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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace Remote

Sensing is a multiyear program of research, development, evaluation, and appli-

cation of aerospace remote sensing for agricultural resources, which began in

fiscal year 1980. This program is a cooperative effort of the U.S. Department

of Agriculture, the National Aeronautics and Space Administration, the National

Oceanic and Atmospheric Administration (U.S. Department of Commerce), the

Agency for International Development (U.S. Department of State), and the

U.S. Department of the Interior.

The work which is the subject of this document was performed by the Earth

Resources Applications Division, Space and Life Sciences Directorate, Lyndon B.

Johnson Space Center, National Aeronautics and Space Administration and

Lockheed Engineering and Management Services Company, Inc. The task performed

by Lockheed Engineering and Management Services Company, Inc., were

accomplished under Contract NAS 9-15800. A major ;: portion of this task was

performed at Texas A&M University in partial fulfillment of reyuiv'ements for

a doctorate degree in statistics under professor H. 0. Hartley (supported on

contract NAS9-13894).
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1. INTRODUCTION

1.1 THE AGRICULTURE AND RESOURCES INVENTORY THROUGii AEROSPACE REMOTE SENS

1.1.1 DESCRIPTION AND OBJECTIVE OF THE AgRISTARS PROGRAM

The AgRISTARS program officially started in fiscal year 1950 after a success-

ful completion of the Large Area Crop Inventory Experiment (LACIE). The LACIE

was a project to test the technology that would be used in i satellite-aided

crop production estimating system utilizing remote sensing. Instruments

onboard Earth-observing satellites (i.e., Landsat) were used to obtain infor-

mation about the Earth by scanning its surface from the orbiting satellite.

Over the past two decades, many developments led to the technologies used in

LACIE. Some notable developments were:

(1) Multispectral scanners capable of scanning the Earth's surface and
producing a quantitative r40iometric map at visible, near-infrared, and
thermal infr oared wave-lengths, (2) pattern recognition techniques permit-
ting agriculture crops to be identified on the basis of differences in
spectral response during the year; (3) high-speed digital computers;

^

4) the 1972 launch by the National Aeronautics and Space Administration
NASA) of the first of the Land Satellite (Landsat) series of polar-
orbiting satellites, making it possible to monitor each point on the
globe every 18 days with multispectral scanners; (5) the development of a
global weather-reporting network by the World Meteorological Organization
(WMO);6) the develo ment of models capable of relating weather to crop
yields (ref s. 1 and 2^; and (7) the development of many custom-made
statistical methodologies.

The LACIE completion proved that Earth-observing satellites used to gather

data on agricultural and other resources can provide foreign agricultural

production information with accuracy and timeliness.

The successes of LACIE have stimulated an effort to "develop and evaluate

aerospace remote sensing technology for other major commodities and global

crop regions" (ref. 1, pp. 13-15) through its new program named AgRISTARS.

1-1
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"The specific objectives of AgRISTARS include development, testing, and
evaluation of procedures for adapting space remote sensing technology to
improve the U.S. Department of Agriculture (USDA) capabilities to provide
early warning and timely assessment of changes in crop conditions; to pro-
vide more objective ^tnd reliable crop production forecasts; to assist in
inventory and assesswv4nt of land, watuir, and other renewable resources;
and to develop a cost base to permit the USDA to assess feasibility of
integrating apace remote sensing technology with existing data systems."
(ref. 1, pp. 13- 15)

1.1.2 GENERAL APPROACH OF TFS PROJECT

The project develops technology for use in processing Landsat data primarily

to inventory the amount and geographic distribution of crop acreage available

for harvest. It uses meteorological data in agricultural-meteorological

models to forecast yield per harvested acre (production).

"This general approach requires that each crop region be stratified with
relatively homogeneous subregions and randomly selected samples of Landsat
data be machine nr4Cr^ccarl t irlo„+4f„ „d .,,^,-„-^, ^. ^ 	..end

..	
r thn processed. o ,...w e . J a1r..	 a1ncuut c t he a! ea J C7EGt: ilq pT tine^, _, ..

crop types of interest. Yield models developed over subregions by the
Yield Model Development Project in AgRISTARS will be exercised to forecast
yield. The estimates of area and yield will be combined to estimate area,
yield, and production at the regional levels.” (ref. 2, p. 1.4)

Symbolically, the production estimation approach is presented as follows. The

crop region is stratified into L strata: 1, 2 1 ... t h, •••, L; and

(CROP 
ACRFAGE)stratum 

x (CROP YIELD)stratum = (CROP PRODUCT I UN) st rat um;

(CROP PRODUCTION)region a h- (CROP PRODUCTION) stratum h'

or	 (CROP PRODUCTION)region - (CROP ACREAGE) region 
x (CROP YIELD) region-

1.1.3 SCOPE OF THE PROJECT

The project involves many different crops such as wheat, barley, rice, corn,

soybeans, cotton, sorghum, and sunflowers, over many selected regions within

the United States, Canada, India, U.S.S.R., China, Australia, Argentina, and

Brazil.

6
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1.1.4 SAMPLE DESIGN USED IN THE PROJECT

1.1.4.1 Description of the Basic Sam le Design

The objective of a sample design for the project is to estimate the crop

acreage for each of J crops in a particular region of a specific country. The

basic sample design of the project is the stratified simple random sample

design. At least, this basic design is used in a 'Group I' situation*. Let

Aj be the crop acreage for crop j, j a 1 1 2 1 ..., J in a designated crop

region of a specific country.

The crop region iz divided into L subregions called strata which are relatively

homoganeous in terms of the crop density (hence, the crop acreage, yield, and

prodgction).

The sampling units are the acreages of the 6-by-6 nautical mile area. These

units are called 'segments'.

For h - 1, 2, •- ► , L, let Nh be the total number of segments made up of the

hth stratum and nh be the number of segments randomly selected by the simplo

random sampling (VS) from the N h segments of stratum h.

L:a ^ ; h j be the crop acreage for crop j in the stra t;un h of the crop region
under consideratio^i and A hji be the total crop acreage For crop j in the

segment i randomly selected in the stratum h.

"	 It is suppol;ed to have the mean acreage per segment as

N

"hj • - ^ AhJ 

i 

A 
i=1

*The 	 roue	 situation  is one in which the stratum sample size n h is greater
than 1, h = 1, 2, ---, L.

(1)

1-3



but the SRS plan gives only n h segments, i.e., n h crop acreages A`jji,

i = 1, 2, ° •t , n h . However, the SRS design gives an unbiased estimate of Ahj.

which is

n

'X.	 - ^ Ahji /nh ahj ^ 	 (2)
i =1

which is the mean acreage of crop j per segment in the nh segments sampled in
stratum h.

The stratified unbiased estimator of Ai is

L

A 
	

hF NhThj.
	 (3)

The unbiased estimator A3 has variance

V(Aj ) _ 
L
^ Nh(1 - nh/Nh) (Shj /nh)	 (4)
h=1

where Shj is the variance within the h th stratum of the segment acreage of

crop j; i.e.,

Nh

Shj =	
^Ahii - 

Ahj ;2
/(Nh - 1)	 (5)

i=1	 /

where

N

''hj =	 Ahji/Nh	 (6)
i=1

the mean acreage of crop j ner segment in the Nh segments of stratum h.

Then, the estimate of the production of crop j in the region will be

(Production of crop 
j) region = Aj x V	 (7)

1-4
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where

Yj is the estimate of the average yield of crop j in the region under

consideration.

1.1.4.2 Flow Chart of a General Approach of Estimation

A general approach used in estimation procedures can be seen in t,.e flow chart

shown in figure 1-1.

1.1.4.3 Some Drawbacks of the Stratified Simple Random Sample Design

One important drawback of the stratified simple random sample design is that

it does not utilize the fact of the existence of a significant positive

correlation between the crop segment acreages observed in the current and

previous years in order to yield more accurate estimates.

Another shortcoming is that the stratified simple random sample design cannot

overcome the problem of misping data. The stratified,estimate

L
A= E Nh7^h .
i	 h=1

which is shown as equation 3, will be badly effected when, for any reason, one

stratum acreage estimate cannot be obtained.

Moreover, it is supposed to choose each nh segment, h = 1, 2, -, L, out of

Nh segments of the hth stratum randomly according to the simple random

sampling plan. A list of all Nh segments in each stratum h has to be created

first, then a random procedure will help to choose n h of NO N h is known in

advance and nh is predetermined. If, for some reason, the randomness of the

selection of sample segments cannot be preserved, the stratified simple random

sample design may lead to some tragic results.

{

Furthermore, the implementation cost of the stratified simple random sample
1

design can be reduced by using the "rotation sample design" which is

introduced in this paper.

i
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Acreage estimation '	 Yield estimatinn

Temporal 4andsat imagery, Historical yield and
crop calendars, and technology trend data are
ancillary data used to generate "normal

yield" projection
•	 Each stratum has Nh

segments

Historical	 acreage-

•	 Simple random samsamplingP	 g
weighted average monthly
values for weather

j` plan gives nh sample variables, precipitation,

segments; analyst and temperature

r identifies crop J and
non-J signatures within
each sample segment

Regression model estimates

average yield VhJ for stratum;
Temporal machine classifi-
cation of digital Landsat Case I (yield/stratum)

data to obtain estimate of Case 2 (yield/Area)

crop J acreage proportion
Phj s to the agricultural

acreage for sample
segment s in stratum h Stratum production estimated as

•	 PhD s ^-	
ProdhJ ' AhJ'vhJ

n

• Ahjs - Ahs 
(s$ 

Phjs/')
Total	 production in the region

1	 //

Product of the avera ge

r

ProdProdhj
Jproportion and agricul- h-

tural acreage a hs to

obtain the estimates of
the total	 crop J
acreages of segment s

in stratum h

Average yield Y J for region
nb

e 
AhJ•	 ; 'hjs/

n
 h 
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Figure 1-1.- Flow chart of a general estimation approach.
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1.2 THE ROTATION SAMPLE DESIGN

The rotation sample design which is presented in this paper was developed to

(1) improve the accuracy of the crop acreage estimation procedures and

(2) reduce the cost of the implementation.

The objects of this design are not restricted to any particular crops but, for

the sake of practical illustration and testing, wheat has been selected as the

crop on which attention will be focused in this paper.

1.2.1 OBJECTIVE OF THE ROTATION SAMPLE DESIGN

The objective of the development of the rotation sample designs for %he esti-

mation of wheat acreages is to provide multiyear estimates of wheat acreages

which are more accurate than stratified simple random sample estimators. The

underlying assumption is that the variation of the wheat acreages of a partic-

ular sample unit (named parcel or segment) from year to year is usually less

than the variation of wheat acreages between segments within a particular

year.

1.2.2 GENERAL APPROACH

The wheat acreage estimation in the design uses the available estimates of

"matched" segments, i.e., segments for which estimates are available for two

or more years.

Instead of following strictly the simple random sampling plan to obtain n h out

of Nh segments of stratum h, h = 1, 2, •••, L, for each year of estimation,

the rotation design will retain each year a fraction of the sample segments

and replace the remaining sample segments with new segments in accordance with

a rotation pattern of those defined in section 3.2.2.

The estimation theory is based on an additive-mixed analysis-of-variance model

with years as fixed effects and parcels as a variable factor.

p
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1.2.3 OBJECTIVE OF THE ROTATION SAMPLE DESIGN TASK

The objective of this effort is to develop a rotation sample design, survey

many rotation patterns, and highlight those rotation patterns for which the

wheat acreage estimates for the current year have a minimum variance-reduction

ratio.



2. STATUS

Because of the specialized nature of this development item, the literature is

very limited. Even if the term 'rotation design' is familiar to many statis-

ticians in the field of sample surveys, especially to those who are familiar

with the Current Population Survey (CPS) of the Bureau of the Census (ref. 3),

the methodology of this particular rotation design is different from that of

the CPS rotation design. For instance, the objectives for the AgRISTARS/FCPF

project are considerably different from those of the CPS.

•	 2.1 THE BUREAU OF THE CENSUS CPS

2.1.1 DESCRIPTION

Of concern in the CPS is the estimation of social characteristics of the U.S.

population and the provision of monthly estimates for these characteristics

(i.e., emrjloyment, unemployment, income distribution, family characteristics,

marital status, migration, education, etc.). The estimates are made from a

sample of segments of households which are arranged in "rotation groups"

according to the CPS rotation design. There are eight rotation groups (eight

systematic subsamples) of segments in each sample. A given rotation group is

interviewed over an 8-month period which is divided into two 4-month periods.

The segments in the selected rotation group are interviewed during the four

consecutive months of the first year, then omitted from the survey during the

following eight months, then interviewed again for the same four calendar

months of the next year, and, finally, dropped from the survey.

2.1.2 OBJECTIVES

The basic reason for rotating part of the sample each month is to invalidate

the problem of uncooperation of respondents.

The other objective in using the CPS rotation design is to provide estimates

which take advantage of accumulated information from earlier samples as well

as the information from the current sample, which results in smaller variances

of estimates.

I
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2.1.3 PROCEDURE

The estimator of a characteristic, for example y, the so-called composite

estimator, is a weighted average of the following two estimator components.

a. The first component is the regular ratio estimate, for example yt, based
on the entire sample for the month under current consideration time, t.

b. The second component is the addition of the composite estimate for the

preceding month t - 1, for example y"_ 1 , and the estimate of the change in

each item from the preceding month to the current month. The Pstimates

used to compute the change are the regular ratio estimates yt ,t_I and

	

yt-1,t (i.e., the segments that are in the sample in both month t - 1 and	
xi

month t). The second estimate is then

yt-1 + yt,t-1 - yt-1,t	 (3)

Then, the two estimates are combined as a weighted average, with weights

summing to one.

In summary, the CPS rotation design composite estimator is

y'1 = W(yif
-1 + yt,i.-1 - yt-1,t ) + (1	 W )y1	 (9)

where

y'1	 = the composite estimator for month t,

yt	 = the regular ratio estimator based on the earlier sample for month t,

y
t
'
,t-1 -

= the regular ratio estimate for month t but is made only from the

matched segments which are in month t,

yt-,,t = the regular ratio -;mate for month t - 1, but is made only from the
matched segments wh- ch are in month t - 1.

2-2



When there is a positive correlation between y values in two consecutive

months, the variances of the changes (yt,t_1 - yx_l,t) will be small, since

V(yi;,t-1 '' Yt-1,t) a V(Yt,t-1) + V(Ytl -,, t ) - 2 cov(yt,t-1IYt-1,t)

< V(yt,t_i ) + V(Yt-J,t ) 	(10)

Hence, this rotation design with its composite estimator does utilize effec-

tively the information from the earlier and current samples and results in

smaller variances due to consideration of the estimates of change.

2.2 A ROTATION SAMPLE DESIGN FOR THE AgRISTARS FCPF PROJECT

The effectiveness of the composite estimator in a rotation design depends upon

the year-to-year correlation between crop acreages. Indeed, there is usually

a strong positive correlation between the wheat acreages of segments observed

in consecutive years, and this similarity seems to imply that the experience

gathered in the CPS possibly can be transferred for use in the AgRISTARS FCPF

project. Such a transfer, however, Js not possible because of the differences

in the objectives, the differences in segment construction (the "segment" in

the CPS is a geographic segment comprising a number of households), and the

s-, I)stantial differences listed as follows.

a. The AgRISTARS FCPF time series is yearly and extremely short (two or three

years). The CPS time series is monthly.

b. The FCPF rotation sample design to be developed will have to be su;table

r	 to the peculiar trait whereby a considerable number of matched segments

(i.e., segments in the sample for two consecutive years) will be lost

through cloud cover or other reasons. So, the FCPF rotation design, in

this case, has to provide estimators which are capable of dealing with

unbalanced segment patterns over a moderate number of years.

Henceforce, the CPS composite estimator is not suitable fo r use in the

AgRISTARS FCPF project. The mixed analysis of variance (ANOVA) models and the

associated estimators provided by proper rotation designs were selected and

combined to create a n! ­̂At sample design which is custom-made for the AgRISTARS

FCPF project.
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This sample design will deal suitably with the completely unbalanced matching

patterns and will utilize the fact that the variation of the wheat acreages of

a particular segment from year to year is usually less than the variation of

the wheat acreages of different segments within a particular year.



3. PROCEDURE

.

Before the main features of the procedure are introduced, it is worthwhile to

review some basic background information.

3.1 TARGET POPULATION AND SAMPLING FRAME

3.1.1 POPULATION AND ITS OBJECTS

Agricultural acreages over many selected reg 4 ons within the United States,

Canada, India, U.S.S.R., China, Australia, Argentina, and Brazil is the target

population. Wheat is the crop of interest in this paper. However, any other

crop such as barley, corn, or soybeans can take the place of wheat provided

the crop characteristics satisfy the requirements of the procedure for wheat.

One of the requirements is that the variation of the wheat acreages for a

particular segment from year to year is usually less than the variation of the

wheat acreages of different segments within a particular year.

3.1.2 SAMPLING UNITS AND SAMPLING FRAME

Elementary units are 'pixels' of the earth's surface. Each pixel is a picture

element of the imagery provided by the multispectral scanner (MSS) used by

Landsat. It corresponds to an area of about 1 acre on the earth's surface.

Sampling units are areal parcels which are clusters of pixels. The sampling

unit used for the current AgRISTARS FCPF project is made up of 6- by 3.5-mile

segments, the imagery of which comprises approximately 22 932 pixels.

The sampling unit size may be smaller than the 6- by 3.5-mile area as long as

it supports the requirement of the procedure mentioned in section 3.1.1 and

helps to reduce errors caused bj classification, labeling, and calculation of

the proportion of wheat within each segment. To explain more fully, classifi-

cation, in automated analysis of remotely sensed data, is the process of

assigning data points to feature classifications by a testing process in which

an automated electronic system scans a total image (data set) pixel by pixel

and determines whether the spectral properties of each pixel correlate with

3-1
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those of the subject being classified. Labeling is the process of determining

characters which identify an item of data, an area of memory, a record, or a

file.

Each crop (wheat) region is stratified into a number of subregions, called

strata, which are homogeneous in terms of the crop (wheat) density. This

means crop (wheat) densities vary little within a stratum but may vary

considerably from stratum to stratum. There is a known number of strata, for

example H, within a crop (wheat) region under consideration. Each stratum is

comprised of a known number, for example Nh for stratum h, h = 1, 2, •••, H,

of sampling units, e.g., 6- by 3.5-mile segments.

The sampling frame is constructed by first covering a crop-growing region of a

country by a large grid of segments that are either 6-by-3.5 miles or smaller,

then excluding those segments which appeared to show less than S percent agri-

culture. The actual sampling segments (sampling units) are chosen from this

sampling frame.

3.2 ROTATION SAMPLE DESIGN

The sample design presented in this paper is named the rotation sample desigri.

3.2.1 SAMPLING PLAN

After a crop (wheat) region is stratified into L strata and suppose stratum h

is comprised of N h segments, a well-defined allocation procedure will deter-

mine the nh value, number of segments in stratum h to be in the sample. The

nh number will be the same for each year of study, but the segments will be

chosen by a specified rotation pattern.

3.2.2 ALLOCATIONS BY ROTATION PATTERNS

With the present one-year-only design, the number of segments nh allocated to

stratum h varies from 1 to a sizable number such as 30 depending on the

country of interest. (The number nh is a number selected from Nh segments

through a simple random sampling plan.) In the United States, the number is

small; it is one, two, or three when counties are treated as strata.

a
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The rotation sampling plan of this research is confined in the situation in
which nh x 11 2, or 3 segments to be in the sample undor consideration in each
year. In the situation named Group Is the stratified simpl y: random sample

design is taken as the current sample design of the AgRISTARS FCPF project.

The allocation will be in a rotation pattern, as shown in figured 3-1 to 3-7.

In figures 3-1 through 3-4, the notation 5 is the number nh of segments per

stratum in each year and the notation r is the number of years elapsing before

a segment returns to the sample. Thus, figure 3-1 presents S # 2 segments per

stratum, and each segment returns to the sample after r - 2 years.

In figures 3-5, 3-6, and 3-7, the notation r - - is used to indicate that a

segment will never return to the sample. The expression inside the [ 	 shows

the type of pattern, for example [2 retained 11 means that of the S 	 2

segments, one is retained in the next year.

3.2.3` SPECIAL, CASES

One special case occurs when some strata have only one segment included in the

sample. In this case, the following principles of collapsing can be applied

to match one of the specified patterns, i.e., one of those shown in

figures 3-1 through 3-7.

One stratum having only one segment included in the sample is collapsed with

the other stratum having one of the following.

a. one sample segment

b. two sample segments

c. three sample segments

The collapsibility will be based on the relation of the stratum itself to the

other strata which are alike.
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3.3 SPECIFIC APPROACH

The mixed analysis of variance model is assumed in this rotation sample design

in order to obtain estimators from the completely unbalanced matching

patterns. The patterns are likely to arise through losses of segments (due to

cloud cover or other reasons), and they differ considerably from any balanced

rotation designs.

This paper presents only the basic, simple model which will apply to many
different rotation patterns. For each pattern, the variance of the stratum

crop acreage estimate for the current year is derived, and an optimal design,

which gives a minimum variance of the estimate, is obtained empirically.

3.4 RESOLUTION

3.4.1 MIXED ANALYSIS OF VARIANCE MODEL

3.4.1.1 Basic Model

The estimate of the average wheat acreage per segment is obtained from an

infinite analysis of variance model for Ats , the "observed" wheat acreage of

segment s in stratum h for year t. The model is written as

Ats = at + b s + ets	 (11)

for t = 1, 2, —, T years and s = 1, 2, 	 sh segments

where

at = average true wheat acreage per segment in year t; a t values are fixed

year constants,

b s = true segment variables applicable to all years with the assumption

b M N (O'ab)
ets = composite segment error variable of segment s in year t with the assump-

tion e	 N 0 a2 . This error variable contains two components which
is	 e

are the deviations of the true wheat acreage of segment s of stratum h

in year t from the additive formula a t + b s and the classification error

in Ats.

G
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3.4.1.2 Estimation

3.4.1.2.1 Approach of Estimation for Average Wheat Acreage Per Segment

The development of the basic model (11) to obtain the estimates a t and its

variances is based on the assumption of a known constant Y = alb 
/a2 

which can

be estimated from pilot data. Therefore, the Aitken weighted least-squares

estimation will be applicable and utilized to obtain the estimators a t and its

variances Var(at).

The model shown in equation (11) can be written in the following matrix form:

a=Xa+Ub+ le
	

(12)

where X and U are the design matrices of equation (11) and are to be defined

according to each rotation design in the coming sections, and a is the

vector of the observed wheat acreages of segments s in years t. In the model,

the following values are held.

a= ( All , A21 , ..., Atl , Al21 ... s At2 , ..., Ats ,	 Alsh)I
N

a = ( al , a2) ..,, at , ..., aT)I

b = (b i t b 2 , ..., b s , ..., b sh )' ; b N N sh ^Q, Ivb!

I = the identity matrix

e = (e ll , e21 , ..., ets , e12 , ..., et2 , ..., ets , ..,, 
eTsh ) ^	 e N 

NTsh ^0, Iae)

Since (a) is a vector of fixed-year constants, equation (12) gives

Var(a) = Var(Ub + Ie)

= U Var(b)U' + Var(e)

2

= I + Z UU' ae
	

(13)

Ce

P, .
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i

or,

Var(a) = H 
e	

(14)

where

y e 1/ ae	 (15)

H = I + yUU	 (16)

with y being regarded as a known constant. H is supposed to be invertible.

Being multiplied both sides by H -1/2 , equation (12) gives

1 /2	 -1/2	 -1/2	 1/2
H- 	a = H	 Xu + H	 Ub + H -	 e	 (17)

N	 JAI	 N	 N

Put

H-1/2a = a*
N N

H-1/2X _ X*

IH-1/2U _ U*

H -1/2e = e*N

then equation (17) can be written as

a* = X* a + U*b + e*	 (18)

where

Var(a*) = Var(H-1/2a^

= H-1/2 Var(a)H
-1/2

N

= H-1/2HH-1/2v2e

IQ 22	 (19)
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•

and

Var(U*b + e*) = Var(H -1/2Ub + H -1J2e )

= H-1/2 U Var(b)U'H-1/2 + H-1/2 Var(e)H-1/2

= H- 	
2	

2) H-1 /2
	 -1/2 2 -1/2	

(20)Qe - I ce 	+ H	 QeN

because equations (13) and (14) imply

U Var(b)U' = UU'vb2

2	 2

	

= H"e - Iae	 (21)

Hence, equations (20) and (21) imply

	

Var (U*b + e^) = H -1/2 (H - I)H-1j2 ^e	 H--1j2ceH-1j2

= H-1/2 (H 	 I + I)H-1/2 ae

= H-1/2HH -1/2 Q2
e

= IQ22	 (22)

Equations (19) and (22) give the following conclusion.

Var(a*) = Var(U*b + e*) 	 (23)

So, the model shown in equation (18),

	

a* = X*a + U*b + e*	 (24)

has the following property

Var(a*) = Var(U*b + e*) = Ia22	 (25)

3-10
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It is well-known linear model with known formulae which are deduced as

follows. The normal equation of model (24) is

X*'a* = (X*'X*)a	 (26)

That means

(H-1/2X)'H-1/2a = (H-1/2X)'(H-1/2X)%

i.e.,

X'H- a = X'H- Xa	 (27)

The solution is

a = (X'H -I X) -1 X'H -l a	 (28)

which is the best linear unbiased estimator (BLUE) of a by the Gauss-Markoff

theorem and is also the maximum likelihood estimator. From pilot data, Y can
66 2 "2

be estimated as Y = ab^ae which is substituted in equations (27) and (28).

If a consistent estimator of Y is employed, it can be shown (see ref. 4) that

equation (28) is still consistent and the variance of the estimator, which

will be given below in equation (29), still applies asymptotically with Y + Y

as aye error of order for magnitude Var(a)Var(Y). Equation (28) gives

VarW = Var[(X'H-IX)-'X'H-lal

(X'H-1X)-1X'H-1Var(a)H"iX(X'H-1X)-
1

= (X'H-1X)-1(X'H-1HH-1X)(X'H-lX)-1 a2

(X'H-1X)-1 a2

that is,

4

.

Var(a^ _ (X'H-1X)-1 a
	

(29)
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3.4.1.2.2 Approach of Estimation for Stratum Wheat Acreage

From equations (28) and (29), the estimate of average wheat acreage per

segment within stratum h at the current year indexed t = T and its variance

aTh and Var(aTh) are obtained.

Then the estimate of stratum h wheat acreage at the year T will be

	

ATh	 Nh aTh	
(30)

with its variane-3 formula

Var(ATh ) = NhVar(aTh )	 (31)

where Var(aTh ) is deduced from equation (29).

3.4.1.2.3 Flow Chart of a General Approach of Estimation

As a general summary, the flow chart shown as figure 3-8 presents a .general

approach of crop acreay:: estimation and production.

3.4.2 RESOLUTION FOR (S = 2, r = 2) ROTATION PATTERNS

The rotation pattern (S = 2, r = 2) is presented in figure 3-1, which is

repeated as follows.

Year number

	

s t 1	 2	 3

	

Segment 1	 X	 X
number

	

2	 X 

X--t3	 X X

(S = 2, r = 2) Patterns

.
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The design matrices of the related model, which is shown in equation (12), are

1 0 0
0 0 1
1 0 0

X	 0 1 0	 (32)

0 1 0

0 0 1
wand

1 0 0
1 0 0
0 1 0

U	 -- 0 1 0

0 0 1

0 0 1J

HF.nce

1 +y y 0 0 0 0
y 1+y 0 0 0 0
0 0 1+ y y 0 0

H =_ I+ yUU'	 = 0 0 y 1+ y 0 0
0 0 0 0 1+ y y
0 0 0 0 y 1+ y

or, with a =- y/(1 + y),

I a 0 0 0	 0
a 1 0 0 0	 0
0 0 1 a 0	 0

H= 
(1 + Y) 0 0 a 1 0	 0

0 0 0 0 1	 a
0 0 0 0 a	 1

(33)

(34)

(35)
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0

Then,

1 -a 0 0 0 0
-a 1 0 0 0 0

H-1 1
(1 + YMI a

0
0

0
0

1 -a
1

0
0

0 (36)
-a 0

0 0 0 0 1 -a
0 0 0 0 -a 1

1+ Y	 -Y 0 0 0 0
-Y	 1+ Y 0 0 0 0

1	 1
Y

0	 0 1+ Y -Y 0 0
0	 0 -Y 1 +Y 0 0
0	 0 0 0 1+ Y -Y
0	 0 0 A -Y 1+ Y

X'N-lx

2(1 + Y) -Y `Y
`	 + ^ "Y 2(1 + Y) -Y (37)

-Y -Y 2(1 + Y)I

and

z( 1 + Y)	 _Y	 _Y	 - 1

(X'H' 1 X) -1 = (1 + 2Y)	 -Y	 2(1 + Y)	 -Y	 (38)

	

-Y	 -Y 	 2(1 + Y)

The inverse matrix in the second member of the above equation is found by

applying the result given i n appendix B where

a	 b	 ...	 b

(aid)
b a

b...	 a
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where, in this case,

a = 2(1 + Y)

b= -Y

n=3

and

(ai3)-1 = (a ij )	 (39)
v

hence,

aii	 a + (n - 2)b	
(44)

a* n - ib a-b)

.t hat i s,

+ Y) + (-Y)

,`	 a _ G 1+ Y) ` 2(-y')	 T Y

2 +Y
2('2 + 3 ,Y) 	 (41)

i
and

ai j _	 -b	
(42)tea+ n-	 a_

	

ij	 Y	
(43)

a	 +

So,	 —^

2 + Y	 Y	 Y

	

(X'H-1X) -1 =1+ 2Y	 Y	 2+ Y	 Y	 (44)2T^T
	Y 	 Y	 2 + Y

For this rotation pattern, the basic model

a = Xa + Ub + IeN N N N

can be written as

Ats = at + b s + ets	 (45)
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I

where

1, 2, 3

s-•1,2,3
a	

(al 
l a2 , a3)

b	 (b1' b
2 , b3

That is,

All 1	 0	 0 1	 0	 0 ell

A31 0	 0	 1 a1' 1	 0	 0 bl e31

Al2 1	 0	 0
112

0	 1	 0 b2 e12

A22 0	 1	 0 a3 0	 1	 0 b3 e22

A23 0	 1	 0 0	 0	 1 e23

A33 I 0	 0	 1 0	 0	 1
e33.

where

(46)

a = (A11' A31' A l2 , A22' A23 , A33 )'	 (47)

By step 4 of the acreage estimation in figure 3-8, the estimates of the Ats's

are known as Ats ; hence, the estimates of the at's are deduced from

equation (28) which is now

a = (X'H-1 X) rlX'H-l a	 (48)

where

o'N N N N N N
a = (

A11' A31' Al2 , A22' A23' A33

and where

H = I * yUU', with y = ab /a e es timated from the pilot data,

U is given by equation (33),

(X'H-lX) -1 is given by equation (44),

(49)



1

X is givew by equation (32), and

H-1 is given by equation (34) with Y•

The variances of the estimates are deduced from equation (29) which is now

	

2 +Y	 Y	 Y
A

VarW	
{X'H-1X)-tae = 

c2 1+ 2
	

Y	 2+ Y	 Y	 (50)
2(2 + 3y)

	

A	 A	 A

	

Y	 Y	 2 + Y

	where Y a cb/ae, as estimated from the pilot data.	 a

This means

	

A	 A

	Var a	
^

	

(1 + 2y)(2+ Y). a2	
{51)

t	
2(2 + 3Y)	

e

for t a 1, 2, 3, with T = 3.

. Emphatically, at the last year indexed t = T,

	

Var a	 (1 + 2Y)(2 + Y) a2	 52(	 )

	

t	
2(2 + 3Y)	 e

With respect to this, note the following.

a. The datum T represents the total number of years utilized for the

multiyear estimator aT . In the case of rotation with "return"

(i.e., r < co ), the maximum value of T is r + 1 since this corresponds to a

complete cycle of the rotation.

b. Remarkably, in the case of T = 3, if the rotation pattern cannot be as

shown in figure 3-1, but instead will be shown in figure 3-9.

3-18



Year number

s '	 1	 2 1 , 3
.^
1	 X X

Segment

	

number	 2	 X X

3	 X	 X

Figure 3-9.» (S a 2, r = 2) patterns, showing inverse
of pattern given figure 3-1.

Then, the design matrices X and U will be as follows.

1 0 0

0 1 0

X	 0 1 0
0 0 1

0 0 1

1 0 0

1 0 0

1 0 0

0 1 0

	

U	 0 1 0
0 0 1

0 0 1

}	 therefore,

1 + y y 0 0 0 0

y 1 +y 0 0 0 0

H	 0 0 1+ y y 0 0	 (55)
0 0 y 1+y 0 0

0 0 0 0 1 + Y Y

0 0 0 0 Y 1, + y -

I

(53)

(54)
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1 + y -y	 0	 0	 0	 0

	

-y	 1+ y	 0	 0	 0	 0

H -1	 0	 0	 1+ y -y	 0	 0
Y	 0	 0	 -y	 1+ Y	 0	 0

	

0	 0	 0	 0	 1+ y -y

	

0	 0	 0	 0	 - y 	1+ y

2(1 + Y)	 - y 	- y
	X'H -1X = ^^	 -y	 2(1 + Y)	 - Y)

-y	 -y	 2(1 + Y)

which is the same as equation (36). Hence, equation (52) is obtained.

Vary	 - (1+2Y)(2^+Y) Q2
°`T -	 2(2 + 3y)	 e

However, the components of a°, which are given in equation (48), will be

different in the case of figure 3-9, in which

a0 _ (A11 , A211 A22 , A32 , A331 A131^
/J

Components Al2 1 A23 ' 
A31 are no longer needed, and A

13 , A211 and A
32 are

needed instead.

3.4.3 RESOLUTION FOR (S = 3, r = 2) ROTATION PATTERNS

The rotation pattern (S = 3, r = 2) is presented in figure 3-2, which is

repeated as follows.

Year number

(56)

(57)

(58)

(59)

Segment
number

s t 1	 2	 3	 4

1	 X	 X	 X

2	 X X	 X

3	 X X X

4	 X X rXI

(S = 3, r = 2) Patterns

3-20
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1+ y Y Y 0 0 0 0 0 0 0 0 0
y 1 +y y 0 0 0 0 0 0 0 0 0

y Y 1	 + Y 0 0 0 0 0 0 0 0 0

0 0 0 1 + y y Y 0 0 0 0 0 0

0 0 0 Y 1+ y y 0 0 0 0 0 0

0 0 0 y y 1+ y 0 0 0 0 0 0
H- I+ yUU'

0 0 0 0 0 0 1+ y Y Y 0 0 0

0 0 0 0 0 0 Y 1+ y y 0 0 0

0 0 0 0 0 0 Y y 1+ y 0 0 0

0 0 0 0 0 0 0 0 0 1+ y Y Y

0 0 0 0 0 0 0 0 0 y 1+ y y

0 0 0 0 0 0 0 0 0 y Y 1	 +y

3-21

The design matrices of the model shown as equation (12) are as follows.

`	 1 0 0 0
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

X	 0 0 0 1
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0, 0

0 0 1 0

0 0 0 1

1 0 0 0^
1 0 0 0

1 0 a 0

0 1 0 0

0 1 0 0

U=	 0 1 0 0
0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

Then,

(60)

(61)



and

1+ 2Y -Y -Y 0 0 0 0 0 0 0 0 0

-Y 1+ 2Y -Y 0 0 0 0 0 0 0 0 0

-Y -Y 1+ 2Y 0 0 0 0 0 0 0 0 0

0 0 0 1+ 2Y -Y -Y 0 0 0 0 0 0

0 0 0 -Y	 , 1+ 2Y -Y 0 0 0 0 0 0

N.1 0 0 0 -Y -Y 1+ 2Y 0 0 0 0 0 0
ZY '0 0 0 0 0 0 1+ 2Y -Y -Y 0 0 0.

0 0 0 0 0 0 -Y 1+ 2Y -Y 0 0 0

0 0 0 0 0 0 -Y -Y 1+ 2Y 0 0 0

0 0 0 0 0 0 0 10 0 1+ 2Y -Y -Y

0 0 0 0 0 0 0 0 q -Y 1+ 2Y -Y

0 0 d 0 0 0 0 0 0 -Y -Y I+ 2r

(63)

since, by the result given by appendix B, the inverses of the 3-by-3 matrices

in equation (62) have their components

a 1

	

	 (1 + Y) + ( 3 - 2)Y	 = 1 + 2y	 (64)
1+y + 3-1y —1+ y) — yJ 1+3y

and

aii =	
-Y

1 + 3y

So,

3(1 + 2y)	 -2-y	 -2y	 -2y

X'H-1X =	
1	 -2y	 3(1 + 2y)	 -2y	 -2y	 (66)

1 + 3y	 -2y	 -2y	 3(1 + 2Y)	 -2Y

	

-2y	 -2y	 -2y	 3(1 + 2Y)

which is of the form shown in appendix A. In addition, its inverse will be

3 + 2y	 2y	 2y	 2y

(X'H-1 X)
-1 = 1 + 3y	 2y	 3 + 2y	 2y	 2y	

(67)

	

3(3 + 3y	
2y	 2y	 3 + 2y	 2y

2y	 2y	 2y	 3 + 2Y

Vector a in the basic model, as shown in equation (12), for this rotation

pattern is

a = (All, A31, A41 , Al2 , A22, A
42 , A13 , A23 , A33 , A24 , A34 , A44 )'	 (3)

SK
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(65)



With the Ats 's being the estimates of the A ts's of the above components, the
A

at 's of the estimates are deduced from

a = (X'H-1 X) -1 X'H-1 a
0
	(69)

where

a° =(A	 A , A41) A ,A , A42 , A ,A ,A	
'
24) A34) A ,' (70)

11	 31	 12	 22	 13	 23	 33	 44

And, the variances of the estimates are deduced from the variance-covariance

matrix

-'q

Var^a^ _	 (X'H 1X)-1ae

A	 A

3 + 2y	 2Y
A

2Y
A

2Y

"
2	 1+3Y

A	 A

2y	 3 + 2y
A

2y
A

2y
= ae 3(3_ 2Y	 2Y 3 + 2Y 2Y

A	 A

2y	 2y
A

2y
A

3 + 2y

2/^2
where y = a b /ae , as estimated from the pilot data.

That means

(1 + 3Y)(3+ 2Y) a2Var(,-t)a	 =
3 3 + 8 )(	 Y e

for t = 1, 2, 3, 4, and T = 4, or

A
a2

!_-	 A	 A

(1.+ 3Y)(3 ry+ 2Y)
Var -_

3(3 + 8y)
e

3.4.4	 RESOLUTION FOR (S = 2, r = 3) ROTATION PATTERNS

The rotation pattern (S = 2, r = 3)	 is presented in figure 3-3, which is

repeated as follows.

(71)

(72)

(73)
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Year number

s t 1	 2	 3	 4

1	 X	 X

Segment 2	 X X
number

3	 X X

4	 X X

(S = 2, r = 3) Patterns

The design matrices related to the model shown in equation (12) are

1	 0 0 0

0 0 0	 1

1	 0 0 0

X=	 0	 1	 0	 0	 (74)
0 1 0 0

0 0	 1	 0

0 0	 1	 0

0 0	 0	 1

and

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0U _

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

(75)
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Then, with a = Y l(1 + Y), and (1 - a2 )(1 + Y) = (1 + 2Y)/(1 + Y),

1 a 0	 0	 0 0	 0	 0

a 1 0	 0	 0 0	 0'	 0

0 0 1	 a	 0 0	 0	 0

H= (1 + Y)
0 0 a	 1	 0 0	 0	 0

(76)
0 0 0	 0	 1 a	 0	 0

0 0 0	 0	 a 1	 0	 0

0 0 0	 0	 0 0	 1	 a

0 0 0	 0	 0 0	 a	 1

1 -a 0	 0 0	 0	 0 0

-a 1 0	 0 0	 0	 0 0

0 0 1	 -a 0	 0	 0 0

H-1	 1+ Y 0 0 -a	 1 0	 0	 0 0
(77)

0 0 0	 0 1	 -a	 0 0

0 0 0	 0 -a	 1	 0 0

0 0 0	 0 0	 0	 1 -a

0 0- 0	 0 0	 0	 -a 1

and

2	 -a 0	 -a

X'H -1X = + 2 -a 	 2 -a	 0
i

Y 0	 -a 2	 -a

-a	 0 -a	 2

=
1 +Y

Circ(2,-a,0,-a)1 + 
2Y

= 1
Circ(2(1 + y))-Y)02-Y) (78)

1+2Y

Appendix C shows the elements of the inverse of the circulant in X'H -1 X, which

for T = 4, deduces

(79)

A

Var aT = 1 8 (1 + 1 + 2y - '	
2	

,.)	 Qe
1 + Y
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where- 
"b/ 

-2, as estimated from the pilot data.
3.4.5 RESOLUTION FOR (S = 3, r 3) ROTATION PATTERNS

The rotation pattern (S	 3, r	 2) is presented in figure 3-4, which is

repeated as follows.

Year number

Segment
number

ht
1 2 3 4 5

1 X X X

2 X X X,

3 X X X

4 X X X

5 X X X

(S = 3, r - 3) Pattern

The design matrices related to the model shown in equation (12) are as follows.

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

X= 0 1 0 0 0 (80)

0 0 1 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 .0 0 1
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and

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

U= 0 0 1 0 0

a 0 0 1 0 0
0 0 o 1 o

0 0 o 1 o
0 0 0 1 0

0 0 0 0 1
0 0 0 0 1

0 0 o o 1

Than, with a = y/(1 + y) and U	 (1 - a) (1 + 2a) _ (1 + 3 y)A 1 + .y)2

(81)

(A2)
w

H = (I + y)

1	 a	 a
a	 1	 a

a	 a	 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

l	 a	 a 0 0 0 0 0

a 1	 a 0 0 0 o 0

a a	 1	 0 0 0 0 0
0 0 0	 1	 a	 a 0 0
0 0 0 a	 1	 a 0 0
0 0 0	 a	 a	 1	 0 0
0 0 0 0	 0 0	 1	 a

	0 0 0 0 0 0	 a	 1

	

0 0 0 0 0 0 a	 a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 o
0	 0	 0	 (
0	 0 0 C

0	 0 0 0

0 0 0 0

0 0 0 0

a 0 0 0

a	 0 0 0

1	 0 0 0

0	 1	 a	 a

0	 a	 1	 a

0	 a	 a	 i

3-27
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and

H-1 -	 1+ Y

1+ a -a -a 0 0 0 0 0 0 0 0 0 0 0 0

-a l+a -a 0 0 0 0 0 0 0 0 0 0 0 0

-a -a 1 + a 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1+a -a -a 0 0 0 0 0 0 0 0

0 0 0 -a 1 + a -a 0 0 0 0 0 0 0 0 0

0 0 0 -a -a 1 +a 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1+ a -a -a 0 0 0 0 0 0

0 0 0 0 0 0 -a 1+ a -a 0 0 0 0 0 0

0 0 0 0 0 0 -a -a 1+ a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1+a -a -a 0 0 0

0 0 0 0 0 0 0 0 0 -a 1+ a -a 0 0 0

0 0 0 0 0 0 0 0 0 -a -a 1+ a 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1+ a -a ^a

0 0 0 0 0 0 0 0 0 0 0 0 -a 1+ a -a

0 0 0 0 0 0 0 0 0 0 0 0 -a -a 1+ a
O	

4

(83)

Additionally,

3(1 + a) -2a -a	 -a -2a

-2a 3(1 + a) -2a	 -a -a

X'H-iX
	

+ 3Y	
-a -2a 3(1 + a)	 -2a -a

-a -a -2a	 3(1 + a) -211

-2a -a -a	 -2a 3(1 + a)

,33x (1 + 2Y) -2 -1	 -1 -2

-2 Y 1 + 2Y) -2	 -1 -1

= 1 ^	 -1 -2 Y(1 + 2y)	 -2 -1	 (84)

-1 -1 -2	 Y(1 + 2Y) -2

-2 -1 -1	 -2 Y(1 + 2Y)

that is	 X'H-1X	
1 + 3-Y

+ 2Y),-2 1 -1 2 -1 1 -2) (85)

By appendix C,

(X'H-1 X)55 =	 +5(Y 3)

T-5	 -i Y( Q-1) 2 7r/5
e (86)
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T-5
where	 xz : E a(k)e-

k=1

Hence, with	 a(1) w3(1 + 2Y) = 3 + 6

a(2) = -2	 a(5)

a(3) = -1 = a(4)

then

a1 - j a(k) = 3/Y
k=1

X2 = a(1) + a(2)e"
i2n/5 + a(3)e-i2x2n /5 + a(3)e- i3x27r/5 

+ 45)e -iW i/5

=:F
 
+ 6 - 2(.309	 .9511) - (-.809 - .5881) - (-.809 + 5881) - 2(.309 + 9511)

= Y + 6 - 4(.309) + 2(.809)

s 3 + 6.382
Y

a 3 = a(1 ).+ a(2)e-i2x2lr
/5 + a(3)e-14x2n/5 + a(4)e-ifx2rr/5 + a(s)e-

3
Y + 6 - 2(-.809 - .5881) - (.309 + .9511) - (.309 - .9511) - 2(-.809 + .5881.)

= Y + 6 + 4(.809) - 2(.309)

= 3 + 8.618
Y

Similarly,

s

(87)

(88)

(89)

(90)

(91)

and

Then,

a4 = 
3 
+ 8.618 = A3 	(92)

a 5 =-! + 6.382 = a2 	(93)

1 -1	 1 1	 1	 e
-18x2v/5	 e-i16x2,r/5	 e-124x2rr/5	 e-132x2v/5 l

	

^XH- X) 55 m ^(Y +3, 1 	 +	 x	 +	 x	 +	 -	 +	 )}
1	 2	 3	 4	 5

1 +	Y + -.809 + 5881	 .309 - .9511 + .309 + .9511 + -.809 - .58811

	

Y 3) {	 Y ++ 6.382 	 Y + 8.618	 Y +
3
 8.618	 i+ 	 6.382 f



That is,

(X'H"1X)55	 1Y + 31 1 w	 1^ 6]8	 *	 .618 j
ff	 Y + 6.382	 + 8.618 S

and

(X'H-1X)55 - (1 3Y ) 7 + 3- O ' 61 Y ^ *^61^_^

Then, for T = 5,

1	 1	 0.61.8	 1.618	 2
7

Var a , _ --(1 + 3 ^ )	 +	 -	 ^ 1 a
5	

y 3 3+ 8.618y 3+ 6.382y e

where	 = Q2 
/Cr2
", 

as estimated from the pilot data.

3.4:6 RESOLUTION FOR (S = 2, r 	 ROTATION PATTERNS

3.4.6.1 Case of T = 2

The rotation pattern (S = 2, r	 T*= 2) is presented below in figure 3-10.

Year number

S	 1	 2

1	 X
Segment
number	 2	 X X

3	 X

Figure 3-10.- ( 5 = 2, r	 Patterns L2 retained 1; T = 23.

The design matrices related to the model shown in equation ( 12) are

1	 0

X =	 1	 0	 (97)
0	 1

0	 1

(94)

(95)

(96)
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and

1	 0 

U g	 0	 1	 0

V

(x7{7/
0	 1	 0

0	 0	 1

Then,

I+ y	 0	 0 0

H ffi I + YUU' x	 o	 l Y Y

1+ y
o (99)

0	 0	 0 1+y

and

1 + 2y	 0	 0 0

H -1 _	 1	 0	 (1 + Y) 2	 -Y( 1 + Y)	 0 (100)1+2y
0	 -y(1 + Y)	 (1 + Y ) 2	 0

0	 0	 0 1+2y

and

X'H-1X^.^ (1 + 2y)	 + (1 + 2 y ) 2 -Y(1 + Y) (101)
Y(1 + y)	 (1 + 

2y) + 
(1 + y)2

So,

w	
(XrH-1X)-1 „	 (1 +	 )(1 + 2)	

(1 + 2Y) + (1 + Y.) 2 Y(1 + Y)
(102)

[(1 + 2Y) + (1 + Y)	 ]	 - Y (1 - Y) Y^ 1 + Y)
2(1 + 2Y) + C1 + Y)

Vector a in the basic model	 shown in equation (12) for this rotation pattern

is

a =	 (A 11 , A l2 , A22 , A23 )' (103)

With the Ats 's being the estimates of the A ts 's of the above components the

at 's of the estimates are deduced from

a = (X'H-1 X) -1 X'H -1 a ON	 N (104)
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where,

ao 12 (Aj 1 , Al 2 , A2*, A23 )'	 (106)

Additionally, the variances of the estimates are deduced from the variance-

covariance matrix

Var(«) - (X'H-1X)"1o2

oe
(1 + Y) (1 + 2Y)

Ct1+2Y)+a+Y)I -Y^(1
+Y)

U+2Y)+(1 +Y)2 	Y(1+Y)

Y(1 + Y)	 (1 + 2Y) + (1 + Y)2.

(106)

where Y = a2/;e, as estimated from the pilot data

That means

Var( A t
) - ( 1 + Y)(1 + 2Y) C(1 + 2Y) ^ (1 + y) 2] Q2

 - C (1 + 2y)) + (1 + Y
) 2 3 2 -	 (1 + )	 e

Y	 Y	 Y

for t = 1 0 2, T = 2, or

Var(a ) = 11 + Y)(1 + 2Y)C(1 + 2Y) + (1 + Y)2] 
OeC (1+2Y)+(1 +Y) ] -Y(1 +Y)

(107)

where Y = ^b/cry, as estimated from the pilot data.
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3.4,6.2 Case of T a 3

The rotation pattern (S m 2, r n 3) is presented below in figure 3-11.

Year number

	

s	 1	 2	 3

	

1	 X

	

Segment 2	 X	 X
number

	

3	 X X

	

4	 X

Figure 3-11, (S - 2, r 	 Patterns [2 retained 1; T = 33

The design matrices related to the model shown as equatic ,	(12)	 are

1 0 0

1 0 0

X = 0 1 0
(108)

0 1 0

0 0 1

0 0 1

and

1 0 0 0

0 1 0 0

U
0 1 0 0

(109)
0 0 1 0

0 0 1 0

0 0 0 1



n
t

Then,

1+Y 0 0 0 0 0

0 1 +Y Y 0 0 0

H - I 
+YOU , 0 Y 1+Y 0 0 0

0 0 0 1+ Y Y 0

0 0 0 Y 1+Y 0

0 0 0 0 0 1+ Y

1 + ?
+ o a o 0 a

0 Y 1+ Y •Y 0 0 0

H-1
0 -Y 1+ Y 0 0 0

Ty 0 0 0 1+ Y -Y 0
0 0 0 -Y 1+ y 0
0 0 0 0 0 1+ 2y

1 + Y	
l

and

(110)

(111)

+ 2Y)+ (1 + Y)2
1+Y

X'H-IX = T	 -Y

0

-Y	 0

2(1 + Y)	 -Y

(1+2Y)+ (1+Y)2_Y 
1 + Y

(112)

So,

(1 + 2Y) + (1 + Y)2
+ Y

(X'H-1 X) ` 1 = (1 + 2Y)	 -Y

0

or, with r _ (1 + 2Y) + (1 + Y) 2 , then

d/ ( 1 + Y)
(X'H-1 X) -1 = (1 + 2Y)	 -Y

0

-1
-Y	 0	 l

2(1 + Y)	 -Y

-Y	 (I + 2Y) + (1 + Y)2
1+Y

-Y	 0	 -1
2(1 + Y)	 -Y	 (113)

-Y	 d/(1 + Y)
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r-----

4

which can be written as

	

(X'H -1 X) -1 = (1 + 2y) A-1	 (114)

where	 IAI = ? d(d	
Y2)

-1-+- -	 (115)

and

	

2 d - Y
2	 Y+d,_	 Y2

2

A
-^ _ 1 + Y L 1

_^ ^ (1 a y)2 1 + Y	 (116)

2d(d - y)
Y2	 i
 Y + d 

Y	 2 d- y2

That means

2d-y2	 i,^yd	 Y2

2

(X'H
-IX) -1 = (1	 Y)(1 + 2Y)	 1 + Y d	 y`:t +Y	 1 + Yy d	 (117)

2 d(d - y)

	

Y2 	 Yd 2d-Y2

Vector a in the basic model shown in equation (12) for this rotation pattern

is

	

a = (A li' A 1..n , A22 , A23 , A33 , A34 ) ' 	 (118)

With the Ats 's being the estimates of the A ts 's of the above components (by

step 4 of the flow chart in figure 3-10), the a t 's of the estimate are derived

from

a = (X'H -1 X) -1 X'H
-1 a o
	(119)

where	 aO = (Ail' Al2' A22, A23,	 A33 ,A34)'	
(120)

And the variances of the estimates are deduced from the variance-covariance

matrix as fol l ^,,ws .

P



Var^a) 	 (X'H-1X)- lve

A	 A

=Q2 ( 1 +Y)(1 +2 Y)
e	

2d(d-Y)

A

2d_Y2	 YAd	 Y2
1 + Y

A
A	 A

A2	 A
^ 

^y	 +d (1 vj^ , Y
-r d

A
A2	

YA
	 A	 A2

Y	 „d	 2 d - Y
1+Y

A	 A2 A2

where Y = 
a  

/cr0 as estimated from the pilot data, and

d=(1+2Y)+(1 +Y)2

That means, for T = 3,

(121)

(122)

Var(ccl.) = Qe (1 	 + Y)(1 + 2Y)(2 d - Y2)	 (123)
2d(d -Y)

A	 A	 A 2

where	 d=(1 +2Y) +(1+Y)

A	 AID A2

and Y = a 
	

ae , as estimated from the pilot data.

3.4.6.3 Case of T = 4

The rotation pattern (S	 2, r	 T = 4) is presented in figure 3-5, which

is repeated as follows.
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Year number

S - 1	 4	 J	 4

1	 X

2	 X	 X
Segment
number	 3	 X	 X

4	 X	 X

5	 X

(S = 2, r	 Patterns [2 retained 1; T = 41

The design matrices related to the model, shown in equation (12) ar:

1	 0	 0	 0

1	 0	 0	 0

0	 i	 0	 0

X	
0	 1	 0 0

.0	 0	 10

0	 0	 1	 0

0 0 J	 1

0	 0	 0	 1

and

(124)

U=

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

(125)
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n (125) can be written as

1 0 0 0 0 0 0 0
0 1 a 0 0 0 0 0
0 a 1 0 0 0 0 0
0 0 0 1 a 0 0 0
0 0 0 a 1 0 0 0
0 0 0 0 0 1 a 0
0 0 0 0 0 a 1 0
0 0 0 0 0 0 0 1

(126)

Then, with a = y /(1 + r), equatio

H=(1+Y)

hence,

H"1=I+Y

— 1 0 0 0 0 0 0 0-

0 1
1 - a2

"a 0 0 0 0 0
1 - a2

0
-a

1 0 0 0 0 0
1-a2 1-a2

0 0 0 1 "a 0 0 0
1-a2 1-a2

0 0 0 —a 1 0 0 0
1--a 2

2
1-a

0 0 0 0 0 1 ---a
1-a

0
1-a 

2

0 0 0 0 0
-a 1

1 - a
02-

1 - a
0 0 0 0 0 0 0 1_

(127)
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and

•	 1 +	
1 2 

-- -a f 	 0	 0
1 - a	 1 - a

	

-a	 2	 -a	 0

i-a2 i^a

	

X' H-iX ^+ Y	 0	 -a	 2	 -a
1	 a	 1 - a 2'	 - t

.	 0	 0	 -a 2' 1 +	 1 2
1-a	 1-a

	

f g	 0	 0

1	 g	 2h	 g	 0
	= 1 + Y	 (128)

	

0 g	 2h g

	

0 0	 g	 f

where

f = 1 + 12 = ^(1 + 2Y) + (1 + Y) 2]/(1 + 2Y)
1-a

g = -a/(1 + a2 ) = -Y(1 + Y)/(1 + 2Y)

W. ,

h = 1/(1 - a 2 ) = (1 + Y) 2/(1 + 2Y)

by the Cramer rule in solving the syst

fx 1. + gx2

gx1 + 2hx2 +

gx2 +

:em of equations,

=0

gx3 	= 0

2hx3 + gx4 = 0

gx3 + fx4 = 1
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the value x4 will give the following value of the element (X'H-IX)-144 as

f g	 0 j 0

g 2h g j 0
0 g 2h 0

, -1 -1	 r0 0 r g ^i 1
(XH X) 44 = (1+Y)	

f g	 0 i 0
t

g 2h g I 0

0 g 2h	 g

0 0 g	 f

which, by being applied to the calculation of the determinant of a partitioned

matrix, is

f g p -1 n 1-1

(X'H-],X)44 _ (1 + Y) f - (0 0 g) g 2h 9	 0

0 g 2h	 g

-1

(1+Y) f-	 2fgh-94

4fh - fg^ g h

_ (1 + Y)	
4fh - fg 2 - 2g2 

+4fh-f g -4fgh+ 9

i.e.,  for T = 4,

2	 00	 002	 02 0	 02 0	 0202	 0 02 0	 04
Var(

h
	= ae (1 + Y)(4fh - fg - 2g h)/(4fh - f g - 4fg h + g ) (129)

whe

Y-

1 0
f=

!re,

^b! ;e^ as estimated from the pilot data

C{1 + 2Y) 4. (1 + Y) 2]/(1 + 2Y)

0	 ,.
9 = -Y(1 + Y)/(1 , + 2Y)
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h = (1 + Y) 2M + 2Y)

	

3.4.7 RESOLUTION FOR (S = 3, r	 ROTATION PATTERNS

3.4.7.1 Case of T = 3

The rotation pattern (S = 3, r	 T = 3) is presented below in figure 3-12.

Year number

S t	 1	 2	 3

1	 X

2	 X	 X
Segment

	

number	 3	 X X	 X

4	 X X

5	 X

	

Figure 3-12 - (S = 3; r	 atterns [3 retained 2; T = 31.
While this pattern shows the notation for only three years,
the related pattern given in figure 3-6 shows it for four.

The design matrices related to the basic model, shown in equation 12, are

1	 0	 0

1	 0	 0

0 1	 0

1	 0	 0

X =	 0	 1	 0	 (130)

0 0	 1

0	 1	 0

0 0	 1

0 0	 1
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and

1	 0 0 0 0
0	 1 0 0 0
0	 1 0 0 0
0	 0 1 0 0

U= 0	 0 1 0 0
0	 0 1 0 0

• 0	 0 0 1 0
0	 0 0 1 0
0	 0 0 0 1

Then, with a	 y(1 + Y), U = (1 -	 a)(1 + 2a) = (1 + 3y) i(1 +	 y)2

1 0	 0 0 0 0 0	 0 0
0 1	 a 0 0 0 0	 0 0
0 a	 1 0 0 0 0	 0 0
0 0	 0 1 a a 0	 0 0

H= (1 +Y) 0 0	 0 a 1 a 0	 0 0
0 0	 0 a a 1 0	 0 0
0 0	 0 0 0 0 1	 a 0
0 0	 0 0 0 0 a	 1 0
0 0	 0 0 0 0 0	 0 1

ri 0 0 0 0 a 0 0 0

0 — 1 2
1 - a

--a
1 - a

0 0 0 0 0 0

0 =—a
1 - a

1 0 0 o a o 0
1 - a"

0 0 0 1+ a
u

-a
u

-a
u 0 0 0

H" 1= 3--T y 0 0 0 - u 1 u a =u 0 0 0

0 0 0 -aa
u

-a
u

l+ a 0 0 0u

0 0 0 0 0 0
1

-a 
21-a

0
1 -a 2

0 0 0 0 0 0
1 - a

1 2
1 - a

0

0 0 0 0 0 0 0 0 0

(131)

(132)

(133)
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-a	 a

	

u 
	

- a2'

	1 	 1+a
21 w a + u
u

^u

-a	 a
u-

1+	 i	 + I + a

au

(134)

Soo

1+ 1	 + 1+a

1	 a2
u

X'H" 1X = + Y
	

u - 1 —a2

°u

which can be written

A B D

X' H" 1X = 1 1Y B C B
D B A

where

.= 1+	 1	 l+a	 (1 + 2y)(1 + 3y) + (1+1) 2 (1+3	 + 1+y)(1+2X)2
A	 --- 2 + u	 ----(^ 

Y) (1+ Y

B = -a -	 a	 _ -y(1 + Y)[(1 + 2 y ) + (1 + 3y)]

u 1 -	 + ZYM + Y

	

C =- 2	 1-^	 l+ I + a _ (1 + ) C 2 (l + ) (J. i 	 ) + (1 + 2y) 2 ]
1-a	 Y

and

(135)

(136)

(137)

(138)

-a	 1,, (1 + y)(1 + 2y)
ri	 D= u =	^

	

1+ y ^	
(139)

In applying the definition of the inversion of a matrix, the three diagonal

elements of the inverse of X'H" 1X will be

(X'H" l X) -1 = (X'H
-1 X) -1 = (l + Y)	 AC - B2	

(140)11	 33	
(A - D)C(A + D)C - 2B2]

and

(X'H-1 X) 22 = (1 + Y)	 A + D 
2	

(141)
A+D -B
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3-44

That means

00	 02
T	 Y '"0""'f) (AC U U"""_'02 " °

e
Yar «	 (1 * )

(A - DMA + D)C - 2B 7

for T x 3, where

^2"2
Y = ub ae , as estimated from pilot data

(1 + 2Y)(1 + 3Y) + (1 + Y) 2 (1 + 3Y) + (1 + Y)(1 + 2Y)2
A	 .

(1 + 2y)(1 + 3y)

B	 •Y(1 + Y)[(1 + 2
Y ) + (1 + 3Y)]

	

A	 n

(1 + 2y)(1 + 3Y)

fl	 (i + Y)L2(1 + Y)(1 + 3Y) + ( 1 + 2Y) 1C - 
(1 + 2Y)(1 + 3Y)

and

(142)

(143)

(144)

(145)

0 - -Y(1 + Y)(1 + 2Y)	 (146)
(1 + 2 Y)(1 + 3Y)

Note: In applying the Cramer approach to directly solve for x3 in the system of

three equations

Ax  + Bx2 + Dx3 = 0

Bx 1 + Cx2 + Bx3 = 0	 (147)

Dx 1 + Bx2 + Ax3 = 1

the value of the element (X'H -1X) 33 will be as follows.



A a a
iB c   a_

(X'H-1 X) -1 = (1 +Y) D B ; 
1	 (;148)33 i

B C B

D B j A

and by calculating the determinant of a matrix that is partitioned,

that is	 (X'H -1X)33 = ( 1 + Y) IA - (DB) 
B 

B)-I(D1
	 I`

-1(149)
!(  

(X'H-1X)33 = (1 + Y)	 AC - B 2

IA(AC-B) -DC+26 20-AB I

AC B2
AC-2AB - DC+26D

_ (1 + y)	
AC - B2

(A - D )C-2B (A-D)

_ (1 + Y)	 AC - B2
(A	 D)[(A + D)C - 271 	 (150)

which is the same as equation (140),

3.4.7.2 Case of T = 4

The rotation pattern (S = 3, r 	 T = 4) is presented in figure 3-6, which is

repeated as follows.
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Year number

s 1 2	 3	 4

1 X

2 X X

Segment	 3 X X	 X

number
4 X	 X	 X

5 X	 X

6 i i I—X

(S - 3, r = -) Patterns [3 retained 2; T - 4]

'the design matrices related to the basic model, as shown on equation (12), are

1	 0	 0	 0

1	 0	 0	 0

' 0	 1	 0	 0

1	 0	 0	 0

0	 1	 0	 0

^. 0	 0	 1	 0
(151)

0	 1	 0	 0

0	 0	 1	 0

0	 0	 0	 1

0	 0	 1	 0

0	 0	 0	 1

0	 0	 0	 1
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of

1 0 4 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1

1 0 0 0
0 0 1 0 0 0

U 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

Then, with	 y/(1 + y), u (1 - a)(1 + 2a) _	 (1 + 3Y)/(1 + Y)2:

1 0 0 0 0 0 0 0	 0 0 0 0
0 1 a 0 0 0 0 0	 0 0 0 0
0 a 1 0 ` 0 0 0 0	 0 0 0 0
0 0 0 1 a a 0 0	 0 0 0 0
0 0 0 a 1 a 0 0	 0 0 0 0

H	 (1 +Y)
0 0 0 a a 1 0 0	 0 0 0 0
0 0 0 0 0 0 1 a	 a 0 0 0
0 0 0 0 0 0 a 1	 a 0 0 0
0 0 0 0 0 0 a a	 1 0 0 0
0 0 0 0 0 0 0 0	 0 1 a 0
0 0 0 0 0 0 0 0	 0 a 1 0

10 0 0 0 0 0 0 0	 0 0 0 1

(152)

(153)

3347
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- M tfA

H-1 1 r +-Y

•

1	
01 0 0 0 0

0
0 0 00

1- a2
-a

1-	 za
0 0 0 0 0 0 0 0	 f0	 {

0	 1 _. 1"^ 0 0 0 0 0 0 0 0	 0
0	 0 0 1+ a -a -a

u u u 0 U 0 0 0	 0
0	 0 0 Zu 1 a -au U 0 0 0 0 O	 D
0	 0 0 -a -a 1+ a

U u 0 0 0 0 0	 0
0	 0 0 0 0 0 1+ a -a -a

0	 0
u u u 0 0	 0

0 0 0 0 : 1+a -a
0	 0 0

U - U u 0 0	 0
O 0 0 'u 1	 a

0	 0 0

-u
u 0 0	

0

0 0 0 0 0 0 1 -a 0
1- a2 1-ate0

0 0 0 0 0 0 0 —aa

0 0 0 0

1	

a2

------ 0

1	 a20 0 0 0
0

0	 1

(154)

and,

l + ---. ^. + is .,	 a	 a
i-aT-u

a
-u 0

XH-1X=	 1	
_ a "'-^ _ ua

1+ Y 	l	 a
1_ y + 2 1 U a

1-a
-2a

u -
a

a
U ^2u	 i	 21-- +- a1-a-^•-	

^

u
-	 a	 a

0 a
- u	 ' a 2 - ai-a2	

u

ia2	 u
i+	 i	 i+ a

u1- a2+A	 0B	 D

- 1 _ 	 B	 DE	 2D

Y	 D	 2D	 E	 B
0	 D	 B	 A

where A, B, D are defined in equations	 (137), (138) 9	Ind (139),	 and

E = --_1 ,^+ 2 1 u a =	 (1 +Y)C(1	 +Y)(1 + 3Y) + 2(1 + 2Y)2a
1	 a +	 Y	 + Y

(155)
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C5	 '

Therefore,

A B	 D^0

B E	 2D 10
D 2D	 E	 q

WH-1 X) 44 = (1 + Y) 0
ID	 B 11

A B	 D 10

B E	 2D ID

D 2D	 E I B

0 D	 B ( A

= A B	 D -1

	

-1	 (156)
(1+Y) A- (0D B)	 B

ID

E 2	 D

1012D	 E	 B

Hence, for T	 4,

tler	 ^. = (1 + y) A -	 O'M^lb 1 -i ^0	 (157)

where

M = (1 + 3Y)/(1 + y)3

A 
= [(1 + 2y)(1 + 3y) + (1 + y) 2 (1 + 3y) + (1 + y)(1 + 2y)21	 (158)A

(1 + 2y)(1 + 3y)

A	 A	 A	 A

B = -y(1 + Y)[(1 + 2y) + (1 + 3-r]	 (159)
A	 A

(1 + 2y)(1 + 3y)

/^	 A	 A

D = -y(1 + y)(1 + 2y)	 (160)
A	 A

(1 + 2y)(1 + 3y)

E _ (1 + y)[(1 + y)(1 + 3y) + 2(1 + 2y)2]	
(161)A	 A

(1 + 2y) (1 + 3Y)

1
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H	 B	 Dr

M -
	 B	 E 20	 (162)

0	 0	 0
D 2D	 E

and

b' = [0 D B]	 (163)

3.4.8 RESOLUTION FOR (S = 4, r 	 ROTATION PATTERNS

3.4.8.1 Case ofT=3

The rotation pattern (S = 4, r 	 T = 3) is presented below in figure 3-13.

Year number

s t	 1	 2	 3

1	 X

2	 X X

Segment	 3	 X X	 X
number

4	 X	 X	 X

5	 X	 X

6	 X

Figure 3-13.- (S = 4, r = -) Pattern [4 retained 3; T = 31.
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The design matrices related to the basic equat- on (12) are

1 0 0

1 0 0
0 1 0
1 0 0
0 1 0
0 0 1X
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1

and

1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0U _
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

(164)

(165)
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1	 0 0 0 0 0 0 0 0 0 0	 0

0	 1 -- :a 0 0 0 0 0 0 0 0	 0
1	 a 

2

1-a

0	 -a  0 0 0 0 0 0 0 0	 021 -b -71-a

0	 0 0 1	 a 0 0 0 0 0	 0u u u

0	 0 0 -a 1 u a -a 0 0 0 0 0	 0

0	 0 0 -u -u 1 u a 0 0 0 0 0	 0

0	 0 0 0 0 0 l	 a -u 0 0	 0u —u

0	 0 0 0 0 0 -u 1 u a
u 0 0	 0

0	 0 0 0 0 0 -a -u 1 u a 0 0	 0

0	 0 0 0 0 0 0 0 0 1 a	 0
1	 aZ 1 - a2

0	 0 0 0 0 0 0 0 0 --a 1	 0
1-a2 1-a2

0	 0 0 0 0 0 0 0 0 0 0	 1

s

'Ii

+Y
(167)

Then, with a = Y/(1 + r),

1 0 0 0 0 0 0 0 0 0 0	 0

0 1 a 0 0 0 0 0 0 0 0	 0

0 a 1 0 0 0 0 0 0 0 0	 0

0 0 0 1 a a 0 0 0 0 0	 0

0 0 0 a 1 a 0 0 0 0 0	 0

H = (1 +y)
0 0 0 a a 1 0 0 0 0 0	 0

• 0 0 0 0 0 0 1 a a 0 0	 0

0 0 0 0 0 0 a 1 a 0 0	 0

0 0 0 0 0 0 a a 1 0 0	 0

0 0 0 0 0 0 0 0 0 1 a	 0

0 0 0 0 0 0 0 0 0 a 1	 0

0 0 0 0 0 0 0 0 0 0 0	 1

and by applying the results given in appendix A with

u = (1 - a) (1 + 2a)

= (1 + 3y)/(1 + y)2

then

(166)
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and

1+^.z	 u a
1-a

. `_. 7
1-a

2 u .2 u

X'H" 1X =Z +Y --a - 2 u
1-a

2(---7+
1-a

1	 a ) - a z	 2 u
1-a

-2 --
1-a

2u 1+ 1 ^+ 2 1 u a
1	 a

F	 G	 2D
_	 1—+ ,y H	 G (168)

20	 G	 F

where

1	 1+a	 (1+2y)(1+3y)+F=1+--T+2Tf-a)(1 + a 1_+y)2(1+3y)+2(1 +y)(1.+2y)2
+	 y	 +3'y)	 (169)

a	 a	 _G=_ ----2-2	 -
-Al + 2y)[2(l + 2y) 	 +	 (1+ 3Y)7	 (170)1- a 	1+2a +	 y 1+	 Y

H= 2	
1

+	
1*l+a 	 =2(_	 )C(1+ ^)(j'.+ 3 Y) + (1+2Y)2

\ 1 - a 2 	 1 - a 1 + 2a	 1 + 2i + 3y)

(171)

D = - a = _ Y (1 +y)(1 + *2,y) as in equation (140).	 (172)u	 1+2y)(1+3y)

Therefore,

F	 G^	 0
G	 H	 0
--4--

33 = (1 + Y)

2D	 G 1,	 1

F	 G ^ 2D
G	 H	 G
--_1._

2D	 G i	 F

(1 + Y) hF - (2D G) (G H) -1 (2D),	
-1)

(1 + Y)
(FH - G2)

F(FH - G2 ) - 4D2H + 40G2 - FG2

( 1 +Y)
FH-G2	 (173)

(F - 2D)[(F + 2D)H - 2G

n	 I7
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w

f"

In fact,
	 (X'H-1X)-' = (X'H-1X)33

Hence, for T = 30

	

Var aT = (1 + y)	
C^H - G2._.^^._	 (174)

(F- 2D)C(F +26H-2G1

where
AAA AEIy = a

b /ae , as estimated from the pilot data

F = C(1 + 2Y)(1 + 3y) + (1 + y) 2 (1 + 3y) + 2(1 + Y)(1 + 2Y)21	 (175)

(1 + 2y)(1 + 3Y)
V 

A	 A	 A	 A

0= -y(1 + 2y)C2(1 + 2y) + (1 + 3y)1 	 (176)A	 A

(1 + 2y)(1 + 3Y)

H = 2(1 + Y)C(1 + Y)C1 + 3y) + (1 + 2y)21	 (177)A	 A

(1 + 2y)(1 + 3y)

	

A	 A	 A

D - -y(1 + Y)(1 + 2y)	
(178)A	 n

(1 + 2y)(1 + 3y)

3.4.8.2 Case of T = 4

The rotation pattern (S = 4, r	 T = 4) is presented in figure 3-7, which

is repeated below.

Year number

s t	 1	 2	 3	 4

1	 X

2	 X	 X

3	 X	 X	 X

4	 X X X	 X

5	 X	 X	 X

6	 HX7 
Figure 3-7.- (5	 4, r n a) patterns [4 retained 31.
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The design matrices related to the based model as shown in equation (12) are

1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

X=
0 1 0 0

(179)
0 0 1 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 1

and

1 0 0 0 0 0	 0

0 1 0 0 0 0	 0

0 1 0 0 0 0	 0

0 0 1 0 0 0	 0

0 0 1 0 0 0	 0

0 0 1 0 0 0	 0

0 0 0 1 0 0	 0

U=	 0 0 0 1 0 0	 0	 (180)

0 0 0 1 0 0	 0

0 0 0 1 0 0 0

0 0 0 0 1 0	 0

0 0 0 0 0	 0

0 0 0 0 1 0	 0

0 0 0 0 0 1	 0

0 0 0 0 0 1	 0

0 0 0 0 0 0	 1
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Then, with a = -y/1 + Y ,

H-(1+Y)I

1 0 0 0 0 0 0 0 0 0 0 0- 0 0 0 0

0 1 a 0. 0 0 0 0 0 0 0 .0 0 0 0 0

0 a 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 a a 0 0 0 0 0 0 0 0 0 0

0 0 0 a 1 a 0 0 0 0 0 0 0 0 0 0

0 0 0 a a 1, 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 a a a 0 0 0 0 0 0
0 0 0 0 0 0 a 1 a a 0 0 0 0 0 0

0 0 0 0 0 0 a a 1 a 0 0 0 0 0 0
0 0 0 0 0 0 a a a 1 0 0 0 0 0 0

0 0. 0 0 0 0 0 0 0 0 1 a a 0 0 0

0 0 0 0 0 0 0 0 0 0 a 1 a 0 0 0

0 0 0 0 0 0 0 0 0 0 a a 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 0

0 0 0 0 0 0 0 0 ,0 0 0 0 0 0 0 1

(181)

and, by applying the results given in appendix A, we denote equations (182)

through (184)

TI	 (1 - a)(1 + 3a) = (1 + 4Y)/(1 + Y)2	 (182)

u	 (1-a)(1+2a) = (1+3Y; t1 +Y)2

where

J =_ 
1+ 1 + 11aa + 1+2a = 1+ ( 1+ )2)2, +1_+_^ + (1+ )(1, +^3^)

1	 a2	 u	 n	 1 + 2Y	 1 +	 1 + 4Y

(185)

	

K r. _	 a	 _ a. 	 a _ - Y(1+ Y) _ Y(1 ++ Y) _ Y(1++ Y)	
(186)1 _a2' u n Tr--+--2y)- 1 ^	 —]4

L = - a	 a
- a =	 Y (1+ Y) _ Y( 1 + Y)	 (187)

u n ^+ =y 1 + 4

R__a Y(1+Y)	 (188)
n -T-+-Ty-
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Q = -2a - a = , 2 (1 + Y) - Y(1 + Y) 	 (189)
u n	 —r	 1 -+—"?F-

P  =	 + 2 1 ua. + 1 n ?a (1 ' 2!+ .-,c=1 	 (L (1^ +	 _.	 +(	 Y),
1- a 	Y 	

__ 1 ..	 ,^

(190)

Therefore,

J K L	 i 0

K P Q	 1 0
L Q P 0

^-1	 -1-
(X H	 X)	 (1 + Y)

R L Ki t
(191)

44	 J K L R
K P Q L
L Q P K

1
R ~L K	 ; J

J	 K	 L	
-1	 R	 -1

(1 + Y)	 J- (R L K) K	 P	 Q L

C	 Q	 P	 -K -

Hence, for T = 4,

K

1

Var «^. 	 (1 + Y) jJ -v' N'1	 v j	 ae	 (192)

where

^2 ^2
Y = Qb CTe , as estimated from the pilot data

J = 1 + (1 + Y) 2 + 1_.+ Y_ + (1 + Y) (1 ^+ 3Y)	 (193)
1+2.Y	 1+3Y	 1+4Y
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K	 _ Yl-^1 +- Y _ y(1	 +•	 X) -	 Y( (194)A

1+2y
A

I+3Y
A 

1+4y

R = -Y(1 + Y)/(1 + 4y) (196)

L	 -y(1 + Y)/(1 + 3Y) - y(1 + Y)/(1 + 4Y) (196)

Q	 -2y(1 + Y)/(1 + 3Y) - Y(1 + y) /(1 + 4y) (197)

P	 (	 + Y) `/(1 + 2y) + 2(1 + y)(1 + 2y)/('1 + 3y)	 +	 (1 + y)(1 + 3y )/(1	 •+• 4y)

• (198)

v" _ (R L K)	 (199)

avid

0 0 0

J K L

N =	 K P Q	 (200)

0 0 0
L Q P

3.4.9 RESOLUTIONS FOR OTHER SPECIFIED ROTATION PATTERNS

Following are some other specified rotation patterns of S = 4 segments per

year, the results of which are to be presented and applied in the cases of

necessary collapsions mentioned in section 3.3.2.

3.4.9.1 Resolution for (S = 4, r = 3) Rotation Patterns

The rotation pattern (S = 4, r = 3; C4 retained 31) is presented in

figure 3-14.
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Year number

S 
t 1 2 3	 4 5	 6

1 X X X	 X

2 X X X	 X

Segment	 3 X X X X
number

4 X X X	 X

5 X X	 X X

'7-^- X	 X X	 X

Figure 3-14.- (S = 4, r = 3) Patterns G4 retained 31.

S ome resul is are

X'H-1 X =	 I	 Circ[4(1 + 3Y), - 3Y, -2Y, -2Y, -2Y, -3Y]	 (201)

( X ' H 1 X )661 = 1-- +4Y (1 4-+	
4+14 - 33 - 4+10^ 5yly	

(202)
Y	 Y	 Y	 Y

and, for T = 6,

V a r ^aT I = 1-6- 4Y 1T ^	 1	 ^ -	 '^3	 -	 '^	 ^ ^ cr e	 (203)
11 //	 4 + 16Y 4 + 16Y - 33Y 4 + 10Y + 5 ay )

where Y 
= a2/"

 	 "e, as estimated from the pilot data.

3.4.9.2 Resolution for (S = 4, r = 4) Rotation Pattern,

The rotation pattern (S = 4, r = 4; (4 retained 3]) is presented in

figure 3-15.

9
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s t 1 1	 2 3 4 5 6 7

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X

Segment
number

Year number

Figure 3-15.- (S = 4, r = 4) Patterns [4 retained 31.

Sow re v ul is are

X + H- 1X :t--	 Circ[4(1 + 3Y), - 3Y, -2Y, •-Y) -Y) - 2y ,. -2y , -3y] (204)

(X' Hr1X)..!. - 1 + 4y1 +	 1.470	 _ _	 1.302	 _	 0.445	 (205)
77 rT—(T 4 + 15.3TT 4 +rg"=y 4 + 10.951y

and, for T = 7,

Var aT 
= 1 + 4y 1 +	 1.470	 _	 1.302	 _	 0.445

4 + 15.357y4 + 15.602Y 	 4 + 10.95 Y )

where yae/ae, as estimated from the pilot data.

3.4.9.3 Resolution for (S = 4, r = 2) Rotation Patterns

The rotation pattern (S = 4, r = 2; [4 retained 2]) is presented in

figure 3-16.
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(1

Year number

s t	 1	 2	 3

J	 X	 X

2	 X	 X

Segment 3	 X X
number

4	 X X

5	 X X

6	 X X

Figure 3-16. (S = 4, r = 2) Patterns C4 retained 21.

Some results are

	

2(1 + Y)	 -Y	 -Y
X ^ H- 1 X 

= ^2Y	
_Y	

2(1 + Y)	 -Y

_ Y	 _Y	 2(1 +. Y)

= 2(X'H-1X)
Fig. 3-1

(X'H-1 X) -1 = 
I(X'H-1X) -1 3-1

and, for T = 3,

1	 __ (1+ 2Y) (2+Y)

	

ar^aT l = - Var(O'T Fig. 1	 4(2 + 3Y)	 a

3.4.9.4 Resolution for (S = 4, r = 3) C4 retained 21 Rotation Patterns

The rotation pattern (S = 4, r = 3; C4 retained 2)) is presented in

figure 3-17.
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Year number

s	 -

1

2

3

Segment	 4
number

5

6

7

8

1 e ;i 1	 4

X X

X X

X
N.

X

X X

X X

X X

X X

X X

Figure 3-17.- (S = 4, r = 3) Pattern [4 retained 21.

Some results are

X'H -1 X = 2 Circ[2(1 + Y), -Y, 0 , -Y]

= 2(X'H-1X)
Fig. 3

(X'H-1 X)
-1 	 2(X'H"' 

X) Fig. 3

and, for T = 4,

VariaTl = Var ^aTl Fig. 3 = 1--y 1 + 1 - -- 2 „ )Qe
11 /	 1+2Y	 1+Y/

(210)

(211)

(212)

3.4.9.5 Resolution for (S = 4, r	 Rotation Patterns [4 Retained 21

The rotation pattern (S = 4, r 	 T = 3, [4 retained 21) is presented in

figure 3-18.
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Year

s t

1

2

3
Segment
number	 4

5

6

7

8

1

number

2 3

X

X

X X

X X

X X

X X

X

X

Figure 3-18.- (S = 4, r = -) Patterns L4 retained 2; T = 31.

Some results are

f = 1 + 1/(1 - a 2 ) = C(1 + 2y) + (1 + Y) 2 ]/(1 + 2Y)

g = -a/(1 - a 2 ) = -Y(1 + Y) /( 1 + 2Y)

h = 1/(1 - a2 ) 	 (1 + y) 2 /(1 + 2y), as in equation (128)

f q 0
X'H-1 X = + g 2h g

Y
0 g f

2fh - g2	 _ g f	 g2
(X'H-1X)-1=1+y	 1	 2

2	 2f (fh	 -qf	 f	 -gf

	

g2	 -qf 2fh - g2

and, for T = 3,

(213)

(214)

Var^«
11
 = Qe (1 + y)(2fh	 g2 )/4f(fh - g2)
	

(215)
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.t .

where

f = C(1 + 2Y) + (1 + 1') 2 7/(1 + 2Y)

g = -Y(1 + Y)/(1 + 2Y) 	
(216)

h = (1 + Y) 2 /(1 + 2Y)

3.5 EMPIRICAL OPTIMIZATION, WITH PRECISION ACHIEVABLE BY ROTATION SAMPLE
DESIGN ESTIMATION

As frequently mentioned in previous sections, the estimated values y of Y are

obtained from Lapdsat ( pilot) data. In all numerical eval uatiores of the

variance formulas, these estimated values Y are to be substituted,

In addition, as discussed in section 1.5.1, the objective of rotation sample

designs is to utilize the "consistency" of the wheat acreage of a particular

segment from year to year in order to improve the accuracy of the current

year's wheat acreage estimate. This accuracy may be seen from the gain in

precision which is attainable compared with the aggregation based only on the

current year's estimates.

The statistic presenting the gain in precision is named the variance reduction

- ratio R.

3.5.1 VARIANCE-REDUCTION RATIO R

3.5.1.1 Variance V(7- 
T  

of Estimators Based Only on Current Year Acquisitions

For any value of T, for example T = 3, the estimator YT can be shown as

follows.
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of

A11

A1S

YT = 
1 (0 ... 010 ... oil ... 110 ... 010 ... 0)

AT1

ATS

= s h' a

S
L A

., /S
j=1

(217)

So,	 Var(YT) = 12 h' Var(a)h	 (218)
S

By equation (13), Var(a) = Ia 2 + a2UU 1 , equation (218) can be written as

Var(YT) =	 h'h Qe + S h'UU'hob	 (219)

where U is any design matrix related to equation (218) and

h' h = SN N

h'UU'h = S	
(220)

,^	 N

That means

Var(YT) = ark 3 S + ab/S

= ue (1 + °b
212)

(I /S	 ( 221)
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and with Y = ab/Cre
2
, then

Var(YT) = ce{1 + Y)/S	 (222)

3.5.1.2 Definition

In order to compare

estimator aT to the

TT , the variance-re

of the Variance-Reduction Ratio R

the variance Var 
(4) 

of the rotation sample current-year

variance Var 
(37T) 

of the only-based current-year estimator

duction ratio R is introduced as follows.

R =_ Var f aT) /Var(TT)

That is,	 R =_ Var(
T
) (1 + Y )a2 /S -1	 (223)

This ratio R, then, rep-esents the gain of precision achievable by the

rotation sample design estimation; and, `Ri is the variance reduction ratio for

the rotation pattern according to any figure i, i = 1, 2, ­ -, 12.

3.5.1.3 Analytic Formulae for R

Based on the formulae of Var aT given in section 3.5, the formulae shown as

equation (223) provides the following various analytic formulae for R

according to different specified rotation patterns which are noted for

figures 5-9 through 5-18 as follows.

a. Figure 3-1. (S = 2, r = 2; T = 3, [2 retained 1])

- ae(1 + 2y)(2 + Y)/2(2 + 3Y)
R1	 2

	 + Y) /2

by equation (52). 

A	 A	 A	 A

That is,	 I R
1 - (1 + 2Y)(2 + Y )/(1 + Y )(2 + 3Y)	 (224)

l^.
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b. Figure 3-2. (S = 3, r = 2; T = 4 1 C3 retained in 2])

a 2 (1 + 3Y)(3 + 2Y)/3(3 + 8Y)
R2 =	 oe(1 + Y)/3

by equation (74).

That is,

r	 R2 = (1 + 3Y)(3 + 2Y)/(1 + Y)(3 + 8Y) 	 (225)

c. Figure 3-3. (S = 2, r = 3; T = 4, [2 retained 1]).

^eCl + 1/(l + 2Y) - 2/(1 + Y)](1 +.2y)/8
R3 =

ae(1 + Y)/2

by equation (79).

That is,

A	 A	 „	 A
R3 = Cl + 1 /(1 + 2Y) - 2/(1 + Y)](1 + 2Y)/4(1 + Y)

	
(226)

d. Figure 3-4. (S = 3, r = 3; T = 5, [3 retained 2]).

ve[1/3 + .618/(3 + 8.618 Y) - 1.618/(3 + 6.382 Y )](1 + 3Y )/5

R4	
ae(1 + Y) /3

by equation (96).

That is,

A	 A	 A	 A

R4 = 3[1/3 + .618/(3 + 8.618Y) - 1.618/(3 + 6.382Y)](1 + 3Y)/5(1 + Y)



e. Figure 3-10. (S = 2, r 	 T = 2, [2 retained 1]).

By equation (107),

2(1 + 2Y)C(1 + 2Y) + (1 + Y)2]_
Rya	 C(l + 2Y) + (1 + Y) "] - Y (1 + Y)

f. Figure 3-11. (S = 2, r 	 T = 3, C2 retained 1]).

By equation (123),

(1 + 2Y) (2C(1 + 2Y) + (1 + Y) 2 ] - y
R5b - 

C(1 + 2Y) + (1 + Y) ](C(1 + 2Y) + (1 + Y)

g. Figure 3-5: (S = 2, r 	 T = 4, [2 retained 1])

By equation (12.9),

R =	
2(4fh - fg2 - 2g2h)

UUU 	 U45	 4f h- f g - 4fg "h + g

where

f w C(1 + 2Y) + ( 1 + Y) 2 ] /(1 + 2Y)

g = -Y( 1 + Y)/(1 + 2Y)

h = (1 + Y) 2 /(1 •'- 2Y)

h. Figure 3-12. (S = 3, r 	 T = 3 [3 retained 2]).

By equation (142),

_	 3(AC - B2)
R6a	

(A - D)C(A + D)C - 2B

I. Figure 3-6. (S = 3, r 	 T = 4, [3 retained 2]).

By equation (157),

R	 3 1 A - b' 
M-1 

bl
-1

6	 (	 ^l

t

(228)

--	 (229)
- Y`-}

(2230)

(231)

(232)
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j. Figure 3-13. (S = 4, r	 T = 3, [4 retained 3])

By equation (174),

_	 4(FH - G2 )
	R7a	

(F - 26)[(F + 25)H 	 26

0 0 0	 0
where F, 0, H, and D are defined in equation (175) through (178).

k. Figure 3-7. (S = 4, r =; T = 4, [4 retained 31.

By equation (192),

7	 N	 N

0 0
where J, v, N are defined in equations (194) through (201).

1. Figure 3-14. (S = 4 3 r = 3; T = 6, [A retai ned 3])

By equation (203),

(233)

(234)

_ 2(1 + 4Y) 1	 1	 33
R -8	 T + ^ -	 ^ -	 (235)

3 (1 + Y ), 	4 + 16y 4 + 14Y - 33 Y 4 + 10 •y + 5 ►T Y

m. Figure 3-15. (S = 4, r = 4; T = 7, [4 retained 3]).

By equation (206),

A

R = 4(1 + 4Y ) ( 1 +	 1.470	 _	 1.802	 _	 0.445	 1	 (236)
9	

7(1 + Y)	
4	

4 + 15.357Y	 4 + 15.602Y	 4 + 10.951y)

n. Figure 3-16. (S = 4, r = 2; T = 3 0 [4 retained 2)).

By equation (209),

A	 A	 A	 A

R10 = (1 + 2Y)(2 + Y)/(1 + Y)( 2 + 3y) = R l 	(237)

*	 o. Figure 3-17. (S = 4, r = 3; T = 4, [4 retained 21).

By equation (212), 
A

R i l	 1 + 2Y	 1 +	 1 	 2	 = R3	 (238)
4(1+Y)	 1+2Y	 1+Y)
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!t

p. Fi gu re 3-18. ( S = 4, r 	 T = 3, G4 retained 21) .

By equation (215),

R12	 (2fh - g 2 ) /f(fh - g2 )	 (239)

0 0	 0
where f, h, and g are defined in equation (230).

3.5.2 VALUES OF VAR(a) AND R FOR A SPECIFIED VALUE OF Y

Table 3-1 provides a summary of the rotation pattern figures given in

section 3 of this document. In addition, tables 3-2, 3-3, 3-4, and 3-5 show

the values of Var H and R corresponding to the first seven rotation designs
for two specified values of Y, Y = 2.01 and Y = 3.38.

Based on a limited data bank, the estimation of Y was performed in two cases

as follows.

a. Case 1

A 4-year set of data in which all acquisitions for all years were used; for

this case, the estimate was Y = 2.01.

b. Case 2

A situation such as in Case , 1, but one in which the first acquisition estimates

in the fourth year were used; for this case, the estimate was Y = 3.38.

At this point, it is necessary to note that the estimate of Y computed is not

strictly a ratio of an and a which is computed for a single stratum. The

data are not adequate for such an analysis. Instead, the available data for

all strata were pooled and a simulation of a  and a  was computed by fitting

the model

ytsc - 
at + Y  + ( ay) tc + b  + etsc	 (240)

where the subscript c denotes the stratum (CRD) of the segment, the a t , Yc,

and (ay) tc are year, stratum (CRD), and interaction constants, respectively,

and the bs , and etsc are, as before, segment and error variables.
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TABLE 3-2.- VALUES OFa +'e VAR( " ) FOR y = 2.01

No. of years
in rotation,

T

Values for figures
with return

Values for figures
without return

3-1 1 3-2 3-j 3-4 3-5 3-6 1	 3-7

2 1.32 0.90 1.32 0.90 1.32 0.90 0.69

3 1.25 .87 1.29 .83 1.29 .83 .64

4 .86 1.17 .80 1.285 .82 .61

5 .78 1.284 .81 .59

TABLE 3-3.- VALUES OF a-e VAR( *T )FOR y = 3.38

No. of years
in rotation,

Values for figures
with return

Values for figures
without return

3-1 3-2 3-3 3-4 3-5 3-6 3-7

2 1.81 1.25 1.81 1.25 1.81, 1.25 0.97

3 1.72 1.22 1.73 1.13 1.73 1.i3 .88

4 1.21 1.54 1.0826 1.71 1.0833 .817

5 1.056 1.70 1.060 .787

}

n
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TABLE 3 -4 VALUES OF R FOR	 2.01

No. of years
in rotation

T

Values for figures
with return

Values for figures
without return

3-1 3-2 3-3 3-4 3-5 3-6 3-7

2 0.877 0.897 0.877 0.897 0.877 0.897 0.917

3 .831 .867 .857 .827 .856 .827 .850

4 .857 .777 .797 .854 .817 .811

5 .777 .853 .807 .784

TABLE 3-5.- VALUES OF R FOR y = 3.38

No. of years
in rotation,

T

Values for figures
with return

Values for figures
without return

3-1 3-2 3-3 3-4 3-5 3-6 3-7

2 8.826 0.856 0,826 0.856 0.826 0.856 0.886

3 .785 .836 .790 .774 .790 .774 .804

4 .829 .703 .741 .781 .742 .746

5 .723 1776 1	 .726 1	 .719
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In reviewing table 3-2 through 3-5, the following note is pertinent. As

mentioned in section (3.5.1.2,2), in the case of rotation with return

(i.e., r < -), the maximum value of T is r + 1 since this corresponds to a

complete cycle of the rotation; T is the total number of years utilized for

the rotation sample (multiyear) estimator. No entry is shown for T = 1 since

this would be identical with the single-year estimator.

3.5.3 COMPARISONS BETWEEN ROTATION PATTERNS
A

Based on the values of R, instead of the values of Var al,, either table 3-4 or

table 3-5 will first reveal the difference between rotation patterns with

return and without return. In order to have a fair comparison, the values of

R in these two tables will be presented in tables 3-6 and 3-7, the lines of

which show the patterns with the same number of observations.

Once the rotation patterns with return (i.e. r < -) reach their cycles, their

variance reduction ratios have values which are less than those of the

rotation patterns without return (i.e., r = «o).

A

In detail, tables 3-6 and 3-7 indicate the following in the case of y = 2.01.

R1 = ,`,31 < R 5 = .856 for T = 3, S = 2, 6 observations in total

R3 = .777 < R6 = .854 for T = 4, S = 2, 8 observations in total

R4 = .777 < R6 = .807 for T = 5, S = 3, 15 observations in total

R2	.857 > R6 = .817 for T = 4, S = 3, 12 observations in total

A

Ir the case of Y = 3.38, tables 3-6 and 3-7 indicate the following.

R1 = .785 < R5 = .790, for T = 3, S = 2, 6 observations in total

R3 = .703 < R5 = .781, for T = 3, S = 2, 8 observations in total

R4 = .723 < R6 = .726; for T = 5, S = 3, 15 observations in total

R2 = .829 > R6 = .742, for T = 4, S = 3, 12 observations in total
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Hence, when they reach full cycle, the rotation patterns with return are
better than those without return. Therefore, an optimal rotation design is

one which in most situations has the rotation pattern with return and with

minimum value of R.

3.5.4 THE OPTIMAL ROTATION PATTERN

The optimal rotation pattern will be a rotation pattern with return and with

minimum value of R over all situations.

3.5.4.1 Values of R for Rotation Patterns with Return for Y - 2.01 and 3.38

n	 A

In the case of specified values Y = 2.01 and Y = 3.38, the values of R among

rotation patterns with return are presented in table 3-8.

TABLE 3-8.- VALUES OF R IN ROTATION PATTERNS

WITH RETURN FOR Y = 2.01 and 3.38

No. of years
in rotation,

T

R values per figure,

where y = 2.01

R values per figure,

where Y = 3.38

3-1 3-2 3-3 3-4 3-1 3-2 3-3 3-4

2 0.877 0.897 0.877 0.897 0.826 0.856 0.826 0.856

3 .$31 .867 .857 .827 .785 .836 .790 .774

4 .857 .777 .797 .829 .703 .741

5 1 1	 .777 1 1 1 10723

Based on these R values, figure 3-3 (S = 2, r = 3; T = 4, C2 retained 1]) seems

to be an optimal rotation pattern since it yields the minimum R (R = .777 if

Y = 2.01, R = .703 if Y = 3.38). This indicates that, with this rotation

pattern, the cost of AgRISTARS could be reduced to about three-fourths.

3.5.4.2 Values of R for Rotation Patterns with Return for Various Values of Y

In a previous section, an optima's rotation pattern was chosen based on the

values of R confined in two specified values of Y (2.01 and 3.38). Now the

empirical optimization will take place based on values of R computed from

various values of Y• Table 3-9 presents those values.
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,.

3.5.4,3 The Optimal Rotation Pattern
	 .

The comparison of the values of R in table 3-10 indicates that the rotation

patterns in figures 3-3 and 3-4 are those better than figures 3-1 and 3-2.

Between figures 3-3 and 3-4, if the values of Y are greater than 1.78, the

rotation pattern in figure 3-3, that is, (S m 2, r P 3, T - 4, [2 retained 1]),

is the optimal rotation pattern.

This comparison can be figured by using the illustrations shown on the follow-

ing pages (figs. 3-19, 3-20, and 3-21) in which the minimum values of R shown

in figure 11 are compared with those of figures 3-1, 3-2, and 3-4.

Figure 3-19 shows the comparisons among four figures, figures 3-1 through 3-4,

in terms of R values. For T = 2, figure 3-1 is better than the others.

Figure 3-20 gives the comparisons among three figures, figures 3-2, 3-3,,and

3-4, for T = 2, 3, and 4 years. In figure 3-20, the R values in figure 3-2

are often higher than those of figures 3-3 and 3-4. So, figure 3-2 is

eliminated to provide figure 3-21 which gives the comparisons between figure

3-3 and 3-4. (In fact, figure 3-4 needs one more year, T = 5, in order to

achieve its full cycle). For T = 4, except for the period around T	 3, most

of R values of figure 3-4 are higher than those of figure 3-3. Moreover,

figure 3-3 represents a full-cycle rotation pattern (S '; 2, r = 3, T = 4,

[2 retained 1]).

The length of time (T = 4 years) to complete the full-cycle for the rotation

is shorter than that of figure 3-4 (T = 5 years). Therefore, figure 3-3 is

more favorable than figure 3-4.

Henceforth, figure 3-3 represents the optimal rotation pattern for T = 4.
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Figure 3.4

Figure 3-19.- R values in figures 3-1, 3-2, 3-3, and 3-4 by Y and T = 2, 3.
For T = 3, figure 3-4 yields a smaller R value than do the other figures,
but of all four figures, figure 3-1 shows the smallest R value. For T = 2,
figure 3-1 shows the smallest R value.
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Figure 3-20.- R values in figures 3-2, 3-3, and 3-4 with respect; to ; and T.
for T = 4, figure 3-3 shows a smaller R value than do the other figures.
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4

Figure 3-21.- R values in figures 3-3 and 3-4 with respect to Y and T.
For T - 4, figure 3-3 shows a smaller R value than do the other figures.
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4. CONCLUSION

4.1 THE SAMPLE DESIGN FOR FCPF

4.1.1 THE OPTIMAL. ROI ATI'ON PATTERN FOR FCPF

In the case concerning the applicability of the rotation sample design for the

AgRISTARS FCPF project, this study indicates that the rotation pattern (S = 2,

r = 3; T = 4, [2 retained 11) is the optimal rotation pattern.

It is worthwhile to recapture this optimal rotation sample design.

4.1.2 THE ROTATION SAMPLE DESIGN FOR FCPF

Average wheat acreage per sampling unit is the characteristic to be estimated

by the rotation sample design for each "current" year.

The elementary units sampled are "pixels" of the earth's surface for many

selected regions of some countries such as the United States, Canada,

U.S.S.R., Australia, India, China, Argentina, and Brazil.

The sampling units are "segments", which are clusters of pixels. The sampling

unit size is large enough that the variation of the wheat acreages of a

particular segment from year to year is usually less than the variation of the

wheat acreages of different segments within a particular year.

Each wheat region is stratified into L strata which are homogeneous in terms

of wheat density (i.e., wheat aensities vary little within a stratum but may

vary considerably from stratum to stratum).

Suppose a stratum h, h = 1, 2 0 •••, L, is comprised of N h segments. Out of

Nh , a predetermined number of segments, for example n h = 1, 2, or 3, are

chosen to be in the whole sample of study.

The number nh will be the same for each year of study, but the segments will

be chosen by the rotation pattern (S = 2, r = 3; T = 4, [2 remained 1]), as

shown in figure 3-3 which is repeal.ed as follows.

r
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Year number

S 
t	 1	 2 1 3	 4

1	 X	 X

Segment 2	 X X
number

3	 X X

4	 X X

(S = 2, r = 3) Rotation Pattern [2 retained 1; T = 41.

The basic model is

	Ats = at + b s + ets	 (241)

for

t=1,2,3,4

T= 4

s=1,2,3,4

where

at = average true wheat acreage per segment in year t; at are fixed-year

constants

bs = true segment variables applicable to all years with the assumption

b s N N(0, ab )

ets = composite-segment-error variablb of segment s in year t, with the

assumption ets N N(0, ae)

Ats = current year "direct" estimated (from satellite data) or "previous

estimated" wheat acreage of segment s of stratum h in year t

In matrix form, the basic model, which is shown in equation (241), can be

written as

a = Xa + Ub + Ye	 (242)

I
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where

0	 0 0

0	 0	 0 1

1	 0	 0 0

X=
0	 1	 0 0 (243)
0	 1	 0 0

0	 0	 1 0

0	 0	 1 0

0	 0	 0 1

^i	 0	 0 0

1	 0	 0 0

0	 1	 0 0

U=
0	 1	 0 0 (244)
0	 0	 1 0

0	 0	 1 0

0	 0	 0 1

0	 0	 0 1

a =	 (a1 , a2 , a3 ,N
a4 )';	 a4 is to be estimated as a4 (245)

b =	 (b 1 , b 2 ,	 b 3 ,	 b4 )'	 N NI 4 (0,	 Iab) (246)

e -	 (e11 ,	 e41 , 	 e 12 , 	 e22 , 	 e23 , 	 e33 , 	e34,	
e44 )'	 N NI tj 	Iab) (247)

a =	 ( A11 , A41 , A l2 , A221 A23, A33 , A34 , A44

Then, the estimate a4 is deduced from the vector

a =	 (X'H-1 X) -1
X'H-1a (249)

t_

which is the BLUE of a, with

Vara = 14 —^y  ^1+ 1	 2,.-	 ,. lQe
1 +y 1 +Y
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where

Y 
= ab/

ae	 as estimated from the pilot data (251)

A

H = I + YUU' (252)

1 + Y	 -Y 0	 0 0 0 0 0

-Y	 1+ Y 0	 0 0 0 0 0

0 0 1+ Y	 -Y 0 0 0 0

H-1 =	
10

0 -Y	 1+ Y 0 0 0 0
(253)

Y	 0 0 0	 0 1+ Y -Y 0 0

0 0 0	 0 -Y 1+ Y 0 0

0 0 0	 0 0 0 1+ Y -Y

0 0 0	 0 0 0 -Y	 1+ Y

X'H-1 X =-	 I	 Circ[2(1 + Y),	 -Y,	 0 ,	 -Y] (254)

Therefore, the estimate of the stratum h wheat acreage at the year T 4 will

be

A	 A

A4h = Nh a4 (255)

with the variance

Var04h) = Nb Var a4	 (256)

A

And, if 74h is the current-year stratum-h average wheat yield estimate, the
estimate of the total wheat production in the wheat region of interest will be

L
Prod4 
=A4h 74h)	

(257)

hl
A

From table 3-10, note that when Y = 4.00, R = .68. That is, with this optimal

rotation sample design, the reduced variances of the rotation (multiyear)

design estimates go to 68 percent of the corresponding variances for the one

year estimates.

6
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4.2 LIMITATIONS

The first limitation, as mentioned previously, is that the target population

must yield nh = 1, 2, or 3 sample segments per stratum h. This kind of target

population was named Group I.

The second restraint is that the sampling unit size needs to be large enough

so that the variation of wheat acreages of a particular segment from year to

year is less than the variation of wheat acreages of different segments within

a particular year.

I

estimate of Q's (hence of y) is

applies asymptotically. There-

te of y needs to be consistent

valid. The estimate Y is

Hartley et al. (ref. 4) have shown that if the

consistent, a formula similar to equation (29)

fore, the thirt' ,aquirement is that the estima

so that the formula shown as equation (250) is

obtained from the pilot data.

x
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APPENDIX A

THE INVERSE OF A SPECIAL MATRIX

For a special matrix of the form

a b ••• b

	

(a i3 ) = b a ••• b	 (A-1)

bb ... a
nxn

it is easy to prove that

lai,i( = (a - b) n-1 Ca + (n - I) b ]	 (A-2)

and that the inverse is also of the same form, but now

aii =	 a + (n	 2)b	
( A-3)

Ca + (n - 1)b] (a - b)	
r

and

ii _	 -b
a	

La + (n - 1)b] (a - b)

A-1
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A

APPENDIX B

INVERSION OF A SPECIAL TRIDIAGONAL MATRIX

A special method which has been devised using finite difference calculus will

be utilized to inverse the following special tridiagonal matrix. This matrix

is of the form

a c 0 0	 •

c b c 0

0 c b c	 (B-1)

•	 c b c 0

•	 0 c a c

The last column of the inverse of matrix (B•1) will be denoted as

Xi

x2

(B-2)

^T

The equation of the definition of the matrix inverse

AA-1 = I

will give a system of T equations. Not considering the first and the last

equations, the (T - 2) middle equations are

Xi-
ic + x i b + x i+1c = 0	 (B-3)

_'

which are

-2c-b
xi-1 - 2x i + x i+1 .. ^._. ^ , 

xi

denoted as

A"Xi = 1xi

B-1

(B-4)

(B-5)

i
k

t

1^



i

^ aeg

where

a F -(b + 20/c

A solution is

x f x pi

so, equation (B- 4) becomes

	

p2 - (2 + x ) p + 1	 0

which has two roots p 1 and p2.

Hence, a general solution will be

i	 ix i	 «p 1 + Sp2

where a and s are found from the first and last equations which are

a(ap 1 + Sp2) + 
c\ap2 + Bp

2, . 0

c (ap l -1 + Bp
n-1) + a a n	 np + Rp	 1

/	 ^ 1	 2)

With ;he condition

(B-6)

(B-7)

CB-8).-

(B-9)

(B-10)

	

4x + x2 > 0	
(B-11)

which is the positive discriminant 
of equation (B-7), the two roots pl and p2will be

PIP p 2 = 1 * 7 ± Y V 4x +	
(B-12)

Two equations (B-9) and (B-10), hence, will give

[cp
r1-1 + p2 -1	 [g p n 

+ a 	 + pn 1-1
1	 ]	 1	 2

I	 (g-13)

a = go

B-2



where

4 " - (opt + apZ)/(opl + ap2 )

Therefore,

XT = api + OP 	
(B-16)

A
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APPENDIX C

THE INVERSE OF A CIRCUL,ANT MATRIX

The fol lowing presentation is provided by Dr. H. C. Newton, professor,

Texas A&M University.

A circu]ant matrix is a matrix of the form.

a(1)	 a(2)	 ••• a(T)

	A = a(T) a(1)	 »»» a(T - 1)	
(C-1)

	

L
a(2) a(3)	 «.. a(1)

which is denoted as

A - Circ[a(11, ..., a(T)]

;uWtion ( .-1) can be written as

A = PAP'

where

P	 ( p l) .»., PT)

A	 diag ( x10 600 0 XT)

wi th

(C-2)

T12,r(J-1)(k-1)
A	 L; a(k)e_ '_"_"...^„" 	 ,i	 1 , 2 , ..., T	 (C-3)

k=1

e"i2,r(J-1) (1)/T'

1/2	 _ e-i2ir(J-1)(2)/T
T	 Pj —	

a J - 1, 2, ..., T	
(C-4)

e-12Tr(3-1)(T-1)/T

C-1



Since

P'P = PP' = IT

(P')
-1
 = P

P-1 = P"

thus,

A-1 = (P A P' ) -1

= (P , ) -1 A-1P -1

=PA-1P

And, the (j, k) element of A -1 will be

( A-1 ) jk •= jth row of P times k th column of ( A - 1P')

T
Pi i(A-1P')lk

1=1 

T
P j1 ( l th row of A -1 times k th row of P)

T	
1

Pj1(A )lipkl

1 T e-i2,r[(j- 1)(1 -1) + ( k - 1)(1 -1)]/T

	

T 1
=1	 al

1 T e -i27r(1-1)(j-1 + k-1)/T
_

	

T 1=1	 ^1

= 11	 expl-i2rr(l-1)2(j-1)/T)

	

1-1	 1

4

(C-5)

(C-6)

C-2



hence

(A-'	
e-127T(1-1)2(j-l)/T	

(C-7)

	

j j T	 xi

and

	(A-	 (C-8)

	

) II T	 71

T	 -i27r(1-1)2(T-1)/T
(A-') TT ='P 	

e	 (C-9)'

For example,

A	 Circ(2(I + -(), -yo 0, -y)

X 1	2(1 + y) - y + 0 - y = 2

X 2	2(1 + y) + (-y) e-127r/4 + (-Y)e16 Tr/4-

= 2(1 + y)	 (C-10)

X 3 = 2(1 + y) + (-y)e -i4-ff/4 + (-y)e- i 12Tr/4

= 2 + 4y

X 4 = 2(1 + y) + (-y) e-i6-ff/4 + (-y) e-i187r/4

= 2+2y

 e-i37r	 -i6-ff ,ffe	 e-i9+(A-	+	
+ 7444	 4 X	 X	 X -1	 2	 3

1

	

47 T 21 —+y	 2 + 4y 2 + .2-y

1 1	 I	 y	 1	 2 -y
2	 +	 (C-11)+ 

C-3
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