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TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsered by the

United States Government. Neither the United States nor the United

States Department of Energy, nor any of their employees, nor any of

their contractors, sub-contractors, or their employees, makes any

warranties, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness or usefulness of any

information, apparatus, product or process disclosed, or represents

that its use would not infringe privately owned rights.
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NEW TECHNOLOGY

No new technology is reportable for the period covered by

this report.
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ABSTRACT

This fifth technical report, also the final report, covers studies

on the effect of impurities and defects on the performance of silicon

solar cells which were not reported in the previous four technical

reports. It describes a theoretical study of the effect of defects

across the back-surface-field junction on the performance of high-

efficiency and thin solar cells, using a developed-pvA meteA device

model for the three-dimensional defects. It shows that very signi-

ficant degradation of open-circuit voltage can occur even if there

are only a few defects distributed in the bulk of the solar cell.

Two new features in the thickness dependences of the fill factor

and efficiency in impurity-doped back-surface-field solar cells

are discovered in the exact numerical solution which are associated

with the high injection level effect in the base and not predicted

by the low-level analytical theory. What are believed to be the most

accurate recombination parameters at the Ti center to date are also
i

given and a new theory is developed which is capable of distinguishing

an acceptor-like deep level from a donor-like deep level using the

i
measured values of the thermal emission and capture cross sections.

Using the measured emission-capture cross section ratio, this theory

can also provide information concerning the magnitude of the lattice

distortion around an impurity atom before and after the capture or

emission of an electron or a hole at the impurity center.

N
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I. INTRODUCTION

The objective of this program is to determine the effects of impurities

and defects on the performance and permanence of silicon solar cells. It

includes theoretical (computer-aided-design techniques) and experimental

studies of the effects of impurities on the electrical properties of silicon

material intentionally doped with specific impurity elements, and the effects

of these impurities on the impurity related energy level positions, the

concentration of these energy levels and the recombination-generation-trapping

rates of electrons and holes at these energy levels.

This technical report is the fifth of five annual reports

and it is also the final report oc this contract. Studies performed

prior to the fourth technical report have been reported in the first four

technical reports and the results have been submitted for publication or

published in engineering journals. This report contains studies not reported

in the previous four reports. Reference to the work of the earlier technical

reports are made from time to time but no attempt is made to make a detailed

review of these previous : tyork zince they are documented in the four previous

reports and in open literature.

The first two chapters of this report (Chapter II and III) contain the

results of a theoretical study of the effects of defects across the back-

surface-field junction of high-efficiency thin-base silicon solar cells doped

with recombination impurity elements. Since the geometry of the defect and

its effect on the cell are three-dimensional which defy exact numerical or

exact analytical solution, a departure from the exact transmission line method

employed in the previous four reports has been undertaken. A devWped

peA meteh device model is employed around the defective regions of the cell and

one-dimensional low-level diffusion saiutiona of the dark current-voltage

s

f
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characteristics are applied to the regions of cell of this model. A two-region

model is developed for defects on the edge of the cell and a three-region model

is developed for defects which are distributed in the bulk. Chapter II gives

the results of the edge defects while chapter III dives the results of the bulk

defects. It is shown in Chapter III that volume distributed bulk defects

across the back-surface-field junction can seriously degrade or reduce the

open circuit voltage of a high-efficiency thin cell even only a few defects

are present. The edge defects have less degrading effect if the brew is large

or the area-to-circumference ratio is large. However, performance degradation

due to bulk defects is relatively insensitive to the area of the cell and

depends only on the areal density of the defect.

The third chapter of this report (Chapter W) contains a short study

of the effect of thickness on the solar cell performance parameters, the short-

circuit current, the open-circuit voltage, the fill factor and the efficiency.

The results were computed from the numerical solution of the Shockley Equations

for one-dimensional cell structures with and without back-surface field, using

the tran3mission line circuit model technique. New features in the thickness

dependence of the fill factor and the efficiency are preseated for thick and

very thin cells which are related to high injection level and conductivity

modulation conditions in the base region. These features were not observed in

the thickness dependence curves given in Hovel's book which used the low-level

analytical solution.

The fourth chapter of this report (Chapter V) contains a review of the

literature data on the recomhination-generation-trapping parameters of electrons

an<: roles at the Ti center in silicon and also gives the latest and we feel to

be the most reliable data on the majority carrier thermal emission and capture

rates and thermal activation energies at the two Ti levelb. A new theoretical

-3- i



development is also presented to show how we can deduce the charge states

or the acceptor-donor nature of the deep level using the measured nonequilibrium

emission cross section and the measured equilibrium capture cross section of

the majority carriers. It is shown that this emission-capture cross section

ratio can also provide information on the lattice relaxation around the impurity

atom and provide the configuration entropy in a situation where the emission

cross section is nearly equal to its equilibrium value.

Plans are made to publish these four chapters as separate papers in

open literature so that they are written as independent chapters with their

own literature references and equation and figure numbering system.

-4-
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II. REDUCTION OF SOLAR CELL EFFICIENCY BY EDGE DEFECTS

ACROSS THE BACK-SURFACE-FIELD JUNCTION:-

A DEVELOPED PERIMETER MODEL#

1.	 INTRODUCTION

Back-surface-field solar cell contains a high-low junction near the

back surface. The potential barrier of the space-charge layer of this high-

low junction prevents the emitter-junction-injected minority carrier from

reaching the ohmic contact on the back surface. This greatly reduces the

total base recombination current and gives a substantial increase of the

open-circuit voltage over a comparable cell which has no back-surface-field

high-low junction [1]. A typical result obtained using the computer-aided-

design algorithm based on the transmission-line-circuit model is summarized

in Table 1 [2]. It shows that the presence of the back-surface-field

TABLE 1 EFFECT OF BACK-SURFACE-FIELD ON SILICON SOLAR CELL
PERFORMANCE AT ONE AM1 SUN AND 297°K.

Computer
Run No.

Cell
Type

Impurity	 Profiles  VOC
mV

JSC
mA/cm2

FF EFF
%Emitter BSF

RUN555 P+/N exp(-X2) none 554.11 32.456 0.8028 16.236

RUN335 P+/N/N+ exp(-X2 ) exp(-X2 ) 672.32 33.954 0.7629 19.587

aSurface concentration=1.25x10 20 , bulk concentration=5x10 14cm 3,thickness=300pm.

high-low junction, n/n+, on a p+/n junction silicon solar cell improves the

open-circuit voltage by 672.32-554.11-118.21 mV or a factor of 672.32/554.11

=1.21. The AM1 peak efficiency, EFF, is also improved by this factor, from

16.236% to 19.587%. However, there is little increase of the short-circuit

current, only 1.498 mA/cm 2 or 1.498/32/456=0.046 or 4.6%. This is expected

since the cell thickness is kept constant in this comparison so that the

-5-
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total absorption or photocurrent density is a constant. The fill factor is 	 1

decreased slightly when the back surface field is added to the cell. This is

due to the high-level effect or higher minority carrier concentration in the

BSF cell than the non-BSF cell because the low/high or n/n+ junction reduces
r

the minority carrier recombination rate, resulting in an increase of the

minority carrier concentration in the base region of the p+/n/n+ cell.

In the above comparison, an ideal impurity diffusion profile, given by

exp(-x2/Ot), is assumed for boron in the diffusion p+ emitter and also for

phosphorus in the diffused n+ back surface field layer. More realistic 	 c

diffusion profiles, such as exp(-x
6
/Li) for phosphorus and [1 - (x/L2)2/3]
	

E

for boron , which were used to study the effect of zinc recombination centers

on silicon solar cell performance [2], do not change the conclusion that the

BSF increases the open-circuit voltage substantially.

This dramatic improvement of the open-circuit voltage was first

explained correctly in 1972 by Mandelkorn and Lamneck in series of experiments

on silicon n+/p/p+ BSF cells whose top ,junction was made by phosphorus

diffusion and whose BSF junction was made by alloying an evaporated layer of

aluminum metal onto the back silicon surface [3]. A comprehensive theoretical

analysis was then given by Godlewski, Baraona and Brandhorst in 1973 [l.].

They employed the one-dimensional model and the analytical solution is based

on constant impurity doping in each layer, low level condition (minority

carrier concentration much smaller than the majority carrier or dopant

impurity concentration) and finite surface recombination velocity at the

metal-silicon interface on the back surface. In this n+/p/p+/m model for the

experimental alloyed junction cells of Mandelkorn and Lamneck [3], the p+

layer contains two regions: the silicon regrowth layer which contains a high

concentration of aluminum (7x10 18 to 1x1019 Al/cm3 from Al-Si phase diagram)

r
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and an aluminum diffused silicon layer of about 1 µm thick from the 4-hour

aluminum alloying at 800% . The m layer is the aluminum-silicon alloy which

contains about 12 atomic percent of silicon. The surface recombination

velocity is that at the p+/m interface. It is evident that the Godlewski-

Baraona-Brandhorst model is only an approximation to the alloyed BSF junction

solar cell. The GBB model is also an approximate model for an all-diffused

BSF cell in which both the n+ emitter and p+ back surface field layers are

obtained by impurity diffusion.

An earlier analysis of the back surface field was made by R. N. Hall

in 1953 [4] who called a n/n+ junction in a p+/n/n+ diode a donor contact.

The earlier applications were mainly for power rectifiers where the BSF

layer would reduce the series contact resistance, increase the base layer

conductivity modulation by getting into high injection condition at lower

forward bias, and decrease reverse leakage current.

In practice, the highest open--circuit voltage that has been obtained

was from a silicon p+/n/n+ BSF cell made on 10 ohm-cm (5x1014 cm-3 ) float-

zone silicon, reported by Fossum, Burgess and Nasby [5] in 1978. This cell

has an open-circuit voltage of 622 mV, short-circuit current of 34.3 mA/cm2,

fill factor of 0.796 and efficiency of 16.87 under a 92.9 mW/cm 2 simulated

AM1 solar illuminator. This experimental open--circuit voltage of 622 mV is

substantially smaller than that predicted by the theory, 672 mV, shown in

Table 1, Neither interband Auger recombination nor energy gap narrowing in

the heavily doped emitter seem to be able to account for the entire 50 mV

difference between theory and experiments.

For production n+/p/p+ back-surface-field silicon solar cells of high

efficiency (14 to 167), the open circuit voltage rarely exceeds 600 mV. For

some of the earlier production cells, the back surface field p/p+ junction is

a
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formed by aluminum alloying, similar to the method employed by Mandelkorn

and Lamneck [3]. More recent BSF silicon cells are produced by diffusion.
i

A number of theoretical analyses has been advanced to account for the

small experimental value of the open circuit voltage [6,7]. The general

consensus is that in these high-efficiency silicon solar cells made on the

high-resistivity base material (10 ohm-cm), base recombination rather than
r

emitter recombination is the limiting factor. The dominance of base recom-

bination would place further emphasis on the importance of employing the

back-surface-field low-high junction to block the minority carriers from

reaching the high-recombination-rate ohmic contact on the back surface of

silicon. This importance of the BSF for the same reason is also evident for

thin-film cells in space applications due to their power/weight ratio

advantage and for terrestrial applications due to their potential low

manufacturing costs.

The analyses made for the back-surface-field junction in the past have

focused on an areally uniform BSF high-low junction. In the most general

analysis made so far that has an explicit analytical solution, given by
i

Godlewski, Baraona and Brandhorst [1], the ohmic contact on the back surface

is represented by a surface recombination velocity and the p+ layer of the
i

p/p+ junction is assumed to have a finite minority carrier lifetime. These
I

realistic assumptions made the lou-high junction not a perfect minority-

carrier-reflecting potential barrier. However, the potential barrier of the 	 I

low-high junction is usually several tenths of electron-volt or many kT/q.

Such a 'high' potential barrier would reduce the effect of both the bulk

recombination in the p+ layer as well as the surface recombination on the

back surface. Thus, a well-designed and fabricated low-high junction would

usually shield the minority carriers almost completely from these regions

N
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of high recombination rates, the p+ layer and the p+/m interface.

This ideal areally homogeneous model for the BSF junction overlooks

some very important defective conditions which invariably occur in production
r

or even in experimental solar cells, due to cell geometry, material defects,

as well as inhomogeneities. These defects are divided into two groups according

to their locaLions and are illustrated in Fig. 1: (A) perimeter or edge defects

and (B) bulk defects. The origin and causes of these defects are given below.

(A) Peri:aeter or Edge Defects

(1) Overflow of solder

(2) Imperfect perimeter surface etch

(3) Poor encapsulation

(B) Bulk Defects

(1) Poor alloying of the BSF junction

(2) Poor diffused BSF junction due to diffusion pipes

(3) Random back contact metal penetration

(4) Impurity segregation and cluster

These defects are electrical short circuits or resistive shunts across

BSF junction. They can greatly reduce the effectiveness of the BSF potential

barrier to shield the minority carriers from the recombination centers in the

p+ region and on the p+/m interface.

These defects are even more detrimental to the cell performance if

they appear across the front junction. However, their degradation influence on 	 f

the front junction is well known and manufacturing procedures are developed to

minimize their appearance across the front junction. Their influence on the	 I

performance of BSF junction have not been generally recognized nor analyzed.

In this paper, we shall analyze the effects of these electric defects

across the BSF junction. We shall show that they can significantly reduce the

1"
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Fig. 1 (a) Edge and (b) bulk defects across the back-surface-field
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	 junction of a n+/p/p+ junction solar cell.
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open-circuit voltage, hence the efficiency.

The device models used in this analysis are analytical models rather

than the exact computer models since the localized defect problem is inherently

a three-dimensional problem which cannot be solved exactly and numerically at

present due to computer size and speed limitations. Although the models to be

used are approximate one-dimensional analytical models, the results should

provide accurate qualitative understanding and good quantitative estimate of

the effects of defects on the solar -cell open-circuit voltage and performance.	 ^ 7

Of the two locations of the defects, edge and bulk, the edge defects

will be analyzed in this paper. Both a perfect short-circuit parch around the

entire perimeter and an imperfect patch characterized by a finite : surface

recombination velocity will be analyzed. The second group of defects, present

in the bulk, will be analyzed in a subsequent paper [8].

t
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2.	 ENTIRE PERIMER SHORT CIRCUITED - DEVICE MODEL AND ANALYSES

The back surface field is normally a very thin layer of about one

micrometer thick fabricated either by aluminum alloying in earlier n+/p/p+

silicon cells or by diffusion in recent p+/n/n+ and n+/p/p+ silicon cells.

The rather thin back surface-field layer is mainly from two reasons. It is

fabricated at a low temprature (alloying at 800% or diffusion at 900 to

1000°C) to preserve the minority carrier lifetime in the base region. This

low temperature process gives a thin layer. The second reason is that the

effectiveness of the low-high junction as a potential barrier for the

emitter-injected minority carrier is the best when the low-high junction

transition occurs in a very small distance or is very abrupt. This would

mean that the n/n+ low-high junction should have a high impurity concen-

tration in the n+ layer as well as a very thin space-charge layer to give a

large and abrupt potential barrier across the n/n+ junction.

In practice, the perimeter of this thin back-surface-field layer can

be short-circuited by the alloy used to solder the cell to a heat sink. Such

a perimeter short-circuit can significantly reduce the open-circuit voltage

since these shorts will substantially increase the minority carrier recombina-

tion current in the perimeter region. In this section, we shall treat the

perimeter patch by a short-circuit so the perimeter of the cell is degraded

from a p+/n/n+ diode to a p+/n diode. In a later section, a finite surface-

recombination velocity will be used to characterize the perimeter shunt.

This is a two-dimensional problem if the cell is perfactly circular.

It is a three-dimensional problem if the cell has a square, rectangular or

other geometries. In the low-level and contant bade-dopant-impurity

icentration case, the analytical solutions in series forms can be obtained

the minoirty-carrier diffusion equation in the base region. However, the

t

E

I
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analytical solutions cannot be extended to nor used for a cell with a random 	 i

distribution of patchy defects across the perimeter or the bulk of its back-

'	 ^surface-field low-high junction. Thus, we shall use an approximate model by

dividing a cell of arbitrary shape into two regions, the perimeter region and 	 i
j

the central region and use the one-dimensional analytical solutions for these
i

i	 two regions.

Two examples of this two-region model are illustrated in Figure 2.

One is the square cell and the other is the circular cell. The mathematical

models of the two regions are as follows. The central region (Region I) is

assumed to have the original p+/n/n+ BSF cell characteristics. The perimeter

region (Region II) is assumed to experience the full influence of the short-
"	 i

circuit patch around the entire perimeter of the low-high ,junction due to

soldering shorts or mechanical damage. This is the extreme or worst case of a

defective perimeter cell. The intermediate case is modeled by a finite

surface recombination velocity across the perimeter, analyzed in a later

section.

i	 From Fig. 2(b),it is evident that the perimeter region has a triangular

cross section. The width of this triangular belt is assumed to be given by

^B as indicated in Fig. 2(b). It is the width of the p/n junction of

this perimeter region. Here, L  is a few times of the base minority carrier

diffusion length, LI=nLB where LB= DBB is the minority carrier diffusion

length whose diffusivity is D  and lifetime T B , n is a number of the order of

one and in the numerical solutions to be presented graphically, n is varied

from 1 to 4 to show that its value does not have a large effect on the

degradation of the open-circuit voltage. LB would become the ambipolar

diffusion length if we are in high injection level. Y B in Fig. 2(b) is the

thickness of the base region and it is approximately the cell thiAcess since

-13-
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cross sectional view of the developed perimeter model of a
n+/p/p+ back -surface-field solar cell with edge defect
across the back -surf .i._n-field junction.
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the diffused emitter and back-surface-field layers are usually very thin

compared with the cell thickness.

The significance of L I , which is the length of the side of the

triangular cross section of the perimeter region as shown in Fig. 2(b), is

as follows. All the minority carriers injected by the p/n junction will be

influenced by the short-circuit at the defective perimeter if they are injected

within a distance of L  from the short-circus*_. We call L  the distance of

influence or the range of the defect. A one-diffusion-length model is one
	 r'

with n-1 or LI-nLB-LB . Using n-1 would underestimate the effect of the

perimeter short-circuit since when the cell is thick or X  > L I-LB , we will

have no edge short-circuit effec- even if the low-high junction around the cell

perimeter is completely short-circuited. Thus, the one-diffusion-length model

will provide a lower estimate of the degradation effect on the open-circuit

voltage due to perimeter short-circuits.

The current-density equations for the minority carriers injected by

the emitter junction in regions I and II, which are now treated as one-dimensional

diodes, are the well-known Shockley diode equation at low injection level,

modified by the effect of the ohmic (infinite surface recombination) short-

circuit in region II or the back surface-field in region I. These are given by

J  - giDBP0/LB)tanh(XB/LB )	 (1)

and

J I I = q(D BP0/LB)ctnh(X%LB).	 (2)	 1

The symbols here follow the conventional usuage. P omp B(exp(gV/kT)-1].

q is the magnitude of the electron charge, k is the Boltzmann constant.

T is the cell temperature, P  is the minority carrier concentration

in the uniformly doped base, and V is the terminal voltage or the

difference between the quasi-Fermi or electrochemical potentials of

holes and electrons across the emitter-junction space-charge layer.

-15-



XE is the base layer thickness. X is the distance between an elemental junction

area in Region II and the nearest short-circuit point at the perimeter as shown
	

IN

on the right cross-sectional picture in Fig. 2(b). Thus, Region II has an

effective variable base layer thickness, X(y), where y is a direction in the

plane of the p/n junction.

isis current density of Region I, given by Equation (1), assumes that the

low-high junction is perfectly minority-carrier-reflecting, that is, it has an
t

infinite potential barrier height so that no minority carriers can cross this
i

low-high junction boundary. This assumption is an excellent approximation for
M

all practical cases of well designed and carefully fabricated cells. Neither
f

Fermi-Dirac statistics nor energy-gap narrowing in the diffused or alloyed pt

back-surface-field layer of a n+/p/p+ diode, or in the n+ diffused BSF layer

of p+/n/n+ diode, can change the numerical results given by Eq. (1) significantly.

s
This can be demonstrated numerically by evaluating the more complete equation

i

of J  given by Godlewski, Baraona and Brandhorat [1) and assuming (i) a perfect

ohmic contact (infinite surface recombination) on the back surface of the cell

and (ii) as much as 100 0 reduction of the energy gap In the n+ or p+ region

of the BSF layer.

The total diode current from the two regions are obtained by integrating

the current densities, Equations (1) and (2), over the cross-sectional areas of

the two regions. With the aid of Figs. 2(a) and 2(b), they are given by

Il	q(DBPO/LB)taah(XB/Lb)A,	 (3)

and

LI 8
12	q(DBPO/LB)	 ctuh(X/LB)dx Z11	 (4)

0

The symbols used here were defined after Equations (1) and (2). 	 !

The current in Region 1, given by Equation (3), is just the current
i

density. JI , times the area of Region I, Al.

-16-



The current in Region II is given by Equation (4) where ZII is the

effective length of the circumference of the perimeter region which is defined

44
by the area of Region II after Equation (4) is evaluated. For simple geometries

j

such as the square and the circular cells, it can be obtained geometrically

and is
f

ZII 4(Z - L^)	 (S)

for a square cell and
1

Z 	 - L)	 (6)

k

	

	 for a circular cell. Here, Z is the edge dimension of the square cell and D

is the diameter of the circular cell.

The integral in Equation (4) can be evaluated numerically. Since the

model is approximate and an one-dimensional approximation was already employed

in the current densities given by Equations (1) and (2), the integral in

Equation (4) is also evaluated approximately to give an analytical solution.

To this aim, the triangular cross section of Region II is un6otded or developed

into a trapezoidal cross section shown in Fig. 2(c). This is reminiscent of the

developed helix model used in the early theory of helix traveling wave tubes [9].

The trapezoidal or linear transformation for region II is given by

X(y) *t x - XB + [(LI-XB)/ L	 ]y	 (7)

which is used to evaluate the integral in Equation (4) in order to give an

analytical solution. In the appendix, it is shown that the linear approximation

gives numerical solutions whic:i differ from the exact evaluation of the integral

using the quadratic transformation, X 2 = X2 + y2 , by less tha n 14%.

After regrouping terms and taking out the voltage dependent factor,

[exp(gV/kT) - 1], the total current flowing in the these two regions are given Ly

I1 a 11A1 [ exp (gv/ kT ) - 11	 (8)

and
I2 s J2A2 [exp(gV/kT) - 11	 (9)

-17-	
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Here, the current density coefficients are defined by

J1 - (gDBPBAB)tanh(XB/LB)

and

J2 - [gDBPB/(LI-XB)] loge 
[siah (LI/LB)/sinh (XB/LB)]•

The current flowing in an ideal cell without any edge short is given by

I0 = 11A0 [exp(gV/kT) - 1].	 (12)

The areas, AO , Al and A2 , are the total area and the area of regions I

and II respectively. A
O
=A1+A2 . For a square cell, these are given by

AO = Z2	(13)

Al (Z - 2 L _) 2	(14)
and

A2 = L^ [4(Z -L^)].	 (15)

For a circular cell with diameter D, these areas are given by

A0 = irD2A	 (16)

Al = R(D - 20 2/4	 (17)
and

A2 = L^[ir(D - L^)].	 (18)

Note that the area ratio, Al/AO, for the circuit and square cells are identical.

This is also true for the area ratio A2/AO.

The degradation of the open-circuit voltage, -AVOC, can be computed by

ccmparing the total current of a perfect cell, IO , with the total current of a.

defective cell, I1 + I2 . The result is independent of the cell operating

condition or the magnitude of the open-circuit voltage if the open-circuit

voltage is large compared with kT/q or about 25 mV so that the approximation,

[exp(gV/kT) - 11 = exp(gV/kT), is accurate. For a photocurrent or short-circuit

current of IL from the solar illumination, the defective cell gives

IL = I1 + I2 = (11A1 + 12A2){exp [q(V0C
+AV

0C
)AT] - 11	 (19)

and the perfect cell gives

IL = I0	=	 10A0 { exp [ q (V0C
/kT)] - 11	 (20)

E

(10)

(11)
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Dropping 1 compared with exp (gVOC/kT) and eliminating VDC between Equations (19)

and (20), the reduction of the open-circuit voltage is then given by

AVOC - 
(kT/q) loge [ (Al/AO) + (J2A2 /J1AO)]	 (21)

where J1 and J2 are given by Equations (10) and (11) and the areas are given by

Equations (13) to (15) for the square cell and (16) to (18) for the circular or

round cell.

As stated after Equation (18), the area ratios Al/A0 and A2/Al are

independent of whether the cell is square or round. Thus, the degradation of

the open-circuit voltage, given by Equation (21), is the same for these two

cell geometries using the developed perimeter model. However, we would expect

VOC degradation to have some dependences on the cell geometry in general but

such differences are probably not very large for the perimeter or edge defects.

3.	 EFFECT OF THICKNESS IN PERIMETER DEFECTIVE CELLS

The analytical solution for the developed perimeter model just obtained

provides a quantitative estimate of the importance of a short-circuiting defect

across the entire perimeter of the BSF junction on the open-circuit voltage

and cell performance. When the cell is thin compared with the diffusion length,
r

1B << LB, the BSF layer gives a high VOC compared with a cell without the BSF.

Thus, we would expect the perimeter short-circuit to have a larger reduction of

VOC as the cell becomes thinner. From a simple geometrical consideration of

Figure 2, it is also evident that VOC reduction by edge defect is larger if the

cell area is smaller or if the edge dimension Z or the diameter D is not much

larger than the base minority carrier diffusion length, i.e., Z i^ L B or

D /^ LB . These are physically obvious conditions u.,3e~ which the perimeter

short-circuit will give a large reduction of the open-circuit voltage. They

may also be illustrated numerically by the following examples.

-19-
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Consider an experimental cell of 1 cm2 (Z-lcm or D-lcm) and LB=1000 um

which is the order of that reported for the highest-V OC diffused-silicon cell
E

[5]. Let us also assume a cell thickness of 500 um, then we have Z/LB-10,

XB/LB-0.5, Al/AO-0.6836, A2/AO-0.3164 and J2/JI=3.52 using (10) to (18). From

(21), the computed open-circuit voltage reduction at 300°K is

AVOC - (kT/q)loge (1.797) = 0.58(kT/q) = 15.2 mV.

If the cell thickness is reduced to about 50 um, which is approximately

the optimum thickness for a thin BSF cell to get the maximum AM1 efficiency

of about 17% [10], then XB/LB 0.05, Z/LB 10, Al /AO= 0.6404, A2 /AD 0.3596 and

J2/J1=63.19 using (10) to (18). From (21), the open-circuit voltage reduction

would be increased to

- AVOC = (kT/q)loge (22.72) = 3.15(kT/q) = 81.46 mV

at 300°K. This is quite a significant reduction or degradation of the open-

circuit voltage by the presence of a defect.

To provide a rapid estimate of the effect of perimeter short-circuit, the

amount of open-circuit voltage degradation is computed from Equation (21) and

presented in Figure 3 (solid curves with LI/LB 1.0). The - AVOC are given in

mV at 297.15°K (ni=1010 cm-3 for Si) as a function of the normalized cell

thickness, XB/LB (from 0.01 to 1, 2 or 4), and using the square root of the cell

area or the cell linear dimension as the constant parameter (Z/LB or D/LB = 10 to

100). It is evident that the - AVOC becomes more important in thinner cells.

The different choices of the distance-of-influence are also investigated.

The results of - AVOC with LI/LB=1 (solid curves), 2 and 4 (broken curves) are

compared in Figure 3. It is evident from the three upper curves for Z/L B=10 and

the two lower curves for Z/LB 100 that the choice of L  have little effect in

thin cells when XB/LB«1. For thick cells or near X B /LB
 =1, using LI/LB=2 would

'	 give better estimate since LI/LB=1 gives zero AVOC . However, in thick cells,

AVOC is small anyway as expected physically.

IN
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i neERFECT EDGE SHORT CIRCUITS

The perfect short circuit across the entire perimeter of the low-high BSF

junction, analyzed in the preceding section, can be extended to a more general

situation in which the edge defect is not a zero-resistance or perfect short

circuit but has a finite surface recombination velocity, to be denoted by SD.

The analyses just made for the perfect short circuit can be easily extended to

this case using the two-region, one-dimensional analyses'applied to the developed

cell model. The solutions for the current density, Jl , and total current, Il,

are still given by Equations (1) or (10) and (3) or (8) respectively.

The solution for the perimeter region, Region II, given previously by

Equations (2), (4), (9) and (11), needs to be modified. With a finite surface

recombination velocity, SD , the current density in the triangular region II is

given by

[sinh(X/L
B ) 

+ (S
D B B	 B
L /D )cosh(X/L )]

JII = q(DBP /LB)	 (22)
[cosh(X/LB) + (SDLB/DB)sinh(X/LB)]

which replaces Equation (2) and reduces to Equation (2) if SD— for a perfect

short circuit across the perimeter of the BSF low-high junction.

The ratio of the hyperbolic functions given in (22) replaces ctnh(X/LB)

of Equation (4) and it can be integrated analytically since (22) is an exact

differential if the linez.r transformation given by Equation (7) is used. The

result can be put into the form of Equation (9) but the current density

coefficient, J 2 , is now given by

cosh (L /L ) + (S L /D )sihn(L 
J2 = [gDBPB/ (LI XB)] 

loge

	

	
/L

I B	 D B B	 I B	 (23)
cosh(XB/LB) + (SDLB/DB)sinh(XB/LB)

The asymptotic solution of J 2 given above for SD=00  
reduces to Equation (11), the

correct asymptotic behavior. however:, Equation (23) gives incorrect J 2 when SD=0

since in this limit, J1=J2 and there is no open-circuit reduction. In order to

4
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give the correct asymptotic solution at SD-0, the cosh terms in Equation (23)

are repalced by exp[(LI/LB)tanh(XB/LB)] and exp[(XB/LB)tanh(XB/LB)] so that

[

exp[(LI/L )tanh(X/L )]+(SL /D )sinh(L/L
J2=[gDBPB/(L2-XB)] loge

	 B	 B B	 D B B	 I B	
(24)

exp[(XB/LB)tanh(XB/LB)] + (SD LB/DB)sinh(XB/LB)

The reduction of the open-circuit voltage can now be computed from

Equation (21) using J19 A01 Al and A2 before and the new J2 given by Equation (24).

The normalized surface recombination velocity, S DLB/DB , lies in the range of

10-2 to 103 since in practice, D,=1 to 10 cm. 2/sec and LB=10
-4
 to 10-2 cm, while

SD=102 to 106 cm/sec. Thus, the diffusion velocity defined by D B/LB lies

generally in the range of 10 3 to 104 cm/sec. Combining these with the extremes

of SD , we have SD/(DB/LB)=10 2/104=10-2 at the lower end and 106/103=103 at the

upper end.

In Figure 4, the reduction of the open-circuit voltage is plotted as a

function of cell thickness for a cell size of Z/L B=10 and for surface

recombination velocities of SDLB/DB =
	

10 10, 1, 10-1 and 0. This family of

curves show that if the defect across the perimeter of the BSF junction is not

a perfect short circuit, the open-circuit voltage reduction is decreased. As a

numerical example, let DB 10 cm. 2/sec, L
B=

10_
1 
 cm and S2=10 3  cm/sec. Then, the

diffusion velocity is DB/LB=102/10-1=103 cm/sec so that SDLB/DB=1.0. For a cell

of 100 um thick, the open-circuit voltage is reduced by 32 mV by a imperfect

perimeter defect compared with 60 mV if the defect is a perfect short circuit or

SD
=00.

The above example has a rather small area (A 0=Z2= 1 cm2) and Z/LB=10.

For a larger cell, the open-circuit voltage degradation by defective perimeter

will be smaller. However, the degradation can be decreased by a factor of two

if the surface recombination velocity is decreased from a nearly perfect short-

circuit value of 106 cm/s to a medium value of 103 cm/s as indicated by the

rI
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two curves in Figure 4 with SDLB/DB = 1 and 103 (between 102 and

In Figure 5, the reduction of the open-circuit voltage is also

presented as a function of the normalized surface recombination velocity

with the cell thicknes, X B/LB , as the constant parimete:r. It is evident from

this family of curves that open-circuit voltage degradation begins to saturate

when the surface recombination velocity of the perimeter defect is greater

than ten times diffusion velocity, i.e., S DLB/DB > 10. Both this figure and

Figure 4 show that the - AVOC is less than (kT/q) or 26 mV when the cell

thickness is greater than about 0.35L B in a cell whose BSF junction perimeter

is completely short-circuited.

5.	 SUMMARY AND CONCLUSION

The effects of electrical short circuits across the back-surface-field

junction at the perimeter or the edge surface o;E a solar cell is analyzed by

applying the low-level one-dimensional analytical theory to a 'developed-cell'

geometrical device model using the concept of distance-of-influence for the

perimeter region of the cell. This perimeter or edge defect can cause a

significant reduction of the open-circuit voltage and efficiency of a BSF cell.

For small area, thin and large base-diffusion-:length cells, the reduction of the

I
	 open-circuit voltage and efficiency can be very large, so large that the edge

defects can almost completely nullify the performance improvement offered by the

back-surface-field junction. The results also illustrate the importance of

edge or perimeter defects on the variation of the open-circuit voltage and

efficiency in pc-oduction lots of high-efficiency BSF solar cells.
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6.	 APPENDIX

In this appendix, the accuracy of the developed perimeter approximation,

used to evaluate the integral given by Equation (4), is checked against an

exact numerical evaluation of this integral. The exact integral uses the

circular transformation

X2 - X1 + y2 	(A.1)
B

instead of the linear transformation given by Equation (7). Thus, the exact

and the approximate expressions for the integral given by Equation (4) are

I2(appro)	 (L+W)/(L-W) log e [sinh(L)/sinh(W)]	 (A.2)

I2 (exact) - J	 ctnh( y► IW7) dy	 (A.3)
0

where L-LI/LB and W-XB/LB . Equation (A.2) is similar to J2A2/Z2 where Z2 is

the effective length of Region II given by the [ ] term in Equation (15) or

(18) for the area A2.

The percentage error, defined by 100[1 - I 2 (Appro)/I 2 (exact)], is

computed numerically as a functon of cell thickness with the distance-of-

influence, LI/LB, varied from 1 to 4. The largest error occurs in the thin

cell range where XB/LB-0.01 to 0.2. The error varies from 10% to 14%. As

XB/LB increases beyond 0.2 towards 1.0 or LI/LB , the error decreases rapidly

towards zero. The results are graphed in Figure 6.

and

I

r
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III. REDUCTION OF SOLAR CELL EFFICIENCY BY BULK DEFECTS
F	

ACROSS THE BACK-SURFACE-FIELD JUNCTION

1.	 INTRODUCTION

t

	

	 Back-surface-field solar calls contain a high-low (n+/n or p+/p)

junction in the semiconductor near the back surface on which a metal-

s	 i
semiconductor ohmic contact is made. The potential barrier of the space-

charge layer of this high-low junction prevents the emitter-junction injected

and photogenerated minority carriers from reaching the ohmic contact on the	 1

back surface. Without the back-surface field, the minority carriers would

reach the ohmic contact on toe back surface and recombine with majority carriers

at very high recombination rates. This would greatly increase the recombination

current in a solar cell and decrease the efficiency and the open-circuit voltage.

Without a back-surface field, the cell performance would decrease as the cell

thickness is decreased since the ohmic high-recombination-rate back metal-

semiconductor interface would be closer to the front injecting and collecting

p/n junction. Thus, to achieve high efficiencies in solar cells, modern cell

designs always contain a back-surface-field high-low ,junction.

The presence of a hack-surface-fi=1d junction cau increase the cell

performance substantially over a cell without the back-surface-field junction.

We shall call the cells without the back-surface-field junction the back-

suk6ace-olmi.c cells and use the acronym BSF for back-surface-field and BSO for

back-surface-ohmic cells in this paper. An illustration of performance

improvement by the presence of a BSF is given in Fig.3.1 where t}e efficiencies

of the BSF cells (n+/F/+ type) and the BSO (n+/p type) are given as a function

of the base layer thickness, XB . These curves were computed by numerically

solving the one-dimensional Shockley Equations using the transmission line

i
	 circuit model technique Ill for a low-level base minority-carrier diffusion

-31-
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length of 577 um under one AM1 (terrestrial) solar illumination. Such a long

diffusion length was used to simulate state-of-the -art high-efficiency silicon

solar cells (2].

Fig. 3 . 1 shows that the BSF cells have significantly higher efficiencies

than the BSO cells as the thickness decreases. At 100 um cell thickness, the

BSF cell eff{_ciency is 16 . 3% - 12.3% = 4% higher than the BSO cell.

The principal cell parameter that causes the lower efficiency in the

BSO cells is the r.:ductlon of the open-circuit voltage in the BSO cells due to

high recombination rata: at the back-surface ohmic contact. This is illustrated

in Fig. 3.2 for the two types of cells whose efficiencies were given in Fig. 3.1.

In Fig. 3.2, the open-circuit voltage under one AM1 sun is given as a function

of the cell thickness for the BSF and BSO cells. As an example, the open-circuit

voltage in the back-surface -field cell of 100 um thickness is 607 - 495 - 112 mV

higher than the back-surface-ohmic cell.

The very large reduction of the cell performance due to the lack of a

BSF high-low junction on the back surface just illustrated suggests that random

defects across the BSF junction can significantly reduce the performance of

high-efficiency cells and give rise to a large spread of cell characteristics

in production lot quantities. The random defects that give rise to resistive

shunts across the BSF low-high junction can be put into two groups: those that

appear across the perimeter of the low-high BSF junction or on the edge of the

cell and those that appear in the bulk of the low-high BSF junction. These are

graphically shown in Fig. 3.3. The principal causes of these edge and bulk

defects are mainly from the many manufacturing steps during the fabrication of

the cells and they are tabulated in the following table. Their presence

will reduce the-cell . performance from that of the ideal or perfect BSF cells,

given by the upper curves in Fig. 3.1 and 3.2, to the shaded region below.

6

i
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Fig. 1 AM1 efficiencies of BSF (back-surface-field) n+/p/p+ and

BSO (back-surface-ohmic) n+/p silicon solar cells as a
function of cell thickness with 577 um base minority carrier

diffusion length, computed by exact numerical solution of
the one-dimensional Shockley Equations. Defective cells
with defect across the BSF junction have efficiencies between

the BSF and BSO cells.
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diffusion length, computed by exact numerical solution of the
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(A) Edge Defects

(1) Overflow of solder

(2) Imperfect perimeter surface etch
	

N
(3) Poor encapsulation

(B) Bulk Defects

(1) Poor alloying of the BSF junction 	 f i

(2) Poor diffused BSF junction due to diffusion pipes

(3) Random back contact metal penetration

(4) Impurity segregation and cluster

These defects are even more detrimental to the cell performance if they

appear across the front p/n junction. However, their degradation influence on

the front junction is well known and manufacturing procedures are developed to

minimize their presence across the front junction. Their influence on the

performance of BSF junction have not been generally recognized nor analyzed.

In another paper, we have analyzed the effects on solar cell performance

from edge defects across the BSF junction [3]. It is shown-that these edge 	 e
i

defects can significantly reduce the open-circuit voltage in thin high-efficiency

cells. The reduction decreases when the area of the cell increases since the

edge defects in a large area cell is less effective as a high-recombination 	 i

sink for the injected minority carriers at the central portion of the cell

which are far_away,from the edge of the cel' in large area cells. However,
v

the bulk defects across the BSF junction are distributed over the entire area

of the cell and hence their-performance-reduction influences cannot be reduced

by increasing the area of the cell.as in the case of edge defects. Thus, one

would expect a much higher performance reduction caused by bulk defects than

by the edge defects across the BSF junctions of high-efficiency solar cells.
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The degradation . of the solar-cell performance due to a distribution of

bulk defects across the back-surface-field junction is analyzed in this paper.

The device model employed is described in section 2 and the mathematical

formulae are also given there. A detailed derivation of these formulae is

given in the appendix. Families of curves are computed from these formulae

(	 and their physical significances are discussed in detail based on the three

parameters which are used to characterize the defects: defect area, defect

density and defect surface recombination velocity. The reduction of the open-

circuit voltage due to the presence of the defect is presented as a function of
i

defect area, density, cell thickness and defect surface recombination

velocity. In section 3, the effects of short-circuiting defects are

analyzed while in section 4, the effects of finite defect surface recombination

velocity are described quantitatively. Numerical examples are given in each

section to illustrate the importance of the particular defect parameter using

numbers that are similar to those of the state-of-the-art high-performance

silicon solar cells. A summary of this theoretical study is given in

section 5.
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i
2.	 DEVICE MODEL AND ANALYSES

The edge and bulk defects across the BSF junction of a solar cell are
i

three-dimensional defects. They have random sizes and are randomly distributed.

Thus, the nonlinear Shockley Equations which describe the diffusion, drift,

recombination and generation of electrons and holes in a semiconductor cannot

be solved analytically or numerically for solar cells which contain these random

defects. Exact numerical solutions could be obtained for two limiting cases:

(1) there is a negligible number of defect and (2) there is a very high density

of defects which completely short circuit the BSF junction. These two ideal

cases were computed and used as initial illustrations given in Figs. 3.1 and 3.2

to show the importance of the defects on the cell performance.

In order to obtain quantitative results for intermediate defect densities

so that their effect on solar cell performance can be numerically estimated,

approximate device models must be employed. A developed pek meW device model

was constructed to analyze the effect of edge defects [3]. In this model, the

solar cell is divided Into two regions, a central region and a perimeter or

edge region. The width of the edge region is determined by the low-level

diffusion length of the minority carriers in the base. A parameter, called

the di,6fianc.e v6 instume, was introduced to characterize the range of a

defect and to relate the edge region width to the diffusion length. The simple

one-dimensional low-level diffusion solutions of p/n junction current-voltage

characteristics are then obtained for these two regions. The reduction of the

open-circuit voltage was then computed numerically by connecting the two solar

cells of these two regions in parallel.

The idea behind this developed perimeter model and the concept of

distance-of-influence can also be applied to the randomly distributed bulk

defects of random sizes across the BSF junction. To illustrate this defective
1
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device model, a partial cell with several uniformaly space defects is shown in

Fig. 3.4(a) which has three repetitive square unitcells enclosed by dashed

boundaries. An enlarged top view of a unitcell is shown in Fig. 3.4(b).
r

Extension of this uniform defect model to randomly distributed defects should

become obvious after describing and analyzing the uniformly spaced defect model.

The unit cell is divided into three regions for analysis purpose. They

showing the lateral influence of ':he defects. They are illustrated in Figs.

3.4 (b), (c) and (d) and described below.

(1) Region III

This is the central region of the unit cell which contains the

defect. Its cross sectional area, A 3 , is equal to the defect

area, AD.

(2) Region II

This is the first '(Age region' of the unit cell which surrounds

the central region. The p/n junction in this region will

experience the presence of the defective BSF low-high junction

t	 I

in region I. It hat; an area of A 2 . Its width, W2 , is determined

by the distance of influence or the range of the defect, LI , and

is given by [Fig. 3.4(c)]

W2 = LXB	 (1)

where X  is the thii:kness of the base layer.

(3) Region I

This is the second 'edge region' of the subcell which surrounds

the first edge region, region II. The electrical characteristics

of the p/n ,junction in this region will not be affected by the 	 j

defect in region III since it is outside of the range or the
i

distance of influence of the defect. Its area is denoted by Al.

This region does not exist if the defect density, D D , is high or	 f

t -39-
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b 

the distance-of-influence is large. The condition for the

disappearance of this region or A lWO is when
b

L  > ^ - *( (1/3DD) - 3A3 ] z	(2)

or

%B < 3Li - *[(l/ADD) X3]2	 (3)

This three-region device model for a bulk defect differs from the

two-region device model for the edge defect in having a finite region III

which contains the bulk defect. In the two -region device model for the edge

i
defect, region III has zero area since the edge defect is on the perimeter

surface of the cell and has zero projection onto the plane of the p/n junction.

Although analytical three-dimensional series solutions can be obtained

in the three regions for the low-level dark diffusion current-voltage characteristics,

simpler solutions will be worked out using the one-dimensional solution and

developed perimeter model. The approximation in such a one-dimensional model

is probably not much worse than the analytical three-dimensional low-level

solution since in a real cell the defects have random size and are randomly

distributed while the analytical three-dimensional solution needs to define the

shapes of the subcell. and defect. The one-dimensional solution, to be given

below, is physically transparant and simple to grasp, and allow us to study

the effect of defect density and size on the cell performance reduction using

t

	

	 families of curves which can be computed with very little computing time.

Three-dimensional analytical solution would give much more complex solutions

which would not be as transparant and require much more computing time to

generate the same families of curves to estimate the numerical reductions of

cell performance due to the presence of the defects.

N
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The cross-sectional view of the three regions of the unit cell is shown

in Fig. 3.4(c). The developed model is shown in Fig. 3.4(d) where regions

I and III have constant base thicknesses equal to the actual base layer thickness,

XB Region II has a varying bass thickness, X, increasing fromX B to LI.

t
►
±	 The distance of influence or the range of the defect, L I , is assumed to be

proportional to the minority carrier diffusion length in the base, L B. In the

a numerical calculations to be given later, it will be shown that the numerical

results on the open-circuit voltage reduction will have reached an asymptotic

and constant value when L  is taken to be greater than about 1.5L B. Thus, all

of the numerical results obtained in this paper are for LI-2LB.

The one-dimensional dark diffusion current solution for a p/n junction

at low level with a back-surface field was first applied to BSF solar cells by

Godlewski, Baraona and Brandhorst [4j. This solution is applied to all three

regions of the defective unit cell. For the defect-free region I, a zero

interface recombination velocity is assumed at the base-side of the BSF low-high

junction. For the defective Region III, the defect is characterized by a finite

interface surface recombination velocity, SD , again on the base-side edge of the

space-charge layer of the BSF low-high junction. For the worst defect, SD.-, which

corresponds to a defect that completely short-circuits the BSF junction. It

will be shown in section 4 that when the normalized interface recombination

velocity, SDND (where 
vD-DB/LB 

is the diffusion velocity of the minority carrier

in the base layer), is greater than about 10, the open-circuit voltage degradation

will have essentially reached its highest value and the defect acts essentially

like a short circuit or the defective Region III is essentially a BSO (back-

surface-ohmic) cell.

In region II, the one-dimensional dark diffusion current solution is also

employed. The varying base layer thickness in Region II, in Fig. 3.4(c) and (d),
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is taken care of by an average procedure which was also employed for the Region

II of the edge defect [ 3]. In this average, the one-dimensional diffusion

icurrant density at each base layer thickness, X, is sunimed over the entire

i	 Region II, from X-XB to X-LI along the surface from y0 to y-W2 L^. The

detailed algebra is given in the appendix.

The dark current-voltage characteristics of the three regions are

summarized below. In Regions I and III, the current densities are constant

across the plane of the j unction so that the current in each region is dust the

current density times the area. In Region II, the varying current density is

integrated over its area to give the total current whose detailed steps are

given in the appendix. The dark currents are

I1 - 11A1
[exp (gV/kT) - 1]	 (4)

I2 - 12A2 [exp (gV/kT) - 1]	 (S)

I3 - 13A3 [exp (gV/kT) - 11	 (6)

The dark current flowing in an ideal cell without any defects is given by

IO - JOAO [exp (gV/kT) - 11	 (7)

The current densities and the areas of the three regions as well as in the

defectless cell are given by

	

J0 - J1 - (gDBPB/LB)tanh (XB/LB)	 (8)
1

exp[(L /L )tanh (X /L )] + (S L /D )sinh(L /L )
J2 - [ gDBP^/(LI-XB)] 

log e

	

	
I B	 B B	 D B B	 I B 

(9)
L xp[(XB /LB)taah (XB/LB)] + (SDLB/DB)sinh (XB/LB)

sinh (X /L ) + (S L /D )cosh (X /L )
J3 - (gDBPII/LB) 
	 B	 D

^^

B B	 B B	 (10)
Lcoah (

^/LB) + (SDLB/DB)sinh
(XB/LB)

AO - Al + A2 + A.3	(11)

A2 - G L^(	 + fA l )	 (12)

DD - 1/AO	(13)
f

DD is the areal density of the defect since AO is the unit cell area and

1%1

A

-43-



the unit call was selected so that it coatians only one defect as illustrated in

the uniform model shown in Figs. 3.4(a) and 3.4(b). The other parameters in

(8) to (13) have the conventional meaning. q is the magnitude of the electron

charge. DB, PB, LB-4 B 
T 
B and TB are respectively the diffusivity, equilibrium

concentration, diffusion length and lifetime of minority carriers in the quasi-

neutral base layer under low-level condition. LI is the range or distance-of-

influence of the defect and is taken as 2LB in this paper. N is the thickness

of the quasi-neutral base layer. SD is the effective interface recombination

velocity of a defective low-high junction. S D is used to represent defects

which are not completely electric short circuits across the BSF low-high

junction and defects which are due to a high-layer (p+ layer of the p/p+

low-high junction or n+ layer of the n /n+ low-high junction) of very high

recombination rate or very low minority carrier lifetime. It can also

represent partial penetration into the high-layer by the back ohmic contact

metal or alloy . as well as diffusion pipes.

There are three independent parameters which characterize the property

of t^-: defect: (i) the defect area, AD"A3 , (ii) the defect density. DD=1/AO,

and (iii) tt::. surface recombination velocity at the defect, SD. The area of

Region II which experiences the presence of the defect is related to the

defect area by (12). The area of Region I which is outside of the range or

the influence of the defect is related to the defect area and density by (11).

When a cell is very thin such that its thickness is less that given by (3).

A.l is zero.

The reduction of the ope.. circuit voltage, -AVOC , can be computed by

zomparing the total current of a perf 2uL Cell. 10 , with the total current of

a defective cell which is I l+I2+2 3 at a constant photocur : ent, T.L. Let the

open-circuit voltage across the defective cell be VOC+AVOC and that across the
z
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i

k

	 perfect cell be V
OC

, then at open-circuit or zero load current, we have

IL 0 I1 + I2 
4'
	 - (J1Al+j2A2+J3V(*xp[q(V0C4AV0C)/kT] - 11	 (14)

	

N
j	 for the defective cell and

IL - I0 • J0AO(exp[q(V0C)/kT) - 11	 (15)

j	 for the perfect call. Normally, VDC+dV
OC

»(kT/q) so that we can drop 1
i

compared with exp[q(V0C+4V0C)/kTI or exp[q(VDC/kT)] in (14) and (15). Then,
I

the reduction of VQC is independent of the photocurrent, IL , or the open-

circuit voltage Voc which can be eliminated between (14) and (15). This gives

dVOC - (kT/q)log0 J(Al /AD) + (J2A2+J3A3)/JOAD J	 (16)

Numerical solutions and families of curves have been computed from the

general solution given by (16) using (8) to (13) for the current densities and

the areas. A little algebra of (16) will show that all the length parameters

can be normalized to the diffusion length, I. B. Thus, the normalized variables

are XB/LB , AD/LB where AD"A3 , and DDLi where DD 1/A0 . The defect surface

recombination velocity, SD , can also be normalized to a minority carrier

diffusion velocity, vD DD/LD. 'Thus, the reductions of the open-circuit voltage

are graphed as a function of these normalized parameters. An important general

result is that the reduction of the open-circuit voltage is independent of the

area of the cell but depends on the areal density of the defect, D D . Although

our analysis was made for a periodic unit cell of the uniform def(.ct model, this

general result is valid for randomly distributed defects. In that case. DD

would be the average density of the defect over the entire cell which may

vary from one subcell to the next subcell.

These numerical solutions, plotted as a function of thickness of the

quasi-neutral base layer (or roughly the cell thickness since the n+ and p+

layers of the diffused n+/p and p/p+ junctions are less than one micron thick),

with the three defect parameters, A D/Li, DDLB and DD , as constants are given

in the next two sections with their physical interpretations.
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3.	 EFFECT OF SHORT-CIRCUIT BULK DEFECT ON OPEN-CIRCUIT VOLTAGE

We shall first investigate the worst . ,ulk defect which is the defect that

completely short circuits the BSF low-high junction over the defective area, AD.

i
In this case,SD=^, and the current densities in Regions II and III given by (9)

and (10) simplify to

g^	
sinh(L /L )

12 = 'gDBPB/(LI XB)]loge 	 I 
B	 (17)

sinh(XB/LB)
and

J3 = (gDBPB/LB)ctnh(XB/LB)	 (18)

3.1 Dependence on the Distance-of-Influence

Our model relies on the parameter L  which is the range or the distance-

of influence of the defect. It was assumed in the model that outside of this

range or distance-of-influence, the defect will not affect or increase the

dark recombination current and hence nor the open-circuit voltage. Thus, a

test of the goodness of this model would be to determine how much the results

will change with different choices of LI . For this test, we assumed a defect area

Of .100 0m2, a diffusion length of 100 pm so that A D/LD = 10-2 . We also
	

1

assume a normalized defect density of DDL2 = 0.1. The fractional defective 	 f

area 1n this case is ADD D-10 3 or 0.1% of the cell area is defective.

The reduction of the open-circuit voltage, -AV OC , computed from (16),

at three cell thicknesses, X B/LB-0.01, 0.1 and 1.0, are shown in Fig. 3.5. It

is evident that for thin cells (XB/LB-0.01 and 0.1) the results do not change

much if the range or distance-of-influence is assumed to be 1.5 times the

diffusion length or greater. For the thicker cell (XB/LB=1.0), the reduction

of the open-circuit voltage by the defective area is small (only about 10 mV),

but in order to get this result, the distance of influence must take a value

greater than twice the diffusion length. Thus, in the remaining calculations,

LI-2LB is selected.

Y^
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3.2 Dependence on the Defect Area

The dependence of the open-circuit-voltage reduction on the defect area,

AD, or the area of Region III shown in Fig. 3.4(b) is illustrated in Fig. 3.6.

Here, the reduction of the open-circuit voltage is given as a function of the

normalized defect area, AD/LB, for three cell thicknesses, XB/LB-0.01, 0.1 and

1.0. The constant defect density is DDLB-0.1. We also used LI-2LB and

SD-^. The results in Fig. 3.6 show that the open-circuit reduction, - AV
OC' 1

reaches constant values when the defect area is smaller than about 0.01 times

the diffusion length squared, LB. This asymptotic behavior can be understood

from the geometry of the device model. From Fig. 3.4(b), it is evident that

when A3 or the defect area AD becomes small, its contribution to the base

recombination current becomes small. The increase of the base recombination

current comes entirely from Region II when A
3 
-*0. The relative contribution

from the two regions, II and III, is slightly smaller than their area ratio, A
2 3
/A ,	 f

since the p/n ,junction in Region II is further away from the defect than in

Region III. When A3 becomes small compared with LB, A 2 approaches a constant.

From (12), when 3A3 or ►SAD is about 10 times smaller than L= 2LB 1-(XB/2LB)`,

then A2 is essentially a constant given by 4(Li-XB).

This insensitivity to the defect area is an important result since in

practice the defect area is probably small compared with the diffusion length

squared in high-efficiency cells where the diffusion length is substantially

greater than 10 um. Thus, in practice, AD/LB is less than about 0.01.

The effect of defect area can also be examined from the opposite direction.

Fig. 3.6 shows that open-circuit degradation, - AV DC , begins to increase when

the defect area is greater than about 0.1LB. This corresponds to a fractional

defective area of DDAD-0.1x0.1=0.01 in this example or 1% of the area is defective. 	
E

This insensitivity is also the basis of taking A D/LB-0.01 in the analysis of
k

4	 the dependence on L  given in the preceding section, 3.1.
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The important practical implication of this result is that the defect

3.3 Dependence on the Defect Density

In the preceding section, it was shown that increased recombination or
	

N
reduction of open-circuit voltage came mainly from region II, the peripheral

region that surrounds the defective area, Region III, since in practice, the

i

	 size of the defective area is much smaller than the diffusion length. This

illustrated the importance of the peripheral area surrounding the defect.
i

As the defect density increases, the number of" defect increases for a

given total cell area. Thus, the total surrounding area (the sum of the areas

of each Region II) also increases since it is proportional to the number of

defect. The dependence of the open-circuit-voltage reduction, - AV OC , on the

defect density is expected to be large. This is illustrated in two ways: - AV 0C

is plotted as a function of defect density, D DLB, with (i) defect area, AD/LB

kept -:onstant or (ii) fractional defective area, DDAD , kept constant. These

are shown in Figs. 3.7(a) and (b). The large dependence and . increase of the oT?en-

circuit-voltage reduction with increasing defect density is evident in Fig. 3.7(a)

when the defect area, AD/L2 is kept at constant values. When the fractional

defective area reaches unity, V cc reaches the value of a BSO cell which has no

BSF low-high junction and - AV 
0C

also reaches its highest value which is the

difference between the BSF and BSO cells. For the example shown in Fig. 3.7,

this asymptotic value for - AV 0C is 235.8 W.

The general trend of rapid increase of - AV 
0C

with increasing defect

density is also evident in Fig. 3.7(b) when the fractional defective area is

kept at constant values. The increase is somewhat slower than when the defect

area is kept constant since as D D increases, AD decreases in order that ADD  is

constant and there is a decrease of - AVnr. at large A..
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density should be kept as low as possible in order to obtain the maximum

benefits from the BSF junction. For two cells each having 1% defective area,

the one with the smaller defect density and larger individual defect area will

give higher open-circuit voltage and efficiency. Thus, if a choice must be

made in a practical situation between defect density and individual or average

defect area, better open-circuit voltage and efficiency is obtained by keeping

the defect density low and defect area large. A cell with one defect will

have a higher open-circuit voltage and efficiency than a cell with two defects

of half area. The physical reason is that the one with two defects will have

t
two peripheral areas, one surrounding each defect, which would give nearly twice

as much recombination current as the one peripheral area in a cell with one

defect.

3.4 Dependence on the Cell Thickness

The results of the analyses in the preceding three sections, 3.1, 3.2, and

3.3, enable us to select a range of values for the defect parameters, area and

density, so that they fall into practical ranges. The dependence of the open-

circuit-voltage reduction on the cell thickness will be investigated using

these ranges of values. The defect area is set at 10 4LB since it was shown

in Fig. 3.6 that - AVOC is insensitive to the defect area when AD/L2 is smaller

than about 0.01 and since in practical high-efficiency cells, LB is usually

greater than 30 or 100 um and the defect area is not likely to be greater

than 100 Um  or 10 um on a side. Thus, in practice, AD/LB is likely to be

less than 0.01. The choice of AD/I.2.10-4 is made since below 10-2 , - AVOC'

is nearly constant and approaches its asymptotic value at 10-4.

SD	is assumed and the dependence on this parameter is analyzed in

a later section. LI=2LB since the result becomes independent of L  when it is

greater than about 1.5 as discussed in Section 3.1.
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The defect density is the constant parameter. The range of the normalized

t

defect density, DDLB, is from about 10 
4 to 10 1 for high efficiency cells which

is estimated as follows. For a high efficiency cell, L B is between 100 um and
f

j	 1000 um. We let LB-100 um. DD is equal to the number of defect divided by the

i cell area, DD 
=ND 

8./ 0. A production cell has an area of about 50 cm 2 0 inch

diameter) or greater. We let AC
-100 cm2 . For a good cell fabrication process,

s	 the number of defect is probably considerably less than 1000 and let ND-1 to 1000.

Thus, for a hi13h efficiency cell, the normalized defect density should be in

the range of 'JDLB =(ND/AO )LB= (1/100)(100x10 
4 ) 2=10

-4
 to (1000/100)(100x10 4)2=0.1.

1	 Thus, for a low defect density cell, the defect density range is approximately

B=10-4 to 10 1 while for highly defective cells, DDLB >1 0-1DDL	 .
r

The range of the normalized cell thickness, XB/LB , covers from about

10-2 or less to about 10. This range covers a diffusion length of 100 um

and cell thickness of 1 to 500 um.

From the above estimates of the ranges of the parameters, the reduction of

the open-circuit voltage as a function of cell thickness is computed from (16).

The results for the entire defect density range of 10-
3 to - are shown in the

upper part of Fig. 3.8. The expanded graph, for low-defect-density high-

efficiency cells covering DDLB=1 
40  to 10-i is given in the lower part of

l	 Fig. 3.8 with a larger number of the density parameter per decade.

When the defect density is infinite (curve DDL$=^), the reduction of the

open-circuit voltage reaches the asymptotic value which is the difference between

a perfect BSF cell and a BSO cell which has no BSF junction at all. The upper

part of Fig. 3.8 shows that the asymptotic dependence on cell thickness is

approached when defect density, D DLB, is greater than about 10 to 100. For this

limiting case, (16) simplifies to

- AV 0C - 2(kT/q)log e[ctnh(XB/LB) j
	

(19)

which gives the linear dependence on the semi-log plot in Fig. 3.8 for thin cells.
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A numerical example is given next to illustrate the possible importance
,i

,
	 of defective BSF junction on the open-circuit voltage. For this example, we 	

lk
use the parameters of the p+/n/n+ cell which has the highest reported V

C
 of

about 620 mV [2]. The reported values are TB=400 us, LB=175 um, XB=314 um,
J

yX
B/LB=0.4. Suppose that there is one short-circuiting defect per cm 2 , then

DDLB =6.0x10 3 . Let us suppose that the normalized defect area, AD/LB, is

less than 10
-2
 so that the result is independent of its area. This

corresponds to a defect size of less than 80 um on an edge, for example, the

defect area can be taken as 1 um2 . Then, AV 0C - 5.49 mV from (9) or using

Fig.3.8. If the defect density increases to 2 per cm 2 , then OVOC - 10.0 mV.

These two numerical examples show that reduction of the open-circuit voltage

in a high-efficiency cell due to defects across the BSF junction may be quite

significant even for fairly thick cells.

V 
0 reduction is substantially larger if the cell is thinner. For

example, maximum efficiency of the above cell would be reached when the cell

thickness is reduced to about 80 um as indicated in Fig. 1 or XB/LB = 0.1.

i	 Using the above numerical example and supposing that D D=1 defect/cm 2 , then

A VOC = - 25.697 mV while for DD= 2 defect/cm2 we have a 
VOC a - 

38.26 mV. These

two numerical results show that the presence of 1 or 2 defects in 1 cm  of cell

area would reduce the expected improvement of 
VOC 

of approximately 60 mV by as

much as a factor of 2 to only 30 mV when the cell thickness is reduced from

the conventional 300 um to an optimum 70 um.

3.5 Dependence on Diffusion Length

In the preceeding analyses and numerical examples, the minority carrier

diffusion length in the base layer, LB , is the normalization parameter for

length and area. Dependence of V 
0 

on defect density, defect area and cell
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thickness was analyzed by keeping the diffusion length a constant. In some

practical situations, such as debugging a fabrication process, evaluating

radiation hardness and damage and others, it may be important to know how

t
much the cell performance will be changed by the presence of defective BSF

junctions when the minority carrier diffusion length or lifetime is changed.

Instead of presenting yet another family of curves of - AV 0C vs LB , we

make use of Fig. 3.8 to illustrate the dependence of AV 0C on LB. From the

two parts of this figure, it is evident that if we keep the cell thickness, XB,

and defect density, DD , constant and increase L B , then XB/LB will decrease

which would increase the reduction of V 
0 

but DDLB will increase also which will

further increase the reduction of V 
0 

or - AVOC.

{
For example, if the diffusion length is increased by a factor of 10 from

i	 LB/XB=1 to 10 and DDLB is correspondingly increased by a factor of 100, say from
t

10-3 to 10-1 , then -AVOC would be increased from 0.147 mV to-78.349 mV. This

would substantially nullify the expected improvement of VOC when LB is increased

or the minority carrier lifetime is improved by some processing or annealing

procedures.

On the other hand, if a cell has some defects across the BSF junction,

loss of lifetime or diffusion length due to radiation or other reasons may not

decrease the open-circuit voltage as much as a cell which has no defects across

the BSF junction. This is for the reason that V 
0 

is already lowered in the

defective BSF cell and decrease of L B would make the defective BSF areas less

effective in reaching the front junction to increase its recombination current.

This interesting result indicates that one could increase the radiation

resistance or make V0C less sensitive to radiation induced recombination center

1	 over a wider range of radiation dose when some localized defective areas are

f

	

	 introduced into the BSF junction which would reduce 
V 
0 initially but also

stablize it with respect to the change of LB.
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4.	 EFFECT OF BULK DEFECT W11^, INTERMEDIATE RECOMBINATION VELOCITY ON

R	 OPEN-CIRCUIT VOLTAGE

In practice, the defects across the BSF junction may not be completely

&Sort-circuiting the BSF junction electrically. In addition, some defective

BSF junction areas may contain a high concentration of dufects or recombination

centers which are distributed in the entire layer of the high-layer (n+ layer

of a n/n+ BSF junction or p+ layer of a p/p+ BSF junction). These and other

defective BSF junction areas can be represented by an effective surface

or interface recombination velocity across a defective area, S D. This was

included in the current densities for Regions II and III given by (9) and (10) 	 i
r

in section 2. SD is the effective surface recombination velocity of minority

carrier at the boundary plane on the base side of the space-charge layer of the

low-high junction. It includes all the recombination in the apace -charge layer

of the low-high junction as well , the recombination in the high -layer and on

the contact surface of the back metal-semiconductor contact.

It is evident from (9) and (10) that the proper normalization for S D is

DB/Lt-/D-B TB which is the minority carrier diffusiot ► or recombination velocity

in the base layer. Physically, we can consider the two recombination processes

in the two regions, base and BSF regions, as two serial processes. If base

recombination is large, then it dominates. If S D is large, we have two possible

situations: thin and thick base. For thin base, Y ' L B , then SD dominates

but the recombination current is determined by base thickness. For thick base,

base recombination dominates and S D will have little effect.

The dependence of the reduction of the open - circuit voltage on the BSF

defect surface recombination velocity is illustrated by a family of curves

shown in Fig. 3 . 9. In this figure, AD/LBR10-4 , DDLBn0.1, LI-2LB and SD /(DB/LB)

is the constant parameter with a range of 0.01 to 100. The reduction of the
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open-circuit voltage, - AVOC, has essentially reached its limiting value when

the defective surface recombination velocity is greater than ten times the base

diffusion velocity or SD > 1MB/LB.

In a praWr.cal high efficiency cell, D B !X 10 cm2 /sec and LBx100 to 1000 um

or 0.01 to 0.1 cm so that D B/LB - 1000 to 100 cm/sec. Thus, the limiting or

highest - AVOC is reached when SD is greater than 103 to 104 cm/sec. This

i
range of SD is readily attained and exceeded when physical defects are

present across the BSF junction. Smaller values are given by defects which are

more spread out into the p+ or n+ layer of the low-high junction.

The main point shown in Fig. 3.9 is that reducing the defect surface

recombination velocity will not improve V 
0 

or decrease 
VAC 

reduction since

it is necessary to reduce SD to less than 100 cm2/sec to have any significant

j	 gain. It is more effective to reduce the defect density or the number of

defect than to reduce the defect surface recombination velocity since the base

diffusion-recombination velocity of a high efficiency solar cell is rather low,

100 cm/sec to 1000 cm/sec and since in practice, it is difficult to achieve

surface recombination velocity of values less than about 100 cm/sec for

interfaces and bare or oxidize,: surfaces and probably more difficult to achieve

values equal to or less than this for a defect surface.

The results of bulk defect can also be compared with that of edge defect

treated in another paper (3). At a given S D/(DB /L
B
 ) such as 1.0, bulk defect

reduces VOC more than edge defect. Consider a small cell to emphasize edge
i

defect. For the same reduction, of VOC , SD of edge defect must be more than ten

times that of a bulk defect, again because bulk defects have much larger

peripheral areas (Region 11) than edge defects.
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S.	 SM24ARY ARID CONCLUSION

High-efficiency solar cells contain a low-high back-surface-field (BSF)

junction (n/n+ or p/p+) to provide a large potential barrier which prevents

the photogenerated and front -junction injected minority carriers from reaching

the high-recombination-rate ohmic contact on the back surface. Such an

isolation greatly reduces the recombination current and substantially increases

the open-circuit voltage and energy-conversion efficiency. The low-high junction

or the back-surface field layer is very thin (about 1 um) and can easily be

shunted electrically by material and manufa^:.uring defects introduced during

crystal growth and cell fabrication processes. This paper gives a mathematical

analysis of the effect of defects, across the back-surface-field ,junction and

located away from the cell edge, on the solar cell performance. Analysis of

the edge defect is given in another paper [3].

In this paper, several families of design curves are presented which show

how much the open-circuit voltage of a back-surface-field solar cell is reduced

as a function of the cell thickness, defect area, defect density and interface

or surface recombination velocity at the defective area.

The defects across the BSF junction are randomly distributed and have

random shapes and sizes which defy exact analytical or numerical solution.

The random defects are modeled by an uniform device model which is characterized

by three defect parameters: the average defect area, the average defect density

(per unit area) and the effective surface recombination velocity of the defective

area. A devetaped peFUMeteh device model is employed in order that the

approximate one-dimensional analytical diffusion solutions of ph junction with

BSF can be applied to a defective BSF solar cell. In this model, a defective

cell with many defects is divided into many one-defect unit cells. A one-defect

unit cell is further divided into three regions (Fig. 3.4): a central region,

4
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Region III, which is the projection of the defect onto the front p/n junction

1	 plane, and two concentric surrounding or peripheral regions, Region II and I.
t

The one-dimensional solutions are applied to Regions I and III. The cross-

section of the middle region, Region II, is devetoped 3o that the one-

j	 dimensional solution can also be applied to this region of varying thickness.

Its width is determined by a distance parameter, LI , which is the range or

the distance of influence of the localized defect. It is the maximum distance

at which the p/n junction injection-recombination current can still be influenced

by a localized defective BSF junction area. This distance of influence is

shown to be about two diffusion lengths of the minority carriers in the base

region (Fig. 3.5). The main results of this paper are summarized below.

The reduction of the open-circuit voltage is nearly independent of the

defect area when it is smaller than about 0.1L2 or when its dimension is less

than about 30% of the minority carrier diffusion length in the base (Fig. 3.6).

This insensitivity on defect area, when the area is small, arises from the fact

that a defect will increase recombination and reduce open circuit voltage not

only on the front junction area which is the projection of the defective BSF

area (Region I) but also the junction area surrounding the projection (Region II). 	 E

As the defect area decreases, the peripheral recombination area (Region II) will 	 j

stay relatively constant, giving rise to a defect-area-independent V reduction.0C

In practice, there should be little defect-area dependence since in good cells,

detects are mainly small size and not likely to be as large as 0.1LB=0.1x1002

=1000 um2 . This also means that small-area defects will be as damaging as large-

area defects.

The main influence of the open-circuit voltage reduction comes from the

density of the defect (Fig. 3.7). The reduction of V OC increases with

increasing defect density since there are more peripheral recombination areas,

t



one per each defect, when the number of defect in a cell increases. For

example, if the fractional defective area is kept constant (such as the 0.01

or 1% curve of the bottom graph of Fig. 3.7) and if a single defect of 100 um2

is divided into 100 separate defects of 1.0 um2 each, the reduction of the

open-circuit voltage will increase substantially because the total peripheral

recombination area (sum of Region II) will have increased 100 folds.

This general trend will persist even when three-dimensional effects and high-

level condition are taken into account as the defect area becomes small and

the defect current density increases.

Because of the importance of the perimeter region whose size is given

by the range or distance-of-influence, the presence of even one defect of

small area across the BSF junction will cause significant reduction of open-

circuit voltage of a high-efficiency BSF solar cell. A numerical example

showed that if there is 1 defect per cm  of cell area in a 320 um thick BSF

state-of-the-art high-efficiency cell (L B=775 um, VOC=620 mV and EFF=17X),

one would expect a reduction of open-circuit voltage of 5.5 mV. If there

are 2 defects per cm 2 , the reduction of V 
0 would increase to 10 mV.

The reduction of V 
0 

due to defects across the BSF junction increases

when the cell becomes thinner. This was the initial consideration that

motivated this analysis since high-efficiency BSF cells reach their peak

efficiencies when the cell thickness is decreased to about O.1LB . The larger

reduction of V 0 
in thinner cells is again due to the lateral influence of

the defects which increases recombination in peripheral region that surrounds

the defect(Region II in Fig. 3.4) since this reginn increases in width when the

cell gets thinner. As a numerical example, if the state-of-the-art high-

efficiency cell just described has a thickness of 80 um instead of 320 um,

then the reduction of V 0 
is increased from 5.5 mV to 25.7 mV for 1 defect/cm2

N
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and from 10 mV to 38.3 mV for 2 defects/cm 2.

Families of design curves on the thickness dependences of V 0 
are given	

N I.
in Fig. 3.8 with the defect density as the parameter.

Defective areas across the BSF junction may not be complete electric

short circuits but shunts with non-zero resistance. This was represented by

an interface or surface recombination velocity to characterize the defective

area. The effect of the surface recombination velocity on V 0 
reduction was

analyzed which showed that VOC 
is improved only when it is substantially smaller

than ten times the diffusion velocity of the minority carriers in the base,

DB/LB (Fig. 3.9). For high-efficiency cells, the diffusion velocity is not

more than about 100 to 1000 cm/sec. Thus, to have any improvement, the defect

surface recombination velocity must be made substantially smaller than 100

to 1000 cm/sec. In practice, a defective region rarely has recombination rate

and velocity less than about 1000 cm/sec. Thus, a defective region acts

essentially as an electrical short circuit across the BSF junction, otherwise

it is a good area. There are few inbetween.

From the results of this analysis, it is evident that material and

fabrication defects across the BSF junction of high-efficiency cells can be

the major deterrent to high open-circuit voltage and high efficiency even if

only a few or even one defect is present across the back-surface-field junction.
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6.	 APPENDIX

	

6.1	 Analysis for Region II Surrounding the Defect

The analyses which led to the current density expressions given by

equations (8), (9) and (10) in the text are given in this appendix. For

Regions I and III, the current density equations, J1 and J3 , are the standard

solutions of a p/n junction with a BSF junction whose surface recombination

velocity is 0 (Region I) and SD (Region III which has the defect). These

solutions are one-dimensional low-level diffusion solution in the quasi-

neutral base region of a p+/n/n+ or a n+/p/p+ diode with a constant

bulk impurity concentration. The surface recombination velocity, S D , of the

defect in Region III can.be thought of as an effective recombination velocity

if a refined model is needed to represent defects which are extended into the

n+ or p+ layer of the BSF junction or point defects or small defect clusters

which are distributed in this layer. In such cases, S D is given by [4]

[sinh(X♦ ♦ 	 + ♦ ♦ 	 ♦/L ) + (S L /D )cosh(X /L )]

	

SD - (D+/L+)(P+/PB)	
♦ 	 (A.1)

[cosh(X+/L+) + (S+L+/D+)sinh(X+/L+)]

where D+, L+
, and P+ are the diffusivity, diffusion length and concentration of

the minority carriers in the heavily doped n+ or p+ layer. X+ is the thickness

of the n+ or p+ layer and S+ is the surface recombination velocity of the

ohmic contact on the back surface of the semiconductor. P  is the minority

carrier concentration in the quasi-neutral base region. Because of the very

large ratio of PB/P+ since the BSF layer is much more heavily doped than the

base layer, SD is quite small due to the reduction by the factor (P+/PB). This

factor represents the Boltzmann-factor of the potential barrier height across

the low-high junction. As a numerical example, D+=1 cm2/sec, L+= 1 um,

4	 20 19	 -3	 20 15 5 -3
(D+/L+)=10 cm/sec, P+=10 /10 =10 cm and PB=10 /10 =10 cm . Then,

(D+/L+)(P+/PB)=104(10/105)=1 cm/sec. The fraction in (A.1) involving the

hyperbolic functions is of the order of 1 so that SD cannot be substantially

:,
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larger than 1 cm/sec.

If there is substantial recombination in the space charge region of the

lows-high junction, then the total S D would be the sum of that given by (A.1)

	 N

and the effective surface recombination rate of the space charge layer, SSC,

which is approximately given by thickness of the space charge layer divided by

the lifetime, 
S SCOW SC/TSCocscNTTWSC-cBeNTTS where c

Be is effective capture rate

of electrons and 'holea in the space charge layer (cm 3/sec), NTT is the volume

density of the recombination centers in the space charge layer, and NTTS is the

areal density of the recombination center averaged over the entire volume of

the space charge layer and WSC is the thickness of the space charge layer.

SSC is also not too large, for example, if W SC=1 um, T O` =1 us, then, SSC=100 cm/s.

Thus, these examples show that these distributed defects in the BSF layer

and BSF junction can essentially be considered as perfect BSF junctions since
F

their effective surface recombination velocity is less than about 1000 cm/sec 	 C

and they will have rather small effect on the reduction of the open circuit

voltage. The large reduction of V 
0 

comes from more serious defects which are

essentially short circuits across the BSF junction.

The analysis for Region II is aided by the devetoped pe iwtek model shown

in Fig. 3.4(c) where x is the coordinate perpendicular to the p/n ,junction and

y is the coordinate along the direction joining the nearest neighbor defects

in the plane of the p/n junction. X is the variable thickness of the base of

Region II and is a function of y, X=X(y). The total current in Region II is then

W2

I2
 = fo
	

JII(X,y)dy ZII	
(A.2)

where ZII is the effective length or the circumference of Region II while W 2 is

its width given by (1) which is repeated below.

W2 L 	̂ (A.3)
f

E
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The one-dimensional low-level dark diffusion current density is given by

[sinh (X/LB) + (SDLB /DB)cosh (X/LB)]
JII (X,Y) - 9(DBPO/

LB)	 (A.4)
[cosh(X/LB) + (SDLB/DB)sinh (X/LB)]

where DB, 
LB=Y'F-BT-B and TB are the diffusivity, diffusion length and lifetime of

the minority carriers in the quasi-neutral base at low injection levels. PD is

the excess minority carrier concentration at the base -side edge of the p/n

junction and is given by

PO a PB [ exp (gV/kT) - 1]	 (A.5)

where PB is the minority carrier concentration in the base, q is the magnitude

G	 of the electron charge, k is the Boltzmann constant and T is the cell temperature.
I
f	 SD was defined in (A.1).

In order to get an explicit analytical solution for the total current

flowing in region II from (A.2), a linear approximation is made to the quadratic

relations between the variable base thickness, X, and the position y, so that

(A.2) can be integrated analytically using the current density expression given

by (A.4). The exact quadratic relations is given by X 2 = XB + y2 as evident from

the geometry shown iD rigs. 3.4(b) and (c). The linear approximation is given by

X = x = XB + [(LI XB)/L^] Y	 (A.6)

so that the end points are correct and correspond to those shown in Fig. 3.4(d):

X = x(y=0) = XB

and

X = x(y=W2= L) = LI

The difference between the exact_ quadratic and the approximate linear relations

was demonstrate-' to be small in analyzing the edge defects [3], giving a maximum

error of less than 14%. 	 Similarly small errors would be expected here for

bulk defects across the BSF junctions.

1
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The analytical solution of III , using the linear approximation of (A.6)

and the current density given by (A.4) in the integral (A.2), is

cosh(L /L ) + (S L /D )sinh(L /L )
I2 gDBP0[ L^/(LI XB

)]ZII loge	
Y B

)
	 B B	 I B

)

cosh (XB/LB) + (SDLB/DB)sinh (XB/LB)

The asymptotic solution of (A.7) for SD-- approaches the correct limit,

however, the solution for SD=0 is incorrect since in this case, there would be

no VOc reduction and (A.7) should reduce to the form of a constant J II or

constant base layer thickness which are

JII(X-
XB,y) = q (DBPO/

LB) tanh (XB/LB)	 (A.8)

and

I2 (SD=0)	 = q(DBP0/LB) tanh (XB/LB) A2	(A.9)

where A2 was given in (12). But, (A.7) does not reduce to (A.9).

i

In view of the approximations already made, we shall remedy this by

another approximation so that the limiting solutions are correct. This is

achieved by replacing the two cosh terms in (A.7) by exponential terms so that

they give the correct solution o f (A.9) when SD-0. The replacements are:

cosh(LI/LB) replaced by exp[(L I/LB)tanh(XB/LB)] and cosh(XB/LB) replaced by

exp[(XB/LB)tanh (XB/LB)]. The new approximate solution for the total current

in Region II which gives the correct asymptotic result when SD
 =0 is then

I2 = q[DBPO AL/(LI-XB)]ZII x

log  exp[(LI/LB)tanh(XB/LB)] + (S D LB/DB)sinh(LI/LB)
	

(A.10)
 exp[(►B/LB)tanh (XB/LB)] + (SDLB /DB)sinh(XB/LB)

This can then be simplified to the form given by (S) with J 2 defined by (9).

-67-



F
^ 	 !

F

4	 ^

i	 6.2 Uniform Models for Square and Circular Defects

In Figure 3.4 we have illustrated the developed perimeter model of a

square unit cell which contains a square-shaped defect. We shall show that 	 j

the results obtained in the text are also applicable to a square unit cell

which contains a circular-shaped defect if the width of Region II is redefined
I.

and allowed to overlap into the four adjacent unit cells. The results listed

in (11), (12) and (13) for the areas of the three regions of a square defect

f	 are derived as follows. From Fig . 3.4(a) and (b), it is evident that	 3

A2+A3a (2W2+fA.	 for a square defect of area A3 and side /3 where W2= L
i

is the width of Region II. Since the unit cell area, A 09 is given by the

sum of the area of the three regions, AD=Al+A2+A3 and the defect density is

given by DD 1/Ao , then the areas of Region II and I can be expressed by the
i

defect density, DD , and the defect area A3 which will use the symbol AD . Thus,

=A -(A +A ) and A -(2W
2+' )

2-A or	
^t

^^] Q	 2 3	 2	 2	 3	 3

i
Al = DD' - AD [l + 2(W2 /rAAD )] 2 -

 AD
	

(A.11)

A2 =	 AD[l + 2(W2
1

3A )
)] 2 - AD	 (A.12)

W2 L^	 (A.13)	 r
1

(A.12) reduces to (12) if W2 given by (A.13) is substituted into (A.12) and noting 	 j

that we wrote AD-A3 . The length of Region II, ZII , is defined by A2=W2%II 
which

1a

may be equated to (A.12) of (12) to give Z II=4(W2 + SAD)=4( L	 + rAAD). In the

final results given by (4) to (13), ZII does not enter explicitly.

For a circular or round defect in a square unit cell, the results are

readily obtained in the same way as above and are given by

Al = DD1 -
 AD[' +vr7r(W2/ ►'AD )1 2 - AD	 (A.14)

A2 =	 AD[l +V7r(W21 3AD)]2 - AD	 (A.15)

E	
W2	 L	 (A.16)

b
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The factor, 2, in (A.11) and (A.12) for a square defect is replaced by r a 1.77

for a circular or round defect shown in (A.14) and (A.15). Thus, if we

redefine the width of Region II, W 2 , by W2	 4 W2 0.866W2 , then the areas

j	 Al and A2 for the round defect have the same expressions as those for the
r

square defect.

6.3	 Randomly Distributed Defects

The developed perimeter device model for a defective unit cell shown

in Fig. 3.4 for a square-shaped defect and a square unit cell can be extended

to randomly distributed defects with random distribution of defect area. The

results obtained in the text in terms of the defect density and area are still

applicable if these are average density and area over the random distributions

and if there is a sufficient number of defects so that statistical average is

meaningful. In practice, there are few defects in high-efficiency silicon

solar cells manufactured under controlled conditions so that-the discrete

model of one or few defects uniformly distributed which was described in

Fig.3.4 should be a better approximation than a randomly distributed model of

many defects.

Two brief and simple illustrations are given to show how the device model

can be extended to random defects. It should be noted first that the extension

to random defects is considerably simplified using the three-region defect model

since it is developed to use the one-dimensional solutions in all three regions.

Thus, the only random parameters that need to be averaged statistically are the

areas of the three regions, A l , A2, and A3 . These areas do not interact with

the current densities and the minority carrier distributions in these three

regions due to the one-dimensional approximation which would have required the

solution of the three-dimensional diffusion equation with random boundary
r

conditions.
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Consider first the simplest case in which the defect area, A D , is

varied but still maintains a square shape and constant density or uniform

separation. In this case, a statistical average needs to be carried out

'for the areas A1 , A2 and A3 or AD over the random distribution of A D using

the expressions given by (A.11) and (A.12) or (11) and (12) for A l and A2

which are functions of AD . The averaged areas, Al , A2 and A3-AD , are to be used

to compute the total current in the three regions using (4), (5) and (6), and

the open-circuit reduction using (16). Al is given by D 1 - A2 - t so that

only A2 needs to be evaluated. From (12) or (A.12), it is evident that we

need to compute the statistical average of A3 . If we assume that the size

or the edge of the defect, Z 3-63 , is randomly distributed, then A3 = Z 3 and

Consider next a more complicated example in which the defect spacing

is randomly distributed. Let the defect area be constant and square and let

their sides be parallel to the x or y axis. Then, the area A 2 given by

(A.12) or (12) needs to be modified since Region II from adjacent square unit

cells may overlap and counted twice. This overlap area must be subtracted out

of (12) or (A.12). To get an expression of the random size of the overlap area,

let us denote the center-to-center spacing between the adjacent unit cells

by S  and Sy along x and y directions and S  and S y are random variables. Tnen,

there will be no overlap when S  > 2W 2+Z3 and Sy >2W 2 +Z 
3  

where Z3-,rA-3-rAAD.

Denote this non-overlap separation by S L=2W2+Z3 , then the overlap area between.

the two adjacent square unit cells is given by A 22 = (SL Sx)(SL Sy ). The non-

overlap area of Region II for each unit cell is then A 2 - A22 . If the spacing

is still smaller such that some of the overlapped area spreads into Region

III, then it must be subtracted out of A22 or the net non-overlap area of

Region II is A2 
A22+A32 

where A32 is the area of Region III which is 	 lapped
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by the Region II from an neighboring unit cell. The area which must be ueeu

to compute the current flowing in Region II using (S) is now the statistical

average of A2 A22+A32 over the random distribution of S  and Sy which vary

from 0 to - or to the dimension of a cell.

From these two examples, the procedure for extension to more general

random distributions of defect density and area as well as shape is evident,

although the algebra is somewhat complicated. They also demonstrate the

simplicity of treatment for random defects from the use of the three-region

developed perimeter device model for the defect.

NI

P

e
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IV. THICKNESS DEPLNDENCES OF SOLAR CELL PERFORMANCE#

1.	 INTRODUCTION	 N

Decreasing the semiconductor thickness of junction solar cells not only

reduces the semiconductor material cost but also improves the efficiency if the

cell has a back-surface field and is not too thin: - not less than about one

average optical absorption length (ti 10 um in Si) or about one tenth of the base

carrier diffusion length in high-efficiency cells (>16% A.*Q in Si). The improve-
V

meat in thin cells arises from the smaller minority carrier recombination volume

when the cell is thin. Large number of curves on the performance of solar cells

as a function of thickness have been computed and given by Hovel (1] for cells on

silicon and other semiconductors. The performance parameters presented include

the open-circuit voltage, VOC , the short-circuit current density, J SC , r,ie fill

factor or curve factor, FF. and the efficiency, EFF, for both space (AMO) and

terrestrial (AMI) solar illuminations.

The theory used by Hovel was the analytical one-dimensional low-level p/n

junction diode theory, including emitter space.-charge-layer recombination current.

Because of the low-level assumption, some important features of the dependences

of these performance parameters on the thickness of the cell are missing in his

families of curves. Two most obvious ones are: (i) base resistivity loss when the

cell is thick (above about 100 um), when the resistivity is high and when the solar

intensity and cell current are high (concentrator photovoltaic energy conversion)

and (ii) emitter and back-surface-field layer recombination when the cell is very

thin. These factors are related to high injection level effects which cannot be

taken into account readily using low-level analytical theory of minority carrier

diffusion and drift in p/n junctions such as those employed by Hovel and later

workers. In addition to these two effects not taken into account by the low-level

d This chapter will be published as an article in Solid-State Electronics in
1982 with the same title. It has been accepted for publication.
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theory, there are some additional high-level effects which are dependent on

specific mater'al properties, such as the variation of the diffusivity and

lifetime of the minority carriers in the base layer with injection or illumination

level. The purpose of this short note is to demonstrate the importance of these

--wo universal effects on the performance parameters, in particular, the fill

factor and the efficiency.

2. DEVICE MODEL

The one-dimensional device equations were numerically solved using the trans-

mission line technique [2]. The input parameters are the dopant impurity concen-

tration profile, the variation of the electron and hole mobility with dopant con-

centration, the concentration and the thermal capture and emission rates of electrons

and holes at the recombination center, the deveice temperature, the AM1 solar irra-

diance spectra and the silicon absorption coefficient. Complete transmissions at

the front and back surfaces of the cell are assumed. A model recombination center

of zinc is used although the results are generally valid for other recombination

centers and for assumed minority carrier lifetimes. The latter is a procedure

most frequently used by solar cell theorists. The device structure parameters

used in our numerical analysis are identical to those used in reference [2].

3. ANALYSIS OF RESULTS AND COMPARISONS WITH LOW-LEVEL THEORY

The results of our calculations for the intrinsic cell [3] are presented in

Figs. 1 to 4 which contain open-circuit voltage, short-circuit current fill factor

and efficiency as a function of cell thickness from 10 to 1000 um. Both a

back-surface-field (BSF) n+/p/p+ and a back-surface-ohmic (BSO) n+/p cell

structure are computed. The recombination center density selected, 10 12 Zn/cm3,

gives a minority carrier diffusion length of about 577 um. This was chosen to

simulate current state-of-the-art high-efficiency silicon solar cells whose
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residual recombination center could be an impurity-vacancy complex. However,

the minority carrier diffusion length of a production high-efficiency cell

will be similar to that assumed in this numerical example. The resistivity

of the p-type silicon used in this example is about 25 ohm-cm or a dopant

impurity concentration of 5x1014 boron/cm3.

The open-circuit voltage and the short-circuit current are given in

Figures 1 and 2. These curves can be compared with those given by Hovel

based on the one-dimensional low-level analytical theory. For ease of comparison,

Hovel's curves of 
VOC' JSC' FF and EFF are reproduced here in Figure 5. It

is evident that our exact numerical solutions for 
V 
0 and JSC have thickness

dependences very similar to those giver by Hovel, .shown here as Fig. 5(a) and

5(b). The magnitude differer«e between Hovel's and our JSC [compare
t

Figure 1 with Figure 5(a)] comes from the differences in the solar spectra used

since his AM2 spectrum has a slightly lower intensity than our AM1 spectrum.

given in reference [2]. The resistivity (10 ohm-cm vs our 25 ohm-cm) and

diffusion length (232 um vs our 577 gm) differences contributed to the

differences in VOC . The main feature is that the thickness dependences of

these two parameters, J SC and VOC , are not very different using the low-level

(Hovel) and the exact (our) solutions.

The similarity ceases for the other two performance parameters, the

fill factor and the efficiency. The differences in the fill factor is

particularly important in pointing out the series resistance effect and the

high injection level effect which are the principal causes of low efficiency

in thin film cells. The fill factor and the efficiency are given in Figures 3

and 4 which may be compared with the low-level results given in Fig. 5(b) and

5(c).
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Comparison of Fig. 5(b) with Figure 3 shows that there are marked

differences in the fill factor computed from the low-level approximation and

the exact numerical solution. The three main differences are listed below.

(1) The BSF cell (n+/p/p+) has a lower fill factor than the BSO (n+/p)

cell when the thickness is greater than about 25 um or about 0.0431,B

(L B=577 um). The low-level approximation predicts just the reverse

over the entire thickness range: FF in the BSF cell is always

higher than the BSO cell.

(2) The fill factor peaks between 100 and 300 um from the exact theory

and drops rapidly when the cell thickness increases about 400 um

or 0.5L 
B* 

The low-level approximation shows that the FF flattens

out to a constant and ideal diode value when the thickness is

,
greater than 200 um and maintains this constant even at infinite

thickness.

(3) The fill factor of the BSF cell increases towards the ideal diode

value when the thickness is less than about 25 um while that of

the BSO cell decreases continually as the thickness decreases.

The low-level theory does not show a significant reversal of the

FF in the BSF cell while in the BSO cell it decreases continually

when the thickness decreases.

These differences can be accounted for by the majority carriers and high-level

injection which are neglected in the low-level minority carrier diffusion theory.

The differences given in (1) is due to the fact that high injection level

condition sets in in the baae of the BSF cell earlier than the BSO cell because

the photogenerated minority carrier density in the base of the BSF cell is

higher while it is lower in the BSO cell because of the high recombination rate

at the ohmic contact of the BSO cell. This difference cannot be accounted for by
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refinement of the low-level theory short of including the high level effect.

The difference stated in (2) is due to the large series bulk resistance of

the majority carriers when the cell is thick. In the exact numerical solution,	 j

this bulk resistance is automatically included while in the low-level minority

carrier diffusion theory, it is not included since the majority carriers are

excluded in the low-level analysis. The low-level theory can be refined to take

into account of the bulk series resistance very approximately if an equivalent

resistance is added in ceries with the ideal one-dimensional cell and this

external series resistance is made proportional to the cell thickness.

The increase of the fill factor of the BSF cell towards the ideal diode

value (above 0.8) in Figure 3 as the cell thickness decreases (item 3) is due to

the increasing dominance of emitter recombination when the cell is very thin since

base recombination volume decreases with cell thickness. In our example, the

emitter thickness is fixed at 0.25 um. The reason for reaching the ideal diode

value is that the emitter is heavily doped and hence almost always at the low-

level condition of an idea diode.

For the BSO cells, the fill factor decreases with decreasing thickness in

both the exact and approximate theories [Fig. 3 and Fig. 5(b)]. This is due to

the decreasing open-circuit voltage as the cell becomes thinner. One can readily 	 }

show that the FF values given in these figures are nearly equal to those predicted	 1

by the ideal low-level base recombination theory, I SC I0exp(gV0CW).	
1

There are also differences in the AM1 Efficiency obtained by the exact

numerical and the approximate analytical theories, particularly when the cells

4	
are thick. This is illustrated by•comparing Figure 4 with the 10 ohm-cm curves in

Fig. 5(c). For thick cells, the low-level theory predicts a constant efficiency

while the exact numerical solution shows that the efficiency decreases continually

with increasing thickness. This is due to the series bulk resistance effect which

is not taken into account in the ideal analytical theory.
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V. THERMAL RECOMBINATION AND GENERATION PROPERTIES OF ELECTRONS

AND HOLES AT THE DOUBLE DONOR TITANIUM CENTER IN SILICON

1.	 INTRODUCTION

To achieve high energy-conversion efficiency at a reasonable price in

silicon solar cells, the densities of the-residual metallic impurities in

the starting silicon material must be reduced at a refinement cost which is

consistent with the price-performance economics requirement of silicon solar

cells in cumpetition with other energy sources. High recombination rates

of electrons and holes at the residual impurity centers in silicon will severely

limit the highest efficiency that is achievable in a solar cell containing

these residual impurities. The starting metallurgical grade silicon material

contains many metallic impurities at high concentrations. These impurities

must be removed by chemical refinement processes before single silicon crystals

can be grown. The various crystal growth processes can also remove a signifi-

cant fraction of the remaining impurities but it is more economical to remove

most of the residual metallic impurities by a prior chemical refinement process

which is the proven and traditional purification sequence in the production of

integrated circuit grade silicon single crystals.

The importance of achieving low residual metallic impurity concentration

in order to reach the highest energy conversion efficiency in silicon solar

cells is only recognized recently [1J. In fact, the purity requirement on

solar grade silicon for high efficiency performance (>17% AM1) is even more

severe than the highest quality silicon single crystal required for the current

and future high-der 	 very-large-scale high-performance integrated circuits.

Thus, it is important to determine accurately what is the ansolute concentration

of an impurity that can be tolerated in a highest-efficiency silicon solar cell
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design when the efficiency of the cell is specified by the economics requirement

of a particular application, such as terrestrial or space power generation.
{

In order to provide this information, the electronic properties of the residual

impurity in a single crystal silicon must be accurately known so that a first-

principle computer calculation can be carried out for a particular solar cell

design to determine the relationship between the cell performance (such as

short-circuit current density, J SC , the open-circuit voltage, VOC , fill factor,

FF, and maximum energy conversion efficiency, EFF) and the concentrations of

the metallic impurities. The electronic property that controls the solar cell

performance is the thermal recombination rate of electrons and holes since
t

photogenerated electron-hole pairs by solar illumination can produce electrical

i power only if they are not lost by recombination at the impurity recombination

centers. The thermal recombination rates are represented by six parameters

which characterize the thermal capture and emission processes of electrons and

holes at the localized states produced by the residual impurity centers in

a semiconductor. These are the thermal capture rates, c  and c p , the thermal

emission rates, en and ep , and the thermal activation energies, ETn and ETp,

of electrons (subscript n) and holes (subscript p) respectively. At thermal

equilibrium or low applied electric field in a junction solar cell, the six kinetic

parameters are not all independent and only three parameters are needed.

The others can be computed using the equilibrium electronic properties of the

semiconductor determined by other means; such as e nep=cncpn2 where ni is the

known intrinsic carrier density; E Tn+ETp=E
G 
where E^ is the energy gap; and

en=cnNCexp(-ETn
/kT) and ep=cpNVexp(-

ETP
/kT) where NC and NV are the effective

density of state in the conduction and the valence band respectively.

There are many residual impurities in a metallurgical grade silicon, such

as Al ( 7x1019	:aatom/ c 3), 8 ;6x1 017 ), Ca (1.2xI014), Cr (2x1014), Cu (3x1018),

Fe (2x1020), Mg (2x1017 ), Mn (6x1018), Mo (2x1018), Ni (5x1018), P (5x1017),
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J(

1

Ti (2.5x1019), V (1.2x1019), Zr (2x1018) and others. In addition, impurities

can be introduced during the crystal growth, such as oxygen from the molten

silicon container made of fused quartz, carbon from the growth ambient,

molybdenum and	 ten from t apparatus  rcontainer material d o ery	 tongs	 m heo	 an th .s

Impurities can also be introduced during the purification of the metallurgical

grade silicon from specific purification processes such as Zn (5x10 18 to

5x1019 Zn/cm3), Mo and other possible metallic contaminations from the

crystal grower or the boat or the container for the molten silicon. Although

many of these metallic impurities have very low distribution coefficients between

the molten and solid silicon so that their concentration in the solid or the

crystal can be many orders of magnitude smaller than that in the melt due

to impurity segregation during crystal growth. Such a reduction may still

be insufficient to reduce the impurity concentrations to a sufficiently

low level so that high-efficiency solar cell can be fabricated. Estimates

have been made for Ti based on the preliminary recombination parameter data 	 I

which indicated that Ti concentration must be less than about 3x10 12 Ti/cm"

in a p+/n/n+ BSF (back-surface-field) silicon solar cell in order to get 17% 	 r
i

AM1 efficiency. At an equilibrium segregation or distribution coefficient

of 2x10-6 for Ti in Si, a one-Fass crystal growth or zone refining process

would reduce the Ti concentration from 2.5 x10 19 Ti/t:m3 in the feedstock Si

to about 2.5x10 19x2x10
-6
 5xi0i3 Ti/cm3 along 80 to 90% of the crystal ler*,th

but this is still too high to give 17% AM1 efficiency. Thus, highly

i

f
efficient and economical chemical refining processes are needed to purify

the metallurgical grade silicon before it is used for single crystal growth. 	 f

The refining processes must provide a final silicon crystal, single or poly,

with less than about 3x10 12 Ti/cm3 and similar amounts of other metallic impurities
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f so that high-efficiency (17X) solar cells can be fabricated.

To determine the electron-hole recombination parameters for each

impurity in silicon which may degrade or control and limit the highest
	 NJ

acheivable efficiency of the final solar cell requires extensive and detailed

measurements. Because of the minute concentration of these impurities, they

cannot be detected by conve:.:ional analytical or microchemical analysis and

neutron activation techniques. In addition, these techniques would only

give the total impurity concentration of each species and not their

electrically active concentration nor the recombination parameters. Thus,

alternative and electrical techniques must be employed. The most sensitive

of these are the diode transient techniques which rely on the detection of

I i

the minute time dependence of the concentration of the electrons and holes

trapped at the impurity centers in the space charge layer of a semiconductor

junction. These include man; possible variations first proposed by Sah

and demonstrated by him and his graduate students [2] and further refined,

extended and computerized by them and other workers. A comprehensive .review

has been given by Miller, Lang and Kimerling [3] who had themselves contributed

to many of the refinements and automated data acquisition techniques.

In this report, measurements of the thermal capture and emission rates 	 I

and thermal activation energy of electrons and holes at the Ti centers in

Si are describer' using two Constant Voltage Capacitance Transient (CVCT)

methods. The results are carefully analyzed to show that they are consistent

with the double donor model of substitutional T1, center, expected from the

electronic shell structure of Ti atom in the tetrahedral covalent ;wnd model

of crystalline Si.

A historical review of the recombination parameter measurement data of

Ti center is first given which is followed by a summary of what are believed

!I
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to be the most reliable or accurate results to date. A theoretical inter-

pretation of these latest results is then given to show that they are
I

consistent with the covalent bond model of silicon and the electronic shell

structure of Ti. Here. we t,resent a new method of analyzing the theoretical charge	 G

states of an impurity or defect center in a semiconductor based on the
z	 r

equilibrium statistics of the distribution of the trapped electrons and holes

and their spin and configuration degeneracy and entropy.

2.	 HISTORICAL REVIEW OF RECOMBINATION PARAMETER MEASUREMENTS

(A)	 The first reported measurements of the energy levels or thermal activation

energies of Ti related centers in silicon were given by Sah on October 12, 1976

t
during the LSSA PIM (Low-Cost Silicon Solar Array Project Integration Meeting)

sponsered by JPL (Jet Propulsion Laboratory) at Pasadena. At that time, the
i

Impurity Effects on Silicon Solar Cell programs had just started with two major

efforts undertaken by Monsanto and Westinghouse Research Laboratories. Single

crystal silicon intentionally doped with metallic impurities during crystal

growth were produced by Dow Corning for Westinghouse and within Monsanto for

this study. Some crystal slices were made available by JPL for our measurements.

Two Schottky barrier runs were made quickly using a p-type silicon slice doped

with Ti during growth from Westinghouse (Crystal No. W- .008-Ti-001). The slice

had an elongated quarter-pie shape of approximately 1/8" by 1/2" and 14 mil

thickness. Four-point-probe resistivity measurements gave a V/I-16.1 ohms

for a probe spacing of 500 um. The computed resistivity is then p-A(V/I)

=0.1515x16.1=4.06 ohm-cm which is consistent with Westinghouse-provided data

of 4.2 to 3.1 ohm-cm. The carrier or hole concentration is then 3.6x10 15 cm-3

at room temperature (300°K). 30 mil diameter Mg dots were evaporated onto the

chemically polised side of the surface and a blanket aluminum was evaporated

to the back side. 100x100 mil t dices with four diodes per dice were cut from
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the wafer and mounted onto a 8-pin gold-plated TO-5 header using a low

'	 temperature epoxy (Epotek 410). A 30-mil diameter Mg dot on the top surface

was then covered with a drop of the same epoxy and a gold preform was used to
	

I,

cover the epoxy dot. This assembly was then cured at 80°C for two hours in

a dry nitrogen ambient. After curing, a one-mil gold wire was then bonded

to the gold preform ultrasonically and to the post of one of the 8 pins.

VSCTS (Voltage Stimulated Capacitance Spectra) was then taken from 77

to 300°K which revealed three peaks at approximately 90K, 160K and 170K. The

two lower temperature peaks were negative, revealing that they were

minority carrier or trapped electron emission peaks while the higher

temperature (170K) peak was positive and due to thermal emission of holes trapped

at a level below the midgap. The minority carrier signals and peaks were

obtained by forward biasing the diodes which apparantly gave some electron

injection from the Mg metal into the p-Si in the Schottky Barrier diode.

A typical capacitance transient decay curve is shown in Fig. 1 which consisted

of fast positive transient due to thermal emission of trapped majority carriers

(holes in p-Si) at the lower level and a longer negative transient due to thermal

emission of trap, • ed minority carriers (electrons) at the upper level.

These capacitance transients were then measured at many temperatures

around the three VSCTS peak temperatures and analyzed by a two-exponential

nonlinear least-square-fit routine to give both the preexponential factor and

the decay rate or thermal emission rate constants, e  for hole emission and

en for electron emission. These rate constants were then plotted as a function

of 1000/T and least-square-fitted to the Arrhenius equations

en = m(T/300)mexp[-(E^ ET)/kT]	 (electron emission)	 (1)

or

r	 ep	 m(T/300)mexp[-(ET EV)/kT]	 (hole emission)	 (2)
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Fig. 1 A typical capacitance transient of a Mg /p-Si Schottky

i
barrier diode on Ti doped silicon. Crystal W-008-Ti-001.
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The experimental results were represented by the following equations

for the thermal emission rates and activation energies.

EC - 182 mV Level

i 	

en = 3.6x1011(T/300)2exp(-182iaV/kT)
Y

f

	

EC - 470 mV Level

i

	

e =
n	

5.6x1013(T/300)2exp(-470mV/kT)

EV + 336 mV Level

e
P
	1.1x1011(T/300)2exp(-336mV/kT)

At this ea7lier date, it was fairly certain that the two shallow levels,

EC- 182 and Ev+336 were associated with Ti and the data were fairly accurate.

The data for the deeper level, E
C- 

470, were not as accurate and there were some

doubts concerning its origin, especially if it is associated with surface traps

since the Schottky barrier diode was mad,: on a p-type silicon surface.

(B) The next sets of data were reported by Monsanto in their final report of

a JPL contract, completed in September 1976 [4] but not distributed until

late 1978. There was no capacitance transient measurements reported on their

s

	

	 impurity doped silicon crystals. Impurity concentrations were determined by

microanalysis techniquP3 and lifetimes were determined by photoconductive

decay and the open-circuit voltage decay measurements. These provided some

{	 indications of the minority carrier capture rates at the Ti levels in the

p-type and n-type silicon. However, the lifetimes and the capture

rates were not and could not be correlated with the specific Ti deep levels

since no energy level measurements were available to the Monsanto group

before the end of the contract.

(C) The next sets of data were reported by Northrop in their final report

covering a contract from December 1976 to October 1977 but it was not

p

-91-
i

F



distributed until December 1978 [5]. In this work, the diffusion length of the

minority carriers was measured on the impurity doped silicon wafers from

Monsanto and Westinghouse/Dow-Corning, using a scanning electron microscope

which gave very accurate, and we believe, rather reliable data. The minority

carrier lifetimes were then computed from L-6—T  where L is the diffusion

length measured and D is the diffusivity computed from D-(kT /q)u using the

published mobility of electrons and holes in silicon, 
V  and up . The

diffusion-length lifetime data were also correlated with the photoconductive

decay and open-circuit voltage decay -ifetimes obtained by Northrop as well as

reported by Monsanto and Westinghouse on their impurity-doped silicon crystals.

This correlation curve was the basis for calculating the minority carrier

capture rates at the Ti levels to be presented in subsection E by us. Again,

no correlation of the lifetime data were made with the specific Ti levels since

reliable and accurate Ti level information were not available at that time.

(D)	 The next set of data on the thermal activation energies as well as the

thermal emission and capture rates of electrons and holes were reported by

Westinghouse in their 11-th Quarterly Contract Report in July, 1978 [11].

Measurements were made for many impurities using the VSCTS (Voltage Stimulated

Capacitance Transient Spectroscopy). It is also known as DLTS - Deep Level

Transient Spectroscopy or JTS - Junction Transient Spectroscopy but DLTS and JTS

are all inclusive names for all the possible variations first reported by Sah

and his graduate students [2] and reviewed by Miller, Lang and Kimerling [3],

while VSCTS is a specific member of the DLTS or JTS family. There were

considerable variations among these first atempts as revealed by the table

given on the next page. Part of these were probably due to the uncertainty in

the identification of the VSCTS peaks and to noise and calibration accuracy of

the early instrumentation. These were mostly resolved in their later data

NI
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reported in their 16-th Quarterly Contract Report to be described in subsection

(H) and in their papers to be described in subsections (F), (G) and (I).

TABLE 1 RECOMBINATION PROPERTIES AT Ti CENTERS IN Si

(Westinghouse Data, July 1978, p.110 [6])

Crystal Diode Energy Level
No. Type (mV)

W-008 m/p EC - 340

EV + 290

W-008 n/p EC - 260

EV + 290

W-033 ?/p EC - 270

W-065 ?/n EV + 450

EV + 250

Emission mission
Density Cross-Section Rate

cm-3 (cm2) (cm3/sec)

7.OE14 4.0E-16 4.0E-9

7.OE13 4.7E-14 4.7E-7

	

1.5E13	 ?

	

2.6E13	 ?

	

4.OE12	 4.5E-17	 4.5E-10

	

3.6E13	 3.6E-16	 3.6E-09

	

3.OE13	 1.2E-15	 1.2E-08

Y.

(E)	 A comprehensive analysis was then made by Sah of all the published data

to date and reported in March, 1979 [7]. At that time, the most accurate thermal

emission and activation energy measurements were those reported by Sah and

described in subsection (A). In addition, a detailed analysis was also made of

all the minority carrier lifetime data reported by Westinghouse, Monsanto and

Northrop. The lifetimes, corrected using the correlation curve between the

diffusion length lifetime and the photoconductive and open-circuit voltage decay

lifetimes were plotted as a function of the Ti concentration, either measured

by the microanalysis techniques or estimated from an assumed liquid-solid

segregation coefficient. The T vs NTi data of twelve Ti-doped n-Si and p-Si

from Westinghouse and four from Monsanto were plotted on the logT vs logNTi scale

in Fig. 2. Since T- (cNTi) '1 or logT--logC-logNTi where C is the thermal capture
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circles are n-Si and hole lifetime. Numbers with character M or
C in front are crystals grown by Monsanto while those without are
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rate of the minority carriers, three best-guess lines were drawn in Fig. 2. Three

lines were chosen because the points seem to group along the three lines shown

in Fig. 2 and because the preliminary measurements gave three thermal activation

	 N

energies as described in subsection (A). Later analysis indicated that the

deep level at E
C- 
470 mV was due to a thermally induced center not related

directly to the double donor Ti center. From these three lines, three

minority carrier capture rates could be calculcated at the lifetime measurements

temperature (300°K). The results (7] are summarized below.

E
C
-182 Acceptor Level

c - 1.3x10-8
	 (CM 3/s)

n

en - 3.6x1011 (T/300) 2exp(-182/kT)	 3x108	( 1/s)

c  - 5. X10-9 (Fig. 2)	 (cm 3/s)

e  - 2.2x10 5 (297°K)	 ( 1/s)

E0470 Donor Level	 ! .

c -2. x106	

1

n

en = 5.6x1013 (T/300) 2exp(-470/kT) = 6x105

cp = 2.5x10 8 (Fig. 2)

e  - 9.2	 (291°K)

EV+336 Donor Level

cn - 3.7x10-7 (Fig. 2)

en = 1.6	 (297°K)

c = 8.2x10 9
p

e  - 1.lx1011 (T/300) 2exp(-336/kT) - 2x105

The numerical values shown above were computed at 297°K. The two upper levels,

E 
C 
-182 Lad EO-470 mV detected from minority carrier emission transients were
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tentatively attributed also to the Ti center with the shallower level, E 
C 
-i$2,

designated as an acceptor while the deep level, E C-470, as a donor based on

the electronic shell configuration of Ti, (Ar)3d 24s 2 , whose two 4s electrons

are weakly bounded and can give rise to the two donor states at E C-470 and EV+336.

It was further speculated that the shallow E
C- 

182 level may be the oxygen-

vacancy level rather than Ti related. Later results indicate that the

identification of the EV+336 level as the second Ti donor level is correct but

the first Ti donor level lies at E 
C 
-228.65 mV instead of EC-470 mV so that

the level at E
C- 

182 mV was probably the second Ti donor level. The difference

in energy (182 vs 228.65) was partially due to the inaccuracy of the original

data analysis since it was a minority carrier transient and might have some field

dependences. The data were used to compute the characteristics of Ti-doped

solar cells made from the 14 Westinghouse crystals [1]. The measured and

computed JSC , VOC , EFF were in good agreement but the agreement with the

measured fill factor was poor. It was speculated that this poor agreement

was probably due to a la_ge contact resistance which was not taken into account

in the theoretical transmission line equivalent circuit model. It was also
1

noted that the agreement was good at low Ti concentrations but poor when the

Ti concentration reached 4x10 14 Ti/cm3 in crystal W-008. It was suggested (7]

that impurity segregation and cluster may have reduced the experimental

JSC and EFF. It was also noted this was the first Ti-doped Si crystal grown

and its quality may have been affected by some unknown and uncontrolled growth

parameters. In any case, the computer model was demonstrated to give good

correlation with actual experimental solar cell data as a function of the Ti

concentration, even though the recombination model was still uncertain,
i

because the recombination parameters were accurately measured and used as the

input parameter for the computer calculations. It also demonstrated that to get

III
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a 17% AMl efficiency cell, the.Ti concentration must be less than 2.5xlO cm 3

and a p+/n/n+ cell structure must be used since the n+/p/p+ cell structure was

less efficient because electron lifetime in Ti-doped p-Si is lower than hole 	
1

lifetime in Ti-doped n-Si.

(F)	 The recombination properties of the Ti centers in . Si were extensive
t	 "
+	 and carefully investigated by many experiments carried out by Chen, et. al.

aiv Carnegie-Mellon and reported in Noveaber, 1978 which was published in

September 1979 [8]. Both Westinghouse Ti-doped Si and Ti diffused Si were

used to fabricate both diffused and Schottky barrier diodes on both n-Si

and p-Si. Three electron and three hole trapping levels were observed with a

40 MHz VSCT Spectrometer using double boxcar correlation technique. Two of

these six levels were shown to be directly proportional to the Ti concentration

and were attributed to a single Ti center. They are E C-264 mV and EV+290-35 mV.

They were both designated as donor levels since a 360 ohm-cm n-Si was

diffused by Ti and did not show acceptor or p-type conversion. The other four

levels were attributed to thermal generation at high diffusion temperature or

unintentionally incorporated impurities during processing.

Detailed majority carrier capture rates were also measured which

indicated that hole capture into the second Ti donor level, E V+290 mV was

thermally activated with an activation of 35 mV. This gave an effective

thermal activation energy of holes of EV+29v-35-EV+255 mV.

Hall effect measurements were also carried out for the n-Si sample

giving a electron activation energy of E C-220 mV instead of the EC-264 mV

determined by VSCTS method. The capture rates and cross sections at 300°K are

anc-3.5x10 
15 

cm  and cn•3x10 8 cm3/s for the first donor level at E 
C 
-264 mV

and apc-1.7x10 17 cm  and cp-2x10-10 cm3/s for the second donor level at EV+255 mV.
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Unfortunately, detailed least-squares-fit results of the emission rate data

were not Sivea and only a graphic comparison could be made with "rlier and

i

subsequent and more accurate data. 	 1

(G)	 More detailed capacitance transient measurements were made by Westinghouse
1

	i	 and thew.- were reported in three publications, a paper in the Solid State

Electronics Journal [9], their 17-th Quarterly Contract Report [10J, and a

IEEE Transaction on Electron Devices Journal article [ 11). The two levels

identified by Chen as those from Ti are now reported also by Westinghouse
1

	

!	 who also gave values for the majority carrier capture rates in two of these

references. These were apc-5.3x10 18cm2 or c  5.3x10-llcm 3
/s at the F

V+300 mV

level [10 1 and anc-1.04x10 14cm2 or cn-1.04x10-7cm3/ s at the E
C- 

260 mV level and

a 
pc 

-8.3x1A 16cm2 or c 
p -8.3x10 9cm3	 F1►

/a at the +300 mV level. These values were
^ 

self-inconsistent (for example, apc-5.3x10-18cm2 and 8 . 3x10-16cm2 or a factor

156.5 different) and they were different from those given by Chen which was

described in sub-section (E). The values given by Chen are considered more

reliable.

(fl)	 The Ti levels were also measured by a JPL in-house group [ 121 using

solar cells fabricated by Westinghouse on the Dow-Corning Ti-doped p-type Si.

Measurements were made on either mesa or photo lithographically etched n+/p

diodes. The VSCTS data showed three majority carrier peaks and one minority

carrier peak, at EV+0.18 1 EV+0.27, EV+0.37 and E
C- 0.24 eV. Only the EV+0.27

level appears in the original wafer while the other appears after high

temperature diode or cell diffusion. The other levels were attributed to

Titanium-Oxygen complexes since titanium is highly electronegative. This model

is similar to the Aluminum-Oxygen complex which was observed in Al-doped

	

f	 silicon [13).
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(1)	 More extensive capacitance transient spectroscopy was also obtained [14] by

Chong and Leung in a JPL in-house work using the Westinghouse Ti-doped p-Si,

materials and solar cells as well as silicon ribbons, by the web dendritic

process (Westinghouse) and edge-defined Growth process. The results are

on75x10 12 cm 2 and oPM5 . 5x10 
-18 

cm 2 for the EV+280 mV Ti level at 200K. 	 e

They also reported an estimate for the E^ 240 mV of 
a  

> 4x10 15 cm

(J)	 We have carried out extensive and highly accurate measurements of the

thermal emission rates and activation energies of trapped majority carriers

at the Ti levels in n-type and p-type Si prepared by Westinghouse /Dow-Corning

as well as Ti-doped Si diffused and Schottky Barrier diodes provided by

Westinghouse. These results are summarized below.

8V 
+ 305 mV

eP a 5.45x1011(T/300)2exp[-305.34/kT]	 (1/sec)	 (1)

where the reduced chi square is 1.036 and the rms deviation of the two constants

are 5 .45±1.13 and 305 .34±2.31. The large uncertainty in the pre-exponential

factor was due to the small numner of temperatures (nine). The results are

accurate since the rms deviation of the emission rate is only 1.992.

EC - 231 mV

en 1.42x1010 (T/300) 2exp[-231 .34/kT] 	 (1/sec)	 (2)

where the reduced chi square is 0.73 and the rms deviation of the two constants

are 1 . 42*_0.080 and 231 .34±0.54. The results are quite accurate and has a

rms deviation of only 1.16%. The capacitance decay curves were taken at

thirteen temperatures in the range of 101 . 60 to 121.81K.

The thermal capture rate measurements have not been obtained for all

of the electron and hole transitions. The majority carrier capture rates can be

-99-

6



I
s

obtained by partial-trap-filling experiments over a wide range of temperatures

below the maximum temperature where the thermal emission becomes too fast to

be measured by the capacitance motor. Above this temperature, current	 i

transient must be monitored under partial-trap-fillir.s. The minority carrier

capture rates were measured either by injecting minority carriers into the space

charge region so that they can be captured to give a junction transient or by

junction current switching transient. Thus far, measurements are made on the

hole capture rate at the second donor level. E V+305 mV, using the technique of

partial-trap-filling by majority carriers. The data of our experiments as well

as those of others are given in Table 2 mad plotted in Fig. 3.

It is evident that there are wide disagreements among the hole capture

.ate data given by Westinghouse's two reports and Carnegie-Mellon sa noted

earlier. Our data at much lower temperatures than those of Carnegie-Mellon

appear to lie on a reasonably smooi.h curve in Fig. 3. There are some

spreads in our data taken on different diodes which are illustrated in Fig. 3

where the data symbols are indicated in Table 2. Q are for the diffused n+/p

diode TiP:52Dl;e are for the Schottky barrier diode TiP137S1; and A are
for the Schottky barrier diode TiP152S1. The following results are evident.

(1) cp is the lowest in the Schottky barrier diode, ;iP137S1 (& ) which has

the highest boron concentration among these three diodes (4.69x10 15 boron/cm3}.

(2) c  is higher in the SB diode TiP152S1 ( jk) t4an in the diffused n+/p

diode TiP152D1 ( O ). (3) All three sets of data of c  from our measurements
are higher than the values extrapolated from the Carnegie-Mellon-Westinghouse

high-temperature data ( • ).

One important point to note is Chat the thermal activation energies

and emission rates of our three diodes were all nearly equal to each other,

assuring that the capture measurements were at the same Ti center.

ON I
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Table 2 Hole Capture Rate at Ti Center in p-Si

^i

Diode No. Temperature 1000/T c	 cm3 sec
(R)

TiP152D1 77.01 12.98 1.620E-11
(n+/p) 90 .00 11.11 2.477E-11

99.66 10.03 3.018E-11
109.99 9.092 3.608E-11
128.92 7.757 4.133E-11
136.95 7.302 5.373E-11
144.95 6.900 5.505E-11

TiP137S1 109.82 9.106 2.532E-11
(m/p) 129.05 7.749 3.617E-11

136.75 7.313 4.434E-11
144.90 6.901 5.454E-11

TiP152S1	 77.01 12.98 1.931E-11
109.87 9.102 4.593E-11
144.98 6.898 6.010E-11

Diffused &	 179.89 5.559 0.761E-10
f	 Schottky	 196.14 5.098 0.957E-10

I	
201.90 4.953 1.03 E-10

i	 213.80 4.677 1.17 E-10
221.43 4.516 1.29 E-10
241.66 4.138 1.54 E-10

k	 250.25 3.996 1.68 E-10

?	 8.3 E-09

?	 5.29 E-11

200	 5.000	 5.05 E-11

Source of Data - Comments

This work. Q in Fig.3.

NAA75.96x1014 cm 3

This work. A in Fig.3.

NAA74.69x1015 cm 3

Large series resistance
prevented low temperature
measurements.

This work.Ak in Fig.3.

Chen-Milnes-Rohatgi [8].
• in Fig.3. Read off the
figure from [8] as accurately
as possible.

Westinghouse [11].

Westinghouse [10].

JPL Cheng-Leung [14].
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The capture rate plotted in Fig. 3 is the quantity measured directly

r

	

	 from the experiment. The data presented by Chen-Milnes-Rohatgi in the

Carnegie-Mellon paper [8] was given as capture cross section. A

conversion back to the capture rate required the use of an thermal velocity

expression for holes since it is temperature dependent. The rms velocity,

ep= WT- a , is used where mp is the density-of-state effective mass of the

valence band.	 mp is slightly temperature dependent and is computed using

mp/m - 0.64742[1+(T/193.472)3]x[1+(T/142.739)3]/{[l+(T/202.056)3][1+(T/166.785)3]}.

The capture rate is computed from the measured filling time constant using

cp-(PTf ) -1 where T  is the filling time constant and P is the hole concentration.

Deionization correction is also made to.compute P from the boron concentration,

NAA which is measured from C-
2 
 vs V at 300K. The formula for computing P is

P - 2NAA/[1+4+4NA' A/KA] where RA=(NV/gA) exp[-(EA EV) /kT], N'=N^ NTi and

s

	

	 NV-2.51x1019(T/300)
3/2(mP/m)3/2. E

A EV=0.0444 eV and gA-2 are assumed. The

deionization correction is significant but not very large.

If a line is drawn through these data, a rough or poor fit can be made

to give a Arrhenius equation for the hole capture cross section which is

opc - 6.2x10 17 exp[-34.85/kT] cm 	 (3)

This would change the thermal activation energy for hole emission by 34.85 W.

The electron capture rate has not been measured because it is very

large and the filling time required is below 10 ns making it impossible to

perform the partial filling experiment due to pulse shape distortion by the

loading of the Ti-doped diode. This filling time can be increased substantially

if the resistivity of the Ti-doped n-type Si crystal is increased. At 30 ohm-cm,

the hole concentration will be sufficiently low to allow for accurate measurements

but high resistivity Ti-doped n-type silicon crystal is not available.#

# It became available after the completion of the draft of this technical report.

N'
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3.	 THEORETICAL. ANALYSIS

Although the complete set of four capture rates at the two Ti levels

have not been obtained, the data on hand for the majority carrier capture rates

can be used to delineate the electronic models and the charge states of the T:

levels in p-type and n-type silicon. This is possible by noting that at thermal

equilibrium, the emission and capture rates are related by the mass action law.

For holes trapped at the lower Ti level, this is

i

	

	 ep CpNVexp[-(ET-EV)lkT] - a 0pNVexp[-(ET F.V)IkT]	 (4)

and
i

en cnN
C
exp [-(EC-ET)IkT] - an0nNCexp[-(EC

 -E
T
 )/kT] 	 (5)

where we have used the definitions for the cross sections given by

C  - a 
p 

6 
p
	 (6)

and

C  - an ion •	 (7)

Here, ap= 3k^ and an= 3k^ are the rms velocity of the holes .and electrons

respectively whose effective masses are p and n. In our previous data conversion,

we have employed the density-of-state effective masses, mp and mN.

In the experiments of majority carrier capture and emission, such as

holes at the lower Ti level, E V+305 mV, both e  and c  can be measured independently

but they are measured under drastically different conditions. The emission

transient and rate is due to the thermal emission of the trapped carriers from

the Ti centers in the junction space-charge region where there is a high electric

field and hence it is a highly non -equilibrium process. The capture transient

and rate is due to the thermal capture of carrier by the Ti centers in the

quasi-neutral region and hence it is an equilibrium process. Because emission

is not at thermal equilibrium, we define a separate emission cross section to

distinguish it from the capture cross section. Thus, the four equations for the

-104-



G

four experimental measurements are

e  = opeepNVexp [-(ET-EV)AT] 	 (8)

cp = e ep	(9)

en
 - aneenNCeXp[-(EC E

T)/kT]	 (10)

and

C! = v e	 (11)
n	 nc n

which give four experimentally determinable cross sections, a pe and opc for

holes and aAe and anc for electrons where the superscript ° denotes equilibrium.

In addition to the equilibrium-nonequilibrium difference, the two

cross sections for holes (or electrons) are also related through a factor which

depends on the nature of the charge state or impurity potential which uetermines

the spectrum of excited bound states, their spin and configuration degeneracy,

as well as a configuraticn entropy due to lattice relaxation around the impurity.

We shall develop or summarize these theoretical results which relates a pe to

apc and aAe to anc . Thus, the experimental data can be used to determine which

theoretical model is consistent with the measurements which would then allow a

determination of the charge state or the impurity potential.

We shall first obtain the complete expression for the emission rate

at thermal equilibrium in terms of the thermal equilibrium capture rate or cross

section for a donor impurity level. Suppose that the donor impurity has five

valence electrons with a ground state energy level at EC-ED and a degeneracy

of gD. Then, from the equilibrium mass action law or from balancing the

electron emission and capture transition rates, enN D=c
O
le cAN(ND -N

D
 ) and

using the equilibrium distribution function for the trapped electrons [15]

ND - NDD/{1+gDlexp[-(EF-EC
)/kT]}	 (12)

and the electron concentration given by

N - NCexp[-(E C - EF)/kT]	 (13)

N
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1

we have

en = cn8D1NCeXp[-(EC EF
)/kT]	 (14)

1

(a0 /gD)enNCeXp[ -(EC E
F)/kT]	 (15)	 snc

1	 '
{

Comparing the non-equilibrium experimental relationship, (10), with the
f	 ,

theoretical equilibrium relationship, (14), we can write
s

one/a - gDen/en - SD/rn	 (16)

where r'e
n
/en > 1 since the emission rate in a high field will be larger due to

f

binding potential barrier lowering and tunneling. For this donor impurity,

the hole emission and capture cross sections are related by

p	 apc/ape = (8Dep/ep)
-1
 - (gDrp ) -1	(17)

E

where r
P 
=e 
PP
/e° > 1.

A similar derivation can be made for an acceptor impurity level whose

ground state has a gA fold degeneracy. The results for the acceptor impurity

are different than those for the donor impurity given by (16) and (17) since

holes are trapped at the acceptor level while electrons are trapped at the donor 	

}
level. The cross section ratios at an acceptor level are given by

apc/ape - gA/rp	(18)	 i

and

v° /a	 - (g r )-1.	 (lg)	 !
nc ne	 A n	 P

If we take into account of the excited states and their degeneracy, then

i the degeneracy factor,gD , must be replaced by a sum-over-state [15,16] given by

8D gDl + gD2exp[-(FD2 -D1)/kT] + 8D3exp[-(ED3 E
D1 )AT] + ....	 (20)

where gDi and EDi U-1,2,3,...) are the degeneracy and energy level of the i-th

excited state. The ground state is i-1.

I
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The different dependences of the capture-emission cross section ratio

of a donor and an acceptor impurity, given by (16) and (17) for a donor and

(18) aad (19) for a acceptor, makes it possible to distinguish them from

experimental measurements of the cross sections from the capacitance transient

i

	

	 experiments. To demonstrate this possibility, we take the simplest situation

in which there is no electric field dependence of the emission rate so that

r
A 
-rp-1. Then, we have

Donor Level (Electron Trap)

anc/ane - gD/r
n _ gD > 2	 (21)

';c/ape - (8Drp )
-1
 < gDl < 1/2	 (22)

Acceptor Level (Hole Trap)

anc/ane - 
(8Arn)-1 ^ 9-1 ^ 1/2	 (23)

r

ap
°
c/ape - 8A/r, 

< g
A 

> 2	 (24)
 -

These sets of equations show that the experimentally determined ratio of the

capture to emission cross section will make it possible to determine if the level

is a donor level or an acceptor level.

6	 Let us apply 'the above result to the measurements made on the Ti levels.
r

From the hole emission rate at EV+305 WV given by (1), the hole emission
E

cross section at 300 °K is ape - 2.67x10 15 cm2 . The hole capture cross section

calculated from (3) is a° - 1.6x10 
17 cm2 . The ratio is a° /a - 1/167- 0.006.PC	 pc pe

Thus, this lower Ti level must be a donor level. The small ratio indicates that

rp-ep/ep >> 1 since gD in (22) cannot be substantially greater than about 2.

Part of this large ratio is due to electric field dependence but configuration

entropy due to strong electron-phonon coupling and lattice distortion is likely

to contribute. If it is due entirely to the latter, the entropy is kloge166-5k

which is not unreasonable.

r
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A similar calculation may be made for the electron emission rate at

E^	 0231 mV given by (2). The emission cross section at 300°R is o -4 .46x1 17cm2.

fThe electron capture rate and cross section have not been measured in the

Ti-doped n-Si but it has been measured in n-Si where Ti was introduced by
s

diffusion. This was reported by Chen-Milnes-Rohatgi [8] to be a constant
r	

from 150 to 210 °R with a value of onc-3.5x10 15 cm 
2. 

Using this value, the

ratio is then a° /o - 78 . 4. Comparison with (21) to (24) shows that thisnc ne

Ti level must also be a donor level.

Thus, from the emission and capture cross section measurements of

majority carriers at the two Ti level, we can conclude without doubt that the

two Ti levels are donors. The most likely possibility is that Ti is a double

donor with c/large states 0, +1 and +2 and the upper level, EC-231 mV the

first donor level and the lower level, ZV+305 mV the second donor level.

The large ratios of the capture to emission cross sections suggest

that there is considerable lattice relaxation from strong electron-phonon

interaction since electron spin and electron configuration degeneracy cannot

account for such large ratios neither can electric field enhancement of the

hole emission rate at the lower level. Electric field enhancement of the

electron emission rate at the upper level would give the wrong change since 	 !

it would increase rn or en/e* and make the 
a* /ane ratio even smaller.

The conclusion here that the two Ti levels are donor-like are

consistent with the conductivity-type conversion experiment of Chen-Milnes-Rohatgi

in which they find no conversion of a 320 ohm-cm n-Si diffused with Ti,

implying that all Ti levels must be donor like. The recombination coefficient

measurements given here not only determines whether Ti is.donor or acceptor but

also provide additional indication that strong electron-phonon interaction

occurs around the Ti impurity site to give a large configuration entropy.
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The conclusion about the double donor nature of the Ti impurity in S1

gives further support to the valence bond model. The electronic shell structure

of Ti ib [(Ar)3d 24s2 ] The radii of the two 4s electrons are large, 1.477A,

compared with one-half of the nearest neighbor silicon spacing (2.35/2-1.17A).

Thus, these two 4s electrons of the Ti atom are loosely bound in the Si

crystal lattice and they are easily released to produce two bound states, the

E C 
-231 and the Zv+305 mV levels.

The electron capture cross sections and rates at these two donor levels

are expected to be large due to attractive Coulomb potential. On the

other hand, hole capture cross sections are expected to be small due to the

repulsive Coulomb potential. Thus, the electron lifetime in p-Si should be

considerably shorter than hole lifetime in n-Si, making the p+/n/n+ silicon

solar cell containing Ti likely to have higher efficiency than the n+/p/p+

type. This was verified by computer design simulation [7].

A similar conclusion on solar cell efficiency can also be reached for

the vanadium recombination center which is a double donor in silicon and other

double donor recombination centers whose two levels are located in the two

different halves of the silicon energy gap.

i
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