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I. SUMMARY OF RESEARCH PR\GRESS FIRST AND SECOND QUARTER

First Year Strategy

Due to wreduced budgetary support available during the
first year, the strategy adopted for our data analysis pro-
gram during the first year was modified to focus more effort
upon the «xploratory mcdeling of the Io atomic oxygen cloud
and less effort upon the data analysis of the Io sodium cloud.
The analysis of the Io sodium cloud has thus been restricted
to acquiring and preliminary evaluation of Io sodium cloud
and Io plasma torus data. This strategy will allow the nec-
essary groundwork to be prepared so that the more time con=-
suming and quantitative scdium data analysis, some of which
was originally scheduled for the first year, may be initiated
no later than the beginning of the second year. This strat-
egy will also allow important model results for the Io atomic
oxygan cloud, of immediate interest to a number of other mag-

netospheric investigators, to be obtained more rapidly.

Progress in Modeling the Io Oxygen Cloud

Model Improvements

A3

Significant progress has already been made in the first
year in exploratory modeling of the Io atomic oxygen cloud.
The oxygen cloud model has been improved so that it is now ‘
capable of calculating not only the two-dimensional sky-ylane
intensity of the 6300A3 emission of atomic oxygen (illustrated

[+
by earlier model results in Figure 1), but also the 1304 A
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emission and the 880 A emission of atomic oxygen. These
three wavelength ewissions are those for which obsgervational
measurements have been performed by ground-based, rocket,
Earth-orbiting satellite and Voyager spacecraft ingtruments
as summarized in Table 1,

Improvements in the cloud model have also been made in
the two-dimensional data for the Ic plasma torus electrons.
These data are used to determine the lifetime of oxygen atoms
in the Jovian environment as well as the volume exciation
rates for the three emission lines of atomic okygen resulting
from electron impact. 7The two-dimensional ionization life-
time for éxygen, produced by the Io plasma torus electrons
and corresponding to the results of Figure 1, is shown in
Figure 2. This lifetime is radially highly-asymmetric about
the orbital posit.ion of JIo (5.9 RJ) such that the portion of
the atomic oxygen cloud that forms inside the satellite or-
bital radius is significantly more dense and #xtended than
the portion of the cloud outside of the orbit, as iliustrated
in Figure 3. The instantaneous oxygen-ion creation rate |
produced from this ionization of the cloud atoms by the Io
plasma torus is shown in Figure 4 and is (as expected) some-
what complementary to the spatial distribution of the neutral

gas cloud in Figure 3.

Model Results for the Neutral Oxygen Cloud

The flux of oxygen atoms from Io can be determined by

-]
comparison of model results for the 6300 A emission intensity
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with the ground-based observation of Brown (198l1). 1In our
most recent calculations, Brown's measured value of 8 % 4
Rayleighs corresponds to an oxygen flux of about (3+1.5) x 109
atoms cm-2 sec-l from Io's surface or an overall source rate

27 atoms sec™l. This is 30% of the value

of (1.220./5) x10
assumed for the oxygen flux in the model results of Figure 1.
This value for the overall source rate is only a preliminary

estimate which will be refined upward in future calculations

by incorporation of the four model improvements summarized

in Table 2.

Specification of the oxygen atoms flux from the 6300 R
intensity data automatically determines the intensity of the
1304 A emission and the 880 A emission in the model calcula-
tion. In our most recent model calculations, the intensity
of the 1304 3 emission is comparable to the 6300 i emission
intensity, while the intensity of the 880 emission is about
five times smaller. These model results for the UV emissions
are a little below the observational upper limits imposed by
measurements summarized in Table 1 when the different slit
sizes of the measuring aperatures on the sky plane are prop-
erly taken into account. More sensitive rocket and IUE sat-
ellite measurements or a longer analysis-sampling-time of
select Voyager UVS data might therefore be able to provide

a positive detection of one or both of these UV emssion lines.

This has been brought to the attention of the UV investigators.
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Model Results for the Satellite Ion Source

Specification of the overall source rate of oxygen atoms
enitted by Io from the analysis of the observed 6300 i inten~-

+ ion-creation rate

sity data also establishes the overall O
of the neutral cloud. The neutral cloud may not, however,

be the only source of o' ions for the Io plasma torus since
direct escape of oxygen ions from the satellite or production
of O+ ions from dissociation of t)e oxygen bearing molecules
or ions located in the large Jovian environment might also
occur. It would appear at present from discussion to be pre-
sented below, that the o* ion source from the neutral cloud

is very significant if not, in fact, the dominant contributor
to the satellite~ion source. Understanding of this satellite~-
ion source is very important since the fundamental conclusions
that have emerged from recent observational and theoretical
studies of Jupiter's magnetosphere are (1) that Io is the
primary source of the Jovian magnetospheric plasma, and (2)
that this plasma source is the key element that differentiates
the character of the magnetosphere of Jupiter from that of

the magnetospheres of the Earth and Saturn.

Model calculations of the spatial distribution of the
satellite ion creation r :%~, as illustrated in Figure 3, are
useful in supporting many related studies of Jupiter's mag-
netosphere. Five such studies are summarized in Table 3 for
which some cooperative effort with each investigator has been
established. Discussion here will be limited to the first of

these subjects for which some interesting results have already

been obtained.
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The discovery of an Io-correlated energy source for the
Io plasma torus was recently announced by Sandel (1981).
His analysis of the Voyager UVS observations showed that the
plasma downstream from Io is brighter in SIII 685 3 emission
because of an elevated electron temperature. The mechanism
that raised the electron temperature was estimated to operate
within about 45° of the position of Io in its orbit and rep-

11 watts

resented a time average powe: input of about 4 x 10
or about 20% of the power radiated in the UV by the torus.
This time average power input may well be associated with
tiie spatial pattern of the instantaneous ion creation rate
shown in Figure 3 if there exists an energy transfer mechan-
ism that would rapidly thermalize the newly~-created corota-
tional ions and heat the plasma electrons in about one hour
or less. A plausible candidate for this rapid energy trans-
fer mechanism is the plasma wave-induced energy transfer
process presently under evaluation by Smith et al. (1981).
This tran$fer mechanism is based upon the pickup ion signa-
ture in the ion velocity distribution which drives a Post-
Rosenbluth instability.

Using the overall oxygen ion creation rate of 1.?::1027
ions sec™! obtained from our model results and assuming that
an equal number of sulfur ions would also be produced near
Io (similar to the results of Figure 3), a hot electron source
located just ahead of Io's orbital position with an energy

11

input of about 1.6 x 10 watts or about 8% of the total energy

radiated in the UV torus would be produced if a rapid energy




transfor mechanism were operative. If the additional ioniza-
tions of the neutral oxygen and sulfur clouds produced by

magnetospheric plasma charge exchange processes such as

ot +0 + o+o0"
st*+0 +» st+ot
ot +5 4 o4+ s
st+s5 + s+5st
st +s +» sta+st

were also included in the model, the overall oxygen supply
rate and the overall ion creation rate are expected to be
approximately doubled. In this case the model eétimated
value for the Io correlated energy source would then be
about 3.2::1011 watts or about 16% of the total energy
radiated in the UV plasma torus, which is in good agreement
with the 20% value reported by Sandel (1981). The remaining
80% of the input energy to the plasma torus has been associ-
ated by Schemansky and Sandel (198la,b) with an elegtron-
electron heating mechanism in the magnetosphere that is

stationary in local time on the dusk side of Jupiter.

Progress in the Analysis of the Io Sodium Cloud Data

The quantitative analysis of the Io sodium cloud data
has been divided into five stages of activities which are
summarized in Table 4. For model inversion of a given
measurement, the sodium cloud model will be used to calcu-

late a set of appropriate basis functions, which together

B T T 1T ST eTroes
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with the measurement data, will then be the input for a
constrained least square optimization problem. Best deter-
mined values of the physical model parameters will result
from the qata inversion method. The complete inversion
scheme is diagrammed in Figure 5.

Efforts during the first year have been purposefully
maintained at a low level because of budgetary reductions
and have been restricted to the first stage of activity
listed in Table 4, that of ac¢quiring and preliminary eval-
uation of new sodium cloud and Io plasma torus data. New
line profile data for the sodium cloud have, for example,
been recently obtained from Trafton (198l). Additional
line profile data are being sought from Trauger (198la) and
gpatial intensity data have been requested from Mekler (1981).
Improvements in the accuracy of plasma properties in the Io
plésma torus are actively being sought from Bridge, Belcher,

and Sullivan (198l1) and from Pilcher and Morgan (1981).

A |
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II. PROGRAM FOR THE NEXT TWO QUARTERS

The two primary goals of the program are (1) to char-.
acterize the satellite emission conditions of sodium, oxygen
and possibly sulfur operative at Io, and (2) to help char-
acterize the ratellite-ion source and the magnetic diffusion
of ions in the neuar Io environment. To achieve these two
objectives, two different approaches, initiated during the
first two quarters will continue to be followed: (1) iden-
tification of the satellite emission characteristics for
sodium atoms from ‘e subscantial neutral cloud data base
obtained by Earth-telescope obaervations, and (2) exploratory
modeling of the recently discovered Io oxygen cloud and of a

possibly existing Io sulfur cloud.

Sodium Data Analysis

This first approach is very quantitative in nature. It
involves acquiring a significant amount of sodium data and
Io plasma torus data, much of which is summarized in Table 5,
and using these data together with model calculations to ex-
tract physical information about the flux and, velocity dis-
persion of sodium atoms emitted by the satellite. The data
analysis scheme to be used in extracting this physical infor-
mation is diagrammed in Figure 5. The actual data inversion
is accomplished by applying either a non-linear method of
Nelder and Mead (1965) or a constrained (or non-negative)

least square optimization method formulated by Lawson and

10




Hanson (1974) utilizing Kuhn-Tucker conditions. The overall
analysis is divided into five stages summarized in Table 4.

The first stage will be completed in the next two quarters.

Oxygen and Sulfur Analysis
The second approach is more exploratory in nature. It

seeks to provide model calculations for the Io atomic oxyagen
cloud and its associated satellite-ion source for comparison
with the rathsr recently acquired Earth-based, rocket, Earth-
orbiting satellite and Voyager spacecraft data. Similar ex-
ploratory model calculations for the neutral gas clc.\ds of
sulfur are also under consideration. Rerults obtained during
the first two quarters of an:lysis of the Io oxygen cloud
data have been most encouraging as discussed earlier. Four
modz21 improvements for the Io oxygen model that are currently
under development are summarized in Table 2. In the next two
quarters, emphasis will be focused upon implementing the first
and third improvements of Table 2. The second improvement
will require more time due to the complexity of the task.
The fourth, and to some extent the third, improvements are
dependent upon additional progress being made in the analysis
of the Jovian plasma data obtained by the Voyager spacecrafts
and in the moxe recent and very improved plasma torus obser-
vations obtained from ground-based telescopes (Pilcher et al.,
1981; Morgan, 1981; Trauger, 1981b).

Observational data for the Io atomic oxygen cloud, sum-

marized in Table 1, are expected to be significantly improved

11
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in the next year and will, together with model improvements,
allow significantly better determinations of the emission
characteristic of oxygen atoms from Yo. Parallel improve-
ments in model predictions of the ion~creation rate will
automatically follow and will provide fresh input for the
magnetospheric analysis summarized in Table 3. Modeling
efforts in the next two quarters will continue to evaluate

the impact of these newly acquired observational data,

T e st S d i b
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Radial Displacement from Jupiter (R;)

FPigure 2

The two-dimensional lifetime of atomic oxygen in the Io plasma torus cal-
culated for electron impact ionization and assumed in the model results
of Figure 1l,is shown. '
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Figure 3

line of sight

The two~dimensional column density (atoms cm™2) of the Io oxygen cloud

is shown as viewed above the satelliie plane.

satellite are larger. -
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Contour values near the



line of sight

Figure 4

- - to
The two-dimensional oxygen ion creation rate (ions cm zsec 1) produced by
the interaction of the Io oxygen cloud and the model-assumed non-oscillating
plasma torus is shown as viewed from above the satellite plane. Contour

values near the satellite are larger.
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Data Analysis Scheme. The roles of the spacecraft and Earth-based
data, the sodium cloud model, and the data inversion technique in
determining the values of the physical model parameters are illustrated.
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