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1. INTRODUCTION

1.1 BACKGROUND

The objective of this paper is to present the more common vegetative indices

used with Landsat remotely sensed data and describe their origins, develop-

ment, logic, and relationships to ground-based measurements of vegetation.

An effort has been made to preserve the order in which the various vegetative

indices appeared in the literature in order to historically trace their

underlying concepts and deveio 	 c. A brief discussion of remote sensing

preprocessing techniques as input to the vegetation indices is also included.

A vegetative index is simply a formula that transforms the four-dimensional

Landsat data into a single real number. This number, the vegetative index

number (VIN), may be the reflective count of a single Landsat band, or more

commonly a combination of reflective counts of 2 or more bands. in general,

the greener and denser the vegetation is in an area, the higher the VIN. The

idea has been to formulate VINs that can be used to predict general crop

health, crop growth stages, and crop yield.

Since VINs are computed using reflection reasurements of one or more Landsat

bands, some discussion of the Landsat bands follows. Landsat is a multi-

spectral remote sensing satellite which receives and records reflectance in

four spectral bands or channels. The wavelengths and spectrum of these four

bands are presented below:

Wavelength, In Spectrum

CHI - Band 4	 0.5 to 0.6 Visible green

CH2 - Band 5	 0.6 to 0.7 Visible red

CH3 - Band 6	 0.7 to 0.8 Near-Infrared

CH4 - Band 7	 0.8 to 1.1 Near-Infrared
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Bands 4 and 5 are called the visible bands, and these two bands generally nave

low reflectance values where there is live green vegetation, pr•.rticularly

band 5. Bands 6 and 1 are the infrared bands, and have high reflectance values

where there is live green vegetation. Bauer (ref. 5, page 5) summarizes the

reasons for this very concisely: "The law reflectance and transmittance of

visible radiation is attributed to the high absorption by leaf pigments,

primarily the chlorophylls. However, these pigments are highly transparent to

infrared ,adiation, and the internal cellular structure of the leaf appears to

determine the high reflectance st there wavelengths." As a matter of fact, it

is known that vegetation reflects more in the near-infrared bands than do most

other natural objects (ref. 7, page 2-2), making the near-infrared bands

apparent imn,adiate indicators of areas of vegetation, percent ground cover, and

biomass. Landsat satellites up to this time have not recorded reflectance

below .5 tm or above 1.1 um, a fact which limits research in some important

areas of stress (see section 3.2).

Some further properties of both individual leaf reflectance and crop canopy

reflectance which are useful for the Landsat user to know are below, and are

taken directly from Bauer (ref. 5, page 5-6). For individual leafs, other

important factors affecting reflectance are maturation, senescence, water con-

tent, nutrient stress, disease, and insect infestation. In general, as leaves

mature, reflectance decreases in the visible spectrum and increases in the

infrared spectrum. On the other hand, senescence produces the exact opposite

reflectance responses. Both visible and infrared spectral reflectance

increases as leaf water content decreases; however, changes in reflectance are

not substantial until the leaves reach about 15 percent turgidity. Thus, the

change in reflectance is not a sensitive indicator for initial stages of

drought. Nutrient stress affects reflectance in both the visible and infrared

wavelengths, but increases or decreases in reflectance are dependent upon the

type of nutrient stress (see section 3.2). Disease and insect infestation are

also known to affect reflectance; however, the wavebands which are necessary

for specific detection of these problems on a large scale are restrictive to

the extent to keep this area mostly descriptive (see ref. 1, page 4-4; ref. 9,

page 1160).
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When changing from individual leaf spectral measurements to larger area

remotely sensed crop canopies, new variables arise which must be considered:

1. Variations in amount of leaf area, biomass, and ground cover due to

differences in planting date, soil type, soil moisture, plant population,

and/or disease conditions.

2. Variations in maturity due to differences in variety, planting date, soil

type, and soil moisture.

3. Differences in cultural practices, such as tillage or harvesting.

4. Geometric configuration of the crop due to differences in row width, row

direction, or lodging of plants.

5. Environmental variables, such as atmospheric conditions, wind, angle of

reflection in relation to solar incidence angle, and soil moisture

conditions.

Part II of this paper details the mathematical derivations of a number of M- s

used today and involved in this is some basic logic or VIN theory. In all

derivations, a few basic facts provide much of the background reasoning which

will be briefly summarized from Tappan (ref. 19, pages 18-20). The wavelength

of .68 is a very good single wavelength to discriminate between living vegeta-

tion and dead or dormant vegetation when using wavelengths between 0.4 and

1.1 um such as Landsat does. Generally, the dead or dormant vegetation has

higher reflectance than the living vegetation in the visible portion of the

spectrum and lower reflectance in the near-infrared portion. The .68 wave-

length also appears to discriminate well between soil and living vegetation,

although in this case the optimum wavelength has been found to vary from

environment to environment. Living vegetation has minimum reflectance values

in the .35 to .5 and .67 to .69 um ranges, and maximum reflectance values in

the .8 to 1.1 range. Referring back to page 1 at the chart on Landsat bands,

it is seen that Channel 2 (or Band 5) contains the important .67 - _69 um

range, and that Channel 4 (or Band 7) contains the .8 - 1.1 um range.
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As mentioned earlier, most VIft used today involve combinations of Landsat

bands rather than single Landsat hands. It is often hoped that a particular

combination of bands will yield more information than can be discerned from

individual band values. Multiband VINs tend to be more stable, and thus pro-

Me better capability for season to season comparisons of vegetation amounts

and conditions (ref. 14, page 1550). Tappan (ref. 19, page 27) gives another

important advantage of using multiband VINs rather than single band VINs:

in many cases it reduces the amount of "noise" in the Landsat system. Factors

such as changes in atmospheric conditions between images taken at different

times of the year, attenuation effects due to clouds and haze, topography,

shadow, soil and dead vegetation and others may affect all four Landsat bands

in either similar or dissimilar ways, but in many cases a band ratio or

normalized band combination gill result in the partial reduction in the noise,

sometimes almost complete reduction.

In summary, VINs are used to clarify information content of Landsat bands for

a defined purpose. Purposes of interest include (1) estimates of biomass,

leaf area index, density of ground cover and plant height; (2) identification

of stressed areas and stress factors; and (3) general and specific crop

identification.

1.2 PREPROCESSING OF LANOSAT DATA

It was mentioned in the introduction that Landsat data is altered by sun angle

differences, clouds and haze, shadow, and other factors. Some researchers

have given attention to the idea of preprocessing Landsat data to reduce the

effects of these factors before making use of the data. As previously

mentioned, a band ratio or normalized band combination will often result in

the partial or almost complete reduction in sun angle or noise factor effects

without requiring preprocessing. Nevertheless, it is obviously desirable to

have data which contains as little noise as possible before being used in any

sense. Some of the preprocessing techniques are given below.
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The cosine run angle ..orrection algorithm (ref. 12, page 718) is a mathoutics

transformation which courects Landsat data to a reference solar elevation

angle. the correction is applied as follows:

Let X i - Landsat signal in band 1, 8 - solar zenith angle, B0 - reference

solar zenith angle, and Xi - the corrected Landsat band i signal.

Then

 cos 9
Xi 

s	 0
 cos	 Xi

All resulting &'-, will appear to have been acquired at the reference solar

zenith ar.9 .

The WAR haze correction procedure, developed by Lamoeck (ref. 12, page 71d;

ref. 8, pages 40-43), is a haze correction procedure which has been undergoing
revision since 1977. The first version, now known as the global XSTAR proce-

dure (ref. 12), is an algorithm which can be easily applied to Landsat data.

However, it has generally been replaced in favor of the new spatially-varying

XSTAR procedure (ref. 8). The spatially-varying XSTAR procedure is a multi-

step software procedure, and program products from it, along with information

about the software, are available from ERIM (Ann Arbor, Michigan).

J. Potter (ref. 15) developed the Atmosphere Correction (ATCJR) program in

1977 to correct Landsat data for haze, sun angle, and background reflectance.

The program logic is based, in parts, on principles of radiation transfer

theory. The program is available for use at the LARS computation center (West

Lafayette, Indiana) and at the NASA JSC Bldg. J17 Computation Center (Houston,

Texas). Information concerning the use of ATCOR may be obtained by contacting

Lockheed Engineering and Management Services Co. (Houston, Texas).
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In sueraery, it should be noted that norm of the development of the VINs pre-

sented in this paper considered preprocessing procedures, and as a matter of

fact, some VINs had noise .'eduction included in their development. Of course,

any band ratio VIN implicitly corrects for sun angle due to cancellation in

the division (ref. 7, page 3-2).
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2. CONCEPTUAL AND MATHEMATICAL DERIVATIONS OF VINs

2.1 PEARSON'S AND MILLER'S MUL TIBAND VINs

Although single band values from Landsat can be considered VINs, many

researchers refer to single band VINs as simply single band values and only

regard multiband VINs as true VINs. The rest of this paper will generally

follow this outlook. The pioneers of VINs in this context are Pearson and

Miller, in 1971, and since then many VINs have been formulated.

z	 Pearson and Miller conducted extensive studies in 1971-72 on vegetation canopy

reflectance using grass plots (ref. 14; ref. 19, page 21 for summary of their

findings) and among other conclusions chose .68 um and .78 urn as the two opti-

mal wavelengths for separating green vegetation from soil and dead or dormant

vegetat i on . Figure 1 is a copy from page 1362 of ref. 14 of a graph wni cn

shows the reflectance curves of soil, dead or dormant vegetation, and live

green vegetation superimposed for what was considered a typical snort grass

prairie plot. They also found that an inverse linear correlation existed

between reflectance and green vegetation at .68 um, and a direct linear

correlation existed between reflectance and green vegetation at .78 jAm. Going

further, they found that using combinations of the reflectance of these two

wavelengths yielded even higher correlations between reflectance and total

biomass (live and dead biomass) _ sometimes r > 0.9U. First, they correlated

total biomass with .78 Wn minus .68 wn reflectance values and obtained an

r - .88; an r - .91 was obtained when they correlated total biomass with the

ratio of the reflectance at .78 um to that at .68 um. The underlying princi-

ple in both cases is that as the quantity of green vegetation increases in a

given area, the red wavelength (.6 to .74 um) reflectance decreases whereas

the near-infrared wavelength (.14 to 1.35 0) reflectance increases. This

same principle is used in many of the subsequent VINs which yuickiy followed,

many of which are still used today.
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Figure 1.- Typical wavelength versus reflectance curves
(Source: ref. 14, P. 1362).

2.2 DEVELOPMENT OF THE TVI

As part of the Great Plains Corrider Rangeland Project conducted at Texas A4N

University, Rouse et al. (ref. 17) in 1973 developed a VI N which they called

the Transformed Vegetation Index (TVI). It uses the basic theory developed

only a year or two earlier by Pearson and Miller: that a contrast hetween the

.78 and .68 um wavelengths provided a better correlation with biomass than did

single wavelengths.

The work carried on in tl%is project was some of the first to use Landsat data.

Since Landsat does not have individual spectral wavelengths (such as .68 um

and .78 mm) but rather wavebands, Rouse and others use bands 5 and 7 (or chan-

nels 2 and 4) to correspond with the wavelengths .68 and .79 um respectively.

The contrast used was the spectral value of channel 4 minus the spectral value

of channel 2. Sun angle and haze were seer 0 be a problem, and a normaliza-

tion procedure was used to eliminate the effects as much as possible: dividing

the contrast of the two channels by the sum of the two channels. The addition

of 0.5 to this quotient was done to avoid working with negative numbers. Since
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they thought that the variance of this result might be proportioned to the mean

values, they took the square root of it. The result was named the TVI. The

above verbal description of the computation of the TVI is simplified as

follows:

TVI	 + 0.5

Further analysis of their data indicated that the TVI was not sensitive to

sparsely vegetated areas. However, results of the study also concluded that

the TVI was adequate for monitoring the vernal progression and retrogradation

of vegetation within the Great Plains Corr i der, (ref. 17, page 313), ar,^ also

had potential for measuring increments in green biomass, useful in regional

agricultural applications.

The TVI is often now referred to as the TVI7. The reason for this is that

another TVI has been developed, the TVI6, which is the original TVI using

Landsat hand 6 (channel 3) in place of band 7 (channel 4). Since the

important .78 0 wavelength is seen to be bordering bands 6 and 7. the

.78 4m - .68 Un contrast can be attained using either band, althouyn some
prefer band 7 over band 6 and some vice-versa. In iummary, TV17 and TVIo are

computed as 'ollows:

TVI1	 L	 U.5

TV16= 1 CK3 -	 +, U.5CHZ

2.3 OEVELOPMIENT OF THE AVI

About the sart,! time that Rouse and others were conducting their studies which

led to the creation of the TVI, other research was being conducted by

P. Ashburn (ref. 3) which led to the creation of the Ashburn Vegetation Index

(AVI) in 1974. Ashburn's intention was to provide Some measure in green grow-

ing vegetation, and the hope was that this measure could be helpful in cr3o

identification studies using Vils; section 11 of this paper reports on the use

of the AVI toward this goal.
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Like the TVI, the AVI makes use of the basic theory developed 2 years earlier

by Pearson and Miller: that the .78 on - .68 on wavelength contrast provides

a better greenness measure than do single wavelengths. Using Landsat data,

Ashburn set the AVI - 2(CH4) - CH2, where the doubling of channel 4 normalizes

the two channels (since CH4 digitizes from 0-63 for black to white and all

other channels digitize from U-127 for black to white). All negative AVI

values are set to zero.

Two things about the AVI make its use very desirable in large-scale computer

applications. The first is the simplicity of the formula. A simple calcula-

tion is very desirable when processing many Landsat segments — each of which

have 22,932 pixels with 4 channels of information. The second is the dichoto-

mous implication which results from AVI computation: a positive AVI signifies

at least some growing vegetation in a scene, a zero AVI signifies no growing

vegetation. This makes the AVI a favorite for masking applications.

2.4 DEVELOPMENT OF THE GVI, SHI, KVI, AND GIN

In 1976, R. J. Kauth and G. S. Thomas published a paper (ref. 13) the results

of which have had great impact on agricultural remote sensing research. In

this paper, they outline a transformation which can be applied to Landsat data

which preserves four independent dimensions of a Landsat scene. The remainder

of this section is devoted to describing the development of this transform and

the VINs which result.

Their work began by inspecting scatter plots of 1973 channel 2 versus chan-

nel 3 digital values obtained from Landsat 1 over certain Illinois counties

(ref. 12, page 705). The scatter plot's values were not the digital values

for single Landsat pixels over a segment, but instead were approximate digital

values of numerous clusters of Landsat pixels for several segments. For each

of these clusters, the exact soil type, vegetation cover, etc. for the actual

land areas in each cluster were known.

l

j

4
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A shape resembling what Kauth and Thomas called a tasselled cap was seen to be

the overall pattern in the scatter plots. Figure 2 displays an actual scatter

plot in Illinois and an outlined tasselled cap. It was seen to be a typical

scatter plot and used for further study. The clusters along the base of the.

cap in figure 2 were known by Kauth and Thomas to be varying shades of bare

soil. Thus, the base of the cap could be used as a soil brightness line.

This soil brightness line is, of course, seen only in two-dimensional space

since figure 2 is two-dimensional (channel 2 versus channel 3). The next

question is what happens when three dimensions are considered instead of just

two? Would the soil brightness line change into a soil brightness plane with

an additional Landsatl channel considered, and what additional changes with

the fourth channel also considered? When Kauth and Thomas added channel 1 to

their scatter plot study of the figure 2 clusters, they found a shape which

resembled a tasselled cap in three-dimensional space (this tasselled cap

appeared to be one which had not been opened to wear — it was still basically

planar but not completely). Figure 3 is a resemblance of the three-

dimensional (channel 1 versus channel 2 versus channel 3) tasselled cap.

Because of the small "thickness" channel 1 added to the tasselled cap

representation, a thin cigar-shaped plane of soils resulted in the three-

dimensional plots; this resulted in Kauth and Thomas continue to think in

terms of a basic line of soils, even in the three-dimensional space (see

fig. 3). The last channel, channel 4, was found to have an almost identical

graphical effect to that of Channel 1.

With the various scatter plots described above, Kauth and Thomas w!: •e now able

to describe a line of soils in four-channel space.. This is done by connecting

the point (0, 0, 0, 0) to the point R 1 (in Figure 3), where R 1 is obtained, of

course, from looking at the numerous scatter plots that had beer created,

(even though R 1 in fig. 3 is only shown in its three-dimensional space). The

description of this line of soils is simply a vector, or soil brightness

vector. As a unit vector, the soil brightness vector is described as follows:

.433(CH1) + .633(CH2) + .586(CH3) + .264(CH4)

2-5
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Figure 2.- Cluster patterns from Fayette County, Illinois,
June 11, 1973 (Source: ref. 13, p. 48-47).
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Figure 3.- Three-dimensional Tasselled Cap representation,
(Source: ref. 12, p. 707).
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For any pixel, a soil brightness measure could be obtained by using the above

soil brightness unit vector with the CHI - CH4 digital values of that pixel.

This soil brightness measure is now called the Soil Brightness Index (SBI),

and as seen from above,

SBI - .433(CH1) + .633(CH2) + .586(CH3) + .264(CH4)

At this point. Kauth and Thomas reexamined the tasselled cap scatter plots and

noted that the clusters which contained pixels having high greenness or living

vegetation appeared toward the top of the tasselled cap. The farther the

cluster was from the line of soils of figure 3, the more vegetation or
greenness in that cluster. Thus, they created a new vector pointing in a

perpendicular direction from the line of soils to R 2 ; this vector was actually

generated by using the Gram-Schmidt orthogonal ization procedure and was also

made into a unit vector. This vector, which is obviously considered to he a

measure of greenness, is described as follows:

-.290(CH1) - .562(CH2) + .600(CH3) + .491(CH4)

For any pixel, a greenness measure could be obtained , by using the above green-

ness vector with the CH1 - CH4 digital values of that pixel. This greenness
measure is now called the Green Vegetation Index (GVI), and as seen from

above,

GVI - -.290(CH1) - .562(CH2) + .60003) + .491(CH4)

Figure 2 clusters which were not soil but did not contain pixels having high

greenness but instead contained what was called yellow stuff were selected,

(actually fig. 2 did not contain any yellow pixels, and these had to be simul-
ated from other scatter plots). Using Gram-Schmidt again, Kauth and Thomas

created a new "yellow" vector which is orthogonal to both the soil brightness

and greenness vectors. As a unit vector, this vector is described as follows:

-.829(CH1) + .522(CH2) - .039(CH3) - .194(CH4)



For purposes of finishing a matrix described later, and to describe a fourth

factor which cannot be defined as soil brightness, greenness, or yellowness, a

fourth vector was created, and was said to be a feature of "none-such" or

"none of the above factors". It is simply a vector chosen to be orthogonal to

the above 3 vectors, an9 was created by Gram-Schmidt again. As a unit vector,

this "none-such" vector is described as follows:

.223(CH1) + .012(CH2) - .543( CH3) + .810(CH4)

Using the four vectors above, it was now possible to define four independent

factor measures for any pixel, even though it is accepted that only the first

two vectors provide meaningful information. Rather than using the vectors

totally independent of each other, Kauth's and Thomas' whole ingenious system

can be explained completely in terms of a single transformation, which Kauth

and Thomas outline (ref. 13, page 48-43) as follows:

Let u	 R TX + r

where x is the Landsat MSS signal vector expressed in counts

u is the transformed vector, also expressed in counts

r is an arbitrary offset vector, simply introduced to avoid negative

values in u

R is a unitary matrix, whose columns are simply the aforementioned unit

vectors of soil brightness, greenness, yellowness, and none-such

respectively.

In much of the literature, the whole transformation system is explained as a

multiplication of a rotation matrix by CHI - CH4 _ this is, in essence, the

case. This rotation matrix, often called K, is equal to RT,

.433 .633 .586 .264
T	 - .290 -.562 .6UU .491

K = R	
=

- .829 .522 -.039 .194
.223 .013 -.543 .809
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and CHI - CH4 multiplied by the first row equals the S8I, CHI - CH4 multiplied

by the second row equals the GVI, CHI - CH4 multiplied by the third row is a

yellow number, and CHI - CH4 multiplied by the fourth row is a none-such

number. As mentioned before, the SBI and the GVI are the only measures of

interest in most cases. Figure 4 shows how SBI and GVI may be viewed

graphically in three-dimensional space.

Often in the literature, especially since LACIE, a different Kauth rotation

matrix is seen. The K rotation matrix shown above was the matrix derived by

Kauth and Thomas using Landsat 1 data only. Landsat 2 and 3 have since been

launched, and due to sensor calibration differences, modified K matrices have

had to be developed, although they serve the exact same purpose. When using

Landsat 2 digital values, which currently is the standard, the following

rotation matrix is used:

.332 .603 .676 .263
-.283 -.660 .577 .388K =
-.900 .428 .U76 -.U41
-.016 .131 -.452 .882

When using Landsat 3 digital values, the following rotation matrix is used:

.386 .742 .842 .279
-	 .329 -.812 .719 .412K
-1.044 .527 .095 -.043
-	 .019 .161 -.563 .931

Again, CHI - CH4 multiplied by the first row equals the SBI, etc., just as

before. Interestingly enough, the methods used in creating the rotation

matrices for Landsat 2 and 3 data were not the exact same Methods used by

Kauth and Thomas in creating the rotation matrix for Landsat 1 data, although

they could have been. Since the basic purpose of Part II of this paper is to

present the concepts and mathematics of the original developmental work done

on various VINs, the differences in the methods that Kauth and Thomas used to

create the Landsat 1 data rotation matrix and the methods used to create the

rotation matrices used with Landsat 2 and 3 data will not be presented here,

except very briefly below. The rows of the rotation matrix K for use with

Landat 2 are transposed unit vectors characterizing Landsat 2 data rotation

Y
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Figure 4.- A graphical view of the orthogonal relationship
between the SBI and the GVI (Source: ref. 10, p. 8).
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into Tasselled cap data space particularly oriented to suit Lambeck's XSTAK

algorithm (ref. 12, page 717--this reference also provides other references

into the exact methodology used). Rows 1 through 4 of rotation matrix K for

use with Landsat 2 are simply multiplied by 1.161, 1.230, 1.246, and 1.062

respectively (calibration difference adjustments) to obtain the four rows of

the rotation matrix for use with Landsat 3 data (ref. 8. page 2).

The most common use of the Tasselled Cap Transformation system is a pixel

scatter plot of GVI versus SBI, where GVI is the vertical axis and S61 is the

horizontal axis, (ref. 7, page 3-5). Using this scatter plot, a horizontal

line is drawn below which are approximately one percent of the pixels. This

line or value is called the soil line (getting rid of the bottom one percent

is thought to protect against swampy areas and low outliers). Subtracting the

soil line value from the GVI yields a result called the careen Hummer, or

sometimes called the Kauth Vegetation Index (KVI). As a formula, the careen

Number, or KVI, is represented as follows:

KVI - GVI - (Soil Line Calculation)

Any pixel having KVI - 0 should be bare soil, any pixel with KVI > u should

have some green vegetation, and any pixel having KVI > 15 is considered to be

highly green.

In 1977, while studying drought, Thompson and aehmanen (ref. ZU) created the

Green Index Number (GIN). The GIN is not considered to be a VIN, since it is

not a pixel measurement, but can be thought of as a "segment VIN". The

creators defined the GIN to be the percent of pixels in a segment with KVI >

15, (ref. 20, page 203), computed as follows:

GIN ='
	

x l0U

where

N - number of pixels with KVI ), 15, and 22,932 - number of pixels in a

segment.

The GIN may he said to be the percentage of a segment with a nearly full cover
of green healthy vegetation.
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2.5 DEVELOPMENT OF THE PVT AJ AND

Richardson and Wiegand (ref. 16) conducted research in 1977 with hopes of
creating procedures that would account for soil background variations — a

factor known to hamper interpretation of vegetation surface reflectance. A

year earlier Kauth and Thomas determined that the data space distribution of

soil reflectance variation in Landsat data is confined to a line (in two-

dimensional data space) or a plane (in three-dimensional data space), and that

reflectance variation of developing vegetation grows perpendicularly out of

the plane of soils. Using this information, Richardson and Wiegand set about

research that would lead to the creation of the perpendicular vegetation index

(PVI7, PVI6) and the difference vegetation index (DVI).

First, they obtained Landsat digital counts (in each of the four Landsat

bands) from highly reflective bare soil, low reflectance bare soil, cloud

tops, cloud shadows, and water on April 2, May 17, June 4, July 10,
October 17, and December 10, 1975 in Hidalgo and Wiliacy counties, Texas (if

interested, exact counts are on page 1543, ref. 16). Next, for each pairwise

Landsat band combination, a linear regression was run for purposes of deter-

mining Kauth's line of soil. A table displaying their results is shown in

table 2 (copied from ref. 16, page 1543).

At this point it was determined that it was not necessary to continue their

study using all of the MSS band pairwise combinations, and the following logic

was used to eliminate all but band combinations (5, 6) and (5, 7): band com-

binations (4, 5) and (6, 7) were eliminated because bands within the visible
and infrared are known to be highly intercorrelated, band combinations (4, 6)

and (4, 7) were eliminated because they had lower correlation coefficients and

higher standard errors of estimate than did (5, 6) and (5, 7), and finally

because band combinations (5, 6) and (5, 7) had been found useful in past

studies. The linear equations for these two band combinations were designated

as soil background lines, (Note: for (5, 7) the intercept was not

statistically significant; thus set to 0).



TABLE 2.- LINEAR EQUATIONS DETERMINING KAUTH'S LINE OF SOIL

FOR ALL POSSIBLE PAIRWISE COMIBINATIONS OF THE 4 LANDSAT

MSS BANDS. DIGITAL COUNT DATA ARE FOR APRIL 2, MAY 17,

JUNE 4, JULY 10, OCTOBER 17, AND DECEMBER 10, 1975

FROM HIGH AND LOW REFLECTANCE SOIL, AND CLOUD AND

CLOUD SHADOWS (N = 16).

MSS band
pairwise

combination

(X1, X2 )

Correlation
coefficient

Linear equations

X1 , °o + a1X2

Standard error
of estimate

xi x2

Digital counts

(4,	 5) 0.961 X1 = -1.04 + 0.938X2 10

(4,	 6) 0.949 X1 = -5.45 + 1.011X2 12

(4,	 7) 0.958 X1 = -1.23 + 2.257X2 11

(5,	 6) 0.993 X1 = -5.49 + 1.091X2 5

(5,	 7) 0.987 X1 = -0.01 + 2.400X2 6

(6,	 7) 0.993 X1 = 5.09 + 2.200X 2 4

Richardson and Wiegand then plotted LAI values from some previously collected

sorghum data for comparison with their soil bandground line (using the MSS5

and MSS7 line). They noticed that data points for the sorghum fields deviated

perpendicularly from the bare soil background line, and furthermore that the

sorghum fields with larger LAI values (denser vegetation) were displaced

furthest from the line. They concluded that a measure of the distance of a

candidate sorghum point from the line could be used as an index of vegetation

amount for that sorghum point. They also noticed that water deviates free the

soil background line, but on the opposite side. Using the above findings,

they concluded that indeed the soil background line could perhaps serve as a

soil background reference for a vegetation index model.

For both the (5, 7) and (5, 6) band combinations, a vegetation index model, or

VIN, was created simply using the perpendicular distance of a vegetation
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candidate signature point from the soil background line. Each will be treated

separately (to prevent confusion), using the notation and descriptions of the

originators. for MSSS and MSS7, this perpendicular distance is given by the

equation:

PVI7	 (R995 - Rp5) + (R997 - 9p 7)

where

PVI7 _ is the perpendicular VIN, defined as the perpendicular distance

between the candidate vegetation point and the soil background

line for Landsat bands MSSS and MSS7,

Rp _ is the reflectance of a candidate vegetation point for MSSb and

MSS7, and

R99 _ is the reflectance of soil background correspondin:i to a candidate

vegetation point,

and this distance shall be defined as "positive" if 8 99 5 > Rp5; "zero" if

R995 = Rp 5, and "negative" if R995 < RP 
5.

A picture displays this well:
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Since the soil background line is known. R 
p 
5 and Rp7 for a candidate vegets-

tic.n point is known (they are simply the landsat digital counts for the vege-

tation point), and the slope of the perpendicular line connecting (Rp5. Rp7)

with the soil background line is known (it is always the negative reciprocal

of a line slope, in this case -1/2.4 • -.417), all that remains 1s to solve

for R995 and R997, which yields:

Rgg5 • .851 R 
p 
5 + .355 R p7, and

R99 7 • .355 R 
p 
5 + .148 Rp7.

This, in turn, yields:

PVI7	 (R995 - R p5) + (Rgcj-- Rp7)

• 4 [(.850 R 
p 
5 + .355 R p 7) - R p5] + [(.355 R p5 + .148 R p7) - Rp7)]

(-.149 R 
p 
5 + .355 R p7) + (.355 k 

p 
5 - .852 Rp7)

• 4 [.355(CH4) - .149(CH2)1 + [.355(CH2) - .852(CH4)]
which is the form appearing in most of the literature. Using the above dis-

tance formula, and the conclusions from the sorghum studies mentioned earlier,

they were also able to conclude that a "positive" PVI7 indicated vegetation, a

"zero" PVI7 indicated bare soil, and a "negative" PVI7 indicated water.

Richardson and Wiegand also treated a computationally simpler VIN using the

soil background line of MSS5 and MSS7. It is simply:

DVI = 2.4MSS7 - MSS5

n 2.4(CH4) - CH2

and achieves the same purpose as the PVI7. Just as with the PVI7, a "posi-

tive" DVI indicates vegetation, a "zero" DVI indicates bare soil. 4nd a "nega-

tive" DVI indicates water. However, with the DVI. the terms negative, zero,

and positive have pure mathematical meaning: DVI < 0 indic.2tes water, etc.

2-15
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However, the OVI has a disadvantage since the soil background coordinates

(R"S, R.7) cannot be determined.

Another perpendicular VIN, PVI6, was also created by Richardson and Wiegand.

It is coated exactly as PVI7 but uses Landsat bands 5 and 6 instead of bands

5 and 7. a ,rd also uses the linear equation associated with bands 5 and 6,

(MSSS • -5.49 + 1.091 MSS6). This yielded:

PV 16	 (R996 - R p5) + (R996 - Rp6)

• j [- .498 - .457(CH2) + .498(CH3)] + [2.734 + .498(C42) - .543(CH3)]
Richardson and Wiegand (ref. 16, page 1548) state reasons wh y they feel that

the perpendicular VINs, PVI7 and PVI6, have a fundamental advantage over the

other VINs existing at that time, which included the TVI7, TVi6, IVI, GVI,

SBI, and any single bands or simple ratio of two bands. Briefly, the PVI7 and

PVI6 calculate the soil background intersection coordinates which allow

examination of reasons (water content differences, shadows, tillage, soil

crusting) for differences in reflectance of cropland, rangeland, and forest

scenes due to soil background.

2.6 DEVELOPMENT Of THE LAI

LAI, or leaf area index, is not a VIN but rather an important agronomic

variable. Evapotranspiration and photosynthesis models used regularly by

researchers use LAI inputs. Also_ cr°p growth models use LAI inputs

indirectly, since crop growth models typically include evapotranspiration and

photosynthesis subroutines (ref. 21, page 340). Correlation studies completed

by Aaronson and Davis (ref. 1) have indicated a relationship between LAI and

wheat yield. However, a large problem exists: ground measurements of LAI are

very tedious and expensive (and, of course, not possible in many foreign
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areas). If LAI Could ever be estimated by use of Landsat measurements, the

above mentioned uses of LAI could be made much more inexpensively and could

also be extended to much larger areas. A few such efforts at LAI estimation

he" been made, almost exclusively by E. T. Kanemasu working with mostly wheat

data ..

Standard regress'on analysis was used to derive estimated LAI models in the

known efforts toward LAI estimation, with ground measurements of LAI as the

dependent variable and Landsat band ratios or other V1NS as the independent

variables. Even though LAI itself is not a VIN, model estimated LAI may be

thought of as a YIN since it is a number derived completely frwn Landsat nand

combinations; thus model estimated LAI has appeared in some VIN comparison

studies.

Although a number of LAI formulas have been proposed and used over the last

few years, only three will be detailed in this section _ one because iL was

used in a large VIN comparison study (ref. 1) and at the time of this report

is still being used Ay FAS /CCAD in Houston, the othErs because they are

currently accepted as the best wheat LAI estimates. All three are fo r wheat

only since this is where the emphasis has been.

The LAI estimator used by FAS/CCAO during the last few years and by Aarunson

and Davis (ref. 1) in their VIN comparison study is:

LAI - 41.325 ( CHI	 CHI) - 42.45 ( 

Unfortunately, this author has been unable to find a single reference with

respect to the original development of this formula (including its originator)

or how well the model performed. It does appear similar to some of KanPmasu's

earlier formulas; however, Kanemasu disclaims it.
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In 1977, Kanemasu (ref. 21, page 339), using many observations taken over a

two year period from three large (over 40 ha) Kansas winter wheat fields,

developed the following LAI model:

(1)	 LAI n 2.67? - 3.694 ( CW - ,.309 (f + 5.751 ( C )

	

+ .043 
(CH2	

692 (CH2) _ 2.	 ) + 3.071 
( CH1	 CH1 ) (CH1),

	

CH's	 'fH^'	 CH7 - HH ' H7

An R2 = .69 was obtained with this model.

Kanemasu tried to improve the above model by using stepwise regression anal-

ysis on 115 observations of LAI and their respective Landsat MSS data (again

Kansas winter wheat) and a decision logic based upon low LAI versus high LAI

areas (ref. 10, page 10). This resulted in the following model:

CLAI = .366 - 2.265 
( CH1 )

 - .431 
( CH1	 CHI )( CH1 )

 + 1.745 (N̂l ) + .057 (PVI7);

	

CHI	 CH7 - CH4 C	 CH2

If CLAI c 0.5, then

LAI	 1.093 - 1.138 (
CH2 ) 

_ .017 
( CH1 _ r,Hl )( CH1 )

 _ .016 (PVI7),

	

CH3	 CH2 CH4 CH2

else

LAI - -5.33 + .036 (PVI7) + 6.54 (TVI6).

This model yielded an R 2 = .69, no improvement over the R 2 of the simpler (1)

model.

Before leaving this section, it should be noted that Kanemasu has also

produced various estimated LAI formulas for sorghum and soybean (ref. 11,

page 46; ref. 21, page 338), however, these appear to be preliminary in nat^ire

and not meant for usage.

#W
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3. YIN RELATIONSHIPS TO AGRONOMIC VARIABLES

3.1 YIELD AND YIELD COMPONENTS

This section discusses VIN relationships with yield and yield components:

percent crop cover, biomass, plant height, leaf area index, and yield.

Richardson and Wiegand (ref. 16) calculated correlation coefficients for the

following Landsat bands and VINs with percent crop cover, plant height, and

leaf area index for ten sorghum fields: the individual Landsat bands, band 5

divided by band 7 (sometimes called RVI), TVI7, TVI6, PVI7, PVI6, DVI, GVI,
and SBI. They found that the individual Landsat bands had the highest corre-

lations with all three agronomic variables. Band 5 was correlated highest

with crop cover and plant height (r - -.809 and r - -.849 respectively), and

band 6 was correlated highest with leaf area index (r - -.849). The highest
VIN correlations were TVI6 with crop cover (r - . 716), TVI6 with plant height
(r - .828) and PVI6 with leaf area index (r = .812). All the above coeffi-
cients were significant at the .01 level except TVI6 with crop cover, which
was significant at the .05 level.

tappan (ref. 19, page 92) found that the simple band ratios and hand differ-

ences seemed to correlate best with percent green vegetation cover when working

with Kansas prairie data. All the simple band ratios and simple band differ-

ences he worked with yielded r > .9. Tappan also noted (through personal

communication) that percent ground cover and biomass have a direct relationship

_	 when vegetative ground cover is less than 100%, and therefore the VINs which

work well with percent cover also work well with biomass. Once 100% ground

cover is reached, band 7 has been found to be useful for detecting changes in

biomass (ref. 19, page 25).

Aaronson and Davis did a comparative VIN correlation study (ref. 1) using the

AVI, DVI, GVI, KVI, LAI, PVI6, PVI7, TVI6, and TVI7, where LAI in this case is
the estimated LAI given by LAI - 41.325 (CH1/CH2) - 42.45 (CH1/CH3) described

in section 8. Using winter wheat data, they correlated the VINs with each

other, yield, plant height, and biomass at each of the following growth

3-1



stages: planting, tillering, stem extension, heading, flowering, ripening,

and harvest. Among their major conclusions were:

1. All VINs in the study were highly correlated in each of the growth stages,

(see ref. 1, page 10 for growth stage descriptions)

2. The VINs were correlated to yield similarly at each of the growth stages,

with highest correlations occurring at heading. LAI and TVI6 had the

highest correlations with yield, and at heading had respective correlation

coefficients of .64 and .63 (both at .0001 significance).

3. The VINs were correlated to biomass and plant height similarly at tiller-

ing and stem extension, with the highest correlations occurring at stem

extension. Correlations with biomass at stem extension ranged from r =

.65 to r = .71 (all at .0001 significance) for all the VINs with TVI6

ranking highest. Correlations with plant height ranged from .76 to .84

(at .0001) with AVI, OVI, and PVI7 ranking highest.

Kanemasu, as noted in section 8, has been the pioneer in LAI estimation

research, particularly for wheat. Some of his earlier estimated LAI models

were simply functions of the PVI7 (ref. 21, page 337-338), and even his later

two-step LAI model includes the PVI7 and TVI6 (ref. 10, page 10), thus showing

the relationship noticed by Kanemasu between VINs and LAI. Working with 115

observations of Kansas wheat data, Kanemasu found the following coefficients

of determination between LAI and the below VINs and band ratios (ref. in,

page 11):

VIN R2 Rand Ratio R2

PVI7 .55 CH2/CH3 .56
PVI6 .55 CH2/CH4 .48
TVI7 .50 CH1/CH4 .27
TVI6 .59 CH1/CH3 .20
GVI .57 CHI/CH2 .10

3.2 STRESS FACTORS

Three common stress factors affecting crop condition are water stress,

nutrient deficiencies, and diseased or infested crops. The use of Landsat

VINs in detecting these factors is the topic of this section.



Thompson and Wehmanen (ref. 20) successfully used the GIN in operation mode to

detect and monitor drought in the U.S. Great Plains, U.S.S.R., and Australia

during the 1977 crop year. In the U.S., they were able to statistically test

their results against results using the Crop Moisture Index (CMI, ref. 18),

which is known to detect water stress well, and found the drought test proce-

dure based on the GIN worked very well. In the foreign areas, with no ground

truth and CMI data available, they were unable to test their results statisti-

cally, however, the U.S. agricultural attache for the U.S.S.R. verified that

the U.S.S.R. regions which were identified as water-stressed by the GIN test

had indeed undergone water stress at that time, and also a general moisture

condition map produced by the Australian government showed general agreement

with GIN test results.

Landsat D, when launched, is scheduled to have thermal infrared bands. It is

thought that these bands may prove to be useful in water stress studies since

laboratory studies indicate strong water absorption of irradiance in the 1.2 -

2.5 um wavelengths (ref. 6, page 16-4; ref. 1, page 2-3).

Research in the area of nutrient deficient crops has not yet reached the point

of using any of the common Landsat VINs (not counting individual band VINs).

However, many results have been obtained which are useful to know and cer-

tainly will affect future Landsat research and design of new Landsat systems.

Much of the study on crop nutrient deficiency has been done with corn. A1-

Abbas et al. (ref. 2) conducted a study using nitrogen-, phosphorus-, potas-

sium-, sulfur-, magnesium-, and calcium-deficient corn leaves along with a

control group of normal corn leaves. He found that the chlorophyll concentra-

tion in all nutrient-deficient leaves was lower than that of the normal

leaves. He also found that in the near-infrared wavelengths leaves from the

phophorus-and calcium deficient plants absorbed more energy than those from

normal plants whereas leaves from the sulfur-, magnesium-, potassium-, and

nitrogen-deficient plants absorbed less.
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Bauer (ref. 5, page 6) studied nitrogent-deficient corn versus normal corn and

found nitrogen deficiency caused increased reflectance in the visible

wavelengths and decreased reflectance in tine near-infrared wavelengths.

Cate, Artiey, and Phinney (ref. 7, pages 4-2, and 4-3) report that nitrogen

deficiency has been found to increase leaf reflectance in the visible bands in

cotton, cabbage, and sweet peppers also. This same report also includes

discussion on more nutrient deficiency studies involving mexican squash and

sorghum.

The use of Landsat in diseased or infested crow research appears to be pretty

dim for at least the immediate future, althouc,h again there has been research

which will affect future Landsat research and design. Studies conducted by

Ausmus and Hilty (ref. 4) and Bauer (ref. 5, page 6) suggest that the near-

infrared wavelengths (0.8 - 2.6 um) were helpful in southern corn blight

detection. Other studies (see ref. 7, page 4-5) also indicate that near-

infrared bands may be useful in disease detection. The launching of Landsat U

should help out in this area; however, Heller (ref. 9) advises that Landsat

bands need to be both narrower and more selective in both the visible and

near-infrared wavelengths to effectively detect vegetation damage, whether it

be caused by disease or insect-infestation. A major "new" Landsat band sug-

gested by Heller is a 0.58 - 0.62 band (a narrow yellow-orange band considered

very useful for vegetation damage assessment).

Disease and insect-infestation trends can be identified and monitored now by

use of remote sensing, according to Heller (ref. 9, page 1159), bat require a

series of acquisitions over one or more seasons.

3.3 CROP IDENTIFICATION AND GROWTH STAGE

Using crop calendar knowledge, VIN computations considered over time have Coen

used to help identify general crop types such as spring small grains versus

other, winter grains versus other, and summer crops versus other. Ashburn

(ref. 3) discusses a major well documented method which has been used in the

past and also considers approaches to this problem in general.
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	 Discrimination of specific crops within a general crop type (such as spring

wheat versus spring barley) is a further and sometimes difficult problem. For

instance, although spring wheat and spring barley have known differences in

phenology when grown under identical conditions, in actual cases these

differences may be difficult to see due to differences in planting date,

stress factors, and other factors.

Any use of a VIN approach for general or specific crop identification depends,

of course, on knowledge of growth stage. Aaronson and Davis (ref. 1, page 11),

in their comparative study of nine different VINs, note that all VINs have a

similar relationship to growth stage. The graph below (copied from ref. 1,

page 12) depicts this general relationship.

Heading	 Flowering

Ripening

VI/

Tilleringmension

extension

GROWTH STAGE



4. SUMMARY

This report was intended to provide some introduction, history, conceptual and

mathematical principles, and uses of the more commonly used Landsat vegetative

indices of today. Listed on the next page are the VINs considered in this

report.
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LANOSAT VINS

AVI = 2(CH4) - CH2

OVI = 2.4 (CH4) - CH2

GVI = -.283 (CHI) - .660 (CH2) + .577(CH3) + .388(CH4)*

SBI = .332(CH1) + .603(CH2) + .676(CH3) + .263(CH4)*

KVI = GVI - (Soil Line Calculation)

LAI = 2.677 - 3.694^( CC ) - 2.309 0	
2CH4

) + 5.751() + .043(0

-2.692(CH2 ) + 3.071(CH1 _ CH1 )(CH
CH2
1)

CH = 

PVI6	 [-.498 - .457(CH2) + .498(CH3)1 + [2.734 + .498(CH2) - .543(CH3)]

PVI7	 [.355(CH4) - .149(CH2)] + [.355(CH2) - .852(CH4)1

TVI6 = CH3 + CH2 + 0.5

TVI7CH---w+ CH2 + 0.5

*For standard Landsat 2
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