td>
<td>77.1</td>
<td>107.1</td>
<td>107.1</td>
<td>80</td>
<td>3.40</td>
<td>74.0</td>
<td>15</td>
<td>0.204</td>
<td>8.01</td>
<td>0.418</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
<td>11.85</td>
<td>21.1</td>
<td>51.1</td>
<td>81.1</td>
<td>81.1</td>
<td>50</td>
<td>1.58</td>
<td>74.0</td>
<td>15</td>
<td>0.225</td>
<td>2.52</td>
<td>0.225</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- $\Delta P = \text{Primary} - \text{Reheating}$
- $\text{Flow} = \text{Primary} \times \text{Pressure}$
Figure 5-3. Isothermal Pressure Drop/Primary Section, Core S/N 1
Figure 5-4. Isothermal Pressure Drop/Reheat Section, Core S/N 1
Figure 5-5. Isothermal Pressure Drop/Primary Section, Core S/N 2
Figure 5-6. Isothermal Pressure Drop/Reheat Section, Core S/N 2

\[\frac{\Delta P}{P_{in}} = \frac{\text{Flow Rate}}{P_{out}} \]

\[P_{in} = 14.7 \text{ psi} \]

\[T = 74 \degree F \]
APPENDIX A
STEAM RANKINE SOLAR RECEIVER
DETAIL DESIGN DRAWINGS
DETAIL DRAWINGS

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>193129</td>
<td>Primary Core Assy.</td>
</tr>
<tr>
<td>193131</td>
<td>Reheat Core Assy.</td>
</tr>
<tr>
<td>193134</td>
<td>Solar Receiver Core Assy.</td>
</tr>
<tr>
<td>193189</td>
<td>Case Assy.</td>
</tr>
<tr>
<td>194307</td>
<td>SRSR Final Assy.</td>
</tr>
</tbody>
</table>
ORIGINAL PAGE IS OF POOR QUALITY

FOLDOUT FRAME

NOTE: UNLESS OTHERWISE SPECIFIED
ORIGINAL PAGE IS OF POOR QUALITY

SEE SEPARATE PARTS LIST FOR REQUIRED ITEMS AND GENERAL NOTES
FOLDOUT FRAME

USING AND H 32 FOR SPRING DRILL .063-.074 DA THROUGH 2 HOLES. LOCATION OF AND A NOT CRITICAL.

ORIGINAL PAGE IS OF POOR QUALITY