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Chapter I

INTRODUCTION

The ultimate objective of the study described here is

the determination of the possibility of employing acoustic

waves at ultraso^zic.frequencies for measurements of thick-

messes of slabs of coal backed by shale. The primary

application envisioned is in monitoring coal -face thicknesses

in longwall mining, 1 An essential subsidiary objective of

this study is to obtain fundamental information concerning

the acoustical properties (sound speed, attenuation rate,

and characteristic impedance) of coal, and the relationship

between these properties and the structural and compositional

parameters used to characterize coal samples. Such informa-

tion shou'Ld guide the development of a theoretical model of

wave propagation in coal, which would in turn be the basis

for interpretation of results of experimental measurements

and for the design of a slab thickness measurement system.

The progress toward these goals, summarized in this

report, comprises; design and construction of a digital sine

wave pulse generator; exploratory measurements of the sound

speed and attentuation rate in coal at ultrasonic frequencies;

development of analytical techniques for interpreting the

data from both the exploratory experiments and projected

^"P.~Br..itton, "Longwall Mining--Now there's a better way
to get at the coal," Popular Science 211, No. 4 (1977), 118-21.

i
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E periments which employ fully the capabilities of the 	
.,

^A

digital burst generator, investigation of theoretical models

of wave propagation in pool which pap relate the experimen

tally determined sound speed and attenuation rgte to physical

properties of the medium. The choice of a suitable

theoretical model is important so that numerical simulations

of reflection from a coal-shale interface can be performed#

and so that preferred frequency ranges and sensing techniques

can be indicated, despite the sparsity of experimental data

concerning wave speeds and attentuation rates,
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Chapter 11

DESIGN OF A TWO-CHANNEL SINE WAVE GENERATOR USING DIGITAL

LOGIC CIRCUITS

by T, Carolus and J. M. Mills

2.1. Abstract

Description is given of a recently constructed device

for use in ultrasonic experiments that employ two matched

transducers, The device produces two sinusoidal bursts of

substantially identical waveform, but with an adjustable

delay between their starting times. The bursts are derived

digitally from an external frequency standard (crystal

clock), with a frequency of 5 MHz; the master frequency for

sine wave synthesis can be any integer raction of this

clock frequency. The period of each cycle is ten times the

reciprocal of that integer fraction of the master frequency.

The duration of each burst can be ,adjusted, from one to nine

periods of the waveform, in steps of one period. A delay

counter is started coincident with the sinusoidal waveform

generator. Upon completion of this preset delay interval, a

second sine wave generator is started, which then generates

the same number of cycles as there were in the first burst.

The delay interval may be adjusted to any integer number of

master clock cycles. Thus the two sine wave bursts can be

delayed by an integer multiple of 1/10-th of a period of one

sinusoid. The three-decade delay counters allow the total

fi
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delay betveen the two burs ts to b e as much as 99.9 cycles.

r

	

	
Sinusoi(^al output frequency, the number of cycles in a

burst, and the delay between two successive bursts are all

adjustable during the course of an experiment,

2.2. Introduction

In order to measure the speed of sound in materials at

i	 ultrasonic frequencies, a pulser.-receiver unit is often used.
This unit generates a pulse ., receivem and amplifies its echo.

The disadvantages of using a pulse as a test signal

are:

The frequency spectrum of a pulse is not well
defined;

* An exact phase control of transmitted and received

signals is not possible;

• It is very difficult to deter:::ine exactly the

beginning and ending of the pv1se;

• The duration of the pulse is not adjustable.

To eliminate these disadvantages and to be able to use

the technique of matched transducers,' which is based on an

echo cancellation concept, a digital sine wave generator

has been designed, built, tested and described as follows:

1H. J. My Skims.n, "A Method for Determining the Propaga-
tion Constants of plastics at Ultrasonic Frequencies,"J. Acoust. Soc. Am. (1951), 429-434.

'f
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2,3, Deser r$,<!n of the "Digital Sine Wave Generator"

2.3 , 1, . General Goals

The device should produce two sinusoidal bursts of

substantially identical waveform, but with an adjustable

delay between their starting times. The frequency of the

sinusoids should vary from 100 KHz or less to 500 KHz. It

should be possible to control very precisely the delay

between the two bursts from 1/10 to approximately 100 periods

of one sinusoid, The relative gain of the bursts should be

adjustable.

In order to satisfy these goals, the device generates

its output signals by means of digital logic circuits

(CMOS integrated circuits), since it is comparatively easy

to generate sine waves, frequency independent gates, etc.,

with simple logic circuits like FLIP .. FLOP's, AND-, NAND-,

and similar circuits

2.3.2. The Main Components and How They Act Tog ether

The main components (see Figure 2-.1) are:

• The clock, which produces the master frequency,

from which all pulses for generating the sine waves,

&,61tes , etc., are derived

The basic sine wave generator with amplifiers;

• The burst counters, which allow an adjustable number

of pulses to pass to the sinewave generators such

that the desired number of sinusoids for each burst

is produced by each generator;

^i f

e
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• The delay counter, which starts the second burst

counter and hence sine wave generator after an

adjustable number of master clock pulses.

2,3.3. Description of the Components

2.3.3.1. The Sine Wave Generator, The design used

(see Figure 2.2) is described in the "CMOS Cookbook."'

Out of five D-FLIP-FLOP's (4013) a modulo-ten, five

stage walking ring counter is built. Four of the five phase

shifted outputs are summed with. carefully adjusted res^i.stors

(potentiometers R4- R7) (Figure 2.3a),	 Though the waveform

does not look like a sine wave, the first two spun ous

harmonics present are the ninth and the eleventh (-19.1 dB,

-21 dB, respectively, Figure 2.3b), so it would be a simple

matter to smooth the output with filters.

For the five stage generator, the output frequency is

always 1/10 -th of the clock frequency. Most CMOS circuits

work with a maximum clock frequency of 5 MHz at 10 volts,

t	 power supply. Therefore, the maximum output frequency is

approximately 500 kHz (as desired).

On the board, two identical sine°.wave generators are

c`	 built.

Each output signal is amplified by an operational

amplifier (CMOS 3140). The input offset is trimmable with

pot R8 and the gain is adjustable with R9 (,analogous for

1Don Lancaster, CMOS Cookbook, Howard W. Sams
Publication (1977).
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the second generator.)

Two outputs of channel II are available: 	 The SCHMITT
,tf

TRIGGER 4584 and the ANALOG SWITCH 4066 connect the OUTPUT A

with the amplifier output during the time .interval

" T _ .8 x .015 x .10 -6 x R3 second (R3 adjustable) and dis-

connect it from OUTPUT B as shown in Figure 2.4. 	 Before

and after T, OUTPUT B is connected to OUTPUT A but discon-

a
nected from the amplifier (important for receiving and

` J amplifying the echo).	 PRESET I and II present the five

j; FLIP-FLOP's such that each burst starts at 0 volts.

x
i
It	

^ a

t; start of the second burstcounter

DELAYED START	 --

{{ Control voltage
r for switch A

(pin6)	 _ .

If T

Control voltage
fo::; switch B

z	 (pins)	 ---_

U

t

	

	 output from

amplifier

1	 (burst IC)	 I
it

Figure 2,4. Pulse Diagram

r..

tti

J
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The 10 of tantulum electrolytic capacitor from point 1

to ground and the .01 of disc capacitors from pin to 14 to

ground (at the FLIP-FLOP's) stabilize the power supply and

eliminate noise,I

2.3.3.2.	 The Burst Counters.	 The CMOS circuits used

°x ( see Figure 2.5)	 are:
^t
t4

'e -4017	 DIVIDE BY 10 COUNTER WITH 1- OF -10 OUTPUTS

1 -4027	 JK FLIP-FLOP

-4584	 SCHMITT TRIGGER

-4081	 2-INPUT AND GATE

The clock is divided by ten by one 4017. 	 This new clock

frequency goes to another 4017 whose 1- of -10 ouputs are
A

connected to a 10 position switch on the panel. 	 As soon as
^s

the chosen position of this switch and the HIGH output of

i

the 4017 agree, the ENABLE goes to POSITIVE and the counter

stops counting.	 Negative edge detectors (4584 with capacitors

it
and resistors) generate set and reset pulses (spacing between

these pulses is adjustable with R1/R2 on the panel) for the

4027, which produces a HIGH output for the time between the

set and reset pulse.	 The 4081 finally allows the required
x ;.
c+> number of clock pulses to pass (Figure 2.6).

A

	

	 2.3.3.3. The Delay Counter. The idea used (see Figures

2.7 and 2.8) to generate the delay is basically the same as
^; (

lDon Lancaster, TTL Cookbook, Howard W. Sams Publica-
cation (1976).
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20 pulses, generate two cycles in burst

Figure 2.6, Pulse Diagram

I

master clock

divided by 10

^	
I

release of ,START but'tom

START	 I

I	
G ^.I	

f

'	 •	 I

^¢aT`tee^time adjustment

i

!^	 It

(T
pulses, generated
by 4584 for
switch position 2
(e.g.)

I{	 {

F gate, produced
by 4027

tt

L

final output I

pinll 4081
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used for the burst counters. Three 4017's form a counter

for three decades, The master clock frequency goes to the

4
counter for the first decade, 1 /10-th of this frequency to

}I

the second decade and 1/100 serves as clock for the third

decade.	 As soon as the chosen positions of all three 10

position switches on the panel and on the three outputs of

the 4017's agree, the 3-INPUT Gate 4073 yields a HIGH signal,

which starts the second burst counter and enables the counter

IC to continue counting.	 For testing purposes the output TEST	 a

yields the number of clock pulses, which generate the delay	 l

time, i.e,, each pulse corresponds to 1/10-th of one sinusoid

delay between burst I and burst II. 	 The interconnections of

the sections of the digital signal generator are shown in

Figure 2.8.

2.4.	 Refinements of Output Capabilities

Several additions have been made to the basic design

of the digital sine wave generator to make it compatible
.S with the apparatus for the coal-slab thickness measurements.

The primary refinement concerns provision of a large voltage,

large impedance output to match the requirements of the

transducer being used.	 The outputs from the sine wave

generator come from CMOS operational amplifiers 3140 (see

Figure 2.2) which are low output impedance devices with 10 Vpp

output voltage. The Panasonic transducers used in the

measurements require input voltage in the range 100 -200 Vpp

and present an essentially capacitive load. Two steps have I



been taken in an attempt to match these subsystems: Each

f" !	output channel has been provided with an adjustable voltage

divider, as shown in Figure 2.9, to provide adjustable out-

put voltage between 0 and 10 V 
pp' 

In addition, a buffer

with step-up transformer designed and provided by MSFC

t	 engineers has been incorporated. A schematic of this device

ti
is shown in Figure 2.10. The measured characteristics of

this amplifier are;

i

l
Gain	 125:1

Maximum input voltage
for distortion-free
output	 600 mV pp

Frequency range	 40- 200 kHz

This device performs well with a resistive load. When con-

nected to the transducer, however, a self-excited oscillation

developed in the output section (transformer plus transducer).

It is anticipated that this oscillation can be prevented by

capacitive feedback through a capacitance of 1-4 pf.

Channel I II	 output I/II

50 K 

_-0--r

.

Figure 2.9. Schematic Diagram of Output Voltage Dividers.
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The second refinement of the output from the digital

sine vave generator is the provision of a TTL level trigger

pulse to synchronize devices such as stepless gates. A 5V

pulse with pulse width 3 Us can be generated) by detecting

the negative edge at PIN START (identical with PIN PRESET on

the generator board) as shown in Figures 2.11 and 2. 12.

2.5. Testing and Performance

Figure 2.13 is a picture of the digital oscilloscope

screen showng e cyc le--  o^ a A.; kR burst, At higher fee-

quencies the noise content of the signal will increase by a

small amount

Figure 2.14 shows two bursts, the first with six cycles,

the second (delayed) with four cycles. One can nearly can-

eel the two signals by superposing them in the correct

manner.

Output W on the delay counter board yields the number

of 1/10 cycles the second pulse is delayed. (Since there is

no external adjustment similar to those at the burst counters,

the chosen delay may deviate one or two 1/10 of a cycle

from the actual delay if very small delays are selected.)

Figure 2.15 shows one burst and the reflected echoes

received by a transducer after passing through a tank of

water,

lDon Lancaster, TTL Cookbook, Howard W. Sams Publica-
tion (1976).
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Figures 2.16, 2.17 and 2.18 show the digital sine wave

generator in the context of the complete experimental apparatus

and top and front views of the generator.

OF pooh 
QUAL r)L

Figure 2.16. Layout of the Experimental System (Water
Tank, Amplifier, Sine Wave Generator,
Digital Oscilloscope).

C
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to 500 kHz Later on).
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Chapter III

PRELIMINARY MEASUREMENTS OF ACOUSTICAL PROPERTIES OF COAL

by Chew, C.-H., A. D. Pierce, and W. J. Hadden, Jr.
}

3.1. Abstract

A series of experiments were carried out to obtain some

values for the sound speed and attenuation coefficient of

coal. The experiments were carried out with apparatus

developed in a project directed toward development of a method

to determine coal slab thicknesses using ultrasound. The

theoretical derivations are based on the acoustic principles

of wave reflection and transmission at an interface between

two media. The results, when compared to those published in

recent literature, verify the applicability of the theory and

of the experimental apparatus.

3.2. Introduction

A survey of recent literature reveals sizeable dis-

crepancies in quoted values for the wave speed in coal.

Some of the reported values are:

D. P. Shumskii 1 - hard layer - 1180-1250 m/sec

J. R. Hearst, et al. 2 - compressional velocity

borehole logs - 2050-2150 m/sec

lab sample - 2300 m/sec

1D. P. Shumskii, "Ultrasonic Method of Estimating the
Structure and Fissuring of Coals," Soviet Mining Science 11
(March - April 1975), 147-149.

2J. R. Hearst, et al., "Fractures Induced by a Con-
strained Explosion in Kemmerer Coal," Int. J. Rock Mech.,
Min. Sci.. and Geomech., Abstr., 13 (1976), 37-44.
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B. M, Butcher and A. L. Stevens I - McKinley Mine,

Window Rock, Arizona

longitudinal wave speed - 2330 m/sec

elastic wave velocity - 2280 m/sec

Negligible data exist on the value of the attenuation

coefficient in coal.

The measurements descr:-!bed here were obtained via an

extremely simple experimental procedure; comparison of travel

times for an acoustic pulse over a fixed distance with the

intervening medium consisting of; i) a water buffer (the
4

cLxLtrol) and ii) the water buffer plus a slab of coal. The

primary limitations on the accuracy of these measurements are

the accuracies with which the complete path length and the

coal slab thicknesses are known.

3.3. Theoretical Basis of Experiments

To determine some values for the phase velocity and

attenuation coefficient for sound in coal and to test the

experimental apparatus, a series of simple experiments were

performed. Elementary acoustic theory for the reflection

and transmission of sound from the interface between the

two media were used to solve for these parameters.2

B. M. Butcher and A. L. Stevens, 01 Shock Wave Response
}i	 of Window Rock Coal," Int. J. Rock Mech., Min. Sci. and

Geomech., Abstr., 12 (1975), 147-155.

J	 2Allen D. Pierce, Acoustics - An Introduction to Its
Physical Princip les and A	 ca ions Draft of manuscript
to be published by McGraw-Hill B	 -Company (1981) Chapter

} 3.

,
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3.3.1. Phase Velocity of Sound in Coal

The sound speed in coal was determined by measuring

the travel time of ultrasonic pulses from the source trans-

ducer to the receiver transducer with and without the coal

sample inserted in the water buffer material. This set-up is

shown in Figure 3.1. The phase velocity is determined from

the equation shown in that figure.

3.3.2. Attenuation Coefficient for Sound in Coal

For the determination of the attenuation coefficient,

we consider the configuration show=n in Figure 3. 2 . Ensuring

continuity of pressure and velocity at each coal-water inter -

face leads to the following relationship between the

transmission coefficient, T, and the acoustical properties

of coal and water:

exp (2ak) = C4 /T2 + 2(,K2 - 1) cos (2krp,)

- 4K sin 6 sin(2kr z) - exp(-2ak) (1 - 2K cos 6

+ K2 )](1 + 2K cos 6 + K2)- 1

Here K and 6 are defined by:

K e U	
Z

= 1/2 Zc + 
Z 
ZW

W	 c

with Z  the characteristic impedance for water and Zc

J. ...uaJ . .a k® "' 
..} ^. _g y .:t	

- ....yam	
._Yr^ lw... i.0	

;.o--.wf	 _
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given by wpc/kc. The notation kc - w/Vc is employed in

Equation (1).

IV'x

3.4. Apparatus

The layout of the experimental apparatus used to obtain

the desired data is shown in Figure 3.3. The equipment used

was a water tank including supporting structures for the

transducers and coP.1, two matched ultrasonic transducers, a

digital sine wave generator, an amplifier, and a digital

oscilloscope. The transducers were Panametrics Model. V 3033
L

matched transducers whose operating frequency is ,5 MHz.

F^The water tank was constructed of plexiglass and fitted with

aluminum cylinders for housing the transducers and an aluminum

plate for holding the coal sample. The aluminum plate

extends across the width of the tank to prevent spurious
t

diffraction effects in the received signals. The digital sine

wave generator is a device capable of producing sinusoidal

bursts of fixed frequency generated by CMOS walking ring

circuits, The digitally generated bursts are characterized

by controllable phase, a frequency spectrum that is quite

narrow, exactly determined beginning and end, and controllable

length.

3.5., Data Collection and Analysis

In implementing equation (1) for the attenuation N:

coefficient, a, we initially choose 6 	 0 and neglect the

term involving exp(-2a,,). Thus we can obtain an initial(

}
t

k
1
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!i

Goal

Transdit

DiSi. gal Sing Vave
Generator

^l1t^Miu^

`Coscilloscog*

t'

C

Amplifier

Figure 3.3. Layout of Experimental Apparatus.

approximation for the attenuation coefficient a which is

used in the definition of Z  to yield new values for K and

S in Equation (2). These manipulations are extended to an

iterative procedure which is implemented by a computer pro-

gram. The resulting values of sound speed and attenuation

factor are presented in Tal le 3.1.

36., Results and Conclusions

The values for the sound speed in coal shown in Table

3.1 are in reasonably good agreement with previously pub-

lished values. 102 The values for the attenuation constant

agree reasonably well with those reported to us informally

by NASA MSFC personnel. (We believe the values for the

1.96 cm. slab to be spuriouo. 11 In view of the relatively

crude measurement procedure, o l,, _s agreement is encouraging.

M1J. R. Hearst,, et al., "Fractures Induced by a Con-
strained Explosion in Kemmerer Coal," Int. J. Rock Mech.,
Min. Sci -. and Geomech. , Abstr. , 13 (1976) , 37-44.

2B. M. Butcher and A. L. Stevens, "Shock Wave Response
of Window Rock Coal," Ibid., 12 (1975), 147-155.
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We feature of the present investigations that may

prove to be of further interest was the variability of the
results with (presumably) the viater content of the coal.
During exploratory tests, the amplitude of the signal

received and its time of reception varied appreciably for

immersion times varying from zero to twenty minutes, For

the tests reported in Table 3,1, the samples were soaped
for at least 20 minutes, or until the transit times and

received amplitudes stabilized.

t

0
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Chapter IV	 `'

THEORETICAL BACKGROUND FOR ECHO -CANCELLATION EXPERIMENTS

by Chew, C, -H and A. A. Pierce

Because of the excellent signal controlling capabilities

of the digital burst generator, the investigators chose an

echo-cancellation method for further exploration of the

acoustic properties of coal.. The particular technique 	 r'

ehoA pn is an adantat-ion for the diuit-a7 generator of a method
r.

used originally by McSkimin. l Numerical simulations of the

analysis for expected data have been performed in order to 	 a`
^r

provide a framework for data reduction.

The echo-cancellation method involves sending sinusoidal

pulses at a sample of coal from diametrically opposed direc-

tions as illustrated schematically in Figure 4,1. The

essence of the method consists of adjusting the voltage

applied to, for example, the transducer at the right in

Figure 4. 1, and the time at which this transducer is excited

so that the transmitted pulse incident on the transducer

at the left cancels the pulse from the left transducer

reflected from the face of the sample back to the same

transducer. The representations for the waves incident from

the left and right transducers are shown in Figure 4.1, as is

r=

	

	 the expression for the sum of the reflected and transmitted

waves incident on the left transducers.

H. J. McSkimin, "A Method 9-or Determining the Propa-
gation Constants of Plastics at Ultrasonic Frequencies,"
J. Acoust. Soc. Am. 23 (1951), 429- 434.
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Reflected
Reflected

Transmitted
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Figure 4.1. Experimental configuration for echo-cancellation
method. The incident waves from left and right
are expressed as P in,L ' A exp, i(kx - wt) and

Pin,R B exp i(ky wt), respectively. The

pressure received at the left transducer is

Pref,L + Ptr,R  RPin,L + Tpin,R'
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t..

The reflection coefficient, R, and transmj.esion

i coefficient, T, in this case are:

-, i(Zc /Zw - Zw/Zc) s in kc1R	 s	
(1)

2(cos kc 1 - iK sin kc1)

1

and

I

f.

T
cos kcI - iK sin kc1

i4

fiE

where Zis the characteristic impedance of water, Zc is{ w

the Qum quantity for coal (=s plk )	 '.c	 complexn	 ,	 is the eon	 Cx wave J

It
number in coal ( mow/V + ia) and the quantity K is

1/2(Zc/Zw + Zw/Zc ).

I
Assuming that the amplitude of the pulsed wave is

proportional to the voltage applied to the transducer, the

i

;relation between the complex wave amplitudes-for cancellation

7
between the transmitted and reflected pulses can be expressed

^^

f in terms of the relative gain G for the transducer voltages

'iI
and the phase shift	 between these voltages by

^:

f I

(B/A) nu11 	 -	
Ge '^	 _	 -R/T	 (3)

;;
of	 • which, when Equations (1) and (2) are employed, allows the

s

x	 .+

;$ determination of the sound speed V c and attenuation factor

a from G and ^.r

4

#

t

_...a	 fii?_4.+.-_-...»bwAwx^li._n r^.	 i':w liru .3d II^--Y	^'YIL'YhSY^.eiii.'MalilM+tdi'Y1@imsy:^.y.i5...aa" .̂	rre9l	 "i"	 :..:ol:....Wrs...
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After considerable manipulation, Equation (3) can be

recast by equating the magnitudes and phases of both sides

as two coupled transcendental equations with

e = w g /Vc , x = aVc/wk, and X = Zw/Pcwz.

tan e = tank (xe) tan ¢ 
+ tan-1 lx[02(1+  y) = X2]

e (1+ y) - X2

and	 (4)

4e 2 ( 1+y)G2 = X2 [sin 2 0 + sinh 2 (xe)] [X-464(1+y)

- 2x- 2 e 2 (1 - y) + 11
	

(5)

Two approaches have been used in obtaining solutions

of these equations with representative values for the para -

meters specified. In the first, the gain G, computed from

Equation (5), is plotted as a function of al( =x8) for a range

of values of x as shown in Figure 4.2. Similarly, the phase

shift 0 computed from Equation (4) is plotted versus e, as

shown in Figure 4.3. For given data, G and ¢, the sound

speed and attenuation factor are determined by finding the

values of a and a (and the associated value of their ratio

x) for which the points on the Gx - a curve and the Ox - e

curve imply consistent valves. This procedure can be carried

out graphically by assuming a value for the x and determining

e for the given 0 from Figure 4.3 and a for the given G from
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Figure 4.2, If a is not the same as xe, a new value for x

is determined from the values of a and e, and the process

is repeated until consistency is obtained.

Although the above procedure can be made to work by

manual searching, it is cumbersome and difficult to convert

for solution by computer. (finis procedure was, in fact,

based on forms of Equations (4) and (5) in which the data

G and 0 were expressed as functions o;4 the other variables,)

As an alternative, Equations (4) and (5) were obtained so

as to facilitate iterative sol!aO.on for .,e and ^:, using a

program written for a hand-held calculator (specifically, the

Texas Instruments SR-5$.) In this approach, an initial value

for x is aP,sumed and equation (4) is u01ved by Iixnteration as

0n+1 = tan-1 (x. h. s. of Equation (4) with e = en) (6)

Convergence is quite rapid and is relatively insensi tive to

x. This value of e is then used in a second subprogram in

which Equation (5) is solved iteratively for y = (x 2). Con-

vergence is somewhat slower in this case. The final value

of x is then used in the calculation of a new value of e

which is compared with the previous value. The process is

repeated until satisfactory agreement is reached. Finally,,

the sound speed V C and attenuation factor a are determined

from the definitions of a and x ,preceding Equation (4))..

The results of sample calculations, using typical parameter

N C
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values, are presented in Figure 4.4. As indicated by the

format of these figures, repeated computations based on

Equation (4) are most efficiently performed by choosing

successive values of the phase shift, ^, and finding the

values of a and x, which are consistent with various values

of the gain factor G. Computations following this algorithm

indicate that the results are periodic in ^, with period ff.

It can also be seen that this procedure allows rapid

determination of the wave speed (frame= WQ/Vc) and

attenuation factor a for given G and ^ from experiments.

, C",
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Chapter V

THEORETICAL MODELS OF WAVE PROPAGATION IN COAL

by Chew, Chye-Heng

5.1.	 Introduction

1 In view of the lack of experimental evidence concern-

ing the sound velocity and attenuation constant for coal, it

is extremely desirable to develop a theoretical model of

} coal as a substance which supports wave propagation, in order`

that variations of the acoustical properties of coal with

frequency and with important physical parameters can be

studied via numerical simulations of wave propagation. 	 The
r

results of such studies will facilitate the choice of fre-

quency ranges for coal-slab soundings. 	 The primary goals in	 u

{

choosing a theoretical model are; 	 1) prediction of acoustical
t

data;	 2)properties consistent with existing experimental

necessity for only a small set of physical parameters for

prediction of acoustical quantities; and, 3) close correlation

` of physical parameters with those presently used for classifi-

cation of coals.

This chapter describes several models which were

chosen for investigation because of certain characteristics

which were thought to be similar to those of coal. Two

^a
models have been studied rather thoroughly. The first, based

on wave propagation in a porous elastic medium, has been

rejected as inconsistent with experimental data, as explained
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below. The second model, based on dislocation theory, has

yielded more encouraging results. Additional models are

being invest,,gated, as indicated at the end of the chapter.

5.2. Porous Viscoelastic Material

Due to the porous nature of coal, it was first thought

C	 that the viscous loss due to fluid flow through the pores

may contribute significantly to the attenuation of wave pro-

pagation through coal.. Assuming that the mechanisms o£
n	

attenuation are additive, we will proceed to determine the

contribution of the viscous effect to the attenuation.

As discussed in Sec. 5.4, the attenuation in coal due

to viscous effect is too small (attenuation 2.5 x 10-4m-1

to have any significant contribution.

5.3. Theory of Dislocations to Explain the Attenuation

in Coal

From the creep experiment performed by xompery, I the

creep viscosity of coal was given as 4.8 x 10 16 poises. This

shows that coal is better modelled as a solid than a polymer

solid.

IZnopoff 2 found that for earth materials, the internal

friction Q-1 is almost independent of frequency in the low

Room Temperature,"

tic Waves in the
Principles and Methods,
TRUr s to-- n Academic

C. D. Pompery, "Creep in Coal at
Nature 176 (1956), 279-280.

2L. Knopoff, "Attenuation of Elas
Earth," Chapter 7 in Physical Acoustics,
Vol. 3B, edited by W. P. Mason and R. N.
Press, New York (1965), 287-322.
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kilohertz range. Mason l found that the internal. friction for

the earth materials obtained by Knopoff, and the fine-grained

Westerley granite and Pennsylvania slate could be explained

by the theory of dislocations.

Mason suggested two independent kinds of dissipation

involved in the movements of dislocations, The frequency-

independent dissipation is caused by the lattice vibrations

set by the motions of the kink dislocations while the fre-

quency-dependent dissipation is caused by the viscous drag

on the motions of the dislocations.

For the frequency-dependent internal friction, we

follow the method of Granato and Luche 2 by considering the

motion of the dislocations. The momentum equation is:

a2a	
p 

a2a	
npa	

A	

dy	 C1)
ax  a +20t 2 k fo

and the equation of motion of the dislocation is:

2	 2
A

ar
+B 

at- 
C^ = au	 (2)

y

W. P. Mason, "Internal Friction at Low Frequencies
Due to Dislocations: Applications to Metals and Rock
Mechanics," Chapter 7 in Ph sical Acoustics Principles and
Methods, Vol. 8, edited by W. P. Mason and R. N. Thurston,
Academic Press, New York (1971), 347-371,

2A. Granato and K. Luche, "Theory of Mechanical Damp-
ing due to Dislocations," J. Appl. Phys. 27 (1956), 583-593.

f,

iW
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4

where 9 = displacement of dislocation line,

c * applied stress,

A = itpa2,

B - drag coefficient,

C = µa2/2,

A - total, length of movable dislocations

a = dislocat^.on strength,

A = loop length of dislocation,

u, X = Lame's constants,

subject to;

W, t) _ g (R , t )	 0.

The internal friction and elastic modulus defect can

be shown to be;

Q-'l	 A(X + 2u)	 (8)

a + 21,	 D(1	 02)

ii
1

f+ 

In

and

A(A + 2u)	 8v2 Apa2R3	 {1 - 02)	
(4)

a + 2},	
_	

c 7r4	 (1 _ si2) z + 9 /D

where

A(a + 2p) = change in elastic modulus due to dislocations,
...11P?
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The frequency-independent part of Q -1 is given by

Mason' as 0,&(a + 2u)/(a + 2u), where s is a constant. Hence

the combined internal friction is

A(A +20 	 +	 n
Qw	 A + 2u	 D(l	 n2)

The NASA (Huntsville) experiments (unpublished) gave

the internal friction as:

Q_ 1 = 0.78 Neper at 100 KHz, and

Q-1 . 0.47 Neper at 250 KHz.

Hearst, et al. 2 give Q-1 = 0.05 for frequency below 500 Hz,

This model is able to account for the variation of the

internal friction with frequency. However, due to insufficient

data available, the validity of this model is to be verified

with the experimental data to be obtained.

5.4. The Viscoelastic Model

The discussion on the viscous effect of fluid flow

through the pores of a porous solid follows closely that of

W. P. Mason, "Internal. Friction at Low Frequencies Due
to Dislocations; Applications to Metals and Rock Mechanics,"
Chapter 7 in Physical Acoustics Principles and Methods, Vol.
8, edited by W. P. Mason and R. N. Thurston, Academic Press,
New York (1971), 347-371.

2J. R. Hearst et al., "Fractions Induced by a Con-
strained Explosion in Kemmerer Coal," Int. J. Rock Mech, Mina
Sci. & Geomech. Abs`tr, 13 (1976), 37-44.

(5)

T,
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Biot. 1 Assuming that the pores in coal, are of straight

cylindrical tubes (the sinuosity and various geometric fac-

tors can be taken into account by multiplying the attenua-

tion constant by a factor greater than 1), we can assume the

flow in the porous coal is of the Poiseuille type if the

frequencies used are less than:

ft 	7ru/ (4d2)

where u = dynamic viscosity of fluid,

d = diameter of the pore.

From Anderson et a1. 2 and Gan et al. 3 we obtain the porosity

of coal as 4% and the mean pore diameter as 500A.

For water, u = 1.27 x 10 -6m2/s, and taking d = 500 x

10-10m, then f t = 4 x 10 12 Hz. This shows that for the

frequency range considered in this project, we can assuma

Poiseuille flow.

According to the Biot4 model, the attenuation constant

a may be expressed as:

^1.. A. B ot, "Theory of Propagation of Elastic Waves
in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,"
J. Acoust. Soc. Am. 28 (1956), 168-178.

2R. B. Anderson et al., "Sorption Studies on American
Coals," J. Phys. Chem. 60 (1956), 1548-1558.

3H. Gan, S. P. Nandi and P, L. Walker, "Nature of
Porosity in American Coals," Fuel 51 (Oct. 1972), 272--277.

4Biot, pp. 168-178.
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1

	

	 p11p22 
w 

P122
 (L:ee)

2
I g1 4212Lc	 r12 - r 

in which f is the frequency, f e is a characteristic frequency
A

of oscillations in the pores, and all the other symbols repre-

sent physical properties of the elastic solid and the
t

saturating fluid.

Using values for these parameters culled from the liter-

ature available, 102 for coal as the solid and water as the

fluid, the following set of values is appropriate:

p il	 0,80

P22	 0.15

P12	 0.025

rll	 0.97

r22	 =	 0.06
r

r ig	 0.015

VC	 2.3 x 103 m/sec

fe	 2.6 ,x 1012 Hz

`	 Lc 	 1.4 x 1011 m

then	 z 1	 =	 6.94

z 2	 M	 0.0.5$
t

R. B. Anderson et a1., "Sorption Studies on American
Coals," J. Phys.	 Chem.	 60 (1956),	 1548-1558.

C
2H. Gan, P, Nandi and P. L. Walker, "Nature of

Porosity in American Coals," Fuel 51 (Oct. 1972), 272-
277.
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41 
a 5.94

	

92	 0.942

For	 f	 105 Hz, we have

a - 2,5 x 10-4 m-1

which is too small to have any significant effect on the

observed attenuation constant.

5.5. Further Model to . 1 , 14, Exp lored
As a consequences of the nature of coal formation) from

organic substances, it is a layered material, the layers

differing in their ptgsical appearance and in their maceral
7

^ 	
t

'

content; the plane of the layers is known as the bedding
r

plane.	 Measurements of internal surfaces have shown that coal_ 	 t

is highly porous, the pore sizes ranging down to tens of

angstroms.	 In addition, the coal is ramified with randomly

`j distributed cracks of macroscopic and microscopic sizes, 	 a

No differences of elastic behavior were observed for

the two directions parallel to the bedding plane, but the

modulus obtained for the direction-perpendicular to the bed-

ding plane was significantly lower than for the parallel

direction,
2

Terry	 et al.	 drew :y;	 general conclusions from their

A. Granato and K. Luche,	 Theory of Mechanical Damping
Due to Dislocations," J. App1. Phys. 	 27	 (1956),	 583-593.

2N.	 "StudiesB. Terry and W. T. A. Morgans,	 of the
Rheological Behavior of Coal," Section II, 13 in Mechanical
Properties of Non-metallic Brittle Materials, editby W.
H. Walton, Interscience, New York 	 9-258.

}f
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i

stress-strain experiments;

a) Coal is elastically transversely isotropic with

the axis of symmetry perpendicular to the bedding

plane; and

b) The values of the strain intercepts indicate some

anisotropy in the crack distribution.

To test the hypothesis that the anisotropy of coal is

due to the anisotropic distribution of the cracks, Terry

measured the velocity of sound through coal when it was sub-

jected to applied pressure.	 At a stress of 1600 psi, when

the cracks are closed or partially closed, the anisotropy was

considerably reduced.	 The anisotropy is due, in the main,

to flat, disc-like cracks of mirroscopic 'thickness, oriented

with their flat surface parallel to the bedding plane.

Whitehurstl deduced that the structure of coal can be

envisioned as a highly cross-linked amorphous polymer, which

consists of a number of stable aggregates connected by rela-

tively weak cross-links.

Larsen and Kovac2 estimated the molecular weight for

bituminous coals to be in the range of 1500-1800. 	 Assuming

that bituminous coals are composed of aromatic and hydro-

aromatic units linked together, the Heredy-Neuworth

N

I

r D. D. Whitehurst, "A Primer on the Chemistry and
'	 Constitution of Coal," Chapter 1 in Organic Chemistry of

Coal, edited by J. W. Larsen, American Chemical Society,
'	 WAshington, D.C. (1978), 1-35.
iN
,.f

	

	 2J. W. Larsen and J. Kovac, "Polymer Structure of
Bituminous Coals," Ibid., Chapter 2, 36-49.

z.
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depolymerizati.on is thought to cleave the alkyl chains

linking the aromatic units. They estimated that the average

cross-link chain contains 3-6 aromatic units

Further effort will be directed in deriving a poly-

meric model for coal to explain the acoustic velocity and

attenuation as a function of frequency at a fixed temperature.

t,

C'

;t
r
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Chapter VI

DEVELOPMENT OF SOFTWARE FOR MINI-COMPUTER ANALYSIS OF

DATA FROM A DIGITAL OSCILLOSCOPE

by H. Joseph Venne, Jr.

6.1. Abstract

An assembly language computer program was developed to

perform the task of transferring data from a Nicolet Model

1090A Explorer Digital Storage Oscilloscope through a Texas

Instruments D2odel 980 Computer Input/Output Data Module to

the memory of a Texas Instruments Model 980A Minicomputer.

The purpose of the transfer was to enable the mathematical

a
manipulation of data obtained from experiments aimed at

determining the acoustic properties of coal. An assembly
i
1.

language computer program was developed to return the data

from the computer memory, after manipulation, through the

t data module interface and to the digital oscilloscope for

{	 final display. A study of the operational characteristics

of the data module and the logic of assembly language data

transfer programming was made to facilitate the actual soft-

ware development.

6.2. Introduction

This chapter describes the computer software developed

C	 to implement the transfer of data between a Texas Instruments

Model 980A Minicomputer and a Nicolet Model 1090 Explorer

Digital Storage Oscilloscope through a Texas Instruments
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Model 980 Computer Input/Output Data Module. This transfer

of data is needed so that mathematical computations can be

performed on the data by the minicomputer system.

The data used is originally obtained from experiments

designed to determine the acoustic properties of coal, using

ultrasonic pulses transmitted through a coal slab immersed

in a water buffer.	 To obtain the information necessary to

perform the desired analysis, the signals received by the

transducers after reflection and transmission from and through

the coal are displayed on the digital oscilloscope. 	 It is

then necessary to transfer these digital signals through the

data module interfacing system to the computer; the software

developed is needed at this point to implement the transfer.

Once the data is stored in the computer memory, the required

Cp mathematical manipulations can be carried out,

The types of manipulations to be performed are related

i	 the ultrasonic pulses,to the characterization of 	 p	 , reflected

. or transmitted.	 First, to obtain an accurate representation

of the pulse from a particular experiment, an averaging of

the signals from a number of test runs can be performed.

This will tend to smooth out any random variations in the

signals. Next, various statistical calculations can be

performed on the data, such as a correlation computation to

determine if certain reflected or transmitted signals are

correlated to the incident signals. The correlation com-

putations could particularly improve the extraction of the
}

i
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transmitted signals from the background noise. Hence, the

exact beginning and end of the pulses can be determined,

which is essential to the characterization of the signals.

After calculations similar to those listed above have

been performed, the data must be transferred back to the

oscilloscope for display. This regt,ires similar programming

to implement the transfer through the data module interface

as was developed earlier.

6.3. Installation of the Input/Output Module

The installation of the Input/Output Data Module

simply consists of the soldering of the appropriate connections

on the computer-oscilloscope interface and inserting the

circuit board in the central processing unit Input/Output

chassis of the computer. The required connections are shown

in Figure 6.1.

The options selected for usage in the module are as

follows;

1. Module address. Connection E3-E 4, E7-E8 for
hexadecimal address 48.

2. No output driver pull-up resistor option.

3. No input interrupt option -E18-E19 connection to
disable.

E
4. No data input line termination option.

5. External +5 volt output connected to the integrated
circuits.

c[

	

	 6. Output register reset enabled by the module reset.

The module was inserted in chassis 105.

^ 	 i
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6.4. Input/Output Data Modulel

The Texas Instruments Model 980 Input/Output Data

Module is a general purpose interface used for implementing

data transfer between the Input/Output bus of the Model 980A

computer and an external peripheral device, in this case a

digital oscilloscope. It provides 16 input and 16 output

lines for the data transfer, In addition to the general

Input/Output Characteristics, the module also has the

following options for user selection:

1. Module address. The module address has sixteen
possible hexadecimal codes for user preference.

2. Output driver pull-up resistor voltage. The
output driver circuits have the option of being
attached to either +5 volts or up to 30 volts
maximum supplied through 1,000 ohm, 1/4 watt
pull -up resistors.

3. Input interrupt option. When connected, the
input data bit 0 becomes an interrupt control
line that is independent of program control.

4. Data input line termination. The data input line
termination input impedances are adjustable as
desired by the user.

5. External +5 volt output. A +5 volt output is
available for external devices.

6. Output register reset. The module's register
reset can be activated by the Input/Output bus
reset, if desired, rather than by program control.

The Input/Output Data Module external device inter-

connection occurs at the top edge of the module circuit

1Model 980 Computer Input /Output Data Module User's
Manual, #965956-9701, Texas Instruments Incorporated,
April 1, 1976.
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board. There is a total of 48 ,pin assignments which are

summarized below:

OUP"(00-3,,5) - 16 output lines with data inversion
occurring at the interface,

IN(00-15) - 16 input lines with unchanged data
logic at the interface.

OREADY - Output ready line indicates that the
module has a new data word ready for
the external device; active at logic 0.

OACK - Output acknowledge indicates that the
external device has accepted the data
word; active at logic 0.

IR:EADY - Input ready indicates that the external
device has an input word ready for the
computer central processing unit; active
at logic 0.

LACK - Input acknowledge indicates that input
data has been accepted by the central
processing unit; active at log:^c 0.

+5 Volts - Can be used to supply voltage for an
external. device.

VccEXT - Can be used in output driver pull-up
resistor circuits.

RESET and
OUTRESET

	

	 Both functions can be controlled by the
resistor reset rather 'than by program
control, if desired.

GRD	 - 10 ground lines are available.

The pin numbers for the above connections can be found in

the Input/Output User's Manual.i

1Model 980 Computer Input/Output Data Module User's
Manual, #965956-9701, Texas Instruments Incorporated,
April 1, 1976,

1
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6.5. Programming for Transfer of Data

The transfer of data from the computer to the

oscilloscope is defined as a writing operation while the

transfer of data from the oscilloscope to the computer is

defined as a reading, operation, These two operations must

be performed by the user as the data module interfacing

system is totally externally controlled, The read and write

operations follow basically the same type of logic and can,

be implemented manually or by an assembly language program.

6.5.1. Logic of Read Ope'ration1

The operation of a rear: function centers around the

enabling and disabling of the input interrupt. The reading

of data from the oscilloscope occurs when the input inter-

rupt has been enabled and the data module signals an IREADY,

or Input Ready, to signify that data is available for trans-

fer. At this time, an input interrupt occurs and the channel

is opened for the transfer of data to the CPU. In effect,

the input interrupt feature interrupts the execution of

whatever task the computer is performing and route; computer

action to data transfer. When the data has been transferred,

the CPU signals an INACK, or Input Acknowledge, to signify

that the data has been accepted and the procedure is repeated.

Model 980 Computer Input/Output Data Module User's
Manual,, #965956-9701, Texas Instruments Incorporated,
April 1, 1976.
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Word 1

Bit 0	 1	 2	 3	 4 5	 6 7 8 9 10 11: -	 15
a	

1	 0	 1	 1
----

group 0 0 R R/W '
e^+aerna.l
registerCode

59

A flow diagram for the procedure is given in Figure 6.2.

6.5.2, Generation in ormation Regarding Manual

Input and Output of Data'

Single word transfers between the computer and oscillo-

soope through the 1/0 Data Module can be performed by

executing the Write Direct Single (WDS,) or Read Direct Single

(RDS) instructions. The general format to be used for these

instructions involves use of the sixteen data switches

located on the computer front panel with significance as

shown be low:

i^

3

{34

9?

-i

N

	

operation code	 logic 0 RDS
logic 1 WDS

Word 2

Bit	 0	 7	 8	 9	 10	 11	 12	 15-15

Code unused	 B	 0	 I	 D	 A	 R

The first word is used to determine the operation

used (Read or Write) and the number assigned to the external

register that represents the address of the data module.

The group field identifies the chassis containing the I/O

x

`Model 980 Computer Input/Output Data module 'User's
Manual, #965956-9701, Texas Instruments Incorporated,
April 1, 1976.
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module, The second word is used to determine the source

or destination of the data word and selects the features

to be used in the transfer, such as skip on ready, decrement

data address, and increment data address, The functions of

the bits of word 2 are given below:

Bit	 Symbol Function

8	 B Busy bit or skip on ready feature provides
the option of executing other instructions
if the data is not ready for transfer when
requested by the CPU - logic l and sucess-
ful data transfer results in the nett
instruction being skipped -logic 1 and n v
transfer results in the next instruction
being executed,

13-15	 R Specifies the internal, register used in
the operation,

12	 A Logic 0 - data transferred to or from
register R.

Logic 1 - data transferred to or from
memory location R.

11	 D Not used for the 980A model,

10	 1 Logic l and A = logic 1 - :address
specified by R is incremented by 1 each
time a transfer occurs.

Logic 0 - a decrement occurs.

6,5.3. Manual Read Operation)

To transfer data manually from the oscilloscope to

the computer, the following read operations are available as

defined by word 1

Model 980 Computer Input/Output Data Module User's
Manual, #965956-9701, Texas Instruments Incorporated,
April 1, 1976.
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Bits
Instruction Big  9 11,12,13	 Bit 14 Bit 15	 Function

RDS 0	 Module	 0	 0	 read status
address

RDS 0	 0	 1	 input data

RDS 0	 1	 0	 read output
register

The description of the read operations is given below:

read status - provides the CPU with the current
operational mode of the controller;

The bits used are as follows;

Bit Function

0,	 9-15 Not used.

1 Output interrupt enable status. k
01 = logic 1 - enabled.
OI - logic 0 - disabled,

2 Input interrupt enable status.
II = logic 1 - enabled.
II - logic 0 - disabl,,:d,

3 Output interrupt status w
OS = logic 1 - interrupt is pending.

4 Input interrupt status
IS = logic 1 - input interrupt is pending,

5 Output ready signal status
OR -•- logic 1 - output word is ready for

the external device and the acknc-4ledgement
has not been received.

6 Output acknowledge signal status.
OA s logic 1 - output acknowledge has

been received,

Input ready signal status.
IR a logic 1 - external device has input	 !

ready for the Data Module.

Input acknowledge signal status,
IA° = logic 1 - input from external

device is acknowledged,

7

.8
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Bit	 Function

Input data	 - permits the transfer of a 16 bit word from
the external device to the CPU.

Read output - permits the transfer of the output data
register information into the CPU.'

To perform the data transfer one follows the general

flow diagram of Figure 6.2 and enters data words with the

above format to enact the transfer. In general, one uses the

read status option to determine if the input interrupt is in

action; then uses the input data option to transfer a word;

then uses the read status option to determine when the com-

puter acknowledges the data transfer and then repeats the

process. This method allows one to experience the actual

mechanical operation of the computer but is quite inefficient

for the transfer, of large amounts of data.

6.5.4. Programmed Read Operation 

The program that follows is used to read a 4096 word

buffer from the oscilloscope through the I/O Data Module

Interface which has an address of 48 4096 words are read

since the data from the experiment performed to determine

odel 980 Computer Input/Output Data Module User's
Manual, #965956-9701, Texas Instruments Incorporated,
April 1, 1976; Model 980A Compute- Assembly Language Input/
Output Manual. #9'31961-9734, Texas Instruments Incorporated,
April 1, 1973; Model 980 Computer Assembly Language Pro-
grammer's Reference Manual #943013- 9701, Texas Instruments
Incorporated, March 1,1975; C. Foster Caxton, Programming
a Micro -Computer , Addison-Wesley Publishing Co., Reading,
MassachusetEs, 1978.
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the acoustic properties of coal are represented as 4096 words

in the oscilloscope memory. The program follows the flow

diagram given in Figure 6.2.with the addition of a loop during

the interrupt sequence that allows the implementation of other

progrananing while the computer is waiting for a data word to be

ready for transfer. The program has a checking procedure to

determine if the interrupt has been presented to the computer

from the data module and not from some other system module.

Buffer overflow is prevented. This program uses the input

interrupt system so that the system can perform other tasks

while waiting fvh the interrupt to occur,

LABEL	 OPERATOR	 OPERAND	 COMMENT

l	 8	 13	 30 - column

A	 EQU	 0	 assign registers

X	 EQU	 2

DATAWD	 EQU	 >49

MTRI,	 EQU	 >48

RSTATS	 EQU	 >48

BEGIN	 @LDA	 =55B	 setup interrupt sequence

@STA	 >6

@LDA	 =TRAP

@STA	 >7

@LDA	 =0

STA	 R.DCNTR	 initialize system

@LDA	 =>2000

WDS	 CNTRL	 enable input interrupt
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Ir,

LABEL	 OPERATOR OPERAND COMMENT

DATA 0 send contents of register

TRAP
	

DATA 0,0 loop	 checking interrupts

4F 1	 8 13 30 - coluiwa #

STA TEMP

STX TEMP + I

RDS RSTATS

DATA >0

TARO 2 check interrupt enable

BRU OTHER if not enabled branch to

LDA RDCNTR other programming

CPL =4096 if interrupted do data
transfer

SNE

BRU ERRT

RMD A,X

RDS DATAWD

DATA >0

STA RDBUFFER X

LDA TEMP

LDX TEMP + I

IMO RDCNTR

LSB TRAP return for next data read

411̂
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6.5.5. Write Operation

6,5.5.1. Logic of Write Operation, The operation of

the write function centers around the enabling and disabling

of the output interrupt. Writing data to an external device

occurs when the output interrupt has been enabled and the CPU

issues an OREADY, or Output Ready, signal to signify that data

is ready for transfer. At this point, the output interrupt

occurs and the data is transferred to the external device.

When the external device signals an OACK, or output acknow-

ledge, to signify that the data has been accepted, the process

repeats. A flow diagram for the procedure is given in Figure

6.3. This flow procedure does not follow the output interrupt

directly but loops to check the output ready and output acknow-

ledge bits directly to implement the data transfer.

6.5,5.2. Manual Write Operation. 1 The manual write

operation uses the same word format given in Section 6.5.2

with the write operation defined in word 1 as follows:
d

Instruction Bit 10 Bits 9,11,12,13 Bit 14 Bit 15 Function

	

WDS	 1	 module address	 0	 0	 control

	

WDS	 1	 0	 1	 output
word

	

WDS	 1
	

1	 0	 outputbit
The write functions are defined below:

1Model 980 Computer Input/Output Data Module User's
Manual, #965956-9701, Texas Instruments Incorporated, April
1, 1976.
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Control - This instruction uses the first three bits of the
data word to initialize the I/O module.

bit 0 - logic 1 - all control logic and flags are
reset.

bit 1 - output interrupt enable.

OI = logic 1 - interrupt issued when data
transfer is acknowledged.

01 = Logic 0 - no interrupt issued.

bit 2 - input interrupt enable.

II = logic 1 - interrupt issued when data
word is ready for transfer.

II = logic 0 - no interrupt issued.

output word - transfer a 16 bit word from the CPU to the
Data Module

output bit - permits loading of a single bit of the output
register with a specified value.

Again, to implement the write operation, one checks

the device status with the read status options, as described

above, and then transfers the data at the appropriate time.

Also, as stated before, this is not a very efficient way to

enact a large number of data transfers.

6.5.5.3. Programmed Write Operation. The following

program is used for the transferral of a 4096 word buffer

from the computer to the oscilloscope through the I/O Data

Module interface. The program follows the flow diagram

given in Figure 6.3 and manual write operation described

above.

,r
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3

i.
tf

R

LABEL

1
X

A

WDATA

RSTATS

CNTRL

BSS

BEGIN

LOOP

1

BUFFER

SAVE

OPERATOR

8

EQU

EQU

EQU

EQU

EQU

EQU

LDA

WDS

DATA

LUA

LDX

WDS

DATA

BRU

8

STA

RDS

DATA

TABZ

BRU

LDA

BIX

BSS

DATA

END

OPERAND

13

2

0

>49

>48

>48

>D8CO

>8000

CNTRL

0

=BUFFER

=-4096

WDATA

>OOA8

LOOP

13

SAVE

RSTATS

>0

6

$-3

SAVE

LOOP

4096

0

BEGIN

COMMENT

30 - column #

assign registers

reset system

set up counter

write data word it ready

test busy bit if busy

loop back and try again

30 - column #

check if output acknowledged

if no wait

if yes loop back

to send next word

/^	 i
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6.6. Implementation of Program 

With the completion of the writing of the appropriate

read and write programs, the actual transfer of data may be

performed. This involves the operation of the computer

itself and the use of the high speed reader, teletype, and

pre-punched system tapes. The procedure consists of making

the computer operational, enabling the system to create a

program, creating the program, creating a tape for running

the program, and running the program. The steps are as

follows:

6.6.1. System Start-Up

1. Turn on power.

2. Select Halt and Reset.

3. Set data switches to 'OOOF'; select Enter in PC.

4. Select Run and Load; computer should run to idle;
select Reset.

5. Turn tape reader On, Load; load PTR System Loader
tape in reader; turn reader on Run.

6. Set switches to '0000', enter in M; set '0004' and
enter in PC; select Run and Load; tape should read
in and stop; display M; if result is not '0000',
rewind, Reset and repeat.

7. Load "IOP#1 - Class III System, Configuration II"
tape in reader, select Start; when tape has been
read, Display M, result should be '0000'.

8. Turn teletype on 'Line', select Start; teletype

Model 980A Computer Basic System Use and Operation
Manual, #961961-9710, Texas Instruments Incorporated, August
15, 1972. 
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should respond *Ready*; operating system is now in
place and can be restarted by selecting Halt,
Reset, Run, and Load.

6.6,2.	 Create Source Tape

I. Assign units by typing the following on the teletype;

//ASSIGN,4,KEY,
//ASSIGN,5,HSR,
//.ASSIGN,60KEY6
//ASSIGN,7,TTP.
//ASSIGN,8,KEY.

2, Load "Source Editor' s tape.

3. Type //EXECUTE,HSPT.

4. Tape will read in and the response will be

5. Enter text mode by typing '*',

6. Type in the read or write program.

7. After last Line return to control mode by returning
the carriage,

8. Type S+N where N is the number of lines in the
program.

9, Source tape will be punched by the system.

r'

6.6.3. Run Program

1. Repeat system start-up method through step #6.

2. Load object tape.

3. Select Run and Start on the 980A panel.

4. Select start after the object tape is read and
the read or write program is in execution.

At this point, the program is in the computer and

steps described above for the transfer of data will be

implemented by the .computer.

}
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N6.7. Conclusions and Results

If the procedures outlined above are followed, the

successful transfer of data between the oscilloscope and

computer through the Input/Output Data Module will be

achieved, Thus, with further programming, the analysis

of the data obtained from the experiments carried out can

also be performed and the furthering of the knowledge of the

acoust",c properties of coal can be achieved, The above

programming and methodology were extracted from a series of

user manuals covering tbLe Texas Instruments Model 980A	 4
I

computer as cited in the footnotes. Explanation of the

assembly language computer statements can be found in these
1

manuals along with an elaboration of editing and debugging

the programs,

a



Chapter VII

CONCLUSIONS

The most significant achievement during the present

contract period has been the design and construction of the

digital sine wave generator, which is expected Ito play a

central role in subsequent experimental measurements. 	 This

device has been employed in some measurements of wave speed

and attonuation rates for coal samples, using a relatively

crude measurement technique.	 The results of these tests are

in reasonably good agreement with the small ?mount of, avail-

able data,

Other efforts during this period have been directed

towards developing analytical capabilities to support the

use of the digital generator in more extensive experimental

measurements and theoretical models which will allow exten-

sion of the results of the measurements beyond the ranges of

parameters, particularly the signal frequency, for which

experiments can be performed.	 It is anticipated that, in

the subsequent phase of this project, it will be possible to

proceed rapidly with the experimental measurements in view

of foundations which have been established in the curreht
period.

It
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