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THE GEMPAK BARNES OBJECTIVE ANALYSIS SCHEME

S. E. Koch, M. des Jardins, and P. J. Kocin

ABSTRACT

GEMPAK is an interactive computsr software system developed at the Severe Storms Branch
of NASA’s Goddard Laboratory for Atriospheric Sciences for the purpose of assimilating, analyzing,
and displaying various conventional and satellite meteorological data types. The Barnes (1973) ob-
jective map analysis scheme possesses certain characteristics that allowed it to be adapted to mect
the analysis needs of GEMPAK. Th¢se characteristics and the specific adaptation of the scheme to
GEMPAK are described hyfe. A step-by-step guide for using the GEMPAK Barnes scheme on an
interactive computer (in “‘real-time”) to analyze various types of meteorological datasets is also
presented.

The GEMPAK Barnes scheme is unique in the way in which it achieves a balance of objectivity,
versatility, and practicality. Demonstration of these qualities is accomplished by applying the
scheme to both a high quality, uniformly distributed radiosonde data set, and to a non-uniformly

distributed data vet of undetermined quality composed of satellite-derived cloud motion vectors.
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THE GEMPAK BARNES OBJECTIVE ANALYSIS SCHEME

1. AN OBJECTIVE ANALYSIS SCHEME FOR GEMPAK

One of the basic program objectives of the Severe Storms Branch (Code 914) of the Goddard
Laboratory for Atmospheric Sciences (GLAS) is “to study the subsynoptic to mesoscale processss
which create the favorable environment for the development and evolution of severe convective
storms by using the recently acquired SESAME data sets, TIROS-N (and VAS) temperature and
moisture soundings and satellite derived cloud tracked winds” (p. 44 of Simpson et al., 1980), In
order to assess the impact that merging of the various data sources has upon the dynamic computa-
tions and subsequent interpretation of storm-environment processes, the GEMPAK (GEneral
Meteorological data assimilation, analysis, and display software PACKage) was created. This system
is designed to (1) convert the various types of data to a standard file structure, (2) vertically and
horizontally interpolate the standardized data to uniformly spaced grid points, (3) perform data
assimilations to initialize numerical models, (4) compute diagnostic quantities, and (5) display the
products onto various maps. The GEMPAK has been developed on the AOIPS (Atmospheric and
Oceanographic Information Processing System) at NASA/Goddard. The adaptation of the Barnes
(1973) objective analysis scheme to GEMPAK for the purpose of performing the interpolation func-
tion (step 2) is discussed in this report.

The term “objective analysis” refers to a process by which data observed at irregularly spaced
points in space (and/or time) are numerically processed to retrieve the two- or three-dimensional
structure in the spatial distribution of som :- “‘eorological field parameter. Usually, the observed
parameter values are computed at a regularly spaced array of grid points in order to provide the
basis for mapping isopleths of the parameter distribution, and to allow quantitative diagnostic and/or ;

predictive calculations to be made.

The process of objective analysis results in smoothing of both high-frequency, short-wavelength

features commonly referred to as “noise” and of gross data errors in the data distribution. Itis
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necessary to suppress “noise’” and reduce error amplitudes significantly, particularly before compu-
tation of meaninglul estimates of such derivative quantities as divergence and vorticity from the
grid point values,

The degree of smoothing is governed by the selected weights applied to the data, The Barnes
scheme uses a Gaussian weighted-averaging methaod to assign a non-zero weight to each observation
according to its distance S from a mesh point relative to the number and distance of all other obser-
vations within some “cutoff radius” R, beyond which all weights are assigned a value of exactly
zero, Given the Gaussian nature to the scheme, an “influence radius” R can be defined as that S
where the weight falls to a value of exp (~1) = 0.37 (as discussed in section 2). However, the weight
function is not tied to the chosen value of R, and in fact a/l the data points in a given dataset can
be incorporated in determining each grid point value if desired, by simply setting R, = o (normally,
for reasons of computational economics, R is set to a finite value with no loss in analysis accuracy
as long as R, is significantly larger than R, as discussed in section 3e).

It is of some interest to provide some comparisons between the Barnes (1973) and Cressman
(1959) objective analysis schemes, as tliey both are weighted-averaging tecliniques in common usage,
Perhaps the mos§ important difference is that the Cressman weight function is determined by the
choice of R, since the weights do not asymptotically approach zero with increasing S as they do in
the Batnes technique, but instead abruptly become zero at S = R(= R;). This nature of the Cress-
man scheme can present serious difficulties when the data distribution is non-uniform.

All weighted-averaging, “successive correction” (see below) objective analysis methods like

. those developed by Barnes and Cressman are designed to work best on two-dimensional data fields

of rather uniform data distribution. Those fields that have very irregular data densitie,; over the
domain can present a problem known as “ballooning,” characterized by large amplitude and phase
distortions in the neighborhood of any grid point whose value is determined primarily by the value
of only one inaccurate datum. In general, this problem can be reduced by requiring that at least

several observations be used in the calculation of each grid point value. In the Barnes technique,




this is accomplished by extending the distance R (with no resulting effect upon the weight function).
In some applications of the Cressman technique, the current scan R is locally increased to insure that
a sufficient number of data influence each grid point value (Inman, 1970); however, *“noise” intro-
duced by such a locally varying weight function must be suppressed with additional numerical filters,
thus producing an unknown final response and requiring additional computer time, The other cor-
rectional method used in the Cressman technique is to increase R sufficiently on the first pass through-
out the entire domain, yet such a procedure means more passes are required to pchieve the desired
final response,

The Cressman and Barnes techniques both employ the method of successive corrections whereby
an adjustment is made to the first pass analysis by decreasing R in the second pass through the data
to restore the amplitude of large wavenumber components suppressed in the first interpolation-
filtering pass. In the Cressman case, neither the number of additional passes nor the value of the
second pass R are govesned explicitly by the data distribution, thus neither is the filter response, !

An advantage of the Barnes technique is that (in the 1973 version) oniy two posses are required to
achieve the desired pattern recogniticyy whereas typically (but rather arbitrarily) four to six scans
are employed with the Cressman technique,

Classical sampling theory (Peterson and Middieton, 1963) dictates that a wave whose horizontal
wavelength does not exceed at least twice the average observation spacing (24An) cannot be resolved
since five data points are required to desciibe a wave and its derivatives. Random errors in the ob-
servations generate fictitious 2An waves (Barnes, 1964); therefore, it is desirable to filter these from
the analysis as much as possible. The Barnes (1973) technique has the highly desirable property that
the weight function constants can be chosen upon the basis of the data distribution prior to the

analysis so that pattern scales resolvable by the data will be revealed to a known response amplitude.

1 Stephens and Stitt (1970) show that an optimum choice for R 6n the first pass can be made in terms of An
for a uniform data distribution. However, the optimum R is not well difitied theoretically on the second pass, so
the final filter response is rather arbitrary,

PO . .
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To summarize, the Barnes (1973) technique is selected because of the following advantages

tlisted by him),

1. The scheme is a computationally simple, Gaussian weighted-averaging technigue which

assigns a weight solely as 4 known function of distance between datum and grid point.

2. Since the weighting function decreases to zero asymptotically, the infiuence of data may
be extended any distance to insure that a sufficient number of observations influence each
grid point value without having any effect upon either the weight function or the response

characteristics.

3. The low-pass filter response characteristics can be determined prior to the analysis so that

pattern scales resolvable by the data distribution will be revealed,

4. Only two passes through the data are required to achieve the desired scale resolution
secause of the rapidity with which convergence is reached (see appendix). Even when a
large influence radius (weight factor k in the next section) iz ~hosen to reduce noise due to
variations in observation density, convergence is attainable (because of the numerical

convergence parameter vy discussed below),
5. Small scale “noise” is sufficiently filtered from the analysis after only two passes.

The reader interested only in applying the GEMPAK Barnes scheme to a particular problem

can skip the next section without loss of continuity.

2. CHARACTERISTICS OF THE BARNES OBJECTIVE ANALYSIS SCHEME

Barnes (1964) has developed an objective analysis scheme that utilizes a Gaussian weight
function in the spatial domain based on the supposition that two-dimensional data distributions can
be represented by Fourier integrals. Let r,, represent the distance between the (i,j) grid point and
an observed datum f(x,,y,,). Further, let x be the weight parameter that determines the shape ol

the filter response function. Then, the weight function w,, is expressed asg:

4
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Wy = exp(~r,2/K). (N

For a given choice of k, an “influence radius™ may be thought of as that r,, where w, = ¢,
It is shown later that k can be chosen to reveal those scales resolvable with the particular data

distribution,

Barnes (1973) has modified the earlier method in order to decrease the amount of computer
time necessary to achieve “desired response™ at small wavelengths, This modification consists of
applying only a single correction pass through (iteration upon) the initial interpolated liekl g (i.j),
rather than making several iterations as before, To accomplish this, parameter k is decreased from

its first pass value (1)) to its correction pass value of
Ky = YKy» (2)

by using a “numerical convergence parameter” y(0<y<1) that forces a high degree of convergence
(agreement) between the observation field (x,y) and the correction (second) pass interpolated field
gy (x, y). Of course, it is not always desirable to have the interpolation field fit the data exactly; by

manipulating the value of v, the analyst obtains the desired response following the second dauta pass.
The first pass yields an interpolated field given by:
gy = f(x,y) Dy, (3)
where the spectral response function
Dy = exp |-k, (/7] )

derived by Barnes (1964) is of the form of a low-pass filter that attenuates signals at small horizontal
wavelength A, Figure 1 shows that use of smaller values of the dimensionless weight parametel‘lco*

results in greater filter response during the first pass, particularly for the short waves.
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The “correction (second) pass” grid point field g 1 (hj) is the result of adding to the first pass
field the smoothed residual difference between the observed data values and e first pass estimated

values “at” the data locations g, (x,y), or

By () = 80 i) + [ 00,9) -8 (x,¥)] Dy (5)
where (after Barnes, 1973),
D, = exp{-lcl(n’/?\)z]
= exp [~’)‘l€o (n/h)z} (6
= DY

is the response function corresponding to the weight function

W = exp(-«rmzl'yrco) . (7

A simple bilinear interpolation between the values of g, (i,j) at the four surrounding grid points can
be used to obtain an estimate Tor g, (x,y} at cach data location. The actual correction pass value
“at” each grid point is computed as the sum of the weighted averages from the two passes with M

observations according to (after (5)):

M M "
2 Win F(X5¥ ) 3 Wy LY = 86 (X0 Y )]
. m=) m=1
- + 5 ,
gy (i,) v T (8)
3 Ym Y Ym
m=] m=]

Since it follows from (5) that (omitting arguments for convenience)

g1 —8

D, =——2, (9)
f-g,
7



the function (6) might be referred to as “a difference field response function,” The true correction
pass response function (i.e., that one which corresponas £ the first pass response function given by

(3)) is:

£y
DX =—, (10a)
f
which upon substitution from (5) gives
DY = D+ =D,)D,, (10b)

and upon further substitution from (6) we have (Barnes, 1973)
Df = D, (1+DY"! -DY). (11

Function Dl* is the proper measure of the degree of analysis convergence, or in “ther words,
how closely the interpolated values agree with the observed ones after a second pass through the
data, Making a second pass will increase the degree of convergence when 0 <y < 1, and particularly

so when v < 0.5 (Figure 2). Notice that the greatest increase in response i« -irs at the shorter

wavelengths (small D, for a given choice of Ko according to Figure 1).

A mathematical analysis of the ¢ffect of making additional passes (N>2 iterations) through the

data appears in the appendix. It is proven there that no real benefit can be gained in making more
than one correction pass because of the rapidity with which convergence is approached when v is
chosen small enough (Figure 2). 1 is also proven that the 1973 version of the Barnes objective
analysis technique is absolutely convergent (although the 1964 version has been shown by Barnes
(1964) to be conve:izent also, several more passes are required to reach the same degree of conver-
gence as with the 1973 version). This fact enables the analyst to control the amount of small-scale

detail to be revealed in the analyzed data fields.
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These properties of the Barnes analysis scheme, (a) weight selection based wholly upon the data
spacing, (D) filtering of the 2An wave from the analysis, (v) adequacy of only two data passes to achicve
desired fit to the data, and (d) insurance that a sufficient number of observations influence cach prid
point value, are all incorporated into the GEMPAK Barnes analysis scheme described in the next
section, Other factors, such as objective determination of grid size nnd accounting for variable

observation density, are unique features of the GEMPAK version ol the Barnes scheme.

3. THE BARNES SCHEME TAILORED TO GEMPAK NEEDS
Certain factors were considered in accommodating the Barnes {1273) objective analysis scheme

to the specific needs of GEMPAK:;

1. An agreeable balance between user manipulability and the objectivity inherent to the

Barnes scheme must be found,

Differences in the nature of the various conventional and satellite data must be taken into

2

account, In particular, satellite-derived cloud motion wind data tend to occur in clumps
separated by varying distances because of the problem in finding a sufficient number of
suitable, unobscured cloud targets for tracking purposes (Negri and Vonder Haar (1980),
Peslen(1980), Maddox and Vonder Haar (1979)). Missing swaths of data are common with
satellite-retrieved temperature and moisture soundings (Hillger and Vonder Haar, 1981). On

the other hand, the Barnes scheme assumes uniform distribution of data.,

3, The maximum allowable detail in the interpolated fields is to be governed by the data

spacing.

4. The results of the mathematical analysis of the Barnes convergence properties (appendix)

are to be incorporated by limiting the number of passes through the data.

5. Bounds to the grid box size should be wholly determined by the data spacing, since the

magnitude of derivative fields like divergence and vorticity is highly sensitive to grid size.

10
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6. Measures of analysis quality should he made available to the GEMPAK user to allow

o

objective determination of the effect of user manipulation of the analysis filter control

parameters upon the resulting objective analysis.

7. Finally, it is essential that the GEMPAK Barnes scheme be easily and quickly usable by one
who does not possess a thorough understanding of the mathematics describing the Barnes
scheme filter response, convergence properties, ete. appearing in this report, but who can
judge the quality of the resulting objective analysis in terms of its physical content, con-
sistency with other meteorological fields, and temporal continuity. The uniqueness of the
GEMPAK version of the Barnes scheme rests in the manner in which these seven considera-
tions are incorporated into an easy-to-use objective analysis package. The unique features

are discussed below, :

a. Domain Definitions

Unique data and mesh domain definitions were devised in order to permit casy manipulation
of data file structures and to obtain a uniformly reliable analysis throughout the entire grid arca
displayed (Figure 3). One of these domains is termed the data file, which consists of the entire data
set to be considered for the Barnes objective analysis, e.g., cloud motions in the lower troposphere

determined over a subsynoptic region for a specified time interval. ;

That subset of the data file in which grid point values are computed from the data by the
GEMPAX Barnes scheme is termed the data area, Those observations which lie outside of the data
area do not jinfluence any grid point value. One conceivable data area is that in which the distribu-
tion of the data is more uniform than that within the data file. Another choice for a data area
might be one which contains a sufficient number of observations from one data type needed to

make a comparison with the objective analysis of data by some other type. For example, if there is

a wish to study the impact of satellite cloud winds upon an analysis of conventional rawinsonde
winds, then the data area should be chosen large enough to include rawinsonde data locations outside
of the area of satellite data.

11
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The grid display area is that portion of the entire gridded domain (i.e., data area) which is dis-
played as *‘the objective analysis” to the analyst, The grid display area should lie entirely within the
data area to avoid attempted interpretation of the analysis near the data-sparse boundaries of the
data area (the dashed region in Fig. 3). In this region, the data are simply extrapolated by the
Barnes (or similar) scheme because there are not enough data nearby to give reliable grid point esti-
mates, A good approach to take is to have at least one or two observations lic within the data arca

existing beyond each side of the grid display area,

b. Non-Uniform Data Distributions

The problem of handling non-uniform distributions within the data area is presently dealt with
in the following manner. Within any data area input to the computer, the distance between each
observation and the nearest observation to it is determined, regardless of how uniformly distributed
the observationis are, The average of these distances over the entire data area is termed the
“computed data spacing” Ang. Its value determines the maximum datail permitted in the objective
analysis, However, a smoother analysis can be obtained by manually inputing any An > An,, as
should be done, for example, when examining the synoptic-scale impact of non-uniformly distributed,
satellite-derived mesoscale wind, temperature, or moisture data upon a synoptic field obtained from
conventional data. An appropriate choice in this case is the An computed from the data area com-
prised only of the conventional data. In other words, the purpose of the analysis should govern the

choice for An, under the constraint that An > An_,

c. Control of Detail in a Two-Pass Barnes Analysis
Once the data spacing has been defined, the analyst “fine tunes’ the degree of analysis detail
(or convergence of the interpolated field towards the observed field) by choosing a value for the

numerical convergence parameter? (). In the GEMPAK version of the Barnes scheme, the maximum

© e e e e e

2A slight degree of analysis control is also made possible by manipulation of the mesh size, However, the mesh size,
which is allowed to vary within the limits discussed in Section 3d, should not be manipulated for the purpose of
achieving a desired degree of analysis convergence, but rather for reasons discussed later.
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detail Is obtainable with v = 0,2, whereas the least detail results with v = 1,0, for a given value of An,

The analyst must decide for himself how closely the final analysis should be made to fit the data,
If one desires to see the greatest resolvable detail in the field, it is justifiable to use a small v value
when errors in the data are only a small fraction of the signal present over the field and the observa-

tions arc not substantially contaminated by subgrid-scale atmospheric processes.

A limit of two passes through the data is imposed in the GEMPAK Barnes scheme (see appendix),
Under this constraint, and the further constraint that 0.2 <y <t 1.0, the range of analysis responses
permitted can be found (Figure 4). The first pass values Do(h) are arrived at by inserting the value
D,(24n) = 0.0064 for integral values of (\/2An) in (A18); the second pass values D l* () are then
calculated from (11), The value of 0.0064 for D (2 A n) gives a second pass responsc of l),* =¢!
at the 2An wavelength when y = 0.2. Since the maximum response and best fidelity characteristics
of the Barnes low-pass filter are arrived at by choosing this v value, use of D,(24n) = 0,0064 lets us
obtain a baseline value by which responses at multiples of the 2An wave can be calculated, It is important
to realize that under these conitions, the weight parameter « is fixed by the data spacing, since

when A = 2An is inserted into (4) with D,(2An) = 0.0064,

&
i

2
2An
0 = —(T) In D0(2An)

2
24

5.052 ( “) .
w

In other words, the weight parameter K is fived by the data spacing to give maximum response

(12)

of e~ at the 2An scale (v = 0.2). The user of the GEMPAK Barnes scheme has the option of either
aceepting this default analysis or of making a simoother, less detailed one by inputing a larger v value
(0.2 <vy<10) Increasingy affects only the second interpolation ficld, which is the one displayed,

such that the amplitude of the shorter wavelength features is reduced.

14
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Figure 4. Perm

wavelength in the GEMPAK Barnes scheme.
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d. Objective Determination of Grid Size

An abundant literature exists illustrating bounds on the ratio between the grid box size Ax and
the data spacing An, such that Ax/An lies in the range of about 0,3 to 0.5 (Barnes 1964, 1973;
Doswell, 1977, Maddox, 1980; and others), The apparent reason for the upper limit is that since
five grid points are required to represent a wave, and the minimum resolvable wave is of 2An scale,
then Ax must be no larger than one-half of An (as shown in Figure 5). As for the lower limit, since
caleulations of derivative quantities like divergence and vorticity are highly sensitive to grid length,
then if such derivative fields are to represent resolvable features, one must not use a grid length that

is much smaller than the data spacing,

Accordingly, the GEMPAK Barnes scheme imposes the constraint that
1/3 < Ax/An < 1/2. (13

The number of grid points (KX by KY) are then determined by
KX(KY) = 1+ (x(y) data area dimension)/Ax, (14)

ven though the GEMPAK Barnes scheme places stringent limits on the mesh size, it remains
versatile enough that it can accommodate round-off of the computed mesh size to convenient whole
numbers (such as 1.0° latitude, or 10.0 km, etc.). This versatility may be necessary when making

comparisons of objectively analyzed data to numerical model output, for instance.

¢. Quulity Control Indicators

Serious ““ballooning’ problems can occur when an insufficiently small number of data
determine the value at a grid point (as discussed in section 1). In order to avoid such problems, a
warning flag appears to the user of the GEMPAK Barnes scheme whenever less than 3 data values
determine any grid point value. Such a problem is particularly likely to occur when the grid display
area is chosen so large that it extends into data-void regions, It is desirable to caution the analyst

that a better choice for the grid display area should have been made.
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The warning flag appears slightly more often than it would otherwise because of the inclusion
of a delimiter on the computation of extremely small weights at very large distances between a grid
point and a datum. Its insertion into the program increases the cfficiency of its operation without
noticeable loss of any accuracy. Presently, this cutoff distance has the value R; = v 56, which is
4.5 times as large as the “radius of influence” R at which the weight w,,, = ¢~ (see (1)). At distances
r> R, the weights are assigned zero values, whereas in actuality it can be shown that the weight
value at R, is about 1.5 X 10~8 when Ax = An/2,

Another measure of analysis quality is the computed rms difference between the interpolated
and observed ficlds. 'This number is displayed to the analyst afier both the first and sccond passes
through the data to enable one to see the amount of rms reduction between passes and how much
greater this reduction is with the use of a smaller y value, This number can then be compared to

the known observational errors.

Finally, computer limitations (section 4) dictate that KX and K'Y be no larger than 40,
Problems arise when an analysis is attempted of clumps of closely spaced data separated by large
distances from other clumps over a sizable data file, If one wishes to make a detailed analysis using

An = Ang, then severai separate analyses over subsets of the data file must be made.
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Despite the last limitation, the GEMPAK Barnes scheme remains a versatide and casy-to-use
objective analysis package, By incorporating a weight selection procedure based purely upon the
data spacing, filtering the 2An wave from the analysis, and determining the grid size from the data
spacing, the scheme is objective in nature. Yet, by permitting user input of arbitrarily larger data
spacing than actually exists, user manipulation of the various spatial domains, and user selection of
the v and Ax values within bounds, the scheme retains its necessary flexibility. In the following
seetion, it is shown how use of an internetive, menu-type format and various cursor/display controls

on a computer. CRT enhances the ease with which the GEMPAK Barnes scheme can be used.

4, OPERATION OF THE GEMPAK BARNES SCHEME ON AN INTERACTIVE COMPUTER

A CRT computer graphics terminal on AOIPS is utilized to permit the user to step through a
series of menus (questions) in order to select appropriate files and parameters for the GEMPAK
Barnes objective analysis. For each analysis the vser must select 1) the vertical level for the analysis,
2) the data sets to be included in the analysis, 3) the data and grid display areas, 4) values for the
observation spacing An, grid spacing Ax, and v, and 5) the meteorological parameters to be

analyzed. When appropriate, the values chosen most recently will be displayed as the default values,

Unless default values from a previous analysis are available the following defaults are used and

may be chosen by entering 0 on the terminal.
(1) The default vertical level is the earth’s surface.
(2) The default data sct is the sounding data set used most recently in GEMPAK.

(3) The data and grid display areas both correspond to the data file area. Areas are defined by
the lower left and upper right coordinates, Since it is necessary to align the areas to lic on
grid points, the lower left corner will be fixed and the upper right corner moved up and

right until it coincides with a grid point. ANissetto AN ; AX = AN/2,

18
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(4) Detault values are AN = AN, (value computed within defaull datiarea), AX = AN /2,
and v = 0.30.

(5) The meteorological parameters are not defaujted; they must be selected by the user,

When a user works in latitude/longitude coordinates, he has the capability to display the data
and grid display areas on the CRT, Then, by manipulation of a joystick on the console, these
analysis boxes can be easily reshaped and moved until, by visual inspection, the desired result is
obtained. After selecting which files and parameters to use, both the actual data and the objective
analysis are displayed. If the analysis is unsatisfactory to the user, he may then alter the inpu.
parameters to the scheme by stepping through the menus once more, and subsequently see another

analysis. Of course, instead a different parameter may be analyzed at this point. !

Following are the menus in the order in which they appear to the user and a description of the

required responses.

Enter Vertical Level (Default = Surface):

A single vertical level to be analyzed, in the units of the vertical coordinate system of the sounding
dataset name (see below), must be entered (with a decimal point included). A (CR) (carriage return)

or 0.0 will result in default to the surface lqvel.

If the surface level is selected, the data set file labels will be checked to ensure that surface
data is available in each dataset. If it is not, an error message is printed and the user may select

another level.

Sounding Data Set Number |
Enter Sounding Dataset Name (Default Disk = )

0 - Y or (No Default):
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Up to four sounding datasets® can be entered by name. The default disk and user's UIC (User
Identification Code) will be added to the name if not specified; also *.SND" will be appended to
the name if o file type is not entered. When a default file name appears, the file may be selected by

entering a 0",

Anincorrect file selection will result in an error message and the file prompt will be redisplayed,

The file labels will be checked to ensure that they have a common vertical coordinate system,

A {CR) will end the file selection process,

Average minimum station spacing 0 = old values

default = conipute;

This prompt is displayed only if defauli parameters from a previous objective analysis are available,
intering a *0” will restore the previous parameters, including the average minimum station spacing,

AN,, previously computed from the present data file,

Enter 2 bit planes for data and grid display areas

Default = no display:

This prompt appears only if the user has allocated a CRT display terminal and has previously plotted

sounding data*

*A GEMPAK sounding dataset is a collestion of soundings formatted through one of the options in the
sounding input program.

4 Each displdy terminal is presently a Hazeltine terminal which has one memory of 512 X 512X 8 bits,
addressable as 8 bit (graphic) planes.
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The two bit planes (1-8) must be entered separated by a comma, The first bit plane will be
used to show the data area; the second will display the grid analysis arca, The same bit plane may

be entered for both displays., Note that any previous displays on those bit planes will be erased.

The menu shown in Figure 6 lists information about the data and grid analysis areas as well as
the current values of AN, AX, and v, For reference, the latitude/longitude coordinates of the
lower feft and upper right corners of the data file area, and the number of stations reporting data
al the vertical Jevel seleeted, are displayed at the top. Additionally, the number of stutions within

the data area are displayed to the right of the station spacing,

In 1,, the selected value of AN is shown. Also listed are the last computed station spacing and
the random station spacing. The average minimum station spacing, AN, within a data arcais
computed only if a *“~17’ is entered in response to this menu. The uniform station spacing is the
average station spacing within the data area assuming that the stations are evenly distributed, This
niimber should be used only for reference, If this number is different by a factor of 2 or more from

the computed minimum station spacing, then the data set is not really uniform in nature,

2. and 3, show thelower left and upper right corners of the data area, in degrees latitude, longitude,

4, is the grid spacing, AX, Note that the grid spacing and the station (observation) spacing arc

both in degrees latitude. The grid spacing is initially set equal to one-half of the station spacing.

5. displays the number of grid points covering the data area in both X and Y directions.

6. shows the grid display coordinates in units of grid points, i.c., the subset of the data area
prid which will become the grid display area, The tatitude, Tongitude corners of the grid display areq,

which cannot be altered dircctly, are shown under the coordinates.
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*+*BARNES ANALYSIS MENU*#+

(28.8 -106.0 414

1. STATION SPACING
LAST COMPUTED SPACING 1,93
UNIFORM STATION SPACING  2.51

~1TO COMPUTE STATION SPACING

2. DATA AREA (LOWER LEFT) 28.82

3. {UPPER RIGHT) 41.36
4. GRID SPACING 0.965
5. # GRID POINTS (KX, KY) 21

6. GRID DISPLAY COORDINATES 1,21
(LOWER LEFT) 28.82

(UPPER RIGHT} 41.36

-86.6)

1.93

~106.27

-86.11

14

1,14

-106.37

~86.11

34 STATIONS

32 STATIONS

Figure 6. Example of GEMPAK Barnes “menu” of input parameters.
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Enter number and new values
0 = initinlize P = PRINT D = Data Box

Defzult = accept:

This prompt appears following the menu shown in Figure 6. The user may enter a menu selection
number (1-6) followed by a comma and new parameter value(s) separated by commas, The valucs
entered are checked for obvious errors, changes are made to the required parameters and the menu

is redisplayed. A station spacing AN > AN, can be entered at this step to account for non-uniform
data distributions. Entering a new value for one parameter can affect values for the other parameters

(e.g., new station spacing alters data area slightly).

A response of “0” will reset the menu to the values initially displayed. ‘P”* will print the menu
on the line printer, “D” will display a yellow box on the display screen. The box may be moved
and shaped to redefine the data area using the “MOVE” and “SHAPE” buttons on the terminal
console. The “DEFINE” button is used to accept position of the box. The user may enter “:XF”

to turn the box off.

ENTER GAMMA BETWEEN 0.2 and 1.0
DEFAULT GAMMA = 0.3:

Any value for v within the limits 0.2 <+ < 1.0 is acceptable. If any other value is entered, the

menu is displayed again, A (CR) will default to v = 0.3.

Enter list of parameters to be analyzed (< = N):
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Up to N parameters (e.g., temperature, wind speed, ete.) may be seiccted by number from the list.
N is limited by computer considerations, Since the most time-consuming part of the objective
analysis is the exponential computation, large grids or data areas containing a large number of
stations will limit the number of parameters that can be analyzed at one time. The number of
exponentials computed is approximately 2 X M X KX X KY, where M is the number of stations.
Since this number is not a function of the number of parameters being analyzed, it is desirable to

compute as many parameters as possible during a single analysis,

PASS 1 PARAMETER 2 RMS

2.38 #STATIONS

i

32
PASS 2 PARAMETER 2 RMS

32

0.74 #STATIONS

This message prints the RMS after each pass. No user response is required, The reduction in RMS
error between the two passes is greater when a small -y value is used. The RMS at the second pass
can be comparced to known observational uncertainties to help the user make a judgment of analysis

quality.

Following each pass, parameter values are computed at each station using bilinear interpolation
with the four surrounding grid points. The RMS is computed using the differences between the interpo-
lated station value and the actual station value (see (8) in Section 2). The parameter number refers
to the GEMPAK number for the parameter being analyzed. The number of stations actually used

in the analysis is also shown.

THERE ARE________ POINTS IN THE GRID DISPLAY AREA WITH
INSUFFICIENT DATA.

A LISTING WILL BE SENT DIRECTLY TO THE LINE PRINTER UNLESS
AN “N” S ENTERED:

Ay



The prompt is displayed only \f fewer than three data values have influenced any grid point, as

mentioned in Section 3e,

ENTER GRIDDED DATASET NAME (DEFAULT DISK = )
0 = ) OR (NO DEFAULT)

This gridded dataset, a file which stores up to 20 grid analysis arrays, and has the form “NAME GRD,”

must be entered, Again, the default disk and 'the users UIC will be added if not specified here; “GRD”
will be appended if a file type is not entered. When a default file name is given, the file may be

selected by entering a ‘0.

OUTPUT TEMP IN GRID NUMBER 10
ENTER NAME FOR GRID:

This prompt asks the user to specify a nam:e for grid 10; in this case, the gridded data resulting from
an objective analysis of temperature (TEMP) is stored in grid 10. A 12-character name may be en-
tered to identify the grid in the file. The grid number is the l_ocation of the grid in the file. The
grid is accessible for purposes of algebraic manipulation (e.g., pressure tendency calculations made

by subtracting two gridded pressure datasets) and contouring.

5. METEOROLOGICAL APPLICATIONS OF THE GEMPAK BARNES SCHEME

In this section, station and grid spacings (An and Ax), data and grid display areas, and the

numerical convergence parameter () are each varied to examine the resulting effect upon the

- objective analysis of subsynoptic-scale wind data. Each of the resulting GEMPAK Barnes analyses,

except for the last one to be discussed, will be of a uniformly distributed wind data set obtained from
rawinsonde data collected during the SESAME (Severe Environmental Storms and Mesoscale Experi-
ment). The last analysis will be that of non-uniformly distributed wind data composed of both the rawin-

sonde observations and satellite-derived cloud motion estimates. The purpose of the latter analysis is to
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Figure 7. Location of rawinsonde stations participating in the AVE-SESAME I (April 10, 1979)

experiment.
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show how An can be chosen larger than the computed value An, so as to obtain an analysis more

representative of the scale resolvable by the uniformly distributed, conventional data set.

The data file used for all but the last analysis is derived from the SESAME regional-scale
network, a uniformly distributed array of rawinsonde observations including 23 National Weather
Seryice stations and 19 supplemental sites over the south central United States (Figure 7). In
particular, an analysis of wind speed at the 310 K isentropic surface at 2100 GMT on April [0, 1979
is made from data existing at 32 of the 42 possible stations. These 32 stations constitute the data

file, which form the base for the objective analysis. The latitude and longitude bounds of the data

file are:

Latitude Bounds Longitude Bounds
upper: 41.36 western: ~106.37 (15)
lower: 28.82 eastern; -86.11

a. Map Generation

The first procedure in generating a Barnes analysis is to display a map of the observations
within the data area (the only real requirement is for the analyst to display just a map, but the
inclusion of the observations could minimize errors related to the placement of data and display
areas). A map containing the SESAME wind speed observations (Figure 8) is generated and displayed

by GEMPAK’s sounding plotting program. For this example, the coor:dinate bounds of the map were

chosen as follows:

Latitude Bounds Longitude Bounds
upper: 43.4 western: -108.4 (165
lower: 25.4 eastern: -83.4

These coordinate choices produce a map covering 25° of longitude and 18° of latitude, which includes

all the observations within the data file plus an additional surrounding data-free area of about 3°.
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Figure 8. Map generated by GEMPAK sounding plot program when SESAME data file consisting of

wind speeds (shown in units of m s‘l) at the =3 10K level at 2100 GMT on April 10, 1979

is chosen.

28



As long as no further changes are made to the map’s coordinates within the sounding plot program,
the latitude/longitude coordinates of the map area will be retained throughout the use of the Barnes

program, so that the data and display areas can be accurately placed over the map,

b. Station/Grid Spacings and Data/Grid Display Areas

Once the map has been generated, the GEMPAK Barnes menus are utilized. Following the
procedure outlined in Section 4, the user first specifies his desire to analyze the wind speed at verti-
cal level = 310 (in this case, 310°K), He is afterwards faced with the task ol generating suitable data

and grid display areas.

The interactive CRT terminal allows the analyst to create and alter two “boxes” on the CRT
display screen, one box enclosing the data area, and the other enclosing the grid display arca. During
the initial internal computation of Ax and An, only one box will appear since the program will
assign the same coordinates to both the data and grid display area. Unless old values for An are
available, the average minimum station spacing within the data file will be computed, which in the
present case (Figure 8) is An, = 1.93°. Under the constraint (13), the grid spacing is initially s¢t to
its maximum allowable value of Ax = An /2 = 0.965°. Upon input of the data file bounds (15),
the values of KX and KY are computed internally from (14), and hence the Barnes Analysis Menu

will appear on the CRT dispiuy screen with the parameter values (shown earlier) in Figure 6.

The calculated value of An, may be modified now to meet the needs of the analyst, [t is essen-
tial to realize the importance that such a modification has upon the analysis (see Section 3c¢), within
the *"mit that any input An must be no smaller than An,. For discussion purposes, the value is in-
creased slightly to An = 2.00° in order to allow an internally calculated grid spacing of Ax = 1.00°,
In general, the value of An should not be arbitrarily increased beyond a few percent of its calculated
value unless a non-uniform data area is to be analyzed, for otherwise details resolvable by the data

will be lost,
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The change of An from 1,93° to 2.00° results in a slight enlargement of the box representing
the data arca, While holding the lower left corner of the original coordinates (15) fixed and
accounting for the grid spacing Ax of 1.0 degree, the GEMPAK Barnes program computed new ¢o-

ordinates for the data area:

Latitude Bounds Longitude Bounds
upper; 41.82 left: ~106,37 (17)
lower; 28.82 right: -85.37

Note that the coordinates of the upper right corner of the data area have changed to allow the box
to increase in size while including all observations from the data area, The degree differences
between the latitude bounds and the longitude bounds are now multiples of the grid spacing Ax of

1.0 degree,

Following the choice of Ax, the data area is chosen by either typing in the coordinates or by
using a joystick-controlled function that shapes a rectangular box around the data area. It is casier
to position a box manually than to determine the coordinates of the lower left or upper right edges
of the data area. In either case, once the data area has been entered, the program may alter the co-
ordinates and the box slightly to accommodate the grid spacing. The resulting data area box is the

larger of the two boxes in Figure 9.

The grid display area should be entered as a subset of the data area, A good approach to take
(see Section 3a) is to allow at least one or two observations to lie beyond eacli side of the grid
display area. Since the slight increase of An from 1.93° to 2.00° results in an increase of the grid
array from 21 X 14 (Figure 6) to 22 X 14 when Ax = 1,00° (see (17)), a grid display area
imbedded two grid points (or 2°) within each side of the data area requires the following sequence

of values to be input in item #6 of the Barnes menu:

3 20 3 12,
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Figure 9. Data and grid display areas selected for analysis of SESAME data set (see Figure 8). The
boxes were obtained both by typing in the coordinates and by using joystick-controlled

functions on the AOIPS computer console. Note size of grid mesh in lower ieft corner.
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amdd restdts inan 18 X 10 array of grid points within a grid display arca with the following

coordinates:
Latitude Bounds Longitude Bounds
upper: 39.82 west: —104.37
lower: 30.82 cast: ~87.37

The grid display area is shown enclosed by the smaller of the two boxes in Figure 9.

A comparison of two objective analyses of the SESAME data set generated by (1) having a gridl
display area smaller than the data area (Figure 10a) and by (2) having the two areas represented by
one box (Figure 10b) demonstrates the rationale behind choosing the former option. A less reliable
analysis results when the data and grid display areas coincide (Figure 10b), especially near the cast
and south sides of the box, Notice that the observations at Nashville, Tennessee and throughout
southern Texas are not incorporated into that analysis, resulting in loss of valuablc information on
the strong wind speed gradients actually there., On the other hand, the analysis displayed in Figure
10a, which was generated from values interpolated to grid points enclosed by the outer box (the data
area) but displayed only within the inner box (the grid display arca) is more reliable because observit-
tions exist in the region between the grid display area and the data area. Therefore, each grid point
within the grid display area has been influenced by values at station locations which totally surround

it,
¢. Numerical Convergence Parameter

In the case of the two analyses just described, the numerical convergence parameter v wus
assigned a value of 0.3, The GEMPAK Barnes program allows +y to range in value between 0.2 and
1.0. Analyses of the SESAME wind speed data set with four different values of v (0.2, 0.3, 0,5, and
1.0) are displayed in Figure 11 to illustrate the impact of + variations upon analysis detail (recall

Section 3¢), The analysis produced with v = 0,2 exhibits significant detail at the 24 n, scale. As
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Figure 10. Comparison of two analyses of SESAME data set by GEMPAK Barnes scheme (isotachs
inm s'l), with following values for the input parameters: An=2.0°, Ax =1.0°,and
v=U. !, Top figure shows analysis generated by having grid display area nested 2°

within the data arca. The two arcas are coincident in the bottom figure,
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Figure 11. Changes in the objective analysis of the SESAME wind speed data set

(see Figure 10) brought about by variations in the value input for 7.
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discussed in Section B of the Appendix, this detail is likely to be the undesirable result of alinsing and
of random errors in the data, Larger values of 4 Jower the response to that scale (as given by (11) and

Figure 2) and accordingly dampen the analysis dutail,

The analyst must judge which value of ¥ produces the best analysis for his purposes. Although
there is no infention in this report to cover all aspects of the generad factors involved in objective
analysis quality, a few points should be kept in mind, First, the rms difference between the inter-
polated and observed ficlds should be much less than the estimated rms error in the observations;
this guideline should help serve as an upper limit on the choice of 4, Second, the meteorological
features appearing in the analyses should exhibit acceptable temporal and spatial continuity, The
lower limit on vy is determined by the continuity considerations, which is best made by examining
derivative fields like divergence and vorticity, Third, the analyst should examine the interpolated
fields resulting from the largest « value first, and then reduce v in steps untii an unacceptubly small

sipnal-to-noise ratio becomes evident,

Application of the rms quality criterion to the objectively analyzed wind speed fields in Figure

! can be expected for winds between

11 is illustrated first, An observational rms error of 3 to 6 m s~
the 700 and 400 mb pressure surfaces, through which the 310 K isentrope passes in this case (Fuel-
berg, 1974), The computed rms differences between observed and objectively analyzed ficlds ex-
ceeded 1.5 m s~} for v values equal to or greater than 0.5, Thus, the v = 0,2 or y = 0.3 analysis

would be selected upon this bgsis.

The other measures of analysis quality can be derived from the calculated velocity divergence
fields at 3-hourly intervals from 1500 GMT to 2100 GMT on this date. The fields shown in
Figures 12, 13, and 14 are generated from the objectively analyzed u and v wind component ficlds
using <y values of 0.2, 0,3, and 1.0, respectively. Examination of these fields for spatial and

temporal continuity is made, bearing in mind that, although the archived SESAME data have been
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Figure 12. Three-hourly analysis of velocity divergence (X 1073 s~1) fields derived from objectively

analyzed u and v wind component fields with y=0.2.
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Figure 13. Same as in Figure 12, except y=0.3. Labelied features were followed from one analysis

to the next.
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Figure 14. Same as in Figure 12, except y=1.0.
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checked for gross errors, stricter quality control measures were not applied to the data set to

account for any possible bias errors.

Each set of analyses exhibits at least some continuity, with the degree of continuity decreasing
as v is reduced. Features in the v = 1,0 analysis are easy to follow, but lack detail, which is consistent
with its large rms error value. Many more features appear in the v = 0,2 analysis, but the fact that
their amplitudes and propagation velocities fluctuate greatly indicates an unacceptably low signal-to-
noise ratio in the analy.is. This observation is clearly evident in the case of the isolated convergence
maxima (=3 X 1075 51 ) over eastern Oklahoma and western Missouri at 1800 GMT (Figure {2h).

Such smail-scale features are evidently not resolvable with this particular 'data set.

In contrast, the alphabetically labelled features in the v = 0.3 analysis can all be traced with
acceptable temporal continuity over at least two time periods. Furthermore, these foatures move at
velocities (20-30 m s"l) characteristic of the observed wind speeds (see Figure 8) and in a northeasterly
direction consistent with the prevailing advecting flow. Other unlabelled centers either dissipate
between periods (as with the divergence maximum over southwestern Arkansasat 1500GMT) or move
out of the gridded display area too quickly to be followed (as with the divergence maximum over the
Texas Panhandle at 1500 GMT). Thus, the oy = 0.3 analysis provides the best results in terms of rms

error and temporal/spatial continuity criteria.

d. Effect of Grid Size on the Objective Analysis

Recalling that for a given data spacing An, the GEMPAK Barnes program constrains Ax to
range between An/3 and An/2, then for the SESAME wind example whereby An = 2.0°, Ax must
lie between 0.65° and 1.0°. The latter case appeared in Figure 10a, and for comparison the case
Ax = 0.65° appears in Figure 15. The differences between the two analyses are insignificant. This
comparison emphasizes the fact thal variations of the grid size within ilre allowable limits hay o
negligible effect upon detail in the objective analysis, and that it should not be varied with that

purpose in mind. Rather, it should be varied for such purposes as to ease the discussion (as here,
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Figure 15, Effect upon objective analysis of reducing grid size to its smallest value permitinrd within
the GEMPAK Barnes scheme (Ax = An/3). This analysis should be compared to that in

the upper portion of Figure 10.

40



waan ARG FVE

An was increased from 1.93° to 2.00° to make Ax = 1,00° a convenient round number), or to make a

one-to-one comparison between objectively analyzed data and numerical model data,

e, Objective Analysis of Non-Uniformly Distributed Data

A comparison is made between an objective analysis of SESAME rawinsonde reported winds at
825 mb at 1800 GMT on April 10, 1979 (Figure 16a) and an objective analysis of those same winds
when combined with non-uniformly distributed satellite data (Figure 16b). These analyses are being
used in an on-going investigation at NASA/GLAS to determine to what extent assignment of the cloud
motion vectors to an incorrect height will degrade a conventional analysis of winds at the SESAME
regional scale (Peslen, et al,, 1982). With this purpose in mind, the grid display area is adjusted to
just barely cover the area of satellite data. Likewise, for this purpose, the value of An input to the
computer is that of the uniformly distributed, conventional rawinsonde data of the SESAME
regional scale (An = 2,0°), rather than the computed minimum observation spacing A ng, which has
a very small value because of the small distances between adjacent satellite observations. Moreover,
use of An, would have been impossible on the AOIPS computer (see Section 3e), because Ax would

also have been too small and hence KX (KY) too large.

Clearly, the satellite data do exert an impact upon the conventional wind analysis on the scale
resolvable by the SESAME regional rawinsonde network. The question remains, however, whether

the satellite data can provide useful meteorological information on scales smaller than is resolvable
by these rawinsondes, At least part of the difference between Figures 16a and 16b can be ex-
‘plained by a systematic mis-assignment of all the cloud vectors to one isobaric level, when in
actuality the clouds exist at different heights above the local terrain (Peslen, et al., 1982). The
problem of mis-assignment of heights is most crucial in a vertically sheared environment, The

following questions need to be unravelled: (1) what coordinate system to assign cloud vectors to
with minimum error; (2) what the smallest scale is at which satellite wind data provides reliable in-

formation; and (3) what observation spacing An is the proper one to employ with such non-uniformly
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Figure 16, Comparison of objective analyses of uniformly (upper figure) and non-uniformly (lower
figure) distributed wind data sets, Data spacing in lower analysis is set equal to that in
the upper analysis in order to examine impact of satellite-derived cloud motion data

upon scales resolvable by the rawinsondes.
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distributed data, Further refinement of such anulyses as that in Figure 16b can only be made follow-

ing the unraveling of these questions,

6. SUMMARY

The specific adaptation of the Barnes (1973) objective analysis scheme to GEMPAK on the
AOIPS computer at NASA/Goddard has been described in this report. The Barnes scheme was
sclected because it is computationally efficient, has filter response characteristics that are known
functions only of the data, and adequately recovers details on the second pass through the data
even when a large influence radius is used to insure that sufficient data influence is exerted at all prid
points. A mathematical analysis proves that the scheme is absolutely convergent, and that only two
passes through the data are needed to enable the analyst to control resolvable small-scale details in

the interpolated fields.

The GEMPAK version of the Barnes scheme is unique in that it makes pcsssible a sound
objective analysis of any two-dimensional scalar data field by incorporating several objective con-
straints upon the analysis over which the user-analyst has no control, while still providing some uscr
input via an interactive computer video terminal, Thus, the GEMPAK Barnes scheme is altogether

versatile, objective, and practical (Figure 17).

By permitting user selection and alteration of the following input parameters, the scheme re-

tains its necessary versatility .

(1) Data area as subset of a data file.

(2) Gridded display area as subset of the data area,

(3) Data spacing An,

(4) Grid spacing Ax.
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Figure 17. A summary description of the unique featurces of the GEMPAK Barnes scheme

(5) The numerical convergence parameter v, within the limits 0.2 < v < 1.0 imposed

(determines the degree to which the interpolated field converges to the observed data

field, i.e., the amount of analysis detail).

By retaining the following objective features, which are unique features of the GEMPAK Barnes

program, a reliable objective analysis can be made without unnecessary subjective human intervention:

(1) The detail in the analysis is constrained by the data distribution as the only permitted An

that can be inserted is one larger than An, (compuled minimum spacing between data

points, averaged over the data arca),

(2) Bounds are placed upon Ax by the data spacing, namely An/3 < Ax < An/2, to insure

proper representation of resolvable features,

(3) The weights of the Barnes low-pass filter are determined solely by the data spacing, and

are calculated internally with no user control once A n has been’'input. The most detailed
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analysis permitted is that one resulting from input of An = An, and = 0,2, in which

case the 2 An, wave is assigned a mere 1 /e response amplitude,

(4) No user control of the number of passes through the data is permitted, as this number is
fixed at two based upon a mathematical analysis of the convergence properties of the

Barnes scheme (presented in the Appendix).

Use of an interactive, menu-type format and various cursor/display controls on a computer
video screen makes the GEMPAK Barnes scheme an easy and practical operation. The user steps
through a series of menus (questions) displayed on the screen to help in the selection of input
parameters, quickly sees the data and grid display areas and the contoured, interpolated fields pre-
sented on a map, and can then alter the values of the parameters to test the effects upon the fields.
In addition, several quality control indicators are presented to him (such as rms difference between
the interpolated and observed fields). Practicality is augmented by being able to use the same calcu-
lated weights for many parameter fields. Thus, a person with only a superficial knowledge of the

Barnes scheme can quickly obtain sound objective analyses that faithfully represent the data.

Two cases were presented to illustrate the versatility, objectivity, and practicality of the GEM-
PAK Barnes scheme. The first, that of a uniformly distributed rawinsonde data set, is one in which
An was assigned its calculated value An,, so that the 2 An, wave was essentially filtered from the
gridded fields. It was demonstrated that when 0.2 is selected for the v value, the maximum detail
for a given data spacing is realized in the gridded fields. Such a small v value is justifiable only when
the data are not substantially contaminated by errors and subgrid-scale atmospheric processes (which
may unrealistically alias energy {o larger wavelengths). In the case presented, the data were rather
good and ¥ = 0.3 was chosen as the best analysis. The effects of varying the other input parameters

upon the gridded analysis were also shown.

In the other case, inclusion of satellite-derived cloud motion vectors with the rawinsonde data

resulted in a non-uniform data sei, Use of Anc would be inappropriate here, because it has yet to

45




3
4
1
3
i

be determined what the smallest scale is at which such satellite data provide reliable information. It
is for such a reason as this that the user is allowed to intervene (by inputting a larger An than the

calculated onc), with the result that a less detailed analysis is made.

The practicality of the GEMPAK Barnes scheme is demonstrated by the fact that each of the
analyzed maps in the cases just presented were produced in hard copy form at intervals of 3-4 min-
utes once the set of input parameters had been decided upon. For an experienced AOIPS computer
user, it takes one 1-2 hour session to generate the map display and go through the variations leading
to the final decision of which parameter values to use in future map analysis generation with the given

daasct,
7, FUTURE PLANS

Several modifications to the GEMPAK Barnes schenie are both anticipated and possible with
sresent AOIPS computer resources, Upstream-downstream enhancement of the weighting parameter
k, would be preferable in jet-like regimes where isolines of the analyzed scalar tend to align with the

wingd direction (Endlich and Mancuso, 1968), Use of the following modification
kb= Ko (1+p cos? ) (19)

has been suggested by Barnes (1973), where §=V/ V¥, ¢ is the angle between the wind vector V and
the vector that points between grid point and observation, and V¥is a scaled wind speed with value
at from 1 to about 3. In the case of hurricane observations, a modification of fc’o to account for its
circular flow (as attempted by Bergman and Carlson (1975)) is desirable, perhaps based upon the

Rankine vortex model.

One highly desirable addition to the present package is a comprehensive, automated, interactive
data editing/quality control routine that would alfow the analyst the power to selectively alter or
omit troublesome observations. Displays of data time series, time tendencies, map plots, hydrostatic

and superadiabatic checks, etc, are envisioned for this addition.
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Additional work is needed to more objectively determine what data spacing to use with non-
uniformly distributed data sets, It is likely that the optimum An will be a function of the repre-
sentativeness, or error magnitude, characteristic of the particular data type as well as the nature or
degree of non-uniformity of the data distribution, Map displays of both the influence radius and the
difference between observed and interpolated values at actual station locations would help one see

the spatial variation in accuracy of the analysis due to non-uniformity of the data distribution,

Access to a larger computer can make possible several other extensions to the core GEMPAK
Barnes scheme: (1) use of time series data can enhance detail in the analysis by adding more data
in space through a time-to-space conversion process (Barnes, 1973); (2) a three-dimensional Barnes
analysis scheme would better serve the needs of dual Doppler radar meteorologists than a two-
dimensional one;* (3) finally, it is envisioned that two-dimensional gridded fields produced by the
GEMPAK Barnes scheme can be used as initial fields for three-dimensional mesoscale analysis
schemes that require *“‘data at grid points,” such as variational schemes that incorporate various physi-

cal constraints into the analysis,
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APPENDIX

The mathematical-numerical analysis presented here shows the Barnes (1973) scheme is abso-
lutely convergent, but that no significant improvement in filter response fidelity (steepness of
response curve) is obtained by making more than twe passes through the data when « is chosen
sufficiently small, It is concluded that only one correction pass is sufficient to achieve acceptable

analysis convergence at resolvable wavelengibs,

A, Convergence Proof

Convergence in an absolute sense occurs when the difference between the observed and analyzed
data fields vanishes as the number of passes through the data approaches infinity, or stated mathe-
matically

lim [£(x,y) - gy(x,¥)1 =0, ' (A1)

N-»o0
where gN(x,y) is the interpolated field obtained after N iterations (N+1 passes), It was shown in
the main text that a single application of the reduced weight parameter i, (2) upon the weight function -
W, (1) results in the true response function D‘l"(l 1) and the “difference field response function”
D | (6) at the second (“‘correction”) pass. Weight functions at additional passes using successively

decreasing values of k), assuming that +y is kept constant through all passes, are defined by:
= = 4N (A2)
KN = TEN-1 = 7Kg

Application of these additional filter functions reau:s- i “difference response functions’ at each
pass given by

Dy =D . (A3)

When the value chosen for vy is less than unity, the response is further accentuated at cach additional

pass, particularly at short wavelengths where the initial response D, is small.

It follows from (5) that the third pass (N=2) interpolated ficld is:
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g =g t{f- 8.1) Dy,
or upon substitution of the expression for g from (5):
8y =gt (F=gy) [Dy + Dy (1-DP].
Following this procedure one step further, one can easily show that on the fourth pass:

g3 = gyt (f-g))Dg

Accordingly, the general form of the equation describing the Nth pass interpolated field is:

i=2

L.

N i

To obtain the condition for convergence, this equation is substituted into (A1), resulting in:

N i
mnw-app—b%+ Z [D; NI U—DPQ4}=Q
N-roo j=2 j=2

Finally, because (f ~ g,) is a fixed constant, convergence is attained when

Yn=1-Dy,

where: Dy is given by (6) and

Z

1l

i
YN = [D; m (1-Dj_pl.  2<N<
i=2 j=2

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

(A10)

Before proceeding with the analysis of the convergence criterion, it ‘s important to understand the

relationship between it and the actual response function at the Nth iterative pass DX , defined by

’(‘3\‘& FELY
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Use of (A7) in (A11) results in the simple relationship:
DN =Dy +(1-Dg)(Dy+yy).  2<N<oo, (A12)

Thus, convergence defined in the equivalent sense to (A1), namely

lim gy =f, (A13)

N->co

demands that Dﬁ, as defined by (A12), approach unity in light of criterion (A9).

The nature of the convergence properties of the Barnes (1973) objective analysis scheme can be
understood from an analysis of (A9), (A10), and (A12). It can be shown analytically that (A10) is
& convergent power series, and numerically that it converges to the value given in (A9). Applying

the ratio test for convergence to (A10), we have

(1-Dy) = L. (A14)

The series (A10) is absolutely convergently only if L<1. Substitution of (A3) into (A14) results in:
L=p" - ™ -prh). (A15)

Recalling that D, is constant for any given choice of weight factor « and has a value 0<D, <1,
then L must be a constant, as required for convergence. In the limiting case as N->oo, both 7N+1—>0
and 'yN—>O for the range 0<7 <1, so that L->0. Thus, there is absolute convergence in the limiting

sense as N—oo,

The results of calculating Dﬁ(Do,'y,N) on 4 programmable desk computer (Figure A1) indicate
that it converges rapidly to unity, as required, Barnes (1973) noted that the fastest restoration of

small waveiength amplitude suppressed in the first pass filtering-interpolation (D) is obtained with
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the smallest values of v (Figure 2). For a choice of y=0.20, the value of D‘ﬁ approaches 1.0 to
within ten dzcimal places by the N=6th iteration, whereas the same degree of convergence is
reached by N=9 when y=0.45 (D,=0.0064), Convergence is obtained relatively quickly even for
v=0.8 and is attainable in a finite time as long as y<<1, Thus, the Barnes (1973) objective analysis
scheme converges to the value specified in (A9) when 0<y<1. It is noted that this scheme forces
the interpolated field to converge much more rapidly to the observed field than does the Bames

(19064) scheme, as can be easily seen by comparing (A12) to equation (20) of that paner.

B. Effect of Multiple Passes Upon Filter Fidelity

Having thus verified that convergence is attainable, the question of whether making more than
two passes through the data can effect a significant enhancement of the small, but resolvable, waves
must be answered. For most purposes, it is desirable to suppress the response to a wave whose scale
does not exceed twice the average minimum data spacing (A<2An). Considering the Gaussian nature
to the response function at the first pass given by (4) and illustrated at additional passes by Figures
2 and A1, then the final response at this minimum resolvable scale should be limited by
D'I*\IO\= 2An) <e 1, Under this constraint, high frequency “noise” generated by random errors and
energy aliased from shorter wavelengths to larger wavelengtiis will be effectively filtered from the
analysis. The aliased energy can result from both the data discretization process and the sampling

of the atmosphere when it exhibits such subgrid-scale events as thunderstorms.

Thus, the question can be rephrased as, for a given fixed weight parameter k, whether the
steepness of the filter response curve at wavelengths larger than 2An can be appreciably increased
(filter fidelity enhanced) by making more than two passes under the constraint that the final
response at A=2An does not exceed el A comparison was made between the response curves
generated by a two pass, small « filter and those generated by multiple pass, larger «y filters, since

the best filter fidelity is obtained when v is smallest (Figure 2).

The results of the comparison (Figure A2) were obtained by employing the following procedure.
First, the 2An wavelength was defined in terms of known quantities. Since the weight parameter
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the Nth iterative pass D:,, given by (A12), with the numerical convergence parameter y

is shown in the case of D,= 0.0064 (used to correspond to a 2An wave when y=0.2).
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Figure A2. Effective enhancement of filter response D§ produced by making multiple passes, as
function of resolvable wavelengths A>2An. Each response curve results from holding
v constant for N iterative passes under the constraint that D;J (2An)=¢"1 , from (A12),
where A= 2An is defined by (A16) with DOO\ =2An) =0.0064, and DO(7\ #2An) is

calculated from (A18).
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K, must be held constant for the purpose of the comparison, and under this condition a singular
relationship exists between any wavelength A and the first pass response at that wavelength D (M),

then a useful definition according to (4) would be;

2An = 7r-‘/-ic0/ln D,(24n) . (A16)

The actual value of k, need not be known to use this definition for 2An, since when K, is constant

A / In D,(24n)

Thus, the effectiveness of making additional passes at larger -y is examined as a function of multiples

of the 2An wavelength. Each curve in Figure A2 is the result of the search for that value of y¥ which
gives D}'\‘I()\=2An)=e'1 (N>1), and then finding Dﬁ at other wavelengths by the following formula
Aderived from (A106),

D, = [D,(24n)]@4n/N? (AI8)

for integral values of (\/2An), inserting the resuit in (A12) for the chosen v value, and plotting Dﬁ
against multiples of the 2An wave according to (A17). The selected value of D,(24n)=0.0064 used
in (A18) is that one which gives a second pass response of D’f(ZAn)=O.37=e"1 when y=0.2 (see

“igure Al). The value of y=0.2 is chosen to represent the two pass, small y case.

The results in Figure A2 show that when N=1,2, and 3 iterations through the data are made,
he responses are 0.84, 0.92, and 0.96, respectively, at twice the minimum resolvable scale. Differ-
ences between these responses are no more than 12% and decrease at larger wavelengths, These
differences are further attenuated when an even smaller  value case is chosen as the basis for com-
parison with multiple pass filters. Thus, one correction pass using a small vy value provides for a
highly acceptable degree of filter fidelity. Thercefore, if one wishes to make the final objective
analysis fit the data as exactly as possible, the same result can be obtained by making a greater
number of interpolation passes (which is computationally wasteful and can cause greater “ballooning”

effects in data-sparse areas), or by using a small oy value to reduce the correction pass influence radius,
: 56
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