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ABSTRACT 

An implicit delta form' finite-difference algorithm for Euler 

equations in conservation law form has been used in preliminary 

calculations of three-dimensional wing-vortex interaction. Both 

steady and unsteady transonic flow wing-vortex interactions are 

camputed. The computations themselves are meant to guide upcoming 

wind tunnel experiments of the same flow field. Various modifications 

to the numerical method that are intended' to improve computational 

efficiency are also described and,tested in both two- and three­

dimensions. Combination of these methods can reduce the overall 

computational time by a factor of 4. 
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I. INTRODUCTION 

Wing-vortex interaction is encountered in many practical applications 

in aerodynamics, and yet it is not a well understood mechanism. Helicopter 

rotor flow fields are a potentially rich source of vortical flow phenomenon. 

The interaction of a trajling vortex wake with the oncoming blades can 

induce unsteady blade loading and aerodynamic noise. Interest in. improving 

helicopter flight performance has provided impetus to develop computer 

simulations to understand the physics of this problem. 

Current numerical algorithms to compute unsteady transonic inviscid 

vortical flow ab~ut complex configurations are frequently either inadequate 

or too costly to .use for routine design analysis of a large class of two­

and three-dimensional flow fields. Unsteady potential theory cannot be 

satisfactorialy used for such analyses unless rotational flow effects are 

sufficiently weak and can be modeled with various circulation sheets. 

Numerical algorithms based on the Euler equations are suitable for any 

inviscid flow field simulation, but current numerical algorithms for 

the Euler equations have large computer time and computer storage 

requirements. 

The present study has a two-fold objective. The first of these is 

to apply an existing computer code for computing rotational compressible 

flow field of simple wing-vortex interactions so as to better understand 

the flow phenomenon. These computations are expected to guide follow-on 

wind tunnel experiments and more efficient approximate methods. The 

second objective is to further the methodology and efficiency of current 



numerical procedures. Then, advanced simulations of helicopter flow 

fields can begin as more powerful computers become available. 

With the above objectives in mind, an implicit finite-difference 

procedure for solving the unsteady conservation law equations of inviscid 

flow was upgraded and applied to a simple three-dimensional wing-vortex 

interaction problem shown in Figure 1. Experimental data will be taken 

at a later date for a rectangular wing spanning the wind tunnel walls. 

Interacting with this wing will be an upstream vortex generated from a 

lifting half span wing. The preliminary computations presented here 

model this'configuration, although the upstream vortex is analytically 

specified at this time. 

As noted earlier, computations of three-dimensional flow fields using 

Euler equations generally require too much computer time. As a consequence, 

methods of saving computer time and distributing the grid points efficiently 

were studied simultaneously with the wing-vortex interaction calculations. 

Several methods of improving the computational efficiency of the 

present implicit code are demonstrated for two-dimensional 

flows and some are implemented in the three-dimensional code as well. 

In this report the governing equations are reviewed in Section 2 and the 

boundary conditions are discussed in Section 3. The numerical algorithm 

is described in Section 4, with' the relevant grid system in Section 5. 

Results are discussed in Section 6 with concluding remarks in Section 7. 
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2. GOVERNING EQUATIONS 

For a perfect gas neglecting viscous effects, the governing partial 

differential equations are the unsteady Euler equations. These can be 

written in a Cartesian coordinates frame of reference and in strong 

conservation law form for three-dimensions as follows: 

qt + E + F + G .= 0 x y z or 
where 

p pu 

pu 

E(q) = I PU1 +p 

q = I pV pUV 

pW pUW 

e ,. I u(e+p) 
I 

(2) 
1 pV pw 

puv puw 

F(q) = I pv1 +p and G(q) = pvw 

pVW pw1 +p 

v(e+p) w(e+p) 

The primitive variables of Equation (1) are the density p, the 

three mass fluxes pu, pV, pw in the three coordinate directions 

x, y, and z, and the total energy per unit volume e. In Equation (2), 

p represents the pressure and is nondimensionlized by '~; density p by p~; 
\ 

~~ 
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v u, v, and w the velocity components in x, y, and z directions by a=1~. 
~ 

where a is the free stream sound speed and y is the ratio of specific = 
heats; and e by p a2

• = = 
The pressure, density, and velocity components are related to the 

energy by the equation of state which is written for a perfect gas as 

e = -E- + P (u2 + v2 +. W2) 
y-1 ~ • 

In order to transform the physical flow domain into a cubical 

computational domain, the following independent variable transformation 

is employed: 

'r = t 
~ = ~(x,y,z,t) 
n = n(x,y,z,t) 

z; = z;(x·,y,z,t) 

This transformation maps the body and outer boundary surfaces onto 

constant coordinate planes as shown in Figure 2 and thus facilitiates 

(3) 

(4) 

the application of boundary condition procedure. The above transformation 

also permits the clustering of grid points in the vicinity of the body and 

in the regions of steep gradients in the flow. 

Application of coordinate transformation, Equation (4), into 

r~~ Equation (1) yields the following governing partial differential equations: 

? '\...\\\c, ...... -
\ ' . 

£ 

~~f. .. /' 
- j 

.£§. + 3E + 3F + as = 0 
a'r a~ an az; (5) 
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where 

q = q/J 

E = (~tq + ~xE + ~yF + tzG)/J 

F = (ntq + nxE + nyF + nZG)/J 

G = (~tq + ~ E + ~ F + ~ G)/J x Y z 

The flux vectors E, F, and G all can also be written as 

pU 

puU + ~xP 

E = J-
1 I pvU + ~yP 

and G = J- 1 

pwU + ~zp 

(e+p)U - ~tP 

pW 

puW + ~xP 

pvW + ~yP 

pwW + ~zp 

(e+p)W - ~tP 

pV 

puV + nxp 

F = J- 1 
pvV + nyp 

pwV + nzp 

(e+p)V - ntP 

where U, V, and Ware the contrava~iant velocities (without metric 

normalization) given by 

U = ~t + ~ u + ~ v + ~ w . x y z 
V = nt + n u + n v + n w x y z 
W = ~t + ~ u + ~ v + ~ w x .y z 

-5-
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The metrics required by Equation (7) are obtained from a chain 

rule expansion of x~, y~, etc. an~ solved for ~x' ~y' etc., to yield 

~x = J(YnZ~ - y~Zn) nx = J(Z~~ - y~z~) 

~y = J(z x - x z ) n ~ n ~ ny = J(x~z~ - ~~z~) 

~z = J(xny~ - ynx~) nz = J(y~x~ - x~y~) 

~x = J(Y~Zn - z~n) ~t = -XT~X - YT~y - ZT~Z 

~y = J(xnZ~ - x~Zn) nt = -x n -.y n - Z n TXT Y T Z 

~Z = J(x~yn - y~xn) ~t = -XT~X - YT~y - ZT~Z 

-1 where J = x~y Z + Y z~x + z x_v~ - x_v Z - x y~z - x_v z~ ... n ~ 1;.. n n 1;".. ~- ~ n n.. 1; 1;" n .. 
is the transformation Jacobian. 

The transformed equations given by Equation (5) are not much more 

complex than the original set cast in Cartesian coordinates (Eq. (1)). 

Strong conservation-law form of the equations is maintained for shock­

capturing purposes. 

-6-
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3. BOUNDARY CONDITIONS 

The tangency condition along the surface ~(x,y,z,t) = constant 

is that W = 0 and is used in 

U-~ t U I I (ny~Z -nz~y) -(~yl;Z-~Zl;y) (~yTlz -~ zTly) 

V I = J-
1 

-(Tlx~z-Tlz~x) (~xr;z-~zl;x) -(~xTlz-~zTlx) V - Tlt I (10) 

W I I (Tlx~y-nyl;x) -(~Xr;y-~yr;x) (~xTly-~yTlx) W - l;t 

to obtain u, v, and w; 

The pressure along the body surface can be obtained from a normal 

momentum relation, found by combining the three transformed momentum 

equations 

Pn(r;~ + ~~ + ~~)t = (~x~x + ~y~y + ~z~z )p~ 
+ (Tlx~x + Tly~y + Tlz~z)PTl 

+ (il + r;2 + I;l)P 
X Y z ~ 

= P(dTl;t + UdTl;x + VdTl;y + WdT~Z) 

- pU(~xu~ + ~yV~ + ~zw~) 

- PV(l; u + I; v + I; w ) x Tl Y Tl Z Tl 

where n is the normal direction to the body surface. 

(11 ) 

At the far field boundaries free-stream values are specified except 

on the upstream and downstream grid boundaries. At the upstream grid 

boundary, an analytical vortex is initialized on the wing axis and at 

the downstream boundary a simple linear extrapolation is used for all the 

flow quantities. 

-7-



To simulate wind tunnel test conditions at the ends of the wing 

(wing tips), spanwise velocity v is set to zero there and values of 

other flow quantities are set equal to the corresponding values at a 

previous spanwise station. 

-8-
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4. NUMERICAL ALGORITHM 

An implicit numerical algorithm is used to solve the equations. This 

method is chosen to avoid restrictive stability conditions when a fine 

grid spacing is used to resolve flow quantities in a region of large 

spacial flow gradient. . 

4.1. Conventional Form 

The basic numerical algorithm used was developed by Beam and 

warmingl -3 and has been used extensively and successfully for a large 

class of problems. 4- 11 It is second-order accurate in space and time, 

is noniterative, and is in a spatially factored form referred to as the 

"delta-fonn.1I For either trapezoidal or Euler temporal implicit differencing, 

the delta form scheme is given by6 

(1 + ho~An - eIJ-1V~6~J){1 + honen - eIJ-1VnAnJ)X 

(1 + ho en - elJ-1v A J){qn+l _ &n) = -6t{O En+o ~n + 0 Gn ) 
~ ~ ~ ~ n ~ 

- eEJ-l[{V~A~)"2 + {VnAn)2 + (V~A~)2]Jqn (12) 

where the o's are'central difference oper~tors, A and v are forward or 

backward difference operators, e.g., A~q = q{~, n, ~ + A~) - q{~, n, ~). 

Indices denoting spatial location are suppressed for convenience and 

h = At corresponds to Euler implicit first-order and h = At/2 to 

trapezoidal second-order time accuracy. Also, I is the identity matrix 

and~n= q(nAt) where n is the number of time steps. 

r"\ 

~ 
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The Jacobian matrices An, Sn, and en are obtained in the time linear­

ization of En, Fn, and an and can be written as 

I I I : 
I I I I 
I I I I 

K : . I : : 
o I Kl :. K% I K, I 0 

I , I I 
I I I I 
• I I I 

----------------,-----------------,------------------;-----------------~-----------I I I I 
: I I : 

K 2 I (: I I 
1 ~ -ue : Ko +e-K1 y-2)u I ~ u-{Y-l)K v : K u-(y-l)K w : I( (y-l) 

I I 1 I' 1 I "'1 
I I , I 
I I I I 

----------------~-----------------~------------------~-----------------,------------I I I I 
I I I I .. - I I I : I 

A. B. or C· K2 +'-ve ! K1v-K2 (Y-l)u : K +e-K
2
(y-2)v : K v-(y-l)K w ! K (y-l) (13) 

where 

: : 0 : S 2: 2 
I I I I 

----------------7-----------------t------------------~-----------------,------------I •. I I 
I I I I 
I I I I 
I I I I 

K,~2-we : K
1
w-K',h-l)u : K~-Ks(Y-l)v : Ko+e-K.(Y-2)w : K,(Y-l) 

I I I oil • 

: I : : 

----------------r-----------------r-------------.----+-----------------~-----------

e[2~2-y(e/p)] 

I 
I 

[K 1 {y(e/p)_+2}. 

-(Y-l)ue] 

~2 = 0.5(Y-1)(u2 + v2 + w2), 

e = K1u + K2v + K3W 

A 

[K 2 {y(e/p)_~2} [Kl{y(e/p)-~2} Ko+ye 

-(y-l)v e] -(y-l)we] 

. and for example, to obtain A, 

Ko = ~t ' Kl = ~x 

-10-
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Fourth-order dissipation terms such as €EJ-1(v 6 )2Jq in 
~ ~ 

Equation (12) are added explicitly and these help to control possible 

numerical instabilities. The addition of the implicit second difference 

terms, with coefficient €I' operating on (qn+l - qn) extends the linear 

stability bound of the fourth-order terms. For more details see 

Reference 6. 

The solution algorithm for the approximately factored form of the 

implicit scheme of Equation (12) takes the following form: 

.(1 + ho~An - €IJ-1V~6~J)q = RHS 

(I + ho Sn - €IJ-1V 6 J)q = q 
n n n 

(I + ho~en _ €IJ-1V~6~J)(qn+1 _ qn) = q 

and finally 

I n An An+ _ qA + 6q q - for updating the solution 

The central' difference operators on the implicit side of Equation (12) 

(14) 

or (14) produce block-tridiagonal matrix operators which must be inverted 

sequentially to obtain 6qn = (qn+1 _ qn). 

In implementing boundary conditions, the unknown values of q on 

the boundaries are updated explicitly, and 6q is set to zero leading 

to first-order error in time at the boundaries. Explicit treatment of 

the boundaries leads to a simple and flexible scheme, where boundary 

conditions become a modular element which can be put-in or pulled-out 

of a computer code without disturbing the implicit algorithm. 

-11-



The values of p, U, and V along the body surface are found by linear 

extrapolation from above and values of u, v, and ware obtained from 

Equation (10). The surface pressure is obtained by integrating Equation (11). 

In Equation (11), the right-hand side is known from the above extrapolation 

process, and the basic approximate factorization algorithm is applied 

along the body using backward differencing in t and central differencing 

in ~ and n. Scalar tridiagonals are thus inverted in the ~ and n directions. 

4.2. Diagonal Form 

The solution process of implicit algorithm of Equation (12) involves 

the block-tridiagonal matrix solutions and this constitutes the major part 

of the numerical work. Equations (12) are a coupled set and thereby produce 

a 5 x 5 block structure for the implicit operators of Equation (12). If 

the operators are factored into five scalar operators, the resulting 

system would be more efficiently solved. This idea is used in the diagonal 

form of the implicit algorithm developed in Reference 12. Here, we shall 

briefly outline the development of this algorithm. More details can be 

found in Reference 12. 

The Jacobian matrices A, B, and C (Equation (13)1 have a set of 

eigenvalues and a complete distinct set of eigenvectors. Similarity 

transformations (see Warming, Beam, and Hyett, Reference 14) can be 

used to diagonalize A, B, and C where 

A A_1 
A = T~J\~T~ 

A It. -1 A A_1 
B = T'J\ T and C = T J\ T nnn' 1;1;1; 

-12-
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with 

= 

Af; = D[U,U,U,U + c(f;~ + ~~ + f;~)t , U - C(f;~ + ~~ + f;~)t ] 

U 0 0 0 0 

0 U 0 0 0 

I 0 0 U 0 0 

0 0 0 U+C(f;2+f;2+~2)t x y z 0 

0 0 0 0 U_C(~2'+f;2+~2) t 
x y z 

An = D[V,~,V,V + c(n~+n~+n~)i, V-c(n~+n~+n~)'t] 

A =D[WWWW+c(z;2+z;2+z;2)t z; , , , x y z ' W - C(Z;2 + Z;2 + Z;2)t] 
X y z 

where e = kxu + kyV + kzw and, for example 

kx = k /(k2 + k2 + k2)t , etc. 
x x y z 

with k = f; for A, k = n for B, 
A 

and k = Z; for C, and 

a = p/(/2c), a = 1/(/2pc). 

Us;nq the similarity transformations, Equation (lSa), for the 

Jacobian matrices in Equation (12), the diagonal form of the finite­

difference algorithm is written in approximate factored form as 

-13-
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An -1 A An -1 A 
T~(1 + he~A~ - €1 J V~A~J)N(I + henAn - €IJ VnAnJ)P 

x (I + he in _ €IJ-1V A J)(T~l)A~n = ~n 
~ ~ ~ ~ ~ 

= - At (15 En + 15 Fn + IS G") 
~ n 1'; 

_ €EJ-1[(Vt'At')2 + (v ~ )2 + (v A )2] Jqn 
.. .. n n ~.~ 

(17) 

with 

~ = T-1T ~-1 = T-1T ~ = T-1T ~-1 = T-1T 
~ n' n ~ n ~' ~ n (l8a) 

where 

m1 m2 m3 -lJmlt lJmlt 

-m2 m1 mit lJm3 -JJm3 
-1 

Tk TR. = -m3 -mit m1 -lJm2 lJm2 (18b) 

lJm lt -lJm3 lJm2 lJ2(l+m1) lJ2(1+m1) 

-lJm lt lJm3 -lJm2 lJ2 (l-m1) lJ2 (l +m1) 

l 
with 

m1 = kx1x + kyiy + kziz m3 = kxR.z kzR.x 

m2 = kxiy - kyiz ' mit = kyR-z kzR.y 

lJ = 1//2 

-14-



.. ~' ... ... - til .. ... .. ~ .. 
" 

ix ky k z a a 

k.u kyu - ~~ kzu + kyp a(u + kxe) a(.l - kx(:) 
kxv + k:zp kyv kzv - kxp a(v + kye) a(v - kyc) 

Tk - I kxv - kyP kyw + kxp kzv a(w + kze) a(w ~ kzc) I (lac) 

[_ .2 
[ky 

~2 
[tz *2 {a [.2 + c2 ( [+2+ c2 kx (y-l) (y -1) (Y-l) (y -1) a (y-1) 

+p (~Y - kyv)] +p (kxW - kzU)] +p (kyu - ~v)l + CO]) - ce]} 
and 

I ..... 
U1 

r ~x(l _~) I 

kx(Y -1)uc-2 kzp-l _kyp-l -kx(Y -1)c-2 
+ p-I(izy - iyv)] + ix(y -l)vc-2 + kx(y -l)wc-2 

~y(l-~) , [-izp-l 'ky(y -1)vc-2 [kxp- 1 - ky(y -1)c-2 

(lad) Tk -I -I - p-I(kxv - kaU)] ~ k,h -1)ue-2] + ky{y - 1)wc-2] 
. I 

[t.(l- £) [kyp-l [-kxp-1 kz(y -l)wc-2 -kz(y -1)c-2 

- p~I(k,u - kaY)] + kz(y -l)uc-2] + kz(y -1)vc-2] 

.(.2 _ co) '[kxC - (y -l)u] '[ir -(V - l)v] B[kze - (y - i)w] B(y -1) 
8(.2 + co) -S[txe+ h-1)u] -.[iye + (y- 1)y] -S[kze + (y -1)w] . B(Y-1) 



The new implicit operators (I + he~A~ - €IJ-1V~~~J), etc., of the 

Equation (17) are still blocK-tridiagonal, but now the blocks are simply 

in diagonal form so that the operators reduce to five independent scalar 

tridiagonal operators. This has -a large positive effect on saving the 

overall computational time. 

The solution process for the implicit part of Equation (17) then 

consists of the following steps: 

1. 51 = (T~l)n Rn, a matrix-vector multiplication at each grid 

point, since T~l is known analytically; 

2. 52 = [I + hO~A~ - E:IJ-1V~~~Jr1 51' five scalar tridiagona"' 

inversions for the operators; 

3. 53 = N-1 52' a matrix-vector multiply at each_ point; 

4. 5 .. = [I + he A - E:IJ-1V ~ J]-l 5 , five more scalar nn nn 3 

tridiagonal inversions; 

5. Ss = p-~ 5 .. , a matrix-vector multiply at each grid point; 

6. 56 = [I + he A - E:IJ-1V ~ J]-l 5 , five more scalar 
~ ~ ~ ~ 5 

tridiagonal inversions; 

7. ~qn = Tn 56' another set of matrix-vector multiply; and 
~ 

finally, 

8. qn+1 = qn + ~qn to update the solution. 

This solution procedure constracts with the three block-tridiagonal 

inversions required in Equation (12). 

In both conventional and diagonal schemes discussed above, fourth­

order central difference operato~s are used to compute convective­

derivatives. Metrics are computed using second-order central difference 
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formulas at interior points and three-point one sided formulas are 

used at the boundaries. For differencing metrics in three-dimensions 

a free-stream error can be introduced if this differencing is not done 

with special weighted averages. 6 Perfect maintenance of the free-stream 

can be achieved by simply subtracting the free-stream fl~xes from the 

governing equations; that is 

a q + a I: (E - E ) ... a (F - F ) + 'a (~ - ~ ) = 0 • , ~ ~ n ~ ~ ~ 

The metrics are not stored in the present computations because of computer 

storage limitations and hence have to be computed at each time step. 

Equations (12) and (17) can be used for either time-accurate (unsteady) 

or steady.state computations. For steady state calculations, 6qn approaches 

zero asymptotically with the solution satisfying the explicit side of the 

equation, which is the exact steady state difference equation. 
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5. GRID GENERATION 

Although the transformed equations, Equations (5), are somewhat more 

complicated than the original Cartesian form, Equations (1), they offer 

the following significant advantages: 

(1) The boundary surfaces in the physical plane can be mapped 

on to rectangular surfaces in the transformed plane. 

(2) The grid points can be clustered in regions that experience 

rapid change in the flow field gradients. This is particularly important 

in the present problem because of the presence of t~e interacting vortex 

and shock waves. 

A surface conforming grid structure is used to simplify application 

of surface boundary cQnditions and· to improve the overall accuracy of 

the numerical scheme. The grid is generated in two phases. Firstly, an 

O-type, two-dimensional grid is generated. To take advantage of the 

generality of the transformed equations, one needs a fairly automatic 

method of generating a smoothly varying grid that conforms to arbitrary 

bodies and allows grid point clustering. The elliptic grid generation 

procedure popularized by Thompson, Thames, and Mastin15 with modifications 

by Steger and Sorenson16 and Sorenson17 was used. Source terms15 are 

implemented in the elliptic grid generation equation to cluster points 

both at the body surface and at the center of the grid so as to resolve 

the approaching vortex. Additional source terms l6 ,17 are added in the 

present case to pull the grid lines towards the wing axis. The method· 

also enforces orthogonality of mesh lines at the boundaries. Figure 3 

shows several views of a two-dimensional O-type grid generated by the 
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above method. This grid is then distributed along the rectangular wing 

span using spanwise exponential clustering functions to generate a three­

dimensional mesh. The grid so generated has 48 pOints in the periodic 

direction, 20 points in the radial direction, and 21 points along the 

span of the wing. The grid structure is coarse and its dimensions are 

matched to the internal computer storage capability of Control Data 

Corporation 76PO machine. 
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6. RESULTS 

Preliminary numerical experiments using the conventional algorithm 

with the above 48 x 20 x 21 grid for a simple flow past three-dimensional 

wing at Mm = 0.72 and a = O,deg. revealed that a single solution took 

as much as 8 hours of computer time on CDC 7600 computer. By using the 

diagonal form of the algorithm, this time was reduced by a factor of 

2.5 per time step without the loss of accuracy or numerical stability. 

The magnitude of savings in computational time reported here is much 

better than the previously reported studies with the diagonal a1gorithm. 12 ,13 

This improvement stems from the fact that in the present application the 

size of the block periodic tridiagonal operator is much more significant. 

The diagonal algorithm is twice as efficient for periodic block tridiagonal 

matrices as it is for a regular block tridiagonal. Because of this big 

savings in computational time, all further computations were undertaken 

using the diagonal algorithm. 

6.1. Two-Dimensional Calculations 

In initial tests of the computer- code several two-dimensional flow 

cases were computed. Instead of generating a solution at one spanwise 

station (for a 2-D case), a five plane solution (like a 3-D case) was 

computed with the spanwise index remaining active in the code. The two 

spanwise end planes are updated with simple symmetry conditions. The 

results of such a calculation are shown in Figure 4 in which a plot of 

computed Cp distribution for a steady. non1ifting case using the present 
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code is compared with a reference solution. 18 This solution uses 

the two-dimensional grid shown in Figure 3. Figure 5 shows a C plot. p 

for a lifting case. 

In initial calculations, two-dimensional solutions of inviscid free 

shear layers (jets and wakes) with their velocity field superimposed on 

the main stream at the grid boundary of the wing were computed. The excess 

velocity for the jet and the defect for the wake is assumed to be O.2U . . ~ 

on the wing axis. Figures 6 and 7 show the computed steady solution in 

the form of. Cp plots. Whil~ the shear flows of Figures 6 and 7 are 

symmetric with respect to wing axis, Figure 8 shows a C plot for the p 

asymmetric case. Asymmetry in the flow is created by locating the axis 

of the symmetric jet of Figure 8 O.Ole above the wing axis. 

6.2. Three-Dimensional Calculations 

As noted earlier, the objective of the present study is to provide 

computational guidance for an upcoming wing-vortex interaction wind 

tunnel experiment. The aerodynamic performance of rotory wing aircraft 

is strongly influenced by the vortex wake shed by the rotating blades. 

The vortex generated by the tip of the blade is time-variant and has 

large strength. The interaction of this vortex with the following rotor 

blade will affect the flow characteristics around the blade and thus 

its aerodynamic loads. In the transonic flow regime this effect is 

more pronounced because of the shock-wave motion. Investigation of the 

wing-vortex interaction is thus important not only for improving the 

understanding of the flow around the wing but also for the optimum deSign 

of the rotor wing. 
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An analytical vortex aligned in the center of the wind tunnel and 

located initially at the grid boundary was made to impinge on the rectangular 

wing as shown in Figure 1. The wing was set at zero angle of attack to a 

free-stream of M = 0.72. The specified analytical vortex chosen is a m . 

steady Lamb or spreading vortex whose cylindrical velocity distribution 

given by19 

.va(r) _ 
u:- - =--r_ ( 2 2'ITU

m
r 1 - e-r /a

2
) (19) 

resembles that of an experimentally generated vortex. 20 In Equation (19), 

~'IT is the strength of vortex; a = (4vt)t is the cor.e radius; v is the 

kinematic viscosity; t is the time; and r is the radial distance measured 

from the core center~ The pressure field induced by this vortex is 

determined using the radial momentum equation 

E.£ _ pv~ 
dr - - r 

Using the energy equation for constant enthalpy flow, Equation (20) can 

be written as 

E.£ = dr 
Yl' 
y-i ( ) 

2 
2 va 

2Ht - v~ - q! r 

(20) 

(21) 

where Ht is the total enthalpy and q! = u2 + v2 + w2 • The pressure field 

from this and the velocity distri.bution from Equation (19) are superimposed 

on the main stream at the upstream grid boundary of the wing for initializing 

. the vortex. Figure 9 shows a plot of typical radial velocity and pressure 

distribution for a Lamb vortex of strength 2'IT~ c = 0.03 at the grid 
m 
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boundary. The three-dimensional computation of wing-vortex interaction 

is carried out using grid dimensions of 48 x 20 x 21 with 21 spanwise 

points. Figure 10 shows the computed steady pressure distribution on the 

wing plotted in the form of Cp distribution at various spanwise stations. 

Because of the coarse grid, it is necessary to consider the vortex 

recovered slightly upstream of the wing leading edge as the input vortex 

for interaction purpose. Typically, the size of this vortex is of the 

order of the span of the wing although the vortex initialized at the grid 

boundary is much smaller. Figure 11 shows a spreading vortex at the grid 

boundary whose radial velocity distribution is given by 

Veer) ~u- = r ( 2/ 2 ~ 2~rU 1 - e-r a) e-
r2

/
a2 

~ . (22) 

Steady state solution of the interaction of this vortex with the wing 

of Figure 1 is computed and a plot of Cp distribution at various spanwise 

stations is shown in Figure 12. Figure 13 shows a detailed Cp distribution 

at a spanwise location of 0.42 chords to the right of the centerline. These 

plots s'how that the effect of vortex interaction is to superimpose a swirl 

velocity on the free-stream which imparts lift and slight supercritical 

effects. 

Preliminary unsteady computations of 1nteraction is done by choosing 

a vortex with time-dependent strength whose radial velocity distribution 

is given by 

ve(r,t) = r (1 _ e-r2 /a2 ) e-r2/ a2 (1 - t sin wt). 
U 2~rU 

(23) 
~ ~ 

where w is the frequency of the "breathing" motion of the vortex. 

Figure 14 shows a plot of this velocity distribution as a function of wt. 
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Interaction of this vortex with the rectangular wing of Figure 1 

is computed for two periods of IIbreathingll motion at a dimensionless 

frequency (a) of 0.4 and a vortex strength of 0.2. This time period of 

two cycles is considered long enough to ·depict the unsteady nature of 

the flow field. Figure 15 shows the computed Cp distribution on the 

wing surface at various instants of breathing cycle for this flow field. 

-
6.3. Further Experiments to Reduce Computer Time 

As indicated previously, computational efficiency is being improved 

by carefully distributing grid points over the body and by using the 

diagona1ization scheme. Two additional techniques have been demonstrated 

to save overall computational time further and are discussed below • 

. (a) Special Variation of Numerical Dissipation Coefficients 

The numerical algorithm, Equation (17), uses added numerical 

dissipation terms .to maintain stability for nonlinear equations. So 

as not to degrade solution accuracy, fourth-order dissipation terms are 

added to the explicit side of the equations and second-order terms 

working on (qn+l - &n> are added to the left hand or implicit side of 

the equations. These terms work well, but analysis of new upwind split 

schemes,21,22 which are naturally dissipative, suggest that the 

dissipation terms should be weighted by the lIabsolute value ll of the 

Jacobian matrices A, B, and C where A = ;~ etc. The advantage of using 

such weightings is that dissipation is automatically added as needed for 

variation of the flow parameters and, more crucially, the mesh size 

spacing. 
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Consider the 2-D system in transformed coordinates 

. 19. + aE '+ aF = 0 • 
aT a~ an 

Using the homogeneous property of flux vectors E(q) and F(q), they 

can be split into two parts via similarity transforms as21 

AI ""'+ ""_ E =E-+E 

where 
A+ +A A_ A-~ E = A q, E = q 

and 

A = aE = XAX- 1 , A± = X A ± IAI X- 1 

a~ 2 

Here A is a diagonal matrix whose elements are the eigenvalues of A. 

The eigenvalues of A+ are nonnegative and those of A- are nonpositive. 

(In subsonic flow the eigenvalues are of mixed sign since lui < c~) 

With the use of split flux vectors, one-sided spatial difference 

approximations are possible. For example, Equation (24) can'be 

written as21 

+ In In + In In n [I+At(V~Aj,k +A~Aj,k + AnBj,k + AnBj,k )]AQj,k 

bA+ In fA- In bA + In fA_ In = -At(o~Ej,k + o~Ej,k + 0nFj,k + 0nFj,k ) 

where 
bA 3Ej - 4E. 1 + E; 2 ° E = J- J-
~ 2A~ 

fA -3EJ. + 4E'+1 - E'+2 o E = J J 
~ 2A~ 

-25-
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are backward and forward second-order accurate one-sided difference 

operators, respectively. 
+ Further, A- = (A ± IAI)/2 

IAI = XIAIX-
1 

E± = (E ± IAlq)/2 , etc. (27) 

Substituting the relations (27) in (25), we can write Equation (25) as22 

[I +t.t(0E;An + 0nBn - (2t.E;)-1(vt.)IAI - .(2t.n)-1.(v6)IBIJ 6qn 

= -t.t(6E;En + "5/n + (46E;)-1(V6)2IA!qn + (46n)-1(vt.)21 B Iqn) (28) 

v + 6 of + ob 
• - E; s - - s S where 0E; - 2 ' 0E; - ft ,etc. 

Calculating the absolute values of the coefficients matrices 

IAI and IBI is very costly. However, the mesh variation enters into 

A and B at a point as a simple scaling. This important variation can 

be accounted for, along with the main flow parameter, by using not IAI 

but its spectral radius (i.e. largest eigenvalue in absolute value). 

Replace IAI with Pa and IBI with Pb where Pa and Pb are the 

spectral radii. For A, the maximum eigenvalue Pa = lUI + c(E;~ + E;~)i, 

and similarly for B, Pb = IVI + c(n~ + n~)i. We can further approximate 

these, for computational simplicity, as 

Pa = (1 + Mco)aco (lE;x I + I~yll 

and, (29) 

Pb = (1 + Mco)aco (Inxl + Inyll 

Note that in the standard algorithm, the spectral radius is set to unity. 
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With the above approximat~ons, the new smoothing factor, say in 

the ~-dir.ection, can be written as 

(1+Mco)aco ' 
told 4 (Itxl + I~yl) 

where £old is the old 'smoothing coefficient. Scaling the dissipation 

, terms by the appropriate, spectral radius is relatively inexpensive (the 

order of 5% increase in computational work). 

For a three-dimensional test case of a rectangular wing with 

NACA0012 airfoil at a = 0° and M = 0.72,. a steady solution previously co 

obtained in 750 iterations is now obtained'with this scaling in 400 

(30) 

iterations. This is a savings of over 40% in computer time. The new 

dissipation tenns allow use of a larger time step without loss of accuracy, 

as seen in the Cp plot of Figure 16, and thus account for the ,improved 

efficiency. 

(b) Special Variation of the Time Step 

Keeping in mind that the grid variation accounts for significant 

metric variation, various researchers have long suggested that a 

variable 6t be used at each point in the computational field. The 

rationale is given that a large 6t should be used as the mesh cell 

increases in size~ or alternatively, the equations should be scaled 

to reduce the condition number. In either event, 6t should vary as 

the spectral radius of (Ao~ + BOn + COr;)' which is an unknown magnitude,. 

In our two-dimensional experiments; we have scaled 6t based on 

simple estimates of the spectral radius of (Ao~ + BOn)' but we have 
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found that a geometric scaling inversly proportional to the Jacobian 

is adequate and far easier to program. The precise algorithm is now 

[

A - 1 (- ) ( .. -1 A n+ 1 n 
(I + oohO~A - ooE:1J V~fI~)J I + oohonB - ooE:1J (Vn,\)J](q - ~ ) 

- = -ooh(o~~n + o/n) - ooE:EJ-1[(V~l1~)2 + (V
n

l1
n
)2] J qn (31) 

where 00 = 1 ~ J. and J = (~Xny - ;nnx). The results shown in Figures 17 

to 19 indicate the effectiveness of this scaling. For a circular cylinder 

at M = 0.45, wave drag can be computed to 4 significant figure accuracy 
~ 

'within 100 iterations on a 50 x 20 grid using a variable scale factor 00 

for the time step l1t. Using the best constant l1t (i.e. 00= 1), slightly 

over 250 iterations are needed as shown in Figures 17 and 18. 

The circular cylinder calculation uses a stretched polar grid. To 

access the 'effect of grid distortion, similar runs were made for the 

NACA0012 airfoil at a = 00 and M = 0.72 and the grid shown in Figure 3. 
~ 

Residual decay using constant l1t (00=1) and variation of l1t is indicated 

in Figure 19 and Figure 20 shows the corresponding Cp distribution. More 

iterations are required for this case (even though it is shock free), than 

the circular cylinder case, but the variable l1t proves to be at least 

twice as efficient. 

The scaling given above in Equation (31) works effectively when the 

far field grid structure is very coarse, but a scaling such as oo=J-1 ~s 
unstable as 00 becomes too large. Figure 21 shows the Cp distribution on 

a circular cylinder at M = 0;45 with a 78 x 26 grid structure computed 
~ 

using variable l1t scheme. 
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7. CONCLUDING REMARKS 

The present study addressed the simulation of transonic three­

dimensional wing-vortex interaction. The objective was to guide the 

design of an upcoming wind tunnel experiment and to support the inter­

pretation and.analysis of the data obtained. 

A calculation procedure was adopted which employs an implicit finite­

difference scheme for solving the Euler equations describing the flow 

about arbitrary geometric shapes. To check the accuracy an9 resolution 

of the procedure, calculations were carried out for three-dimensional 

wing-vortex interaction, for two-dimensional solutions of simple flow 

past lifting and non-lifting wing as well as for simple shear flows 

superimposed on the main stream. The key to the accuracy of the 

computations was found to be the grid structure. 

The calculations were carried out within the memory of the Control 

Data Corporation 7600 computer. This machine tends to restrict the size 

of the grid which can be used. Consequently, a great deal of effort had 

to be exerted in clustering grid points to flow field gradient regions. 

especially near the vortex core. An ellip~ic grid generation routine 

with boundary .and interior clustering functions was used in this effort 

and greatly aided in the generation of the finite-difference grid. 

Nevertheless. vortices with sharply contained swirl velocity could not 

be adequately resolved with the grid points available. The adequate 

resolution of such regions will likely require the development of more 

sophisticated software such as the overlay of one grid onto another. 

Alternatively, a more advanced computer than the CDC 7600 could be 

employed. 
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Initially computer time also proved to be quite excessive. Typically 

about 10 hours of CDC 7600 time was required to obtain one three-dimensional 

solution. ~y using a variety of techniques, the overall computational 

time was reduced by a factor of 5. As described in the main text, computer 

time was reduced by using diagonalization of the implicit operators and 

smoothing terms. Other methods including use of a variable time step 

were tested in two-dimensions but these have not been successfully 

implemented in three-dimensions. It is expected that with further work 

these chang~s could offer significant improved efficiencies in the current 

and in related computer codes. 

The computations of the wing-vortex.interaction considered a non-

lifting rectangular wing of NACA0012 airfoil and an analytically represented 

spreading vortex in a free stream of Mach number 0.72. The solutions 

obtained showed that for the vortex considered here, the swirl velocity 

of the' vortex imparted lift (rolling moment) and slight supercritical 

effect on the wing. Also, one of the calculations showed that when the 

imposed vortex is large (of the order of the span of the wing), a 

particularly important interaction between the vortex and the tunnel wall 

takes place. This is to be avoided in the design of the experiment. This 

result s~ggests that if one wants to avoid such an interaction and its 

effect on the flow on the wing, one has to consider a smaller vortex of 

the size of the chord of the wing in the experiment. 

The results reported here are considered as initial in nature and 

are viewed as being qualitatively correct. Any quantitative improvement 

has to come by way of using a much refined grid. 
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Fig. 1. Schematic of experimental arrangement showing 
inertial coordinate system. 
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