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COAST-OCEAN-ATMOSPI°IERI .00EAN MESOSCALE INTERACTION

ABSTRACT

In the case of cold air outbreaks, the combination of the coastal shape and the sea surface

temperature (SST) pattern has been shown to have a profound effect in establishing a low level

mesoscale atmospheric circulation as a result of differential heating due to both variations in over-

water path length and the SST. A convergence (or divergence) line then forms along a line exactly

downwind of the major bend in the coastline. All this is consistent with the structure of the cloud

patterns seen in a high re3olution Landsat picture of the cloud streets and the major features are

simulated well with a boundary layer model. The dominant convergence line is marked by notably

larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening
i

of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a

strong westerly component in the boundary layer, the wind shear across the inversion gives rise to

Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector

and to the major convergence line, It is also suggested that the induced mesoscale circulation will

feedback on the ocean by intensifying the wind-generated ocean wave growth and altering their

orientation. We postulate that coastal cyclogenesis is due in large part not only to the fluxes of

heat and moisture from the ocean, as has been proposed by many authors, but particularly to the

differential heating and moistening of the boundary layer air when the air trajectories pass over

a well defined pattern of SST. With east to northeasterly winds, Cape Hatteras lies downstream

of the Gulf Stream core, thereby providing a possible explanation for the notably high frequency

of cyclogenesis in that region.

PRECEDING PAGE BLANK NOT FILMED

i

s

t^

i

dra.	 ` 1z r W



—, sa-raes)u f,)f "'41
^ its

COAST-OCEAN-ATMOSPHERE-OCEAN MESOSCALE INTERACTION

1. Introduction

In the accompanying article In this issue Chou and Atlas (1982), hereafter referred to as I,

discuss a satellite-based method of deducing the sensible and latent heating of the atmosphere by

the fluxes from the ocean during cold air outbreaks. In that study we used imagery from both

TI ROS-N and GOES to observe the au-called "cloud free path" or CFP, the structure and orienta-

tion of the cloud streets, and the sea surface temperature (SST) between shore and the cloud edge,

In order to deduce the rate of deepening of the convective boundary layer downstream along the

flow, we attempted to use the IR cloud top temperatures observed by the TIROS-N Advanced

Very High Resolution Radiometer (AVHRR). We found this to be impossible because most of the

clouds near the line of initial cloud formation did not fill the 1 x 1 km field of view of the radiom-

eter. However, we were fortunate to find that Landsat-3 with its 80 m resolution passed over the

area of interest off the coast of New Jersey on the day of our study. The accompanying picture,

Fig. 1, having dimensions of 180 x 340 km is a composite of two Landsat frames. The purposes

of this paper are to interpret the Landsat cloud picture in terms oil the atmospheri, processes to

demonstrate that these mesoscale processes resulted from d':ferential heating of the cold land air

over the ocean due in large part to the shape of the coast, and finally to show that the induced

mesoscale circulation feeds back to affect the ocean. We also make some speculative conclusions

concerning cyclogenesis.

2. Cloud Interpretation and Postulates

In addition to showing the primary features seen in the AVHRR photo in Fig. 10 of II

namely the main cloud streets oriented N-S in agreement with the surface winds (see Fig. I 1 of I1)

and cloud dimensions increasing downwind, consistent with the increasing depth of the mixed

layer, Fig. 1 shows two other remarkable features which were not clearly discernable in the lower

The figures in Chou and Atlas (1982) related to this study are reproduced in the Appendix for ease of access.
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resolution TIROS-N imagery. These are: (1) the line of distinctly larger clouds, indicated as the

curve AB and (2) clouds to the left of the latter curve are distinctly smaller than those to its right

and are aligned in a general E-W direction as opposed to the N-S direction on the right, Our purpose

is to show that these features are due to the establishment of a mesoscale circulation, and indeed,

that tine cloud line AB is a mesoscale front across which the low level winds shift sharply. We shall

demonstrate how this mesoscale circulation is established and postulate some broader implications.

We suggest that the mesoscale circulation comes about in the following way. On this day

(February 17, 1979) the wind coming off the shore is generally out of the north and is essentially

constant in direction along the entire coast of Long Island and New Jersey. The wind speed is also

virtually constant at 10 ms-1 over the region as seen at both the shore stations and the buoy about

75 km off the Long Island shore in Fig. 11 of I 1 . The wind speed at the buoy actually increases

to a peak of about 12.5 ms-1 at about 0500 EST, but then subsides again (sec Fig. 2). However

its direction remains 350° t 10° all clay long. The temperature of the surface air on departing the

Long Island and New Jersey coasts is also essentially the same; i.e., -16 to -14.4°C. The major

difference in the air on either side of the postulated convergence line AB is thus due to the dif-

ference in the path length of overwater travel and the mean temperature of the underlying water

surface (see Fig. 3 and the SST map of Fig. 12 in I 1 ). To the west of the convergence line, the air

along any latitude has had both a shorter path over water and a colder path averaged SST than the

corresponding points to the east of the line.

The result is that the line AB represents a boundary between warmer air to tine east with a

relatively deep boundary layer and reduced surface pressures, and tine colder air to the west with a

shallow boundary layer and relatively high surface pressures. The oifferences in air temperature,

boundary layer height, and surface pressure in an E-W direction across the line AB are such as to

cause the low level winds to its west to accelerate to th, Past, in the manner of a sea breeze front.

This is almost certainly the cause of the striking line of convergence and larger cloud elements

which comprise the line AB.
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To the cast of the 'front', the clouds are clearly of a convective nature and continue to grow

in horizontal dimension downstream, presumably in some proportion to the increasing depth of the

boundary layer. Also in the eastern region, the cloud streets are oriented almost identically with

the wind direction because of the very large heating rates there and the correspondingly large

vertical momentum exchange, which precludes the existence of significant vertical slicar.

To the west of the front, however, the clouds are not only smaller and oriented differently,

but they are wavelike in character and show little evidence of changing wavelength in the N-S

direction. It seems likely that the clouds in the western region are the result of Kc!vin-llclmholtz

waves whose orientation is perpendicular to the shear vector between the velocity of the mixed

qir in the shallow boundary layer (i.e., with a WNW component) and the strong NNW now above.

Such a shear vector would tend to ]lave a N-S direction and thus give rise to the }-W cloud orienta-

tion. While, we have no ocean surface wind data to the west of the convergence line to confirm

these explanations, and indeed very little to the east, we believe that the combination of the model

results discussed below and the Landsat picture itself provide persuasive evidence in their support.

3.	 Model Results

In order to test the above hypotheses, we have used Stage and Businger's (1981 a, b) mixed

layer model to compute the boundary layer height (ZB ), surface air temperature (To ), and surface

Pressure (Po) fields. The Stage and Businger model is a Lagrangian model. Assuming a steady state

situation as qualified below, we are able to obtain the parameters Z B , To , and Po as function of the

downwind distance; Le., along a straight line running N-S parallel to the `fro g *' AB. Computations

were made along 10 such parallel trajectories on both sides of the `front', thus allowing the con-

struction of maps of Z B , TO , and Po . The initial temperature and humidity soundings at the New

Jersey and the Long Island shores are assumed to be the same and are identical to those at JFK

International Airport, New York at 1100 GMT 17 February 1979. The mean mixed layer wind

speed is assumed to be 10 ms 1 with the wind blowing from the north and nearly perpendicular to
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the Long Island shoreline. The divergence is taken to be 1.5 x 10 -5 sec7 1 . The sea surface tempera-

ture (SST) adapted is shown in rig. 3 and is taken from the weekly mean SST (Fig. 12 of I 1 ). The

curve A13 in Fig. 3 corresponds to the line of distinctly larger clouds in Fig. 1. It can be seen from

Fig. 3 that the northerly air flow is generally across the SST isotherms in the region Oust of the

curve AB, while the air flow is more nearly parallel to the SST isotherms to the west of AB. For tale

purpose of the present study we assume a steady state although it will become evident that the

surface licating alters the initial meteorological fields, thus invalidating our assumption. Although

the use of a time-dependent model would have been preferable, it seems clear that our basic findings

would not have been altered in any major way.

Fig. 4 shows the map of the boundary layer height, surface air temperature and surface pres-

sure generated from the Stage and Businger mixed layer model. Since it turns out that the Z B and

T. contours are essentially concentric with the isobars, only the latter are shown in 1 mb steps.

However, the corresponding values of Z B and To are also labeled in Fig. 4. In estimating the surface

pressure, it is assumed that the pressure-height relationship above the boundary layer is the same as

that of the initial sounding. Therefore, the pressure at the boundary layer top (P B ) can be obtained

from tills relationship and the computed Z B . The surface pressure (Po ) can then be estimated by

integrating the hydrostatic equation from the boundary layer top (PB ) to the sea surface using the

computed temperature and water vapor mixing ratio. The dashed curves in Fig. 4 indicate the

synoptic scale pressure pattern, which is taken from the surface weather map of Fig. 1 1 of I 1 less

4 mb. The reason for adjusting the synoptic scale pressure field is that the surface pressure of the

initial sounding at the shore is about 1036 nib (I 100 GMT) instead of 1040 mb (1500 GMT) as

indicated in the weather map. It can be seen from Fig. 4 that the mesoscale and the synoptic scale

pressure patterns are in general agreement, except that the mesoscale field gives more detailed

information around the curve AB. Also, the mesoscale N-S pressure gradient is in good agreement

with that derived from the shore station at Islip, Long Island and the buoy about 75 km south

(see Fig. 11 of I 1 ). This amounts to 2.7 x 10-2 mb km-1 as compared with 2.4 x 10 -2 nib km 1 in
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our calculations. Note that the model generated surface air temperatum at the buoy is also in good

agreement with the observation, which Is about —120 for the period 1200. 1600 GMT.

It can be seen from Fig. 4 that the contours of P o , ZB , and To virtually follow the configura-

tion of Ilic shoreline near the coasts of New Jersey and bong Island. Due to Modification from the

sea surface, however, the isopleths gradually change downstream to follow the SST isotherms,

especially near the lower right corner of Fig. 4. This change occurs mainly oil 	 western side of

the `front' because the isobaric pattern is generally parallel to the SST isotherms in the region cast

of the curve AB. Note that, at each isobar, the SST and the overwater paths are about the same

for all the N-S trajectories to the cast of the curve AB. This results in a simple situation there;

i.e., the boundary layer is warming and growing (the surface pressure is dropping) downstream

(southward) and the E-W pressure gradient is nearly negligible as compared to that on the western

side.

On the other hand, the situation to the west of the curve AB is quite different. There, the air

flow is more nearly parallel to the SST isotherms (which tend to parallel the coast) with the SST

increasing eastward. More importantly, the overwater paths from shore also increase eastward.

Therefore, the boundary layer height and the surface air temperature increase and the surface

pressure decreases downstream and eastward to the curve AB.

It is strikingly clear from Fig. 4 that the differential heating over the ocean has given rise to

the development of a strong mesoscale circulation and that the curve AB does indeed represent a

front as originally postulated. We. emphasize tha: the resulting pattern would remain essentially

unchanged if we were to use a different boundary layer model. Only the gradients of To , ZB , and

Po would be altered.

With regard to the resulting effects oil 	 winds in the boundary layer, these may be deduced

reasonably by neglecting the Coriolis force on this scale. We see then that to the east of the front,
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the winds would be accelerated down the pressure gradient and thus to the south. This is consistent

with the orientation of the cloud streets, On the other hand, the strong west-east pressure gradient

on the western side of the front would produce a westerly wind component there (discussed further

below) thus giving rise to strong convergence at the front and the larger convective elements along

the front which were responsible for our original suspicions.

It is now apparent that the induced changes in the wind speed and directions raise doubts

about the original assumptions of steady state and unidirectional winds with which we started.

Thus, it would have been desirable to use a 3-D time-dependent mesoscale model. However, we

believe that our simple approach has in fact explained the dominant features. An interesting point

is that the enhanced mesoscale pressure gradients on both sides of the front will not only accelerate

the winds but also give rise to increased ocean-air heat fluxes. These, in turn, should further enhance

the pressure gradients and winds in a positive feedback loop. Ultimately, of course, the boundary 	 1

layer air temperature would approach that of the sea thus stopping further development. Some

indirect evidence of such effects is seen in the wind speed trace at the buoy shown in rig. 2. During

the morning hours, after the temperature at the shore has reached its minimum value, the subsequent

oceanic heating would be at a maximum. This would thus enhance the N-S pressure gradient and

accelerate the winds. This is in fact what happened with a maximum in wind speed at 0500 EST

after which the winds decreased once more.

By the way, the fact that the winds at the buoy did not alter direction during the day supports

the assumption that Coriolis effects were negligible on these time and space scales. Of course, this

could also reflect a balance between Coriolis deflection and a synoptic temporal variation.

In order to make a more quantitative estimate of the winds in the boundary layer to the west

of the front, we have made an approximation to the solution. By neglecting the Coriolis force,

the vertically averaged equation of motion may be written as (Lavoie, 1972)
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dU/dt = -p' 1 Wax-CD U(U2+V2)'°a/(Zh-h)	 (1)

dV/dt - -p- 1 ap / ay - Cr) V (U2 + V~)V2RZ 1 dh)	 (b)

where (x,y) is the traditional Cartesian coordinate system with the origin fixed at the Delaware

coast, i.e., about (38.5 0 N, 75°W), t time, U and V the x and y components of the mean boundary

layer velocity, respectively, p density, p pressure, C D drag coefficient, and Z B and h the heights of

the mixed layer and the surface boundary layers, respectively. The value of h is generally much

smaller than that of Zh . In the Stage and Businger mixed layer model, h is assumed to be negligible

as compared to Z B , but the effects of the unstable surface boundary layer (superadiabatic tempera-

ture profile) on the mixed layer growth are Included through the parameterizations of the fluxes

of momentum, heat and moisture at the air-sea interface, Note that the values of Zh and li arc not

needed for the following analysis, If we assume dV/dt = 0 and dU/dt U a U/ ax, then (1) and (?)

can be combined into

U a U/ ax = -p' 1 a p/ ax + p
- 1 

ap/ ay (U/ V)
	

(3)

For the region around 38.5°N (y = 0) and between the Delaware coast and the curve AB, the x and

y components of the mean surface pressure gradients are about 4.5 x 10-2 and 2.5 x 10-2 nib kin-' ,

respectively. If V = -10 in 1 (uniform northerly wind), then (3) implies that the mesoscale pres-

sure pattern can generate a westward wind component of about 9 ms-1 at x = 60 km with U = 0

near the shore (x = 0) and U = 18 ms-1 near the niesoscaie front along AB (x = 120 kin). The

induced westerly wind component is therefore significant, again demonstrating the curve AB to be

a convergence line similar to a sea breeze front.

4. The Cloud Streets

We now discuss the nature of the cloud streets on either side of the front in the light of the

model results. The mean flow pattern of the boundary layer in the region west of the curve AB

7
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may be deduced from the above analysis. Combining the gever t northerly flaw with the westerly

flow induced by the mesoseale pressure pattern, the flow patte ► n tends to have a northerly wind

initially (near the shore) and gradually turning into WNW flow when approaching the curve AB,

Assuming a 300 in depth for the Inversion IP;, er and adoptint; the model calculated boundary layer
A

height, the wind at the top of the inversion layer (Vj,) taken from the wind profiles at JFK Inter-

national Airport, New York and Wallops Island, Virginia is about 22 n ►s" I with NNW flow. This

wind, VP and that deduced in the boundary layer flow, VII , suggest a N-S vertical wind shear,

VZ , across the inversion layer as shown in Fig. S. This wind shear would trigger Kelvin-11chnholtz

(K-H) instabilities in the inversion layer to produce billow clouds at the wave crests with the cloud

axes perpendicular to the xind shear vector (Brown, 1980), i.e., essentially normal to the front

as observed.

Kelvin-1Ielmlioltz instability is a form of dynamic instability which occurs within a hydrostat-

ically stable layer with strong vertical shear in the velocity profile. A necessary condition for tI ► e

occurrence of K-11 instability is that the local gradient Richardson number should be less than 0.25

(Miles and I°Ioward, 1964). For the most unstable wave, the relationship between the wavelength

(X) and the thickness of the dynamically unstable shear layer (AZ) sulgestcd by Miles and Howard

( 1964)  and Woods 0 969) is A = 7.5 A Z and that by Scorer (1969) is A W 41rA Z.

Figs. 6 and 7 show the roll wavelength (A) and the aspect ratio ('A/Z,3 ) versus the distance

downwind from the Long Island shore for the regions about 30 km cast and west of the curve AB,

respectively. The wavelength is visually estimated from the Landsat picture and the boundary layer

1}cight is taken from the model results. In the eastern region, the wavelength is about 3 . 10 kin

and the aspect ratio is about 3-7. These are in good agreement with the findings of Kuettner ( 197 1)

and LeMone (1973). Both the wavelength and the aspect ratio increase downstream with larger

increases beyond 150 km of over water travel. This result, together with the fact that the cloud

street orientation is essentially parallel to the mean wind in the boundary layer suggests that

8
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the cloud streets to the cast of the front are convective roll clouds in the boundary layer, which

are; caused by convective Instability and the Inflectional point instability as discussed by Kuettner

(1971), Brown (1970, 1970, LeMone (1973), billy (1966), and others,

In the western region, on the other hand, the wavelength and the aspect ratio are virtually

independent of fetch and are about 3 km and 3, respectively. Moreover, the wavelength appears

to be independent of boundary layer height. This is also in agreement with the K-1I instability

theory that the most unstable wavelength Is related to the thickness of the dynamically unstable

shear layer (i,e,, the inversion) and not to the boundary layer beneath it. The thicknur s of the

Inversion layer estimated from the aforementioned A — A Z relations is in the range of 240 to 400 in

if X = 3 km, a not unreasonable result. Therefore, the cloud streets in tiie west are almost certainly

"billow clouds" in the PBL capping inve.-Mon, which are due to Kelvin-Helmholtz instability.

Assunun g this to be correct, the orientation of the wave clouds and a knowledge of the winds above

the inversion obviously provides information about the vector velocity of the winds in the boundary

layer, In the present case, of course, we have deduced those winds from the model results, but

they could have been estimated in the above described manner.

5. Impact on Ocean Waves

At least one other significant result may be deduced from the present findings. This elates

to the feedback of the induced mesoscale circulat ,n on the generation of ocean waves. Our asso-

ciates at the Instrument Systems Division of this Venter have been flying a sophisticated surface

contour radar system to detect, measure, and display the structure and amplitude of ocean waves

with a vertical resolution of 15 cm. The data from a swath some 500 m wide and 4 to 5 km in

length is summarized In a two-dimensional Fourier ,vialysis of the directional ocean wave spectra,

Successive spectra for each segrhent along the flight path document the downwind evolution of the

waves (Kenney, et al., 1979).
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In order to study the development of fetch-limited waves, they have been flying oil 	 of

cold air outbreaks when the winds are strong and unidirectional In the hope of finding►, tite simplest

possible wave structure and determine the growth of wave amplitude and enemy. Walsh' reports

that even ill these supposedly simple situations, in addition to the expected wave orientation

perpendicular to the wind direction, there appears a mysterious secondary peak at another direction

at distances of sonic 100 kill off shore.

We suggest that the occurrence of such bimodal directional wave spectra oil 	 when the

synoptic scale surface flow is unidirectional may be attributable to tite inesoscale windfield induced

in the manner previously described. In the case shown, we have deduced the development of strong

north westerly surface winds to the west of the mesoscale front in addition to the enhancement of

the basic northerly flow to the cast of that front. The waves generated by each of these winds will

obviously travel across the frontal position so that in sonic swath of pm.wntiy unknown dimensions

centered along the front, one will find both wave directions in the spectra. In the case shown in

Fig. 4, we expf;ct the dominant waves to be oriented essentially E-W to the cast of the front and to

reach their peak amplitude along the front where the N-S fetch is bounded. Oil 	 south and west

side of the front tl^e latter waves will decay with distance from the fro •,nt. Similarly, the NE SW

oriented waves generated by the induced north westerly winds to the west of the front will reach

their peak amplitude at the front and decay with increasing distance to its east, The result is that

the front represents the locus along which one will find both wave directions at their peak amplitude.

Unfortunately, Walsl1 2 did not fly in a situation identical to the present one, nor does lie have

sufficient data to verify the above explanation. Thus, while this explanation secins entirely

reasonable, it must be considered as a hypothesis to be tested in future flights. At the time of this

writing Walsh" (private communication) believes that the second peak in his directional wave spec-

trunn is due to swell and not to the process described here.

2 NIvate communication from Dr. Edward Walsh of NASA/Goddard Space Flight Center, Instrument Systems
Division.
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G.	 Implications for C'yclogenesis

It takes no stretch of the Imagination to suggest that the mechanism proposed here for the

initiation of mesoscale circulations is somehow relate d to coastal cyclogenesis which is a climatoa

logical feature of the region near Cape Hatteras. Indeed, the now famous Presidents' Day C'yclon'

of February 18 . 19, 1979, which deposited record snowfalls along the middle Atlantic states,

developed the day after th.; case we have discussed here. In an extensive study of that storm

Bosart ( 198 1) notes that

"a region of enhanced lower tropospheric baroclinielty develops along the Carolina

coastal strip In response to significant oceanic sensible and latent heat fluxes which

warm, 1110lSten and destabilize the boundary layer. C'yclogenesis Is initiated along

the coastal front as a result of lower tropospheric warm advection,"

Recently, R. Atlas and R. Rosenberg3 conducted numerical experiments to isolate the critical

factors involved in the explosive development of the Presidents' Day Cyclone. The rapid intensifica-

tion was correctly predicted with the CILAS 3 model operating in its standard mode. however, the

model failed to predict cyclogenesis when the surface heat and moisture fluxes were curt off', thus

demonstrating the crucial role of diabatic heating resulting from the oceanic fluxes. Of course,

other large scale factors must also be favorable.

In our previous discussion we have emphasized the effects of the shape of the coast during

off shore cold outflows, however, by 1300 GMT on February 18 the winds at all coastal stations

in the Carolinas south of Cape Hatteras were directed on shore. The prior history of these air

parcels showed that they left the New England coast with a northwesterly flow turning anticyclon-

ically to approach the Carolinas from the east. Such a trajectory would have caused the boundary

layer air to have been warmed and moistened throughout most of its oceanic passage. The air

which would have been warmed the most is that which passed over the core of the Gulf' Stream

3 R. Atlas and R. Rosenberg, NASA Goddard Laboratory for Atmospheric Sciences (GL AS), private communication.
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before reaching the shore. By analogy to our previous model results one can then visualize the

temperature and height of the boundary layer rising, and the pressure falling with distance south

of Cape Iatteras on February 18, thus producing the Inverted trough in the pressure pattern

(Bosart, 1981) which subsequently evolved into the coastal low. Incidentally, Sanders and Cyakum

(1950) have previously suggested that the explosive development of coastal cyclones occurs

preferentially near the strongest gradients of SST. This is not what we propose.

In short, we suggest that it is not only the warming and moistening of the low level air over

the ocean which is responsible for the development of the coastal low, but also the pattern of that

warming. This in turn must be related to the sea surface temperature pattern and the trajectories

of the air relative to SST. While we are tempte(' ,) conclude that this is the reason for the clima-

tological maximum of cyclogenesis in the vicinity of Cape Hatteras, we propose that the explanation

be treated as a hypothesis for the time being. It would be most interesting to conduct numerical

experiments with an ocean having a uniform temperature to determine whether coastal cyclogenesis

also occurs under such circumstances, and other experiments to assess the role of the position and

structure of the SST field.

7. Summary and Conclusions

In cases of cold air outbreaks, we have shown that the combination of the shape of the coast

and the sea surfa(.e isotherms can have a profound effect in establishing a mesoscale atmospheric

circulation as a result of differential heating due to both variations in overwater path length and the

underlying SST. When the coastal effects dominate a mesoscale front forms downstream of the

point marking the major bend in the orientation of the coastline. Moreover, the sea level isobars

tend to parallel the shape of the coast, but pressure will always decrease with distance from shore

as the boundary layer air is progressively warmed. Thus, when the coastline is concave towards the

downwinu direction a mesoscale low will form, and conversely when the coast is convex toward

that direction. However, on the time and space scales treated here, the Coriolis effect will generally

12

..n.__	 bar	 y.



not have time to work so that the induced winds will tend to accelerate across the isobars toward

the low pressure.

The strength of the induced mesoscale circulation obviously depends upon the original thermal

contrast between the land air and the SST. In any case, the mesoscale circulation and enhanced

winds will In the first Instance, feedback oil 	 ocean by intensifying the wave growth and altering

their directions. This is one of the possible reasons for the observation of bidirectional ocean wave

spectra when the synoptic scale flow is unidirectional. The induced pattern of sea surface stress is

also bound to have an additional effect on the coastal oceanic circulation, but this has not been

discussed in the present paper.

It is worth noting that where the coastline and the isotherm pattern are more or less normal

to the mean flow in the boundary layer, and the thermal contrast is sufficiently large, the cloud 	 ''

streets formed downstream will be convective in nature and oriented with the axes of roll vortices

along the wind direction. The convective elements will also grow three dimensionally in the down-

wind direction in rough proportion to the depth of the boundary layer.

Oil 	 other hand, where the mean wind in the boundary layer is nearly parallel to the coast-

line and the SST isotherm pattern and the sea level isobars tend to parallel the coastline as noted

earlier, one will establish a significant vertical wind shear across the inversion at the top of the

boundary layer. The combination of the thermal stability and strong shear in this region is thus

likely to give rise to Keivin-Helmholtz waves as observed in the Landsat picture of Fig. 1.

It is noteworthy that explosive cyclogenesis occurred on February 18-19, 1979, immediately

following the day of the present study, giving rise to the famous Presidents' Day cyclone. Bosart

(1981) and R. Atlas and Rosenberg3 (private communication) agree that the oceanic fluxes of heat

and moisture were critical to the development of this storm. However, we hypothesize that it is

the differential heating resulting from the passage of air over the sea surface temperature pattern

i
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which is probably the crucial Awtor. This may explain the climatological peak frequency of

cyclogenesis in the vicinity of gape Hatteras which is downwind of the core of the Gulf Stream

when the surface winds are from the east or northeast.

Finally we note that almost none of the above interpretations would have been possible with.

out the high resolution Landsat pictures. We believe that an understanding of many such physical

processes will emerge from the detailed study of such high resolution imagery and recommend that

meteorologists and oceanographers exploit them fully.
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channel at 1457 GMT. See text for the explanation on the curve AB.
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Figure 3. Weekly mean sea surface temperature for the period 1421
February 1979. "X" indicates the position of the buoy.
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Figure 4. The boundary layer height (ZB ), the surface air temperature
(To ) and the surface pressure (Pe ) generated from Stage and Businger's
(1981 a, b) mixed layer model (solid curves). The dashed curves cor-
respond to the synoptic scale pressure pattern of Fig. 11 in Chou and
Atlas (1982) less 4 mb. "X" indicates the position of the buoy.
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B

Figure 5. Wind shear vector across the inversion layer for tP'e region west
of the mesoscale front, ^T is the wind at the top of the inversion layer,
VB is the wind in the mixed layer, and Oz is the wind shear across the
inversion layer. The cloud streets are perpendicular to the wind shear
vector Vz.
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APPENDIX

Related Figures of Chou and Atlas (1982)

The Figures in Chou and Atlas (1982) related to this paper are reproduced here for ease of

access.  The figure numbers are Identical to those in Chou and Atlas (1982).
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FIGURE CAPTIONS

Figure 1. Cold air outbreaks oil 	 February 1979 as seen by Landsat•3 visible channel at 1457

GMT. See text for the explanation on the curve AB.

Figure 2. Diurnal variations in the wind speed and direction for 17 February 1979 at the buoy

about 75 kin
	 of Long Island shore, New York. See Fig. 3 for the location of the buoy.

Figure 3. Weekly mean sea surface temperature for the period 14.21 February 1979. "X" indicates

the position of the buoy.

Figure 4. The boundary layer height (Z B ), the surface air temperature (To ) and the surface

Pressure (Po ) generated from Stage and Businger's (1981 a, b) mixed layer model (solid curves).

The dashed curves correspond to the synoptic scale pressure pattern of Fig. 11 in Chou and Atlas
t

f

(1982) less 4 mb. "X" indicates the position of the buoy.

Figure 5. Wind shear vector across the inversion layer for the region west of the mesoscale front.
A	 A n
VT is the wind at the top of the inversion layer, VB is the wind in the mixed layer, and Vz is

the wind shear across the inversion layer. The cloud streets are perpendicular to the wind shear
A

vector VZ.

Figure 6. Roll wavelength versus the distance downwind from the Long Island shore .for the regions

about 30 km east and west of the mesoscale front. Wavelength is estimated from the Landsat

picture.

Figure 7. Aspect ratio (X/Z B ) versus the distance downwind from the Long Island shore for the

regions about 30 km east and west of the mesoscale front. Wavelength (X) is estimated from the

Landsatt picture and the boundary layer height (ZB ) is taken from the results of Stage and Businger's

(1981 a,b) mixed layer model.
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Figure 10, Cold air outbreak on 17 February 1979 as seen by Tiros-N AVHRR I  channel at

1941 GMT, Abscissa and ordinate are marked in longitude and latitude. Cloud streets south of

Long Island, New York are aligned in the N-S direction, (Reproduced from Chou and Atlas, 1982

without color,)

Figure 11, Surface weather map of 17 February 1979 at 1500 GMT. (Reproduced from Chou

and Atlas, 1982,)

Figure 12. Weekly mean sea surface temperature for the period 14-21 February 19?9. (Reproduced

from Chou and Atlas, 1982.)
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