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A STUDY ON PARM UR MEMIBIA81LITY

System identification is the process of modeling a system struc-

Ak	

Cure, establishing a mathematical representation of that structure and

determining the values of the unknown coefficients, or parameters,

from experimental input and output data records. In the broad sense,

parameter identifiability may be considered as the mathematical assur-

ance of the recoverability of the unknown parameters. Deterministic

f

parameter identifiability pertains to systems in which no corruptive

noise processes are present, while stochastic parameter identifiability

treats those systems in which noise processes are present, either

in the dynamics of the system itself, in the output observation

process, or in both.

A set of definitions for deterministic parameter identifiability

is proposed based on the necessary infectivity of the mapping from the

system composite input/initial condition/parameter space into the system

output space. The equivalence of the proposed definitions and of

various definitions previously developed is demonstrated. Determinis-

tic parameter identifiability properties are presented based on four

system characteristics; direct parameter recoverability, properties

of the system transfer function, properties of output distinguishabil-

ity, and uniqueness properties of a quadratic cost functional.

Stochastic parameter identifiability is defined in terms of the

existence of an estimation sequence for the unknown parameters which is

consistent in probability. Stochastic parameter identifiability
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properties are presented based on the following characteristics:

convergence properties of the maximum likelihood estimate, properties

of the joint probability density functions of the observations, and

properties of the information matrix.

Specific parameter identifiability properties for a number of

specific systems and classes of systems are presented as theorems and

examples.
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1. INTRODUCTION

I
a

	

	The problem of system identification has recently become one of

the more intensively studied and active fields of engineering and ap-

plied mathematics research. The final objective of the system identi-

fication problem is the production of an "accurate" model, or mathe-

matical representation, to facilitate the study, understanding and,

ultimately, the implementation, modification or improvement of a given

system. The lack of such adequate system models is perhaps the great-

est limiting obstacle preventing the application of powerful techniques

of modern control, estimation, and filtering thecry to such diverse

areas as biological and human systems, ecological systems, socio-

economic systems, and many other complex and multifaceted fields of

!7
endeavor not previously associated with exact, mathematical analysis.

The system identification problem is generally considered to con-

sist of three phases. In the first, or modeling phase, the basic mathe-

matical structure of the system is determined. In determining this

structure, varying degrees of a priori knowledge of the system may

exist. As a minimum, the system observables (input and output variables)

must be identified. Data records of these observables must be avail-

able or must be obtainable through measurement experiments. If these

data records constitute the total a priori knowledge of the system,

the analyst is faced with the "total ignorance" or "black box" system

identification problem [2).

More common, h haver, is the "grey box" identification problem in

which considerable knowledge of the system variables and internal
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structural properties is known. In this case, the form of the describ-

ing mathematical equations is known or may be readily deduced from the

available defining, physical theory. Only this more common "grey box"

identification problem will be considered in the following. The struc-

ture or form of the mathematical equations defining the system under
•	 s

consideration will be considered to be known.

Having determined the form of the defining system equations, it is

then necessary to determine values for the unknown equation coefficients

by an analysis of the available input and output data records.' The 	 i

determination of these system parameters is the second phase of the

system identification problem. Parameter estimation problems have

been extensively investigated in the past, yielding well known results

in such areas as least-squares analysis and curve fitting. Inherent

to the parameter estimation problem, however, is the preliminary Ties-

tion of whether the system parameters can indeed be found under the

given conditions and with the data available. That is, for the system

as defined, are the system parameters mathematically identifiable? It

is to this question of system parameter identifiability that this paper

is addressed.

The final step in the system identification problem is that of

model verification. In this step, a final judgment is made of the

model's ability to describe adequately the given system in terms of the

r
objectives of the study. Such objectives might include the design of

a control strategy for the system, the accurate simulation of the sys-

tem, or the accurate prediction of the system response to varied inputs. 	 f
i

`i	 ^
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Obviously, the question of parametev identifiability is critical

to the generation of a parameter estimation algorithm. if the para-

meters are not mathematically identifiable, it is senseless, at bast,

to attempt the generation of such an algorithm. At worst, the imple-

mentation of an estimation algorithm may generate spurious parameter

values which may well lead to incorrect conclusions about the system

properties.

The question of parameter identifiability may also have a direct

bearing on the other two phases of the parameter identification problem.

An understanding of,the parameter identifiability properties of a given

class of systems may guide the investigator in selecting an appropriate

system model. Obviously, a model in which the system parameters are

not identifiable must be rejected. If the form of the system is Wall

defined by its physical properties, a knowledge of the parameter iden-

tifiability properties of that particular class of systems may lead to

the proper choice of input signals or to the design of a proper output

measurement scheme to insure system parameter ident!:lability. In like

manner, the evaluation of the adequacy of the system model in terms of

the ultimate investigation objectives must be considered in light of

the limitations imposed by the parameter identifiability requirements.

,f

.

t
i



PRECEDM PAGE BLANK NOT MMMn

s

2. BASIC CONCEPTS
	

N

In its broadest sense, parameter identifiability may be considered

as the mathematical assurance of the capability of determining unique

.values for the unknown parameters of a 4ystem from some set of input

and output data records. That such assurance can not always be readily

established is evident in the following simple examples.

Example 2.1. Consider the simple linear system described by the equa-

tions

x - ax + bu	 (1)

y - cx	 (2)

where the output y, the system state x, and the input u are each

scalar-valued. The system parameters a, b, and c are to be determined

from some set of input and output data. If the initial state of the

system is assumed to be zero, the system input-output relation can be

immediately written in the familiar form

t
y(t) - be j exp(a(t-T)Ju(T)dT. 	 (3)

0

The system parameters b and c appear only as the product be and i:hus

can not be separated and determined uniquely from the input-output

measurements alone. Any parameter pair (b,c) which satisfies the

relationship

be - constant - k	 (4)

will produce identical input-output records. If an attempt is made to
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determine the values of b and.c using a parameter estimation scheme of

the small variations type,.such as the Newton or Gauss-Newton methods,

E	
the non-unique values generated by such a sequence, if indeed the Para-

;	 meter estimation sequence converges at all,  will usually be dependent

upon the values assumed for the parameters at the first iteration. To

obtain a uniquely described system, it is necessary to specify either

b or c or to establish a defining relationship between the two para-

meters. These properties are demonstrated in Figure 1.

Example 2.2. [3] Figure 2 shows a two-compartment model in which the

concentrations of compartments 1 and 2 are designated x 1 and x2 , res-

pectively, and the input and rate coefficients are designated as u and

al , a2 , a3 , and a4 , respectively. Such a model may be used to represent

c

b----0 b

1

(1 INITIAL PARAMETER ESTIMATE

NUMBER 1

INITIAL PARAMETER ESTIMATE

NUMBER 2

Figure 1. Parameter relationships for Example 2.1.

I

i
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Figure 2. A two-compartment model.

the simplified oxygen transport characteristics of a pulmonary/cardio-

vascular system in which the pulmonary subsystem is represented by

compartment 1 and the cardiovascular subsystem is represented by com-

partment 2. The oxygen levels or concentrations of the respective

subsystems are denoted by x1 and x2 , and the oxygen transport coeffi-

cients by al , a2 , a3 , and a4.

For a given oxygen input, u, the two-compartment modal may be

analyzed by monitoring the concentrations of either one or both of the

compartments. If only the concentration of compartment 1 is monitored

(i.e., 
X  

is the single output of the system), the equations describing

the system may be written as

x1 •(al + a2)xl + a 
3 
x 2 + u	 (5)

x2	 a2x1 • (a3 + a4) x2	 (6)

y ' xl	(7)

It is desired to determine the rate coefficients, or system para-

meters a1 , a2 , a3 and a4 , from a set of input and output data. Assuming

I	 .	 '
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the system has achieved steady state, the input data is directly related

to the output data by the system transfer function which can be found to

be

a + a +a
G(s)	

3	 4	
(8)

s +s(al+a2fa3+a4)+ (al +a2)(a3+a4)-a2a3

It is obvious that G(s) will yield the same input-output relationship

far any parameter combination for which
i

a3 + a4 = constant = c l	(9)	 i

al + a2 + a3 + a4 = constant - c 2	(10)

and

(al + a2)(a3 + a4) - a2 a3 = constant = c 3 •	 (11)

As Eqs. (9), (10), and (11) constitute an underdetermined set of three

equations in four unknowns, the system parameters can not be uniquely

determined from aay given set of input and output data. To uniquely

describe the system, either the value of one of the system parameters

must be specified or a defining relationship among the four system para-

meters must be specified.

It is desirable that the system property , of parameter identifi-

ability be defined independently of the method used to estimate para-

meter values. Parameter identifiability is considered to be a property

of the system itself. It is thererore necessary to explicitly define

what is meant by a system or, more exactly, the mathematical represen-

tation of a system and to enumerate the basic properties of such a
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system (12]. In consonance with commonly accepted practice, the mathe-

matical representation of the system is itself referred to as the

system in the sequel. A general system is represented schematically by

Figure 3 :aid mathwnatically by Eq. (12).

4

W

V

f	 '
U	 (x9^	 F.	 Y

Figure 3. A general system.

y - (k, a, u, w) + `	 (12)

The quantities u, Y, x, and a are the input, output, state, and

parameters of the system, and w and v are noise processes. The system

inputs and outputs and, indirectly, the noise processes are functions

of tine, t, normally defined on ;O,W ) for the continuous case and on

{kTj ksl
+
1, I+ being the non-negative integers, for the discrete case.

To encompass these two possibilities, the domain of the system inputs

•

	

	 and outputs is designated as T where T C R * and R+ is the set of non-

negative real numbers The system parameters, i, are specifically time-

independent; that is, they are constant.

The following sets and properties per tain to the system described

by Eq. ;12):

U is the space of allowable input functions. An element u( • ) of U

is called d system input and, for any time U1. u(t) is called the
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a

value of the input u at time t. The input, u, is of dimension r; speci-

fically, u(t)eRr , where Rr is the space of ordered r-tuples over the

field of real numbers.

V is the space of output functions. An element of y is desig-

nated as .(-) and is called a system output. For any given time teT,

y(t) is called the value of the output y at time t. The dimension of

the output y is m, and y(t)eR°f.

X is the system state space for which an element xeX is known as

a system state. X is n-dimensional and, in particular, X G R n. For any

ci.me teT, x(t)eX is called the system state at time t. In particular,

x(0) is the initial state of the system and is designated x(0) = 4.

The initial state of the system may be stated more generally as x(t0)

for an arbitrary initial time t0 . It should be noted that xOeX and

is therefore also n-dimensional, i.e., x_Oee.

Q is the space of allowable system parameters, and an element of

it is designated as 6 and is called a system parameter. At this point

it should be noted that in generating properties of the general system

or in manipulating system elements in generating parameter identifi-

ability properties of the general system, arbitrary norms, designated

by 11-11, may be defined on the subject spaces as required. 41 is a com-

pact subset of Rp , and hence, 6eRp is p-dimensional. Arbitrary norms

upon Rp and Rn may be considered to have been defined as required by

the compactness property. Limited parameter identifiability results

have been generated for more general parameter spaces. However,

restricting Q to be a subset of R p is not limiting for systems that

model physically realizable processes, and parameter identifiability

in generalized parameter spaces will not be considered.

a

. s

w
i
1
i
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w and _v are generally additive, white, Gaussian noise processes

affecting the system plant or state and the system output, respectively.

The output noise process is specifically limited to being additive In

nature while the plant noise process may be other than strictly additive

in nature. Though not generally the case, either process may exhibit

properties other than those of white, Gaussian noise. Each process

may be correlated or statistically independent, the latter being far

more common.

A fundamental property of any given system in which the noise

processes have been excluded is that, for any given initial time t0eT,

for any given initial state 4, for any given parameter San, and for

any given input u(-) gu defined on some interval [t 0 ,t], both the

resulting state x(t) and resulting output y(t) at some later time t

are uniquely determined.

A minimal system or minimal realization is defined to be such

that the dimension of the system state space X is less than or equal

to that for any other equivalent system. Equivalent systems are de-

fined to be those which generate identical outputs for any given input

ugU.

A rich diversity of systems and options are encompassed by Eq. (12)

and Figure 3. The system itself may be linear or nonlinear with re-

spect to its state, discrete- or continuous - time, single -input single-

output (SISO) or multiple -input multiple-output (MIMO). The form in

which the parameters and state variables appear, the parameterization,

rr

I

i	 ^

may be canonical or noncanonical. The importance of a particular given

parameterization is readily apparent by comparing the following Example
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2.3 with Example 3.5 which involve two seemingly equivalent parameteri-

zations of a linear, single-input single-output, second-order system.

Example 2.3. Consider the linear, SISO, second -order system character-

ized by the transfer function

al

R(s) _ (s - a2 ) (s - a3)	 (13)

with the corresponding state space formulation

xl = a 
3 
x 1 + x2	 (14)

x2 = a2x2 + a 
1 
u	 (15)

Y 
= X1 .
	 (16)

The parameter to be determined is A = [al , a2 , a3 1 T which is contained

in the parameter space A = R3.

The system may be written in an equivalent state space form as

x = A(e)x + b (e)u	 (17)

Y = cTx	 (18)

where the parameterized, constant, system matrices are

a3	 1	 0	 11

0	 a2	 al	 0

To show that the given parameterization is not unique, and hence

not identifiable in Q = R3 , it is sufficient to show that there exists

an invertible matrix P which creates an equivalently parameterized sys-

tem through the similarity transormation

t^

I
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P A P-1 = A*	(20)
	 1

P b b*	(21)

c P-1 = c*	(22)

where the matrices A* , b* , and c* define the equivalent system,

Consider the matrix

1	 0

P =

	

	 (23)
a3-a2 1

which yields its inverse

1	 0
P

a2-a3 1

Then

A*=PAP-1=
	 1	 0 a3 1	 1	 0

a3-a2	 1	 0	 a2 a2-a3	1

a2 L

r
	 # A	 (25)

0	 a3

L	 0 0	 0
b* = P b	 _	 b	 (26)

a3-a2 1 al	a1
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a

l

1

1	 0

c* = c P -1	 [1	 01	 _ [1	 01 = c	 (27)

a2-a3 1

Note that the two parameterizations are identical except in the A	 I '

and A matrices which indicate that the parameters a2 and a3 are not

uniquely identifiable. The parameterization characterized by the two

triples (al , a2 , a3) and (al , a3 , a2) are indistinguishable, their only

difference being the basis coordination of their respective state

spaces #

In a system identification problem, the unknown quantities to be

determined may include the system parameters e, the initial state x0,

the covariance matrices of the plant noise process and output noise

process, or any combination of these quantities. While it is often

desired to determine k from the system input-output data, a sizable
body of results has been produced for systems operating in steady state

in which the initial states are therefore unimportant and may be assumed

to have been zero, or for systems actually having a zero, or otherwise

known, initial state. Such results lead to the concept of zero-state

parameter identifiability.

Consideration must also be given to the system input and its effect

upon parameter identifiability. The input may be absent, present but

unspecified, or present and designed to enhance the parameter identifi-

ability properties of the system under study. Two commonly specified

inputs are Gaussian white noise and the unit impulse, the latter being
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particularly attractive for linear, SISO systems as the impulse response

defines the internal characteristics of such systems. While the char-

,	 acteristics of inputs ar:: usually specified to enhance the convergence

properties of parameter estimation schemes as opposed to the actual
d

parameter identifiability properties of the system, the presence or

absence of some input is often critical to system parameter identifi-

ability properties as seen in the following example.

Examj2lc• 2.4. Consider the unity feedback system of Figure 4.

Figure 4. A unity feedback system.

The closed loop transfer function is readily found to be

H(s) = 2	
al	

2	
al	

(28)
s + a 

2 
s + (al + a3) s + a2s + a4

It will be explicitly demonstrated in Example 3.5 that the parameteri-

zation of a system characterized by the given transfer function is

identifiable and that the parameter values a l , a2 , and a4 can be deter-
;

mined. Since a3 - a4 - al , the parameter values a l , a2 , and a3 are

also identifiable.

i
However, if the input is set identically to zero, u - 0, the

following defining differential equation results

d*
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Y + a2 + (al + a3)y - 0.	 (29)

Obviously, any parameter pair (a l , a3) such that

al + a3 = constant = k 	 (30)

yields an equivalent equation, and (a l , a3) is not uniquely identifi-

able in the absence of a system input.

While parameter identifiability is considered to be a system

property and is therefore independent of the actual parameter values

or the parameter estimation scheme used to recover these values, there

exist derivative definitions based on the assumption of the existence

of a scheme to generate a sequence of parameter estimates, which

converges to the true parameter value. As these algorithms are

usually of the small variations type, it is sufficient to consider

parameter identifiability in terms of the uniqueness of the input/

output relationship generated by the true set of parameters as com-

pared to all other parameters within some neighborhood of the true

parameters. If this uniqueness property holds for all parameter space,

the system is considered to possess global parameter identifiability.

However, if this uniqueness property holds only within some limited

neighborhood of the true parameter value, the system is said to possess

local parameter identifiability within the defined neighborhood. Con-

sequently, consideration must be given to determining this neighborhood,

or region of parameter identifiability, in which a given parameter

value is unique. Initiation of a parameter estimation sequence within

i
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the region of parameter identifiability will ensure that the estimation 	 ^1

sequence will converge to the true parameter values.

Example 2.5. The system of Example 2.3 was found to be not identifia-

ble as the two parameterizations characterized by the ordered triples

(a l , a2 , a3) and (a 1 , a 3 , a2) were indistinguishable. If for a speci-

fic input-output data record the following parameter values hold

(a1 2 a2 , a3 ) _ (k1 , k2 , k3)
	

(31)

and

( a1 , a2 , a3)	 (kl , k3 , k2),	 (32)

then the partial (two-dimensional) parameter space, fl of Figure 5

can be drawn.

a3

Figure 5. Partial parameter space, Sl".
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If the partial parameter space is partitioned into QL and Q2 as
shown, the system is locally ide nttfiable in each of the two resulting i

-regions. Determining the respective regions of parameter identifiability,

designated in Figure 5 as S((k2 , k3 );p l] and S[(k3 , k2 );p2] for a parti-

cular parameter estimation scheme, is a companion problem to the pare-

meter identifiability problem (see (131).

Consideration of the uniqueness properties of a given parameteri-

zation within a neighborhood of the tr•ie parameter value leads to the

concept of parameter distinguishability, the property within the given

local neighborhood by which the true parameter values can be isolated

or distinquished from all other possible values in that neighborhood.

This distinguishability property may be based upon different character-

istics of the system under consideration, such as the ability of the

true parameter value to generate a unique transfer function, a unique

output, or a unique cost function for some parameter estimation scheme.

This distinguishability property can then be related directly to the

parameter identifiability property of the system.

Perhaps most significant in the development of parameter identifi-

ability properties of systems is the dichotomy of definitions and

methodology required by the consideration of determinis'4., ic or noise

free systems versus stochastic or noisy systems. For this reason,

each is considered as a major category with all othrsr subcategories,

as discussed above, developed under each.

It is generally desirable to develop parameter identifiability

properties for an entire class of systems rather than approach each

system separately. However, due to the large number of classes and
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options described by figure 3 and Sq. (12), a compact, comprehensive

treatment of the parameter identifiability question has not been accom-

plished to date. Instead, parameter identifiability definitions and

developments have treated scattered, specific classes of systems, each

seemingly with its own not of definitions and properties. It is the

intent of this paper to consolidate these efforts into a unified and

comprehensive overview. Therefore, basic definitions and approaches

to the general spectrum of parameter identifiability problems are con-

sidered with the specific results for given classes of systems presented

as examples of the basic philosophies. A chart is presented in Appendix

A which relates the characteristics of the covered system classes to

the applicable theorems.
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3. DETERNINISTIC PARAMETER IDENTIFIABILM

3.1 Concepts and Definitions

One of the two basic categories of systems in the study of par&-

meter identifiability is that in which the noise processes w and v_ of

Eq. (2) are absent. The general deterministic system is then defined

as shown in Figure 6 as

Y - 1(!0' a, u)	 (33)

where the definitions of the variables, arguments, and corresponding

spaces remain the same as given in Section 2.

U 	 (x0,8)	 Y

Figure 6. A general daterministic system.

For the given general deterministic system, the following general

definitions ure proposed:

Definition 3.1, A system is said to be Deterministically identifiable

`	 if, for some ucu, the mapping f( • , • , u).X <..-+y is is ective.

Definition 3.2. A system is said to be Locally Deterministically Id enti-

fiable at (xC , ZU) if ::here exists an open sphere S(x0 , mss„) of

i
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radius p > 0 centered at (x0 , 90 ) such that, for some us U, the

restriction of the mapping f (•, • , 1): X x w- V to S(x 0, q;p)

is infective.

Definition 3.3. A system is said to be Uro State Deterministically

Iden_t_if_iablle, if, for some us (/, the mapping f (0, • , u): X x ,4-. y is

infective.

Definition 3.4. A system is said to be Locally Zero State Determinis -

tically Identifiable at (0, 
60) 

if there exists an open sphere

S(0, 9o;p) of radio; p -> 0 centered at (0, 10 ) such that, for

some _eia, the restriction of the mapping f(0,•, u):X xii 	 to

S(0, 60 ;p) is injective.

It should be recalled that f, a function from X into Y, is said

to be infective if for every x l ,	 cX, then f(xl ) af(x2 ) implies that

xl - x2 . Equivalently, in terms of an arbitrary norm 11 . 11 defined on X

and Y, f is said to be infective if for every xl , x2cX, then 1`f(x l ) -

f ( 2 ) Il = 0 implies that 1111 - 4211 = 0 or xl = 12.

It will be shown in the following that Definitions 3.1 through

3.4 may be considered as the basic, encompassing definitions for deter-

ministic parameter identifiability and that other definitions previous-

ly proposed by other authors may be derived from, and hence are equiva-

lent to, these basic definitions.

•
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3.2 Deterministic Parameter Identifiability„ from
Direct  Parameter Recoverability

The infectivity of f, as required by the basic definitions of

deterministic parameter identifiability given in Section 3.1, directly

implios the invcrtability of f and hence the direct recoverability of

v.:?.,L:s for _n0 and xk . Using such an approach Staley and Yue (201 have

developed the deterministic identifiability properties for a class of

linear, constant-coefficient, stable, single-input single-output, dis-

crete-tine: systems as described by the scalar difference equation

nr
xj
 ' i-lixj_i 

+iL b iuj _ i ,	 j - 1. 2 , ..., L	 (34)

where the parameters a  and b  are unknown constants with Iai I< s , 1s iA n.

and I b j<®, 1 s i s r. Although  th is system has a very particular s truc-

ture, it represents a rather large class of realistic problrms. In

particular, it may also represent the discretized version or linear,

constant-coefficient, stable, SISO, continuous-time systems.

The system of Eq. (34) may be stated in an equivalent input-stata-

output representation as

z(j + 1) - A z(j) + b u j ,	 z(0) - so	 (35)

xj - hT_(j)	 (36)

i
i
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where

al	 1 0 0	 0

a2 	0 1 0	 0

A (n x n);

an l 0	
0	 0.... 1

b l	 1

b2	 0

Ss	 : (rx 1); h	 (nx 1).

b	 0r

Staley and Yue ( 201 have proposed the following definition of

identifiability for the given system which is readily seen to be a

direct consequence of, and equivalent to, Definition 3.1.

Definition 3.5 f20 . The system parameter 8	 a	 T^..^^^.1.	 Y	 P	 _ ( I , .... a^ . b I , ... , b t l

and the initial state io are said to be Identifiable in the Deter-

ministic Sense,DDS, if d and 10 are uniquely determined from the

observed input and output sequences {u j ; and jxj ), 0 s j s L -1,

for some finite integer L.

The unknown parameter vector d and the initial state 4 may be

expressed in terms of the input and output sequences using Toeplitz

matrices as

i

^a+^.	 (37)



where

2.5

NI
t^ _ 1 110 8 ul , ..., UL-11 T ' (L X 1);

_ [ x0 , xl , ... , '.-11 T ' (L`: 1) ;

I^xn
EjL = -- --	 (Lx n);

_L-n,n

and

'Sk , §Zk	
'S U ...	 L x (n + r)

SL is the LxL shift matrix defined such that S.ZL (i,j)	
6i,j+1'

If z0 is known, such as when the system has an initial zero state,

then Eq. (37) and Definition 3.5 together imply the following properties

for Identifiability in the Deterministic Sense (IDS):

Property 1. 6 is identifiable, IDS, if and only if the matrix kk is

positive definite (or equivalently, k has rank n + r) such that
6 (^k)	 , is uniquely determined. Note: zo = 0.

Property 2. 8 is identifiable, IDS, only if L a a + r.

Prope rt_ y 3. 6 is identifiable, IDS, for all L > L0 if it is identifi-

able for L = L0.

By applying these three properties, the following theorems may be

derived describing the identifiability properties of the class of

systems described by Eqs. (34) or (35) and (36).

..

I .
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Theorem 3.1 1201

In the autonomous version of the system described by Eq. (34)

(i.e., b  a 0 or u  a 0, all i), 8 = [a l , ..., an) T. is identifiable,

IDS, if and only if (A,zo) is a completely controllable pair. Further,

8 is identifiable, IDS, if and only if it is identifiable in 2n steps;

i.e., L - 2n.

In light of the universal Definition 3.3 for zero state determin-

istic parameter identifiability, it is proposed that the above theorem

be modified to assert that 9 is simply "Zero State Deterministically

Parameter Identifiable" as opposed to "identifiable, IDS".

It should be noted, in particular, that the initial state is

assumed known, that the parameter vector 6 is limited to values of ai,

1 s i s n, and that the input u  2 0, all i or b  = 0, all i. It may

be recalled that the pair (A,zo) is completely controllable if and only

if the controllability matrix has rank n,

rank[ z0 , A 43 A2 0 , ..., A
L-n-1

Z0 1 = n.	 (38)

Example 3.1 1201. While it is easily shown that the initial state 10

= (0, 0, ..., 11 T always yields an identifiable system, consider the

second-order system described by

x - (c+d)x l + cdx -2 = 0
	

(39)

with an initial state a-0 - [1 - d1 T : For this case,

rc+d 1

A
	

Icd	 0
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and (A,zO) is not a controllable pair. The vector :O is an eigeovector
	

N
of A corresponding to the eigenvalue c. The state transition is cone,

fined to a proper subapace of Bn which is invariant under A, and no

information about d, the other eigenvalue of A, is contained in the

output.

For a non-autonomous, zero-state system the following theorem ap-

plies. A similar modification of the terminology "identifiable, IDS"

is proposed to achieve conformity with Definition 3.3.

Theorem 3.2 [20]

If the system of Eq. (34) is stable and z-0 - 0, then the parameter

vector A - [al ,	 an, b l ..., b r] T is identifiable, IDS, from the

input and output sequences 
I 
u il a 

I 
xj j, 0 s j s L - 1, if and only if

(0) L a n + r,

(i) b  are not all zero,

n
(ii) the polynomials A(z) - 1 -jll a j z3 and

M
B(z) - j;1bjzj do not have a common factor, and

(iii) u  is not identically zero for 0 s j A L - n - r.

When z-0 is unknown, Theorem 3.2 can be generalized by the following

modifications:

T

ET	
[	 -EL], (2n + r) x (2n + r)

=L

e 	 [eT, ?T] .

The generalized result becomes:
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I

I

Theorem 3.3 [20]

If the system of Eq. (34) is stable, then the parameter vector 6

and the initial state z-0 are identifiable, IDS, from the input and out-

put sequences } u j }, } x j }, 0 s j s L - 1, if and only if

(0) L 2 2n + r,

(i) b  are not all zero,

(ii) A(z) and B(z), as defined in Theorem 3.2, do not have a
i

common factor, and

i
(iii) the (2n + r) x (2n + r) matrix

i
-ET -	 111L. ^)

is positive definite where EL remains as defined previously and

A change of terminology may also be made in Theorem 3.3 to conform

with Definition 3.1.

It may be noted that if b  a 0, all i, Theorem 3.1 applies. The

proof of Theorem 3.1 is presented in Appendix B. Theorems 3.2 and 3.3

are given without proof ( see [201).

3.3 Deterministic Parameter Identifiability
from the Transfer Function

The injectivity of f required by the basic definitions of . determin-

istic parameter identifiability may also be interpreted as requiring a

R

. -a
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unique relationship between the system input and output; that is, an

injective mapping from G into V. Such a mapping is determined for two

large classes of deterministic, linear, constant coefficient systems

by their transfer functions. These two classes of systems may be de-

fined for the continuous-time and discrete-time cases respectively by

p
	 x(t,^ = A& x (t,D + B(D u (t)	 (40)

f	 y(t,6) = C(6) x (t,b + D(A) u (t)	 (41)

and
S 	 '

1

x(k + 1,ft) A(8) x (k,6) + B(ft) u (k)	 (42)

y(k 38) = C(6) x (k,§) + D(8) u (k)	 (43)

where x (•,.j)eRn, y( • ,^eRm, u( • )sIJ and u( • )6Rr, 6sQ CRp , and A(6), 1(6),

C(^, and D(6 are appropriately dimensioned constant matrices para-

meterized by 6. For their respective transfer functions, H(s,§) and

H(z,q), the systems must be operating in the steady state mode in order

to relate the system input u(•) to the system output y(•,^. Hence, no

information concerning the initial state x4 is available from the input-

output data records. The systems may thus be considered to have a known

initial state which may be taken without loss of generality as x-0 = 0.

The methodology employed and the results achieved are identical for

both systems, except that the Z Transform is employed for discrete-

time systems and the Laplace Transform is employed for continuous-time

systems. Therefore, only the continuous-time system of Eqs. (40) and

(41) will be considered in the following.
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The given system may now be investigated for properties of Zero

State Deterministic Parameter Identifiability, as required by Defini-

tion 3.3 and 3.4. For a given uau, the system output may be written

in the frequency domain as

Y(s,j) _ {C(6)[sI - A (9)J -1 Bc8) + D (e)I U(s,6)

= H(s,8) U (3,6)
	

(44)

It is seen that H(s,q) must be (locally) infective (equivalently,

unique) as a function of 6. Equivalently, from the definition of in-

jectivity, for every 6 1 , 62eQ, then H(s,6 1) = H(s,82) implies that

61 62 . That H( s,8) must be (locally) infective is evident from the

uniqueness of the Laplace Transform / Inverse Laplace Transform pair and

from the fact that

;e-1^H(s,6) = f10, 6, 8( t)]
	

(45)

where Z-1 is the Inverse Laplace Transform operator and 8(t) is the

vector impulse function which generates the impulse response matrix.

It should be noted that the vector impulse function 8(t) implies that

an impulsive input is applied to each of the m input ports in sequence

and that the resulting outputs each form a column of the impulse res-

sponse matrix. Thus, these two particular classes of systems may be

considered to require an impulsive input for the determination of para-

meter identifiability properties and are so designated in the chart of

system characteristics in Appendix A.
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k
As implied in the sentence following Eq. (44), the simplest level

of analysis may involve the direct inspection of B(s,A) to determine

•

	

	 its uniqueness as a function of e. Such an analysis was conducted in

Examples 2.2 and 2.3.

Glover and. Willems [31, using the general concepts above, have

produced for the two classes of systems under consideration a set of

definitions and results. However, it will be readily seen that their

definitions and results are a direct consequence of, and thus egsiva-

lent to, the basic definitions given in Section 3.1. Although the

actual definitions and results of Glover and Willems [ 391 are repro-

duced below for comparison, the obvious changes to produce conformity

with the definitions of Section 3.1 are recommended.

Definition 3.6a [9]. The linear, dynamic system characterized by Eqs.

(40) and (41) is said to be locally identifiable from the transfer
function at the point 8-00Go if there exists a p > 0 such that

t l) II e l - _ed 11 < p s 11 ez - soli < o; e l , e22en	 (46)

and

(2) C(6 l) [Is - A(6 1 )] -1 B(61) + D(81)

x(82) [Is • _A(_e2)1 1 B(82) + _(d2)	 -	 (47)

together imply al - 62 , for all scC and s # ^ X[A(^)1 , 10(81 ) 1 } where

l(•) denotes the eigenvalues of the respective matrix, C is the field

of complex numbers, and 11 . 11 is an arbitrary norm. In consonance with

the concept above, Definition 3.6a equivalently states that, in a



32

p-neighborhood of the true parameter 80 , there are no two systems with

distinct parameters which have the same trantfsr function.

As the system matrices (A, B, S. D)(6) are normally continuously

differentiable with respect to 6, the transfer function is meromorphic at

Z-0 
and Eq. (47) may be expanded in a power series to yield an equiva-

tent definition.

Definition 3.6b [9]. The linear, dynamical system characterized by

Eqs. (40) and (41) is said to be locally identifiable from the

transfer function at the point 
a 

if there is an open sphere

S(0,,6e ;p) Cj1 with radius p > 0 and centered at (0, A ) such that

(1) 9eS(0,60 ;P) 	 (48)

(2) 2(8) = D(20)	 (49)

(3) C(6)Ai(A)B U = 2(A0)Ai (60)B(90),	 i = 1, 2, ... (50)

together imply P = 6

Definition 3.7. The Markov parameters for the system described by

Eqs. (40) and (41) are defined in terms of the constant system

matrices A W , 1d),  and c (6) ate

Zz 	 R = 0, 1, 2, ...	 (51)

The Markov parameter matrix for the given system is defined as
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QT (e)

[me)B(e_)JT

G^ 
n (C^A(eBUJT	 .
	 (52)

-	 [0(e)A2n-1(^$(8)JT

i

It should be noted that Definition 3.6b is equivalent to the

requirement that the mapping from the parameter space 0, or some subset

thereof, into the Markov parameters also be infective. As a direct con-

sequence of the constant rank theorem [ 171, it can be shown that for

an open sphere S(0,6,0
 
;p), centered at (O,eO) with radius p > 0, con-

tained in n and thus also an open subset of R r , then the mapping from

S(0,60;p ) Ctl into the Markov parameters is locally infective if the

rank of the Jacobian of the Markov parameter matrix equals p, the di-

mensionality of the unknown parameters,

rank(

aG L)

36 ,
	 p.	 (53)

As a direct consequence the following theorem is stated without proof

Theorem 3.4 [9)

The linear system characterized by Eqs. (40) and (41) in locally

identifiable from the transfer function at 6 0sf1 if the Jacobian of the

Markov parameter matrix G(6) has constant rank p in an open sphere

S(0,8
0
 ;p) of radius p > 0 centered at (0,80); i.e., rank [3G (§)/b 61 - p..

Employment of this theorem yields a relatively simple test for

local parameter identifiability for the given classes of linear sys-

tam . It is constructive to consider two such examples.

f
i
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EXamole 3.2. Consider the single -input single-output, continuous,

constant, second -order system characterizing the two compartment model

of figure 2 and Example 2.2

xl = -(al + a2)xl + a3x2 + u	 (54)

x2 = a 2 x 1 - ( a3 + ad x2 	(55)

y = xl .	 (56)

It is required to determine if the four unknown rate constants a l , a2,

a3 , and a4 are zero-state, deterministically identifiable. The four

	

constant, system matrices defined in Eqs. (40) and (41) for the given
	 A

systems are

-(al + a2)	 a3	 1	
fl

a2 	-(a3 + a4 )	 0

1

cL6)	 and D(6) _ X01	 (57)

0

where the unknown parameter vector 6 is defined as 8 = (al , a2 , a3 , a4J^.

The Markov parameter matrix for the second -order system (n - 2) is

found to be

D(6)	 G1(6)

c U b(e	 G2(6)

GU = c(DAUb(e)	 D3 L)

c(6)A2(6) Le)(8)

c(.t)A
3 (DbL6)	 G5 L6)	 (continued)	 (58)



aGl/aa2 aGl/aa3
ail/'&4

aG2/a a2 aG2/aa3 aG_2/aa4

aG3/aa2 aG3/aa3 aG3/aa4

694
/aa2

a24
/aa3 a24/aa4

ac
5
/aa2 a25/aa3 aG5/aa4

6G1 /be
l

aG2/aal

aG VaG/a alaaar n 3

aWaal

acs/aal

35

0

1	 (58)

_	 -(al + a2)

a2 + 2a1a2 + a2+ a2a3
-(ai + 3aia2 + 3a1a2 + a2	 + 2s,	 a2a3 + 2a2a3

+ a2a3 + a2a3a)

In order to check the local injectivity of the mapping of the

parameter space into the Markov parameters and apply the results of

Theorem 3.4, the Jacobian of the Markov parameter matrix is calcu-

lated as

0

0

-1

2a1 + 2a2

-(3a2 + 6a2 + 3a2+ 2a2a3)

(continued)	 (59)
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0

0

-1

gal+2a2+a3

1-(3a2 + 6a1a2 + 3a2 + 2a1a3 + 4a2 a
3 + a3 + a3 a4) I

	

0	 0

	

0	 j 0

	

I 0	 0	 (59)	 t

	

a2	 ( 0

I - ( 2a 1a2 + 2a2 + 2a2a3 + a 2a4 ) ^ -a2a3
	 v 

Clearly the matrix 
aa9 

is of rank 3, at most, while it must be

of rank 4 for the mapping of the parameter space, Q C R 4 , into the Markov

parameters to be locally infective. By the application of Theorem 3.4,

the system parameters are not identifiable. This prediction of non-

identifiability of the system rate coefficients was confirmed by a

direct analysis of the system transfer function in Example 2.2.

ExamQl̂ a3.3 ._ Modify the system of Figure 2 and Examples 2,2 and 3.2

such that a4 0, yielding the following linear, constant, second-order

system

^ l = -(al + a2 )x l + a 3x2 u	 (60)

xl = '2x1- '3x2	(61)

Y = xl .	 (52)
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The system matrices become

-(a1 + 42)	 a3 	1

a2 	-a3	 0

[ i l

c(d) _	 D(e) - [0]	 (63)

0

where the unknown parameter vector A to be identified now becomes e •

[ al , a2 , a3^ T . The Markov parameter "Crix is calculated as

0

1

1d •	 -(al + a2)

a2 + 2a1a2 + a2a3

-(a1 + 3a1a2 + 3a1a2 + a2 + 2a1a2a3 + 2a2a3 + a2a3J
\\	 (64)

The Jacobian of the Markov parameter matrix can than be found to be

0

0
8G L)

(2a1 + 2a2 )	
`̀_(

3&3 + 6&
1 a2

+ 3a2 + 2a2a31

N

(continued) (65)
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` 0

I 0

-1

i (2a1 + 2a2
 + &3)
	 I

-(3&2
I 
 + 6&1a2 + 3a2 + Z&

1 a3
+ 4a2

 a
3 + a2

0

i0

0	 (6S

a2

( zalaz + 2a2 + 2a2a3 )

which is clearly of rank 3 for all a, # 0. Thus, the mapping of the

s
3parameter space, OCR ,  into the Markov parameters is infective for all

a2 # 0, and, by Theorem 3.4, the modified system is locally identifiable

for all 9cR3 such that a2 0 0.

The prediction of the identifiability of the system parameters can

be confirmed by direct analysis of the system transfer function which

is found to be

a+a3
R(s) s 2	 (66)

a + s(al + a2 + a3) + ala3

Ic is readily evident that, for a given triple of constants (c 1 , c2' c3),

t an identical input/output relationship will result for my combination

}	 of parameters in which

s
a3 i cl	 (67)
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al + a2 + a3 = c2	(68)	
\ I

a1a3 = c3 .	 (69)

Since there are three equations in three unknowns, there exists a

unique solution for 9	 aq	 [ 1 s a2s a3] Tuni; is particular,

al c3/cl ,	 cl # 0	 (70)

a2 = -C. +: c2 - c
3 

/C
1
	 cl # 0	 (71)

a3 = c3	 (72)

where the specific values of the triple (c 
1. 

c2 , c3) correspond to the

specific input/output data record to be evaluated. Thus, as predicted

by the application of Theorem 3.4, the parameters of the modified sys-
	 FA

tem are indeed identifiable.

In Example 2.3, the parameter identifiability properties of a

linear system of the type characterized by Eqs. (40) and (41) were

investigated by demonstrating the existence of a similarity trans-

formation which would transform a parameterized system into an equiva-

lent system with different parameter values but with the same para-

meterization. Glover and Willems [9] formalized the concept as follows.

For the vector of true parameters 8o and the space of invertible

(nonsingular) n X n matrices PCGL(n), the solution (P,A) for the

following similarity transformation equations must be investigated:

P A (8) P-1 = A (AO)

P B (A) = 1 (60)	 (continued)	 (73)
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C(6)P-1 = _C4)

D(^ = D(60)	 (73)

It follows that the given system is (locally) identifiable from the

transfer function at A o if there exist an open sphere S(0,e o ;p) cQ

centered at (0 2 20) with radius p > 0 such that f̂ n , 80) is the unique

solution of Eq. (73) in GL(n) x S (0 2 80;p). Sufficient conditions for

such a unique solution to exist are given in the following theorem.

Theorem 3.5

Let the linear system characterized by Eqs. (40) and (41) be a

minimal realization and define

P A (6) P-1

P B (Q)

Sc(p^6)	 C(G)P-1

D(6)

If there exists an open sphere S(0, ,60 ,p) centered at (0,6 0) with

radius p > 0 such that v LP,.j)^^(P,6) has constant rank n2 + p at P = I nxn

for all 8eS(0,8e ;p), then the system is locally identifiable from the
ZO

transfer function at A0.

The matrix V ( 	 at the point (I
nxn

,  is given

by
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_1 .

-1=,OA' U - A(6)0Inxu I

7 ( IA(p,_e) UnX .8)
	

InxnOs ` UO	 I
u

-
Qie)Ox -I-axn	 I

TM=	 I

I -A t^)

I B (e_)
(74)I B (_)

I D ' CeJ

which is a (n2 + nm + rn + rm) x (n2 + p) matrix and whereOx represents

the Kronecker product [ 19] and X represents the standard Kronecker

product matrix ordering.

An application of Theorem 3.5 is given in the following example.

Example 3.4. Consider the linear, SISO, second-order system

x = A(A)x + b(Gu	 (75)

y = S X	 (76)

.

where

0 1	 0	 1

A(e) _	 b(Q) _	 31

-a3 - a 2	 a1	 0

D = [0] and 6 = [al , a2 , a3]T.
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Then

(Iain' Q)

0 -a3 0 0	 0 0 1 0	 0 0 0

1 -a2 0 0	 0 0 0 1	 1 0 0

0	 0 0 -a3 -a3 0 -a2 0	 0 0 0

0	 0 1 -a2 0 -a3 0 -a2 0 1 0

0 al 0 0	 000

0 0	 0 al 	001

-1 0	 0 0	 000

0 -1	 0 0	 000

0 0	 0 0	 0 0 0

which is of rank

is identifiable fi

0 -a3 -1	 0	 0	 0	 0

1 -a2 	 0 -1	 1	 0	 0

a3 0	 a2 -a3 0	 0	 0

0	 a3	 1	 0	 0	 1	 0

0	 a1	 0	 0	 0	 0	 0	 (77)

0	 0	 0	 al 0	 0	 1

. 1	 0	 0	 0	 0	 U	 0

0 -1	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0

:2 + 3 - 7 for all 8CR3 . By Theorem 3.5, the system

.*om the transfer function (globally, since the rank of
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p(P^e)^(P,6) 	 is 7 for all 6eR3).

Lnxn'e)

It is constructive to consider a direct method of calculating a

PeGL(n) satisfying Eq. (73).

Example 3_5. Consider the system of Example 3.4 and find a PeGL(n)

satisfying the conditions of Eq. (73). Assume that such a matrix P

exists, creating the equivalently parameterized system

A A (e x* + b* (6)u	 (78)

* = c ^`y	 x*	 (79)

where

0	 1	 0	 1

A ue _	 , b*(6) =	 c* _	 (80)
CL l a2	a3	 0

P11 P12
P	 (81)

P21 p22

From Eq. (73)

c P 	 c = c*P	 (82)

P11 P12
[ 1	 01 - (1	 01	 [P11	 P12]	 (83)

P21 P22

and

or

r
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r

which implies pl1 = 1 and p12 0.	 (84)

Again from Eq. (73)

PAP-1=A*-► PA=A*P

or

1	 0	 0	 1	 0	 1

p21 p22 -a3 _'2.	
-a 3

P22 -a2p21p22

0	 1	 ^1	 0	 P21	 P22
(85)

al a2	
p21 p22	

al - a2p21 a2p22

whicn implies p 21 = 0 and p22 = 1. Therefore,

F1	 0

I =	 ,	 (86)

0	 1

the identity matrix, thus establishing the uniqueness of the parameteri-

zation of the system and confirming the results of Example 3.4.

It should be noted that the state space formulation of Eqs. (75)

and (76) yield the transfer function

H(s) = 2	
a1	 (87)

s + a 
2 
s + a3

which appears essentially equivalent to that of Example 2.3. However,

the system of Example 2.3 was found to be not identifiable, demonstrat-

ing the importance of a given parameterization to the parameter identi-

fiability properties of a particular system.

E
E

t
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.

3.4. Deterministic Parameter Identifiability
from Output Distinguishability

In Section 3.3, the infectivity of f expressed in the basic defi-

nitions of deterministic parameter identifiability was interpreted as

requiring an injective map from the system input function space U into

the system output function space y as delineated by a system transfer

function in terms of the parameters 6. A very similar method is to

analyze directly the system output properties in terms of their infec-

tivity properties with respect to the parameters 6 as opposed to ana-

lyzing the system transfer function which generates the system output

for several classes of systems. By analyzing the output directly

rather than limiting the analysis to the output-generating transfer

function, a large set of system classes may be considered.

The infectivity of f requires, by definition, for any given us U

and 6 1 , 9 01, that Y(•,6 1) ^r(.,a2) implies 6 1 62 . This may be inter-

preted as requiring that two outputs of the given system, corresponding

to two different parameters 6l and 6 2 , a l # 6 2 but with a common input

us U, must be different or distinguishable from each other for all 61

and 62 in C1, the parameter space for which the system is deterministi-

cally parameter identifiable.

Grewal et al. [ 10] , [ llj and [ 12] have developed a set of defini-

tions and results based on the distinguishability properties of the

system output. However, as before and as indicated above, it will

readily be seen that their definitions and results can be considered

as a direct consequence of, and therefore equivalent to, the basic

definitions of deterministic parameter identif iability in Section 3.1.

N

r7
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As in previous sections, GrewA ; s definitions and results are recon-

structed in the following for the purpose of comparison and, as previ-

ously, the obvious changes are recommended to establish conformity

with the definitions of Section 3.1.

Grewal expanded the general deterministic system of Eq. (33) as

follows:

X( t ,e) = gtx( t ,e), u( t), t ,e_];	 x(to) = xo
	 (88)

Y(t,e) = h[x( t ,e), u( t), t,e]	 (84)

where x(t,P)eRn ; y(t,j)6e; u(t)eU; @sOCRp ; tee; &:e x U x A x e -

Rn ; h: Rn x U x O x R
+ - 

Rm . The function g is Lipschitz in x, continuous

in u, and piecewise continuous in t; h is continuous in x and u and

piecewise continuous in t. An equivalent formulation may be made for

discrete-time systems.

For parameter identifiability based on the distinguishability of

the system output, the problem remains that of ascertaining whether or

not the parameter values can be uniquely determined from a knowledge

of the system input and output. In terms of a specific initial state,

and a specific input, u( • )eU, the output of the general system may

be denoted as

y(t,e) = H 1x0 , u(•),t,e].	 (90)

A single experiment may be defined in terms of a specified initial

condition and input pair, [30 , u(•)], and the resulting output H 142

u(•),t,A]. The collection of all such allowable pairs is denoted̀  by

t
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e - 1[10 , u_( • ] gjoee, _(•)eu	 (91)

r

where U is the space of piecewise continuous functions.

Having established the required background, the following defini-

tions may be stated.

Definition 3.8 [10]. The pair of parameter values (91 , 82), 81tQ, 62CO,

is said to be indistinguishable if Hrx Q , :,(•), t,6,1 $ H[10' u(.),

t,6 for all 
^x0, 

u(•)lce and 0 s t s T. Otherwise, the pair

(81 , 82) is said to be distinguishable.

!	 Defining S(xO,B;p) as an open neighborhood centered at (jo ,8) with

t
a radius p > 0, the definition of (local) parameter identifiability

i
may be stated.

Definition 3.9 [10]. A parameter set Q is identifiable at 6O if the

pair (80 , j) is distinguishable for all BcQ, 8 # 10 . Further, a

parameter set Q is said to be locally identifiable if there exists

a p > 0 such that the pair ( 80 , 8) is distinguishable for all

6CS(40 ,8;P), 6 # 6,0.

It should be noted that the definition of identifiability is inde-

pendent of whatever method might be used to extract the unknown para-

meter values from the input/output observation data. Further, although

the class a of experiments is infinite, a finite number of experiments

can be designed to distinguish between two systems, e.g., a zero initial

state, impulse, or step response.

The concept of parameter identifiability based on output distin-

guishability can be readily applied to linear, constant, dynamic systems
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k

i

r

1
t

R	 I

i

such as those represented by the , parameterized differential equations:

x(t,.k) = A(6)x(t,8) + B(j)u(t),	 x(t0) = 0	 (92)

Y(t,6) = C(6)x(t,8) + D(6)u(t) 	 (93)

where x(t,e)9Rn , u(t)sRr , y(t,e)9Rm, A :f2 -+ Rnxn , B:fl- exr , C-.0— en'

and D : Q-• Rpxr . The specifications for x and u cited for Eqs. (88) and

-;89) continue to hold. It should be noted that the total number of

unknown parameters, the dimensionality of the parameter space 0, equals

the total number of elements in the matrices A, B, C and D; i.e.,

n(n + r + m) + mr = p. It should also be particularly noted that the

system is restricted to zero initial state analysis; i.e., x(t 0) = 0.

The solution to the system equations may bE readily obtained by

state transition matrix techniques. Output distinguishability of the

given linear system may then be expressed in terms of this solution as

given in the following theorem.

Theorec 3.6 f10 1

For the linear system described by Eqs. (92) and (93), the pair of

parameter values (6 l , 92), a lso, 6290, is indistinguishablestin_guish. able if and only

if

f
e	 B ( 6l)u(T )dT + D(6l)u(t)

0

f

t A(9 ) (t•T)
C(u 2 	 e	 2	 B(62)u(T)dT + D(62)u(t)

0

for all u(t)9U and for 0 s t s T.

Output distinguishability of the given linear system may also be
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expressed in terms of the system Markov parameters as presented in the

following corollary.

Corollary 3.6 [10]

For the linear system described by 8qs. (92) and (93), the pair

+	 of parameter vectors (6 l , 62), 61cQ, 62cQ, is indistinguishable if and

only if

(61) Af (el ) s (el ) s C_(e2)  f (e2 ) $ (e2 )	 f	 0. 1 0 2, ... .

I
n(61) a D(62).

f
i

For the given linear system, it is evident that indistinguish-

ability implies that the Markov parameters of the system will be

identical at different values of the system parameters, 6.

Parameter identifiability criteria for the given linear system

may now be obtained by relating Theorem 3.6 and Corollary 3.6 to Defi-

nition 3.10.

Theorem 3.7 [10]

For the linear system described by Eqs. (92) and (93), a parameter

set Q is identifiable at 
a4 

if and only if

ego

D(_e0> Q(e)	 , and

^C(eo)A`OB(d^) - C(A (^B(6)	 Z - 0, 1, I. ...

together imply 
6	

6.

o
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It should be noted that this identical result was presented as

Definition 3.6b in Section 3.3, while the result here is obtained as

a Theorem. It likewise follows that Theorem 3.7 requires that the

mapping from the parameter space Q into the Markov parameters be injec-

Live, which gives rise to the following theorem which is equivalent to

Theorem 3.4 of Section 3.3.

Theorem 3.8 (101

I

	 For the linear system described by Eqs. (92) and (93), the para-

meter set Q is identifiable'at 
a0 

if and only if the Jacobian of the

Markov parameter matrix G(6) has constant rank p in an open sphere

S(x0 ,9;p) of radius p > 0 centered at (x 0 ,^; i.e., rank[6G(9) /ae) - p.

Examples 3.2 and 3.3 pertain equally well to Theorem 3.8 as well

as to Theorem 3.4 and will not be repeated.

Distinguishability and identifiability results parallel to those

of Theorems 3.6, 3.7, and 3.8 and Corollary 3.6 may also be obtained

in the frequency domain for the linear system described by Eqs. (92)

and (93). These results are stated in terms of the system transfer

function (see Ref. 1101).

A commonly employed technique for the analysis of nonlinear sys-

tems is the linearization of the system about an equilibrium or operat-

ing point. As the identifiability of a parameter set Q has been de-

fined at and in terms of a nominal parameter value e, the use of lin-

earization techniques with this particular concept of parameter identi-

fiability seems particularly appropriate. Sufficient conditions have

been derived under which the local identifiability of the parameters of

e
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a linearized system Will imply local identif lability of the original

nonlinear system.

Consider the general system described by Eqs. (88) and (89) with

the assumptions and restrictions as given. Let

j	 x(td) . xe (to ) + U(t,6)	 (94)

I

t	 Y(t-D ` 1e ( t ,1) + 61( t ,e)	 (95)

and

6 80 + 66	 (96)

P	 where xe (t,6), ye ( t,a), and-
10
	 equilibrium or operating point

t

values of the system state, system output, and system parameters, re-

spectively, and 6x(t,2), 6y.(t,j), and 66 are perturbations on xe(t,b,

and 10 , respectively. Equations (88) and (89) may now be

rewritten as

x(t,^ ''& (t,6e + 66), u(t), t, e + 66,, I(to) • xp (97)

1(4) h ,!(t,o + 6e) u(t), to 6^ + ail	 (98)

With-x+a gtxe , u(t), t,6Ql, Eqs. (97) and (98) become

61) -	 as(t,*61) + ^A 66

e ► u(t)9t•-60	 ae Ijs'!Yt)'tJ'0

+ e l ;:_, a - t?	 bx(toojo'61) - 0	 (99)



xe,u(t),t,e-0
ah

c(t,eo) ` 
aX

n(t,eO) oh

XC'u(t)'t'eo

8(t ' 0)	 I

(105)

(104)

E

(103)

.
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OX(t, eo, 6e) - aX ^"(t 'I ) + ah 66 +.
a

+ '&2(bx ► 66,t)	
(100)

where 4 1 (6x , 68,t) and Z2 (4EAl i t) represent higher order terse,

The linearized system equations then can be written as

6i
Z;O 

(t,_eo,6D . aA 6"—o(t'^ ► 6e) +" k. 40 (to ,eo ,6e) - oax I 

Xe,u(=),t.eo ae	 xe,u(t),c,10 (101)

620(t,^,6e) 
aX I a0C—o (t '8o' 6e) + 8h 1 6^

I	 (102)

For brevity, denote

Then the solution to the linearized system equations may be written

directly as

t
ko(t 'e0'6ee) -f t 2(t,T, eO)8(T,6)dT + D(t,e0)

0
(106)

where V t,T do) is the system state transition matrix. It should be

noted that 66 represents a vector of parameters.

t

r
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t
Denoting, C(t,60) f' t Sa(t,T , 60)B(T ,,6^)dT + D(t,eo) as N(t,60),

0
an m x p time-varying matrix, Eq. (106) can be rewritten ati

by-0(t,eo.66) = N_(t,80)b8.	 (107)

It can be seen from Eq. (107) that the parameters 66 are identifiable,

that is, are uniquely recoverable from Eq. (107), only if the mapping

of the parameter space 6ecQ into the system outputs Ay0 (t,60,6D is

injective for a given input and initial condition. Such will be the

case if and only if the columns of N(t,O ) are linearly independent.

It can be shown [4, p. 751 that the columns of N(t,e ) are linearly

independent if and only if the Gramuian is nonsingular; i.e.,

J' t NT (T,6^) N(T,20)dT > 0	 (108)
t0

The above results may be summarized in the following theorem.

Theorem 3.9 [10]

Consider a nonlinear system with a state differential

equation

x(t,6) = g[x(t,8),u(t),t,6],	 x(t0) _ '30	 (109)

and a linear output equation

y(t a) = h[x(t,^,u(t),t,6]	 (110)

i

`	 where the functions g and h possess continuous partial derivatives

with respect to the components of x and 6. The linearized state dif-

ferential equation about(xe ,60) is-
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6x0 (t,eD ,6e) = A(t,e0)6xO (t,60,6e) + B(t,e e, axO ( t0) = 0

'(111)
and the output equation is

ay0 (t,e0,a8) = c(c,BQ)ax^(t,64,ae) + D(t,e0)ae	 (112)

where the matrices A(t,e 0) and B(t,80) are the Jacobians of g, and

2(t,90) and D(t,e0) are the Jacobians of h with respect to x and e,

respectively, each evaluated at 14,u(t),t,80,. Let

t
N(t,e0)	 2(t,e0) J' T(t,T,eO)B(T,60)dT + D(t,e0)	 (113)

t0

where 2(t,T,eo) is the transition matrix of the linearized system

of Eqs. (111) and (112) .

Then, for the given input u(t)CU, if

t

f NT(T,eo)N(T,eo)dT > 0	 (114)

t0

the parameters 9eQ of the nonlinear system can be locally identified.

Another sufficient condition has been derived for the parameter

identifiability of a nonlinear system for any input "sufficiently

close" to a specified input. Assume that the parameters, e6Q, are

fixed and consider only the effects of small perturbations in x and/or

u on the system motion. Then, a sufficient condition for the identifi-

ability of the parameters of a given nonlinear system is given in the

following theorem.

Theorem 3.10 [10]

Consider a nonlinear system with a state differential equation

i



55

x(t,D = aWt 91) a (t),t,e1 ,	 2E(t0) 'D
	 (115)

and a linear output equation

y,(t,8) = h[x(t 91) ' (t),t,81	 (116)

where the functions g and h possess continuous partial derivatives

with respect to the components of x and u at x e and u0 , respectively.

The linearized state differential equation about (xe ,20) is

Ox (t,D = A(t,a)6oc_0 (t,j) + B( ta1)02( t),	 ax (t0) = 0
(117)

and the output equation is

610 (t,8) = C(t,8)6xx (t,6) + D(t,8)6u(t) 	 (118)

where the matrices A(t,a) and B(t,h) are the Jacobians of g, and

2(t,8) and D(t,q) are the Jacobians of h with respect to x and u,

respectively, each evaluated at (4,u0,t,D.

Then, if the parameter set fl of the linearized system of Eqs.

(117) and (118) is identifiable at 6, the parameter set it of the

nonlinear system of Eqs. (115) and (116) is also identifiable at 8.

Examyle 3.5 [101. Consider a single input/single output, nonlinear,

second order system

xl (t) _ -a2x2 (t)	 (1'_9)

x2 (t) = -alx3 ( t) - a2X2 ( t) + u2 ( t )	 (120)

Y( t) = xl (t).	 (121)
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4	 Note the parameterization egQ = [(a l , a2)cR2 : al ^ 0, a2 / 01. For a

constant input u0 # 0, the equilibrium states of the system are found

to be

	

x2 /a	 \ 1/3
el 	 lnom f/

(122)

xe2	 0

Nominal values of the parameters a l and a2 are denoted by 
alnom 

and

a
2nom

. Let 6x1 , 6x2 , and 6u be perturbations on x
el , 

xe2, and u0,

respectively. The linearized equations are then found to be

i

k	
bx(t,6)	 o-a2	 6x 1 (t,6)	 o

-3x	 x (t,6) +	
(t) (123)

r	
6x2(t,6)	 e	 a	 6l	 - 22 .	 2u0

E

1	
6x1(t,e)

E
6y(t,6) _ 11	 01	 (124)

6x2(t,6)

For this linearized set of equations the Markov parameter matrix is

calculated as

0

0

G(6) _	 -2u0a2	(125)

2ua20

-12a1a2x21-2u0a2

4

and its Jacobian as
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0

0

aG^6)

ae	
0

0

12a2xel

0

0

-2u0 	(126)

4a2u0

-24ala2xel - 6u0a2

The rank of the Jacobian is clearly equal to 2 for all 8c& 2 , and, by

Theorem 3.8, the parameterization of the linearized system is identi-

fiable for all esR2 . By Theorem 3.10, the parameterization of the

original nonlinear system also is identifiable at any e = (al , a2)eR2.

3.5. Least Square Deterministic Parameter Identifiability

The definitions of parameter identifiability stated above have

been independent of the method used to recover the unknown parameter

values. Bellman and Astrdm (31 and Kirtensson 1151 have proposed an

algorithm-oriented definition called locally least square identifi -

ability in which experimental data are combined with a rp iori or as-

sumed knowledge of the system structures.

In many estimation methods of the small variational type, the

values of the unknown parameters are chosen to minimize a quadratic

cost functional of the form

T

JT(^ = f t 11 Y(T,D ;M (T)II 2dT,	 T > 0	 (127)

0
or

I	 JK(6)	
b ,^ Y(k ^e)	 (k)'^,	 K	 0 1 1, ...,	 (128)k=0	 ^a

where ym(.) is the measured system output for some given input u and
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11 .11 denotes the Euclidean norm imposed upon e. Local least square

identifiability is then defined as follows.

Definition 3.10 [31. The system parameters 6 are said to be locally

least square identifiable if and only if J(8) has an isolated local

minimum at 9 - 6 0 and J(6
O
) 0. If the minimum is global, the

parameters are said to be globally least square identifiable.i_e.

It should be noted that, contrary to later authors, Bellman and

Astrom (3] did not require J(A O) = 0. While this may be a valid omis-

sion for the extension of the concept of least square identifiability

to the stochastic case, for deterministic systems the requirement that

J(60) - 0 must hold necessarily as

Y(•,e0) a	 (129)

In terms of Eq. (33), Eqs. (127) and (128) become

JT (e)	 f T IL( T ,.EO , e uJ - y(TjjI dT,	 T > 0	
(130)

t0

and

K
E0 II f (k,j ji) - y (k ,6)112 ,	 K = 0, 1, ... , (131)JKL) =k 

where the specific time dependencies have been added to the expressions.

As equivalent results may be obtained from either formulation above,

consider only Eq. (130). Since the integrand of Eq. (130) is non-

negative, the requirement that J(6 	 0 implies that

II f(T,x0,60,a) - y(T,t)11= 0
	

(132)

a
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When	 t

11 e0- ill - 0
	

(133)

which is an equivalent statement of the definition of infectivity of

f with respect to 9. Clearly, then, the definition of least square

identifiability is derivative upon, and equivalent to, the definitions

of deterministic parameter identifiability given in Section 3.1.

A sufficient condition to insure least square deterministic para-

meter identifiability is found in a restatement of the implicit func-

tion theorem.

Theorem 3.11 [3]

A sufficient condition for the parameter 
a

 to be locally least

square identifiable is that there exists an open sphere S(6 0,p)C Q CRP

with radius p > 0 centered at 
a

 such that JT (20) - 0 and that the

(p x p) matrix of second-order partial derivatives with respect to the

parameters,.l'T(9), is positive definite for all 6sS(60,p).

Grewal and Glover (12) have established the equivalency of least

square identifiability and of identifiability based on output distin-

guishability. Such equivalency will not be demonstrated here since

mutual equivalency of all deterministic identifiability definitions

has been established through the definitions of Section 3.1.

3.6. Comments on Deterministic Parameter Identifiability

It should be noted that although a number of seemingly different

definitions for deterministic parameter identifiability have been

ra
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presented by different authors, it has been shown that they may be

derived from, and hence are equivalent to, the definitions presented

in Section 3.1 which require the injectivity of the function f(4,60,u)

of Eq. (33) as the criteria for deterministic parameter identifiability.

It is thus recommended that the four definitions of Section 3.1 be con-

sidered as the general definitions for determinz_cic parameter identi-

fiability and that the resulting theorems and system properties derived

in Section 3 be directly related to and derived from them.

It may be further noted that although certain system-specific

properties and theorems have been generated, such as Theorem 3.2, there

exist only three general methods of establishing deterministic para-

meter identifiability. These three methods essentially require the

certification

(1) that the parameters are uniquely recoverable from the system

mathematics (e.g., recoverable by Cramer's Rule, uniquely

recoverable by observation of the transfer function, etc.);

(2) that the Jacobian of the Markov parameter matrix is of con-

stant rank equal to the dimensionality of the parameter space

in some open neighborhood of the true parameter value; or

(3) that the second partial derivative of a quadratic cost func-

tional with respect to the parameters is positive definite

in some open neighborhood of the true parameter value.

The first two methods are particularly suited for analysis of

linear systems while the third may be employed with either linear or

non-linear systems.
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4. STOCHASTIC PAL027ZR IMMIFIABILITY

4.1. Concepts and Definitions

The second of the. two basic categories in the study of parameter

identifiability has been developed for the class of stochastic systems

in which one or both of the noise process, w and v_, of Figure 3 and

Eq. (12) are present. The general system as it was given in Section 2

is to be considered in the following.

In Section 2, parameter identifiability was considered in the

broadest sense as the mathematical assurance of the capability of

t	 determining unique values for the unknown parameters of a system from
t

some set of input and output data records. In Section 3, this def ini-

tion was restated for the deterministic (or noiseless) category of

systems in terms of the infectivity of the mapping, for some accept-

able input, of the system composite parameter and initial state space

into the system output space. The injectivity of this mapping insured,

among other properties, the existence of the functional inverse and

hence the recoverability of the parameter values. Stochastic para-

meter identifiability may be considered as the stochastic analog to

deterministic parameter identifiability. That is, stochastic para-

meter identifiability is the mathematical assurance of recovering

from noisy observation data the system parameter and/or initial state

values of interest in soma probabilistic sense. This may be further
,r

interpreted as assuring the existence of a sequence of estimates of
s

the unknown quantities which converges in some probabilistic sense

to the true values of the quantities.
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In the presence of noise, the output data of the given system be-

comes a sequence of random variables

Yl , Y2 , ..., y	 k	 1 9 2, ... or (ykJksl	 (134)

Based on this observation sequence, in conjunction with an actual or

assumed knowledge of the structural properties of the system, the para-

meter identification problem becomes that of generating a sequence of

estimates of the unknown system parameters which will converge in a

stochastic sense to the true parameter value. Such an est.,mation

sequence is a measurable function of the observation or output data

and is denoted by

w
6k (yl , ..., yk);	 k = Is 2, ...	 or [6ke1k=1	

(135)

The true parameter value is denoted by 6e . The vectors 6 0 and 9k

belong to A, the space of allowable parameters, which may be considered

to be a subset of Rp , the space of ordered p-tuples. Aithough results

have been obtained for more general spaces, 'the restriction of Q to Rp

is not generally limiting for realizable, physical systems.

Definition 4.1. A sequence of random variables (yk] k=1 is said to con-

verge to z in probability (converge stochastically to z) if for

every e ? 0

lira Pr f zk 	al 0
k.* m	 L	 JJ

pwhere Pr is a probability measure defined on R.



63

Definition 4 2. An estimation sequence (010 of 6 eQ which converges

stochastically to 3Q is said to be consistent in orobability ,; i.e.,

( Ak) 1 is a consistent estimate for A . This property may be

denoted by 
e 

-9 AO.

Stochastic parameter identifiability of the initial state 1
0
 and

system parameter ,80 can now be defined in terms of the consistency of

the sequences of their estimates.

Definition 4.3. The initial state, 30 , and the system parameters, 9,

are said to be stochastically identifiable if there exist sequences
w

of estimates [ ) ^^l and [^c)k•1 which are consistent in proba-

bility; i.e., x
—k 

210 and 9k ^Z.

It may be noted that, as with the definition of deterministic

parameter identifiability, the definition of stochastic parameter

identifiability is independent of the method chosen to generate the

estimation sequences. However, the standard method normally chosen

for generating these sequences has been the maximum likelihood asti-

mate method. For simplicity, consider the case when only 
a 

is urknowa.

Let 
[yk)k=1 

be a sequence of random variables with given joint

probability density functionsp k(yl , y2 , ..., yk ; ) , k = 1, 2, ...,

which are of known functional form but which depend upon the unknown

parameter vector asQ, the allowable parameter space. Thus, there exists

a family of joint probability density functions denoted by 
(pk(yi' ...,

Yk ;
 
1):14, k - 1, 2, ---1- For each value of 64, there corresponds

one member of the f amily, specifically [pk (yl , ..., 4;: k = 1 9 2, ...),
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which is a sequence of juint probability density functions indexed by

k - it 2, ..., and parameterized by 6. The member of the frmi .ly corre-

sponding to the true parameter vector e^ is denoted by (pk(Y^, ••, Yk;

80):k = 1, 2 9 ...J. The sequence of maximum likelihood estimates, then,

is obtained by selecting ek such that

pk (Y1 , ..., yk; ^e) = 
max pk (yl , ..., yk ; e);	 k	 1, 2, ...
esQ	 i

(136)

The estimates may be expressed more explicitly in terms of the maximum

likelihood equation

a log Pk (yl • ..., yk ; e)
= 0	 k as it 2 9 ...	 (137)

ae

Under certain restrictions on the joint probability densities of

the observations, Wald (24, 25) has shown that the maximum likelihood

equation has at least one root which is a consistent estimate of the

parameter a to be estimated. That is, if a given system satisfies the

restrictions such that a consistent sequence of estimates for an un-

known parameter exists, the method of maximum likelihood estimation

will surely produce that sequence.

Let (yk]k=1 be a sequence of independent, identically, distributed

random variables with joint probability density function p(Y 1 , ..., Xk;

e), k = 1, 2, ..., parameterized by the unknown parameter ecQC Rp,where

	

Q is the allowable parameter space. The probability density function 	 -

is denoted by p(Y;9) and the corresponding cumulative distribution

function is denoted by F(y;9); i.e., F (y;9) = Pr (yk s yJ. An arbi-

trary norm on RP is denoted by	 The following notation is used.
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P(Y:e,p) •	 n+P 	 P(Y;e'),	 891 and p > 0	 (138)

II e•e' il <p

#(Y,r) ` sup	 P(Y;e),	 r > 0	 (139)

it ell > r

P (Y.;	 (140)
1	 , otherwise

(Y, r)	 (141)
1	 , otherwise

Wald ' s restrictions may now be expressed as the following eight

asakmptions.

Assumption 	F(Y;^ is either discrete or is absolutely continuous
S

for all 6sQ.

Assumotion 2. For sufficiently small p and for sufficiently large r,

f log P ( .;e, p ) dF (Y;eo) <°°

and

J' log *(l;r) dF (y;6) <•	 for all 6sQ.

Assumption 3. If k	 d, then k im p(y;_6k) : p(y	 ,for all ex-

cept perhaps on a set who" probability measure is zero according to

.	 the probability distribution corresponding to ,66
iO

4ssumotion 4. Ifel # 60, then F(y,;d l) • F(y;9p) for at least one

value of Y.



bb

Assuntion S. If lim 1411 - M , then lim p(y;9 ) - 0 for every y except
k^ • 	k-•

	

perhaps on a fixed set whose probability measure is zero according to 	 {

the true p leameter 60.

a
Assowtiou 6. f 1108 P(z;eo)I d'(x;_eo) <a

..on

Assumption 7. Q is a closed subset of Rp

Assumption8. p(x;6,p) is a measurable function of Y for ecQ and P> 0.

Succeeding work in stochastic parameter identifiability has been

primarily accomplished in applying or re -interpreting in more useful,

system-oriented terms Wald ' s restrictions on the point probability

s
	

densities of the system observations. A very simplified application

of the maximum likelihood estimation method is given in the next

example.

Example 4.1. Consider a single observation y of a parameter a corrup-

ted by additive, zero-mean, Gaussian noise with variance a2

y - a + n.	 (142)

The probability density function of the noise is

2

p (n) -	 1 2	
exp	 n	 (143)

(27r) an
	 [,- n

Siuce y  n - a, the probability density function of y conditioned

upon a is

1	 2
P(y ;g) _	 1/2

	 exp"^Y' 2 a'^'°	 (144)
(2^) an	 Zan

and

i

T
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. SY_:_4Z

l
log p(y;a) = Constant

	

	 (145)
 2Qn

The maximum likelihood equation is

10% O(Y'CO = Constant2	 2	 0	 (146)
Q

j	 _	 n

and the best (maximum likelihood) estimate a for the parameter M is the

observed value y; i.e.,

4	 a = Y .	 ( 147)

Ee

E	
4.2. Stochastic Parameter Identifiability from the

Properties of the Maximum Likelihood Estimate
r

Stochastic parameter identifiability results may be derived di-

rectly from the convergence properties of the maximum likelihood esti-

mate. 'Though methods and results developed at later times are easier

to apply to a given system, Aoki and Yue (1), using this direct analy-

sis approach, established results for a class of linear, stable, con-

stant-coefficient, discrete-time dynamic systems with both plant and

observation noise present. Because of the importance of these results

and as an aid to understanding the properties of the maximum likelihood

estimate, the major parts of their results are reproduced in the following.

A class of systems nearly identical to that of Section 3.2, except

with the addition of noise sources, was investigated. As with the pre-

vious formulation, this class of systems represents a large class of

realistic problems. The system class is characterized by the equations
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Z(j + 1) = A z(j) + b u j ,	 z(0) = z0
	

(148)

xj - JZ_(j)	 (149)

where

	

-al	 1 0 0 ... 0

	

-a2	 0 1 0 ... 0
A =	 (n x n)

-an-1 0 0 0 ... 1

	

L-an	
0 0 0 ... 0

	

b 1	 1

	b 2 	0
b	 (n x 1) ; h =	 ,	 (n x 1)

	

bn 	0

and the parameters a  and b  are unknown constants with ja i l <es and

Jbil <m , 1 s i S n.

Output observations, y j , are made with additive noise

yj = x  + I J ,	 (150)

The output noise process {^ j } is restricted to be independent and iden-

tically distributed as zero-mean, normal with variance Q2.

As in Section 3.2, the system may be alternately represented by

n	 n
x  

+ Jl aixj-1 = J, b
iu

j-i	
(151)

j

yj _ i=1 (xi + Ii )	
j - 0, 1, 2, ..., L-1 	 (152)

4
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or with Toeplitz matrices as

ALx =L BLuL + EL=U	 (153)

yL = xL + 111L 	(154)

or

IL = H L8 + ELzO	 (155)

Y-L = ML + 11L	 (156)

where

x  = [x03	 x 1 ,	 ..., T
xL-1] (L x 1)	 ;

T
(L x 1)	 ;

IL _ [ u0 ,	 u 1 ,	 ... ,
T

uT -1 1	 ' (L x 1)	 ;

11L - [10'
	 11'
	 ... , 1 L-1 ] T (L x 1)	 ;

9 [a l , a2 , 	an' b l ,	b2 . un]T	 (2n x 1

AL = IL + 
in

	 a i SL (L x L);

B L =
n

iE 1 b iSL (L x L)

Inxn_

EL 0L-n,n
, (L x n)

H	 =
L

[S x , S 2x
L-L	 L L

...,	 Snx	 ,-L L
S	 ^ 1
-L-i.

...,	 Snu	 ],	 (L x	 2n);-L-L

and S
L is the L x L shift matrix defined such that S

L ("j)	 6i j+l.
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For the deterministic portion of the system[Egs. (148) and (149)

or Eqs. (151), (153) or (155)] results may be stated which are identi-

cal to Property 1, Property 2, Property 3, Theorem 3.1, Theorem 3.2,

and Theorem 3.3 of Section 3.2 with the "r" of Section 3.2 replaced by

tin"

In the following development, it is assumed that the true parameter

60 lies in the interior of a given compact subset s of R2n and that all
systems with 6K01 are stable. The assumption of compactness is not

r
truly limiting as parameter values, from a priori knowledge of the sys-
tem, usually fall within a limitable range thus permitting the parameter

set to be contained in a compact region. System stability is assumed

to permit the investigation of asymptotic properties of the system.

Under the conditions given, a characterization of the maximum like-

lihood estimates follows. From Eqs. (153) and (154),

.L = 71	 1 (BL + AL L- + EL	 Lz	 (157)O). 

Noting that n -yL I , the probability density function of the out-

pug yL as parameterized by 6 and z 0 is

p(yL ;9,zo) - Constant exp [- L—
	 - A

Ll ( BLuL + ELzO),I2
	 .

2a	 (158

Let AL, i0L denote the maximum likelihood estimates of 6 and z 0 from

the observed data, uL and YL ; that is,

l08 P(. ;9	 L;max l08 P(yL;e,?O) 	 (159)
e^

n=OeR

r

r
r•
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For any A ,max log p(1►L;Q,zO) is achieved by

' to n

OL(8) _ (eL&TL-
lA-1IL 1 -lELA

L 1 \YL-AL1B^uL!	 (160)

Thus, 8L is obtained by

A

E	 min JL(A) - JL(6L)	 (161)
E	 GGS

where the likelihood function JL(6) is

i	
1J (e) 

= ILL 
A-1

[ILAL +E z(^JL	 L —L 	 —L-^L

IlALYL - BLuL - ELAOL (D II2 	 (162)

	

.	 -1A AT
&L L )

and

^L 1OL(8L)* (163)

It has been shown that the consistency of the maximum likelihood

estimates holds if the almost sure (a.s.) convergence of the likelihood

function is established. This property leads to the following Proposi-

tions.

Proposition 1.

For all 9<DS, J L (A)/L J(d) with probability one, where

J(^ = 1i-m L E JL(D = Q2 + L;m	 IL IL-LXL - 11;4 (&1
A

T 
 L )

and E denotes the expectation operator.

Note that J(6o) = a2 = min J(8) which satisfies Eq. (153), namely,

the true parameter vector, if 
10, 

is unique in the representation of Eq.
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(153). In the following, the subscript "0" denotes the particular ele-

ment at the true parameter value 8 0; i.e., 
AL.O AL (9) ' BL.0 B (e0`'

etc. As seen in the next proposition, only those 6 which give

rise to 48) = J(6,0) = c2 are of interest.

Proposition 2.
w	 w

With probability one, 9L converges to 6ic^,^Q3, where

''reposition 3.

J(6) = J(e) if and only if

L	 L II(ALBL10 - AL' OBL)uL I = 0 .

Proposition 2a.

(An immediate consequence of Proposition 2.) Given that a is

unique, the maximum likelihood estimate 6L converges to 6
-0 

with proba-

bility one if and only if 
Co

UsAit is a singleton.

A necessary and sufficient condition to insure that the condition

of Proposition 2a is always satisfied is contained in the following

theorem.

Theorem 4.1 [1]

Given the linear dynamic system in any of its equivalent repre-

sentations above, such that b 0 0 and (A,b) is completely controllable,

the maximum likelihood estimateQL converges to 6
0
 with probability

one if and only if

1 T

L^= L UL, 2n°—L, 2n 0
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where

RJL, 2n = 141L I K 
L , ... , EL =L' .

The necessary and sufficient condition of Theorem 4.1 can also be

stated in various forms for the purpose of different applications.

Corollary 4.1 (11

Given the linear dynamic system in any of its equivalent represen-

tations above, such that b # 0 and (A,b) is completely controllable, the

maximum likelihood estimate Lconverges to 
8 

with probability one if

and only if

lim L HLHL > 0

or, equivalently,

1 im 
L 

ML > 0
L-00I

where

ML = Cr2 i CALAL
	 L .

Theorem 4.1 can be viewed as the stochastic version of Theorem 3.2,

and Corollary 4.1 can be viewed as the stochastic ver

sT

sion of Property 1

of Section 3.2 modified such that zo # 0; i.e., 9 =^HL 
L/ 1HL ^aL - ELz,O}

if and only if HL is positive definite.

eft this point, a link may be established between the deterministic

parameter identifiability properties of the system and the stochastic

parameter identifiability properties of the system in terms of y j , the
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noise-corrupted output, and ML , the Fisher information matrix.

Theorem 3.2a [201

If the system described by Eqs. ( 148), (149) and (150) is stable

and z0 - 0, ' then e - [a l , ..., an , b l ,	 bn]T is identifiable, I.D.S.

(equivalently, zero-state deterministically parameter identifiable per

Section 3.1), if and only if the Fisher information matrix, M L , is

positive definite for some finite L, where

ML ' ^ P( -L ,Q:?,0 ) [% log P(YLS_e^%Q)]

T
[ 0$ log P Q.L:Q>?0)]-dv

and

as	 as	 as	 as 1 Tas
al	

aan' ab l .
	abn/

for any scalar s.

By direct calculation, it may be shown that M L - HL (ALAL) 
-1 
IL

It may also be shown (Appendix B, [1]) that (A LAL) is bounded such that

T
P1IL S ALAL S P2IL

where

0<p1<p2<CD.

Thus, HTH is positive definite if and only if M L is positive definite
i

and, by Property 1 of Section 3.2, the system is identifiable, I.D.S.,

if and only if ML > 0 for some finite L.

a

s

is -

--
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I

Note the marked similarity between Corollary 4.1 and Theorem 3.2a

with the distinct difference that ML must be positive definite for some

finite L in the deterministic case while the limit of L ML must remain

positive definite in the stochastic case.

The initial state does not effect the convergence properties of

the parameter estimates IL . However, the initial state estimate, as a

w

function of eL and yL , is given uniquely by Eqs. (160) and (163); i.e.,

ZOL = (EL AL-1 AL l EL/-1 EL I
T-1

(y.L 
ALl BL uL^	

(164)

Theorem 4.2 [11

If the conditions of Theorem 4.1 are satisfied, then E ioL

as L °°: where E denotes the expectation operator.

The system under consideration may be extended to include an

additive plant noise process which may be represented by the following

Gauss-Markov model

z(j + 1) = A z(j) + b u j + d 2 1	 (165)

x j = hTz(,) + b0u
i
 + ^, j 	(166)

where	 j } is a Gaussian white noise process identically, normally

distributed with zero -mean and variance a 2 ; d = [d 1 , d 2 , ..., dn'T;

A, h, and b are defined as before. The unknown system parameters are

ai , b i , d i for 1 S i S n, b0 and a 2 ; i.e., ,^ = ja, b, d, b0 	
21T. The

output is observed with additive noise

yj = x  + I i	 (167)
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as before with lI iI independent and identically distributed, without

loss of generality, as zero-mean, normal with unit variance. The noise

processes 
It i I and 11j1 are independent.

Equivalent representations of the expanded system may be made as

with the initial system but will not be presented at this time ( see Ref.

(11). The following results were obtained.

Theorem 4.3 [11

Given the system described by Eqs. ( 165), (166), and (167) with

d 4 0 and (A, d) completely controllable, 6 L I where A = (a,b,d,b^2)T]

converges with probability one to ,6 if and only if
MO

1 -rTsV 
L-ma L 

ULn `L,n >

where

r	 n
^L.n = I uL' SLuL'	 S..., LuL,.

Theorem 4.3a [11

Given the system described by Eqs. ( 165), (166) and (167) such that

[A,(b,d)J is completely controllable, eL converges with probability one

if

1 ^T

Lim00 L UL, 2n UL, 2n ' 0

where

2n
UL, 2n	 ru L , S Lu L , ... , S L uL .

Selected proofs are presented in Appendix B.
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4.3 Stochastic Parameter Identifiability Generalized from
Constrained Maximum Likelihood (CML) Estimate Properties

Using the convergence properties of the maximum likelihood esti-

mate, Tse and Anton ( 221 developed stochastic parameter identifiability

criteria expressed in terms of conditional probability densities for

the sequence of system observation statistics. Their definition of

stochastic parameter identifiability remained the existence of con-

sistent estimates as in Definitions 4.2 and 4.3.

t	 ^
As before, (yk l k•l denotes a sequence of observation statistics

with a joint probability density functionp k (yl , ..., yk ; I), k a 1, 2,

..., parameterized by the unknown parameter ICQ C R P . • Although the

development by Tse and Anton was set in a more general separable metric

F	 space, in consonance with previous remarks, Q is taken as a compact

subset of RP . The true parameter, 4, is assumed to lie in the interior.

of Q. An arbitrary norm on RP is denoted by 11.11. Denoting the obser-

vation sequence

Yk • (Yl , X21 ... 0 41 .	 (1681

the sequence of true joint probability density functions may be denoted

as

pk(Yl, " " yk ;
 20) • Pk (Yk ; 10),	 k • 1, 2, ...	 (169)

Since the context clearly indicates which density is indicated, the "k"

subscript is routinely deleted, yielding p(Y k ; Jto). By Hayes rule, a

conditional probability density function may be defined as

P ( .klYk.l; ^^' p ( Yk ; 1) /p ( Yk-1' a^'	 k • 1, 2, ...

(170)
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Any new information obtained from the kth sampling will be contained

in the conditional probability density of Eq. (170). For jeCI and p > 0

define a regional conditional probability density

P(lk' PIYk-1' 	 _ 
	 ul, s P P`Yk'Yk-

l;g').	 (171)

The following assumptions are made.

Assumption 1. The probability density function p(Y k ;	 is measurable

in Y  with respect to p(Y k ; 4)dYk and is continuous in JeCl for Y 

almost everywhere; i.e., for any s > 0 and Jul, there exists a b(s) > 0

such that for all I' cQ with Ik - Q' ll < b we have Ip(Yk , ,^)

- p(Yk ; J')l < c for Yk almost everywhere.

Assumption 2.

S R  log P (Yk' 
Ply 

k-1 ; P-) P(Y
k ; VdYk < w	 (172)

for each W1, for some p > 0 and for ail k - 1, 2, ...; and

S R  log P(Yklyk-1' 10 ) P(Yk ; ,Q0 )dYk < w	 (173)

for all k - 1, 2, ..., .

Assumption 3.

VarI 
I log P(yk' PIYk-1 ; 1)1 - 0(k2)	 (174)

for all JcQ and some p 0 > 0 where 0 s p s p0 and where 0(k2) is defined

such that
2

lim ON2 0
k ' w k

..
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AssMo tip 4. Defining the set &(Q) - [Yk;P(Yk'
	 01'

(^) - sk (g' )	 (175)

for jL, Q'eQ and for all k - 1, 2, .,.,

Conceptually, the second and third assumptions restrict the growth

rate of accumulated information about the unknown parameter relative to

the accumulated uncertainty. The fourth assumption implies that, for

two different parameters, the corresponding density functions must have

all the impulses located at the same points in the observation space.

Since the only information abcut J
o 

is contained in the observation

st&c'stics (YkJk
-1 

with their corresponding ,joint density function

p(Yk ; J), k - 1, 2, ..., if there exist two parameter vectors 1 1 , 12sf1,	 e

11 0 12 such that	 ^•

P(Yk ; 11 ) s p (Yk ; io)	 (176)

or

P (Yk lyk-1' i1) - P(Yklyk-1' 6
2
)

'
	

All k = 1, 2. ..., (117)

the two parameters are indistinguishable in Q.

Definition 4.4 1221. Two parameters Q
1 , 12to, i1 

0 $2 are said to be

unresolvable if the equality

P(Yk IYk-1' $1 ) - P(Yklyk-1' 12 )	 (178)

holds with probability one for all except a finite number of

integers k > 0; i.e., if Eq. (178) holds with respect to the
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measure p(Yk ; 8l)dYk as well as p(Yk ; 12)dYk.

Definition 4.51221. The set Q is said to be identifiable if uo two

elements of Q are unresolvable.

Definition 4.6 [221. For the observation sequence, Y k , the constrained

MELmt - likelihood (CML) estimate of 10 is defined as ik , which

satisfies

P(Yk ; $k) - Max P(Yk ; ,^.	 (179)
190

Essentially, this is the maximum likelihood estimate of to but

takes into account the a r^ iori knowledge that to is constrained to be

a member of 0; i.e., 4CQ. Since A is compact and p(Yk ; ^) i.; con-
k

tinuous almost surely by Assumption 1, at least one solutim to Eq. ( 179)

exists almost surely. Thus, the CML generated estimate sequence ( Ag j^sic k•l

is a consistent estimate for to 	 ,O is unique, a consequence of the

properties of the maximum likelihood estimate. However, if there exist

two parameter vectors 11 , 1240, gl 0 22 such that

lim p(Y Q) - lim p(Y ; 1.0(180)k o k 1	 k -.e k `
A	 /

then, obviously, ( Qk ^ -1 will fail to converge.
I

Definition 4.7 1221. Two parameters, IV 124f1, ,Ql 12 , are said to
T

be CML unresolvable if

"m P ''-k lyk-1' el) - m P(Zklyk-1 1 12 )	 (181)

with probability one.
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Definition 4.8 [221. The set Q is said to be C14L identifiable if no

two elements in Q are CML unresolvable.

Theorem 4.4 [221.

A sufficient condition for Q to be CML identifiable is that, for

all 8 1 , 82cO 8 1 4 82 , there exists an infinite set LC I+ , I+ the set

of positive integers, such that the inequality

P(Yklyk-1' Q
l ) # P(yklyk-1' 8_2)

holds with nonzero probability with respect to 8 1 and 82 uniformly in

ke L.

It should be noted that Theorem 4.4 provides sufficient conditions

to insure CML identifiability. If the conditions of the Theorem are

not met, it does not necessarily imply that the CML estimation method

will fail; rather, it implies there exists no guarantee of consistency

of the estimate. In point of fact, certain studies have indicated

that the CML estimate is "fairly" consistent even though some of the

required assumptions are violated.

Examele 4.2 [231. Ccasider the linear, time-invariant system given by

xj+1 - A x  + w 
(182)

y
J
, -C x_

3
. +v

k
	. ( 183)

where x j eRn , y.cRm and { wj 1 and tv_.1 are zero-mean Gaussian noise

processes with covariances
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iI

E [

	

T ] = R 
bki,

E L^j = Q 
bkj

and

E 
[kxjT1 = D 

6 k .

Let A = [k A, C, R, Q, D] T and assume that A is stable, (A,C) is an

observable pair and (A,B) is a controllable pair, where B is the steady-

state Kalman filter gain given by Eq. (188) (see below).

Two parameters 6 1 , 62eRp , 61 4 82 are defined to be CML unresoly-

able if the equality

P(Yklyk-1' el) = P(Yklyk-l'id	 (184)

holds with probability 1 with respect to 6 1 and 62 as k—	 Since the

system is linear and the noises are Gaussian, p(Y.klyk-1' 6) is Gaussian

with mean 
Y
lclk-1 and covariance C P C T + Q as k — - (steady state). P

and;Zklk_1 are given by the usual steady-state Kalman filter equations-

Yklk-1	
C 

iklk-1	
(185)

Xklk-1 A is-llk-2 + B Y.k- 1 	
(186)

LJk = Yk - C 
xklk-1	

(187)

B = (A P CT + D) (C P CT + Q) -1	 (188)

P = A P AT + R - B (C P CT + Q) B T	 (189)
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It can then be shown thac 81 , 62
 
CR

P
 , 

81 # 6
2 are CIIAL unresolvable

if and only if there exists a nonsingular matrix T such that

•	 Al T A2 T-1	 (190)

•	 Al = T 1
2	 (191)

Cl 2
2 T -1	 (192)

F

21 P 1 Ci + 21 22 P 2 C2 + Q2	 (193)

If Eq. (193) is satisfied, it is clear that Eq. (184) holds with

probability 1 as k•» m , and thus, 8 1 and 42 are CML unresolvable. Then

in the steady state,

= i2,klkYl,klk-1 -1
(194) 

with probability 1, for all k

C	 P	 CT +	 = C
—1 —1 —1	gl	—2

P	 CT
—2 —2

+
42'

195
(	 )

Equations (185) through (188) and (191) imply that

C 1 Ai 11 = C2 A2 12 , 2 =	 0,	 1,	 2,	 ... (196)

But Eq.	 (196) implies that the two steady-state Kalman filters [Eqs.

(185) through (188)1 have the same impulse response. Since (Ai , Ci)

is an observable pair and (Ai , BB is a controllable pair, Eq.	 (193)

results.

Additionally, Glover and Willems [91 provide an example of a

deterministic system driven by a white, Gaussian noise input.
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4,4. Stochastic Parameter Identifiability from the Information Matrix

Under essentially equivalent assumptions on the joint probability

density function of the system observation sequence as found in Section

4.3, Tse [21] has developed conditions for local stochastic parameter

identifiability in terms of the information matrix. The system setting

and terminology are also parallel to that of Section 4.3

Definition 4.9 [211. A parameter 8 CCIC R P is said to be locally iden-

tifiable if

(1) There exists an.open set SO such that a0 is an interior point

of S0 ; and

(2) There exists a consistent, local estimation sequence,

lk=l
(Yk ; SQ )	 in S 0 where SD is the closure of S0.

The set S 0 is said to be the region of parameter iden-

tifiability.

Considering the concept of resolvability of Definition 4.4, the

Definition 4.9 is equivalent to stating that 6,0 is locally identifi-

able if there exists a neighborhood about e Q , denoted by S 0 , such that

e0 is resolvable from its neighboring elements 8eS0.

Theorem 4.5 [211.

if for all k - 1, 2, ... there exists X 2 > 0 such that

E

1	 (	

a log P(41'k-1'x)1 a log P(k 1Yk-l ;^) T1
k k 0	 E 8	 d6	 a8'	 -0	 -0	 -0	

1

> A2 IPXp
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where E,, represents the expectation operator with respect to the prob-

ability density function p(Yk ; 84), then 6 is locally identifiable.

The function Jk,k ( 60) is a conditional information matrix.

Vaguely, Theorem 4.5 implies that if there exists "positive information"

about the unknown parameter in each new observation, then that para-

meter may be recovered asymptotically provided that the region of un-

certainty for the unknown parameter is small.

Unfortunately, the condition of Theorem 4.5 is rather difficult

to verify as it involves checking the positive definiteness properties

of a countably infinite number of matrices. Further, i t must be demon-

strated that these matrices are uniformly bounded below by X21, X2 > 0.

Thus, it is desirable to establish a weaker sufficient condition by

considering an additive ,• and eventually total, information matrix

a log p	 (8)	 a log p	 (6)
m.n	 m n — T

Jm n (6) . E6 ---	 --a^^ -- ^	 (197)

where

Pm n (Q)	 P(Ym , ym+l , ..., 
In d m- 1' 8).
	 (198) .

Noting that

a 2 log Pm.n(6)	 = E
	

a log 
Pm,n(8)	

log Pm
.n (D lTE

6	 2	 8	 a6	 ]	 ae	 J
as	 —	 —

(199)

and

E a
2 log pm n(6)	

E	

n a2 
log Pi.i(9)L	 =

6	
a62	

6 
1-M	 a62
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2
n	 a log Pi.i(6)

i^ 
E6	

a62

n
= Jim Ji,i(6)
	 (200)

we have

n
Jm n (6) = iEm J i i(6)

>	 >

and

k
J 1,k(e0) = J1 J i i(80)	 (202)

If the condition on J k k (80 ) of Theorem 4.5 is satisfied then

k.m k 
J l ,k('6 ) z J* (,.,0 ) 2 X2lpxp ; ^2 > 0	 (203)

where J* (60 ) is also known as the average Fisher's information matrix .

While Eq. (203) does not necessarily imply that the condition on Jk,k(80)

of Theorem 4.5 holds, this weaker condition is sufficient for local

identifiability.

Theorem 4.6 (211

Let h be any unit vector in R P . If there exists X 2 > 0 such that

lira k hTJ l ^ k (60)h a X2 (h) > 0,
k

then 80 is resolvable from 8 = A0 ± ch; 0 < t s X(h)/c(h) for some

constant c(h) < ca . Note that both X and c may be dependent upon h.

Definition 4.10 [211. A subspace Q C RP is said to be locally identi-

fiable if all elements 69CI are locally identifiable.

(201)



87

Theorem 4.7 [211.

A sufficient condition for a subset Q CR p to be identifiable is

that

J*(8) t 1 2 (A) I	 X2(a) > 0 for all AsA.
PXp

While the results presented above appear to be particularly appli-

cable to the analysis of a given system rather than to a class of

systems, Tse [21] has applied the results to a linear, discrete-time,

autonomous system presented in the following example.

Example 4.3 [211. Consider the system

Bic+l 6k 4	 (204)

y
k = C

C k 
=X 
k + _vk	(205)

where AAk , Ck are known matrices and [v_k] =1 is a sequence of zero-mean,

independent, Gaussian random vectors with covariance Qii. The only

unknown parameter is the initial state, a = x-0 eRp . It can be shown

that all required assumptions are satisfied (21] if the system is

stable; i.e., ikk ll < c  < -, k = 1, 2, ..., and if lkoll < c2 <W .

The conditional information matrix is given by

1	 T	 T

Jk,k
(a)	 4Q2 9-k,OCkgkik,0	

(206)

k

where

a

.I	
"k -1' ..., A^.	 (207)

Therefore, the total information matrix is given by
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n

J l,n (e)	 4 k£1 ^k2 c,0 plc 1k,0	
for all 00	 (208)

Suppose that the system is uniformly observable,

k+n-1

j:k 2j,k 
Ci 

2j,k 
a 9 I, 6 > 0;	 j	 1, 2, ...,	 (209)

and 
IcykIk.l 

is bounded. Define

aj
+l a Max 

(ajn , ajn+l, ..., CT	 (210)(^+1)n '

Then, from Eqs. (208) through (210),

j

J	 (6) a 6	 a*	 for all 6tRp .	 (211)1, jn —	 4 J1 in, 0 kn, 0

Therefore, from Theorem 4 . 7, a sufficient condition for x 0 to be iden-

tifiable is

.l
Ji ^j i£1 ai -2Ti.n,0 SEi.n,0	 ^2I'	 X2 > 0.	 (212)

Note that, since the system is linear, the least square estimate

has error equal to J 1 n (6) exactly. Therefore, a less restrictive

sufficient condition will require

j i 	
Qi-2 

Sin,0 li.n,0 	 (213)
j ^»'° L= 1

In an attempt to more directly relate the above results to systems

notation, consider three systems in which the parameters 6 are linear,

nonlinear, and dynamic -nonlinear functions of the observations y in

the presence of independent, Gaussian noise v with covariance matrix

Q. The three representations are, respectively:

>M
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y = H 9 + v_	 (Linear) (214)

Y. = H z (e) + v_	 (Nonlinear) (215)

I

Y (t i) = H a (t i ,9) + v_(ti)	 (Dynamic-Nonlinear) (216) !;

The form of the information matrix may then be determined for each

case.	 Consider first the linear case of Eq. ( 214) which implies that

y - H 6 is distributed as v_.	 Then:

l08 P(YIe)	 Constant + 2(y - H	 TQ 1(y - H (217)

loAa e (11 5) _ -[y - H e1 TQ 1H
(218)

a	 l08 P (YI 6	 a Lob P (YI 6)
E{ ae ^	 ae  e }

r

= E
f HTQT-1 [y - H 

e](y - H 8] TS 1 H

= HTQ 1H. (219)

For the nonlinear case:

log P(yIQ)	 Constant + 2[y - H z(6)J Tq 1[y - H a(j) 1 (220)

v loBe(Yld) aae(e>_	
Y. - H z(8 )]TQ 1H (221)

E l	 ae(YI
ra	 log	 e)I r a log	 a)

ae(ylL	 _

[
a Z(a>	 T	 T	 .1	 a Z(e)

] ]-_	 H Q	 H	 aeBe (222)

For the dynamic-nonlinear case:
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K
log p (Y^8)	 Constant + 2 ilI IVY - K z(ti,9)JTj

1.
Q-1 [Y(t i ) - H a (t i :2)J1	 (223)

a log p (Y' 9)	 K	 a z(t ,A)

ae	 s - iE l [Y(t i ) - H z( ti $6)JTQ lH
	

ze

(224)

j a log p(Y a log p(Y1 2)

E l C	 ae_	 Hae_	 1 161
iEJ' Zaei' e)^T HT -1 H ' a Z^	 e)ae',	

(225)

	

L	 s

It should be noted that these exact expressions appear in small

variational parameter estimation methods as the gradients of the quad-

ratic cost functionals. Likewise, a minor link may also be established

to deterministic parameter identifiability by noting that the cost

functional for least square identifiability may be taken in the sto-

chastic case to be the negative logarithm of the likelihood equation.

Then, the expected value of the second partial derivative of the cost

functional with respect to the parameters is the information matrix

discussed above.

4.5. Comments on Stochastic Parameter identifiability
t

While the infectivity of the function f provides a unifying set of

conceits and definitions for deterministic parameter identifiability,

no corresponding unifying concept or definition has yet been deter-,	 i

mined for stochastic parameter identifiability. A loosely unifying:

concept for stochastic parameter identifiability appears to be the
t

s.
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existence of a consistent estimate for the unknown parameters. However,	
N

the requirements for the existence of a consistent estimate is express-

ed mathematically in a number of different ways and atus no mathemati-

cally uniform concept now exists which is equivalent to the functional

infectivity requirement for deterministic parameter identifiability.

As shown in the previous material, several tentative links between

the forms found in deterministic and stochastic parame v r identifiabil-

ity have been established. However, no mathematically explicit, con-

sistent relationships have been established to relate the two concepts

together.

It should be noted, however, that deterministic parameter identi-

fiability is a prerequisite for stochastic parameter identifiability.

Indeed, if a system is not deterministically identifiable, then certain-

ly no consistent estimate for the unknown parameters can exist. On

the other hand, the assurance of deterministic parameter identifiabili-

ty Is not sufficient to insure stochastic parameter identifiability

since the stoo.;nastic properties of any given system may supercede the

deterministic properties.

It should be noted that the final two stochastic parameter identi-

fiability concepts presented in Section 4, specifically, those predi-

cated upon the properties of the conditional probability density func-

tions of the system observations and those predicated upon the proper-

ties of the conditional and total information matricQs, are oriented

towards the analysis of a given specific system rather than of a total

class of systems. The application of these concepts to some classes of

systems of interest seems to be an opportune field for study,
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APPENDIX A. PARAMETER IDENTIF ARILi7T RESULTS VERSUS SYSTEMS' CHARACTERISTICS.
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Characteristic c3

General, Not
System Specific x x x

Deterministic x x x x x x x x x x x

Stochastic x x x x x

Linear x x x x x x x x x x x x x x

Nonl: n;ar x x x

Continuous x x x X x x x

Giscrete x x x x x x x x x x

S LSO x x x x x

Hil'_O x x x x x x x x x x x x

x^ Known x x x x x x x x x x x x x x

xx	 Unknown x x

Unspec ; fied Input x x x x x x x x x x x x x

Zero l-iput x

Impulsive Input x x

Local x x x x x x x

Glcbal x x x x x x x x x

C -Z

[ I

f
S

J
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APPENDIX B. SELECTED PROOFS

The proofs selected for presentation in this Appendix are not

totally comprehensive but are presented as samples of the methods and

procedures involved. Generally, proofs which require the establish-

ment of preliminary lemmas or proofs have been omitted. Other proofs

which are similar in content and nature to those chosen have also been

omitted.

Theorem 3.1 [201

From the defining Eqs. (35) through (37), direct computation

yields

1C xn, xa+l, ..., xL-1]	 an' an-1' ..., a1]

x 
	 xl	 .	 .	 .

xL-n-1

X	
X 
	 x2 . . . X

L-n [an 	 an-1'
al J

xn-1	
X  . . . xL-2

h 

hTA r
X	 7	 zo,

(L-n-1)A z0	 • .. , A	 z	 i .	 (B.1)
0

hTA(n-1)

The first matrix on the right is non-singular by Eq.	 (36): Therefore,

[an , an-1 ,	 ..., a 
I 

I	 is uniquely determined if and only if the second

matrix, the controllability matrix for the pair (A,zo), has rank n and



i

the theorem follows immediately.

Theorem 3.2 [201

Necessity.

	

(1)	 HL is L X (n + r). HLflL > 0 implies L 2 n r.

-
(ii) If bi a 0, then BL = 0, xL = AL1

 BLuL = 4

where Eq. (37) is restated as

ALxL = BLuL + k o	 (B.2)

and

AL IL + j2 1a jr

	

 SL	 (B.3)

and

BL = j	 b j S jL .	 (B.4)

Consequently, any AL satisfies Eq. (B.2).

(iii) If ui = 0 for 0 s i s L - n - r, then by Eq. (35), x i = 0,

also, for 0 s i s L - n - r. Thus, the first L - n - r + 1 rows of HL

become zero and rank H L < n + r, and HLHL is not positive definite.

(iv) If A(z) and B(z) have a common div^:zor, then

/\I	 N

AL = ALDL' BL = BLDL	 (B.5)

where

n 
	 nl

AL = IL - jT,_ ajSL, gL : j b jSL, n l < n

k

'r

7
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n-n l 	-
DL s do lL + jEl djSL, do 0 0.

Substituting Eq. (B.5) into Eq. (B.2) and multiplying both sides by DL1,

since ^DL^ # 0, we obtain

AL
 xL 'N

then 	
Cal, 

a2 ,	 an , 0, ..., 0, b l , ..., bn	 0, ..., 01 T
1	 1	 J

would satisfy Eq. (B.2) and contradict the uniqueness assumption.

T	 y
Sufficiency. Let 8 = 1~al, a 2 ,	 an, bl , b2 ..., br ] be an

vector such that the corresponding matricesA.L, BL satisfy-Eq. (B.2).

= b u A x = B u. Therefore,
Then AL_L L-3. —IrL =I L

ALgL=L ALALXL

= ALALxL = ALBLuL .	 (B.6)

Let

n+r
C L = ALBL - ALBL = iEi c^SL	 (B.7)

2	 ^n+r

^.,n+r = C S Lav S LuL , ... , =L all	 (B.8)

c = Cc l , c 2 , ... , cn+r `.	 (B.9)

Let

and
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Combining Eqs. tB.6) through (B.9), we obtain

UL,n+rc
 - C LuL - 0.	 (B.10)

By (i) and (iii), 
UL,n+r 

has rank n + r. Hence c - 0 and, by Eq. (B.7),

ALBL ALBL'

This implies B(z)/A(z) - B(z) /A(z) pnd, by (ii) and (iv), a - a and

b - b. This completes the proof.

Theorem 3.4 [91 is an immediate consequence of the definitions

given and is an application of the constant rank theorem for infective

maps [17].

Theorem 3.6 [101 results immediately from the application of the

variation of constants formula

r t
 

A(j)
Y.41) . C(9) 1 0 e— —	 B(6)u(T)dT + D(j)1j(t)	 (B.11)

And Definition 3.8 of distinguishability.

Corollary 3.6 [101

D(Q1)AL(b1)B(61) a C(9 2 )E (62)1(9 2),	 k - 0, 1, 2, ...(B.12)

D(11) " D12 )	 (B. 13)

Sufficiency. Equations (B.12) and (B.13) imply that the two

systems corresponding to the pair of parameter values (9 1 ,8 2 ) both

have identical impulse responses and hence have identical transfer

functions. By Definition 3.8 the pair of parameter values is indis-

tinguishable.
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Necessity. By Definition 3.8, the indistinguishability of

(el ,e2) implies for xo - 0, for any given u( t)eU and for all 0 s t s T,
that

I
i

V t 'el) - Y.4'42)

which, by the variation of constants formula, becomes

t
A(6 )(t•T)

C(el )	 e— 1	 B(Al)_(T)dT + q(ll)_(t)
0

(0
t A(6 )(t-'^)= C(V J e— 2	 B(,j2) u(T)dT + D(62) u(t). (B.14)

Since Eq. (B.14) holds for all 0 s t s T, and in particular for t - 0,

then

D(Q1)_(t) - D(A2)u(t)

for all u ( t)eU and for all 0 s t s T. Clearly,

D(11) a D(e2 )	 (B.15)

and

A(8)(t-T

	

ft
o e— -1	 B(el)u(T)dT

'r

= C 8 ) t eA(e2)(t-T)(-2 i 0	 B(e2 )u(T)dT.	 (B. 16)

Combining like terms and moving c(el ) and C(92) under the integral,
since they are independent of T, yields

r t	 A(6 )(t-T)	 A(e )(t-T)

0

	

[akl)e— —i 	 B(el) - c(e2 )e— 2	 B12)1 u(T)dz $ 0.
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Since the functions in the equation above within the brackets and u(T)

are continuous, by the standard theorem of the calculus of variations

C(Ql)eA(Ql ) ( t-T)$(8a) _ C(e2)ej(k2)(t- T)B(92) 	 0.

By repeated differentiation with respect to t and evaluation at t = T

C(91)B(Q1) a C(e2)1(Q2)

C(Ql )A(Q1 )B(Q1) a C(e2W 2)B_(92)

C(9 1 )Az (6 1 )B(6 1 ) • C(e_2 )A$ %)_(42 ),	 2	 0, 1, 2, ...

(B.17)

as required.

Theorem 3.7 [101 follows immediately from Corollary 3.6 and Defi-

nition 3.9 for (local) parameter identifiability.

Theorem 3.8 1101 is an immediate consequence of the given defini-

tions, Theorem 3.7 and the constant rank theorem for injective mappings

[17).

Theorem 3.9 ( 10

it has been shown [61 that . the solution to Eqs. (97) and (98) can

be written as

II v . , 6 . 6e11 = 1164 (•,eo ,6e) + Y(•,6Q)11
ZO

2 116 0 (•,90 ,6e)1! - Ik(',6e)11	 (B.18)

{

	

where Y(•,6e) are terms of 0 ( ll (,E) 11) and Jim 0(6)/6	 0.



Defining the L2 ( t,,T) norms of Eq. (B.18) yields	 k

J

T ^`

	

	
1/2	 r T	 1/2

(wer. 0,691
,2

 dT	 2	 ! Ilbl^,' ( T , 10, 6.1I1 I2dT
t0	 L t0

[j
T I^(T,6pII2dT 

1/2•
(B.19)

t0

Divide both sides of Eq. (B.19) by ft1j . Assume that IMI lies between

0 < JOJQJJ < 6. Then

T i0 ,62II	 2dT 
1/2 

Z 	 116.0 ( T ,_o-6JO	
21/2

t
	

[IT

 t	 6$
0	 o

	

 II^(Tae) II	 2	 1/2

[I

T -•'^_ dT	 (8.20)
t0	 ll6^ll

Now assume

jT r
r

t LNT(T,8o)N(T,8o)^ dT > 0,
0

and

T

Xmin I j[tiT ( T ,4) !L( T,4 )  i dT ' s2>0
. t0 	 J

where lmin is the minimum eigenvalue.

The first term on the right-hand side of Eq. (B.20) can be written

as

T 6Q66T 	1/2
( t 691 N T ( T, jo)IL( T,10)	 dT	 a s > 0,

for all 6.	 B.21)

y-
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As 6-0, the second term on the right-hand side of Eq. (B.20)

tends to zero, and the total right-hand side is greater than zero for

all 6 sufficiently small, say 6 S 6. Therefore, the left-hand side of

Eq. (B.20) is	 •

2	
1/2

it

T	 116X(T.4.6111
 

6	
> 0;	 (8.22;

0

hence, 116X( • , e0' 61) 112 > 0. Hence, for all 6 0 60 , ACS (lo, 6) , Y(t, 9)

0 Y(t,eo) for some toj to , T), which implies that the parameters, 6CQ,

of the nonlinear system are locally identifiable at AO.

Wald demonstrated the consistency of the maximum likelihood esti-

mate by first establishing three lemmas which are presented below with-

out proof (see Ref. (241).

Lemma B.1. If 9 0 
10

, then

E log p(y;6) < E log p(y; ,A^)	 (B.23)

Lemma B.2.

lim E log p(y;8,p) - E log p (y;—eo)	 (B.24)
P -6 0

Lemma B.3.

lim E log #(y;r)	 (B.25)
r -. cD

With the above lemmas and the law of large numbers, the following

theorems, leading to the consistency of the maximum likelihood estimate,

can be proven.
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Theorem B.4

M
Let W cO be a closed subset of Q. If 10 does not belong to W,

then
-	 i

sup P(Yl,Y2	 yk;^
Jew
--	 0	 1.	 (B.26)•	 Pr k^
	 P(Yl,Y2, "'s Yk ► ) .

Proof: By Lemma B . 3, we can choose r  > 0 such that

E log 1(Y, r0 ) < E log P(Y;I)•	 (B.21)

Let W1 bps the subset of W such that

W1 	
t ro , 9sW }.

G	
11

For each ecW 1 , we can choose a p e > 0 such that
r

E log P(Y;e, p^) < E log P(Y;10)•	 (B.28)

The existence of pe is guaranteed by the law of large numbers and

Lemma B.1. The set W 1 is closed and bounded and, hence, is compact.

Thus, there exists a finite number of points^ j in W l such

	

that the union of the spheres with center	 and radius p e , i • 1,j	 ,
..., J. ill 

S (—Iilp—

e,) covers Wl.

It is seen that

0 s sup P(Y 1 , Y2 1 ..., YO)
esw

j	 /	 \
S	 p (Y I ; 6. ,Py

i1
 ...p 

CYk^^op^I

+ W(Y 1 , r
0
) ... W(zk,ro).

I
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It is ttaen required to show that

P(Y I ;1Vi Qe ) ... P (yk;§.i,Pei)
Pr k ymm P

(Y1;20) "'P(Yk;-eO)	
0 = 1,	 (B.29)

and

*(Y l ► ro) ... *(Yk ► r0)
Pr kym^ P(Y

1 ;6_0) ... P(Yk ;10) _ 
0	 1	 (B.30)

%A ich is equivalent to showing that

	

k	
(	

1
Pr lim E c

log P\ym;Gi,p9	
- log P(ym ;^ )] = w	 1,

	

k — W m=1 L	 4-' 1

i = 1, ..., j;(3.31)

and

I	 k I

1
Pr lim E	 log *(Ym ► ro ) - log P (ym ;9,0 )

J
. m = 1..32)

i k • . m=1 

But Eqs. (B.31) and (B.32) follow immediately from Eqs. (B.27) and

(B.28) and from the (strong) law of large numbers.

Theorem B.5

Let i(y l , ..., yk ) be a function of the observations such that

g) ac>0forallkandforallyl,	 yk'P(Y l ► 	 Yk;o

(B.33)

Then

PrI k - co ^k = a0 1 = 1.
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.

Proof: Let ® denote the set of limit points of (§, kJ 	Than it

suffices to show that for any e > 0,

sup ; 1k • lo ll: Q4e} s s with probability one.	 (B.34)	 {.
ib

•

Suppose that there exists a j48 such that	 > s, than

wA^ 

I^ SUP
	

= s P(Y
l , ..., Yk ;) A P(Y l . *001, YL;iy)

^C --TT

for infinitely many k. But this implies

SUP	 P (Y1 ► ..., yk;V
I^ ' lo ll s s

P(Y 1 9 .•., Yk;20)	
2 c > 0	 (B.3S)

for infinitely many k by Eq. (B.33). By Theorem B .4, Eq. (B . 35) is an

event with probability zero; thus, Eq. (B.34) holds with probability

one.

	Recall that the maximum likelihood estimate 	 is obtained by

P(Y l O ..., yk ;gk) = max P(Y 1 l ..., YOL) , k . 1, 2, ...(B.36)
jew

If 
Jk 

exists, then

P(Y l j ..., yk
;^) = 1, for y l , ..., yk ,	 k	 1, 2, ...

Clea: ' y, by Theorem B.5, the maximum likelihood estimate is con-

sistent.

Proposition 1 (page 71). In Eq. (162), the vector 
L
L JEOL has only a	 j

finite number, n, of nonzero elements. As L-a, it contributes nothing

to JL(V/L in the limit. Therefore. 
COL 

can be dropped from Eq. (162)

t
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without loss of generality. Then

L Jy^ L ^^ ^AL + 'A sI.=LIe	 (8.37)
l-1

	

( 	
/

LI	
T )-1

ALL

+ 	 - A]LOLL,+L1^II	 (8.38)L Zi IF-L 

The first term it deterministic. In the second term, both t
^-h and

60-LI
L represent output sequences of some stable system with a bounded

input sequence. Thus, 3L - AL1ILyIL is uniformly boupdad. The limit in

the Proposition statement 
["m 11 J

y(1) exists, and

n	
LS-1

L ^	 ! L . --L	 L A C' J i -	 (8.39,l	 l	 !
where m  t a < e for all i. since 1 % ) are independent random variables

with

Pi • 0, qi ' 02 <

1

and

2

^a2 s a2 L-L< 1.	 1

I'

	the strong law of large numbers applies. Hence, with probability one, 	 j

LCLO, - 
0 1	 (B.40)

i

L

1
1i0 2 ,	 (B.41)

i



111

.

and substituting Eqs. (B . 39) through (B.41) into Eq. (B.38), we have,

with probability one,

L J L(8) J(§)'

Theorem 4.1 [11

Sufficiency. Define the matrix CL and the associated vector c by

CL = A
LBL,O - AL,OBL

2n
= E ciSL,	 (B.42)

1=1

F

i	 !
i

i

.i

and

c	 C cis c2 , ..., c 2 I T.

Then,

0 = lim ii(ALBL, O - AL,OBL)uLII2
L—^

if and only if

lim i^C u ii2 = IT r lim 1 UT U	 c 1	 0.
L -o m L L	 L-o w L —L, 2n—L, 2n— J

The limit condition of the Theorem statement; i.e.

1 T	 T

L a L UL, 2nL L, 2n ' 0'

implies that c 	 0, or, equivalently,

C(z) = A(z)B0 (z) - A0 (z)B(z) = 0,

B(z)/A(z) = BO(z)/AO(z),

(B.43)

(B.44)

(B.45)

W:



c T^oa + Tso	 2nb + Ebo, (B.46)
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where

A(z) - 1 +
nn

 aiz i , B(z) = j El bizl.

Hence, by controlability, b b 0 , a - 10 , 8 = 90 , and ®s V0 is a

singleton.

Necessity. It suffices to show that if the limit condition of

the Theorem statement, Eq. (B.45), is not satisfied, then there exists

8 = (10 + ba, b0 + bb) such that ba # 0, bb # 0, the condition of

Proposition 3 is satisfied, and 6s^'1® .S

Note that the vector c as defined in Eqs. (B.42) and (B.43) can

be re-expressed as

a

where

Tao s -42n 0 E2n' (2n x n);

Tbo u !2n , 0 E2n' (2n x n);

I-] ,
2n	 0

- [	
(2n x n).

n,n

Let V = Lim L UL, 2n UL,2n' If the matrix V is not positive definite,

then there exists a nontrivial solution to the equation

b8
0 V (

Tbo' Tao)
bb
	(B.47)

It is immediate from the definition of C L that k o - 0 and thus

0 l
bo a0 + Tsobo + E2nba .	 (B.48)

1
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Therefore, letting a - a  + a • 61, b - b  + a • 6b for any scalar a,

we obtain by combining Eqs. (B.46) through (B.48) that cTVc = 0 which

by Eq. (B.44) implies that the condition of Proposition 3 is satisfied

and 	 It only remains to show that 8QL.

Suppose (a i (A)], 1 s 1 s n; are the roots of A(z). Then, Xi(Ao)

are exterior points of the unit disc D - 1z: lzl s 1} on the complex

plane by stability. Since the roots of A(z) are continuous in a at a 

in the sense that there exists a neighborhood ®a where 0

1 L - X11 <t } such that Xi (A)sD for all asq, clearly a = 10 + a • 6a

is stable if a < 9 /116111. Furthermore, 8Q is an exterior point of ®s .	 y	
i

.	 j
Thus, a can be chosen to have

I

l	 6 (ao + a 6a, do +a 	 6b)-1h	 (B.49)	 a

•	

i

l
I
l

f	 ,
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