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ABSTRACT

Charged particle motion in the guiding center approximation is analyzed

for models of the Jovian and Saturnian magnetosph TIC magnetic yields bared on
Voyager magnetometer observations. Field lines pare traced and shown to

exhibit the previously recognized [Connerney et ;al., 1981a,b] '.istention which

arises from azimuthally circulating magnetospheric currents. The spatial

dependencies of the guiding center bounce period and azimuthal drift rate are

investigated for the model fields. 'The bounce period may be shorter or longer

by a factor of 1-3 than in the field of the plfnetary dipole alone depending

on whether a particle mirrors close to the magnetic equator and- experiences

predominantly an enhanced mirror force or at high latitude, and is affected

principally by the extended length of the field line. Non-dipolar effects in

the gradient-curvature drift rate are most important at the equator and affect

particles with all mirror latitudes. The effect is a factor of 10-15 for

Jupiter with its strong magnetodise current and 1-2 for Saturn with 'its'more

moderate ring current',. Limits of )-diabaticity, where particle gyroradi

become comparable with magnetic Peale lengths, are discussed and are shown to

occur at quite modest kinetic energies for protons and heavier ions.

INTRODUCTION

Owing to the rapid rotation rates of Jupiter and Saturn and the ,Large

radial :extents of their magnetospheres, diamagnetic currents carried by

magnetospheric plasma rotating azimuthally around the planets contribute

significantly to the magnetospheric magnetic fields. This effect is

especially important for Jupiter with its stronger internal field and hence

larger magnetosphere. It is an effect imbedded in pre-encounter ideas [Hines,

1964; Gledhill, 1967; Piddington, 1969; Ioannidis and Brice, 19717, confirmed

by the first Pioneer magnetometer measurements at Jupiter in 1973 [Smith et

al., 19743 and Saturn in 1979 [Smith et al., 19803, and incorporated

W	 immediately into post-encounter ,lovian models [Banish and Smith, 1975; Beard

and Jackson., 1976; Gleeson and Axford, 1976; Goertz et al., 19761. The

Voyager 1 and 2 Missions in 1979 and 1981 have expanded enormously our

knoi,,ledge of the Jovi;an and Saturnian magnetospheres,
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In this paper we use planetary magnetic field and magnetodisc ring

current models developed to fit Voyager vector magnetometer observations [Ness

et al., 1 ,979a, b; 19813 to compute guiring center bounce periods and

gradient-curvature drift speeds in tk'e Jovian And Saturnian magnetospheres.

We find that magnetic field components arising from azimuthal plasma currents

have a substantial effect on drifts, which for Jupiter are a factor of 10 or

more larger than in a simple dipole approximation. Such drift corrections

must be taken into account in calculating anisotropies of >100 keV electrons

and ions in the middle magnetospheres of both planets. They also appear to be

significant for calculating absorption lifetimes by the moons Ganyrnede

(Jupiter) and Rhea (Saturn) and they should be dramatically important at

Callisto (Jupiter), although there is no reported particle absorption gyre.

Our nt.erest is with magnetically trapped ions and electrons, adiabatic

in the usual sense that the ratio c = r G/L of their gyroradii r  to the scale

length L of the magnetic field is small and energetic in the sense that ExB

drift speeds u  are of 9(c) compared with thermal speeds V. We are thus

concerned wil,h the 31tu0ficion where ExB, gradient, and curvature drifts are of

the same order in c.

MAGNETIC MODELS

We use topologically similar current sheet magnetic models which have

been develope--o to fit Voyager observations at Jupiter [Connerney et al.,

1981a] and Saturn CConnerney et al., 19 F ',J . In each instance the magnetic

field consists of a contribution arising from processes internal to the planet

plus the field of a current flowing azimuthally in a planet-centered

cylindrical coordinate system with its z-axis aligned with the planetary

dipole. In such coordinate$ the modal magnetic fields are both azimuthally

symmetric and north-south symmetric (i.e., with respect to the z = 0 plane).

Magnetic field lines lie entirely in meridional planes (They have only B p , B 

components.), the observed B0 sweepback being an effect soon to be incorpora-

ted into such models CConnerney et al., 19821. The plasma current flows in a

clockwise direction, when viewing along the z-axis, which is also the

direction of corotation when the dipole and planetary rotation axes are

aligned, as. they essentially are in the case of Saturn.
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The z' integral can also be done. The resultant expression is lengthy, sa we

adopt the following convenient notation

Z4-	 z t D

ao 1 =	 Ro 1 - PCO30'

R 0,1	
Ro'1-2PRo'l cosp' + p 2 = ao l + P 2 sin `o'

SQ^^ =	 (z*	 + go 1)1/2 + ao 1
► -

A

{

Because of the z-symmetry we limit ourselves to z. > 0 and obtain
i	

f`1

S

	

1	

f

A	 uoI° f1 do' case' i .Q ^Zn ( Z++So+-co) - 
"

1 ,zn(z++Sl +-cl) t ,^ti C a t
p	 2n 0	 0)

f
Y

-1 a
oSo+-r 2sin2^'	

sin-	
sin2^'

ps ino' [ sin (---	 --- —) - sin (	 +
,^-

SJro
	 S 

1 l" 1

•} ( a l xng l -Mo an@o )!, } - ( - 1) H (z+ 	(z- I)	 (4)

a

Here H(D-z) is the step function

H = 1	 z < D
E

t

: o 	z> v

( - l) H ( z+	 I zl) indicates a term, identical to the entire preceding

expression with z+ replaced by Iz ] (so that So+ and 
Sl+ 

are also replaced by

So- and S l - ) and having an algebraic sign determined by the sign of z-D. The

	

remaining 00 integral is then carried out numerically.	
t
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,
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At the, radi/Al distances of interest, only the dipole term from the

.internal field fit important. Adding it to the current sheet contribution, we

obtain for the field components

3aopz _ 3ApB	 (5a)
P	 r5	 az

a 3z2 	A	 3A
Bz a 3 (	 - 1) + —P + --^	 (5b)

r	 r	 p	 3p

Since the only appearance of z in Eq. (3) is in the limits of integration, 3A p/

az is most readily obtained by differentiating this form

3A 	 n	 S.* S

4
-

4 0° f d4 0 cQso' tit (? 
az	 2A o	 So+ S1-

on the other hand, no such compact representation of aAp/ap is apparent. We

have therefore evaluated this derivative numerically.

i

Shown in Fig. 1a as solid curves are Jovian magnetic field lines obtained

by integrating the equation

dp 	 go

dz B 

beginning at equatorial ( z=o) points displaced at 5 R  intervals from the

center of the planet. Note the different scales on the vertical and

horizontal axes. The 7 dotted curves are dipole field lines which intersect

Jupiter's surface at the same latitudes as the 7 distended field lines. In

^j
	

the magnetodisc ( po > 15 RJ ) the remnant magnetic field at the equator is

ty
	 weak, so that much of this equatorial region maps to a small range of magnetic

6	
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M _ Y2m- mO - = const
2B(s)

2MB

Yv I 2 =

Ymo

7

From conservation of magnetic	 M i

i
i

^F

^i

(7)

we obtain

a'

Latitude around 73 0 at Jupiter' s surface. In identifying accurately the

intersection latltudes we have used the fact that for any meridional field PAS

is constant along field lines, Finally for later use in specifying mirror

points of trapped particles, there appears in Fig. 1a a grid of constant

magnetic latitude ;lines,

Figure 1b is the corresponding situation for Saturn ' s magnetosphere.

Field lines are once again distended but to a far lesser degree than for

Jupiter's magnetodisc,

Although our methods for calculating the magnetic field differ ' the

results in Figs. 1 agree with th03e of Connerney et al, 11981a, 1981b).

GRADIENT AND CURVATURE DRIFTS

We begin with the well known, relativ13ti cally correct expression

CNorthrop, 19631
4.

	

moYc e 1	 vl2	 2 ^e

11	
x (	 vB + v,,	 - 1
	 (6)

	e B	 ZH s
	

as

for the s(c) component of the guiding center drift velocity due to spatial

inhomogeneity of the magnetic field. Here e 1 
= B/CBI,

v,,	
v-

e 1 , v, a

(v2_v112)1/2, ae 1 /as = e 1 • v e 1 is the derivative of e 1 with respect to

distance s along field lines, Y = 0 - v2/c2)-1/2 is the Lorentz factor, and

mo and g are the rest mass and (signed) charge of the drifting particle.
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(B)

and

'	 2	 2 2MB Y2-1 2 2MB
YV 11 	 Y V	 c -

	Ymo	 Y	 Ymo

Furthermore it is shown readily that

n	 ae	 1	 BXV B,
e X	 1 = — ( 7XB) _ + " ,

1	 as	 B	
82

µo,0_	 9xa%

B	 B2

where the 1 subscript denotes the vector component perpendicular to B. (I is

totally perpendicular to 9 in the models used in this :paper.) Using Eqs.

(7-5) in Eq. (6) we write

c	 Y2-1	 2 MB BXVB	 Y2-1	 2 2MB

s1 = 2 [ (	 moc - ----)	 + (	 moc -	 )
eB	 Y	 Y	 B	 Y	 Y

Note finally that in terms of the field strength Bin at the mirror points of

the bouncing (as well as drifting) guiding centers

MB 
ymov2 B	 Y2-1	 2 B

me

Y	 2 Bm	 Y	 ° 2B 

and

moc3 Y2-1 1	 B ^X^B	 B

e	 Y B2	 2Bm	 B	
Bm

8

(10)

('11)

(12)
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Thus the energy dependence is a strictly multiplicative factor, while spatial

and pitc -h angle dependencies, the latter entering through Bm , are in general

intertwined in a complicated way.

	Like the current density	 ( of. Eq. 1), BxvB is totally azimuthal

..	 B	 as	 aB	 B	 as	 aB
BxvB e C 

z 
(B	 p + B	 z) - ° (B --° + B	 z) 3 	(13)

B	 p ap	
z 

ap	 B	 P az	 z az

A
so that Rs is in the ± e0 direction, For computational convenience we

eliminate aBz/az and aBz/a p by using Maxwell ' s Equations v • 8 = 0
VI

aBz	as
_-1,.A-	 (14)

az	 Pf	 a s

and v x B	 4 1
s	 o%P

aBzaB

a - uo I	 (15)
	ap 	 az

Using Eqs. (13 -15) we finally express R^ as

m 03 Y`- 1 1

	

gl _ o	 e

e	 Y Bu

2

{[- 
Bp 

8z + 2B Bz (— + 
aB

°) + (B 2 - g 2) aBp
	

u Y B 27

	

p	
P	

p	 ap	
z	 p	

az	
0
	

p
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- -^-^- (- 9
c Bx

+	 280BZ(^°	 --°•)	 (BZ-Bpi)8 } µ o
1(2Bp +B) ] 1 (16)

2Bm 	0	 0	 a0	 3Z

Here we have separated terms which depend on pitch angle through Brn from those

which do- not.

A useful measure of the azimuthal drift rate is the angular velocity

R, /o, where ^ is a signed quantity, positive in the direction of increasing 0•

L varies on the rapid time scale of the guiding center bounce motion both

because of its dependence on p, which varies with positio n along field lines,

on Be its derivatives, and 2 along the bounce path.and the dependence of  

This rapid time variation can be removed by averaging ^ over the bounce. We

denote this bounce average by < m >

1	 d s 	T	 ds R
< W > ; —0 — m _ -- ¢' --- t	 (17)

TB	 v u 	 TB
	

v ie 0

Here the v„
,_ t

factor accounts for the varying amount3 of time spent at

different points s along the field line, the integral extends over a complete

bounce path to and fro between each mirror point, and the bounce period T  is

the usual

ds

	

T B = $	 ( 18)
vie

Because of the north-south symmetry assumed here, the integrals in Eqs.

(17) and (18) each reduce to 4 times the integral from the equator, which we

take to be the s = 0 surface, to the northern mirror point, denoted by sm.

Furthermore by Eqs. (8) and ( 11) we can relate V,,(3) to B(s) , B,n , and the

magnetic moment M which is a constant of the bounce motion

J
F
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2MB
(4 1/2	 B 1/2

V ol z (—)	 ( I W —)	 M 
VC  $) 1/2

	

2MO
	 Sol	 BM

30 that

4 3 
m	

d3
T

B
 -- — I

V 0	 1/2

I'm

and

3 
M 

d3
t

0	 B	 1/2 
P

< >	
Bm

3 
M	

da

o	 B	 1/2

Bm

	

where, by definition, B(3 
M

)	 Sm*

For comparison of our result here with dipole results (Hamlin et al.,

1561; Law, 1961; Thomsen and Van Allen, 19811 we define

3	 d3

	

B	 1/2LR 
i's 0 (1— —)

B
M

(20)



is the equatorial crossing dlitance in planetary radii R  or R S of the dipole

field line whichwhich would pass through the mirror point, whose coordinates are

pm , xm	 It is easily shown that for any dipole field H, as defined ray Eq.

(21) 9 is independent of L and depends only on mirror latitude a m , Thus for a

dipole field H is independent of pos tion along the lines of constant magnetic

latitude shown in Figs. 1,

Such is not the case when the magnetic fields arising from plasma

currents are added. We have evaluated h(p o , im) by numerically integrating

Eq. (21) using the model field for particle motion along field lines

intersecting the equrtor at different distances p o and also for different

values of mirror latitude im . Given an observational position and a particle

detector look d1rect`ion, p4 can be estimated from Figs. 1 and 
xG, 

can be

determined by magnetic moment conservation. The .hatter requires magnetic

intensity information which is available in the publicetions of Connerney et

al. [1981a,bl.

The H values in Figs. 2 corresponding to p o = 0 are the L-independent

dipole values, since as Po ; 0 the magnetic model is dominated by its dipole
component. We thus see that for particles mirroring at im > 20 0 , H and hence

T B are larger than they would be in a dipole field for a particle mirroring at

the same pm , zm , The reason is that the model field line is longer than the

corresponding dipole line because of the stretching out of magnetic field

lines by the plasma current. This effect is much more important for Jupiter

than it is for Saturn, as one would expect by visual inspection of Figs. 1.

In Fig. 2b the tapering off of the slope of the 20°-60" contours near p o 
zz 15

RS is a result of the fact that the distention of field lines abates and they

become more dipole-like at radial distances beyond the current sheet.

At smaller amp M generally has a smaller value than it does for a dipole.

Here the difference in length between model and dipole field lines becomes

secondary to the difference in mirror forces between them. Recall [Roederer,

19701 that a particle mirroring near a point so of minimum intensity along a

,

12
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magnetic field line (i.e., a point where aB/as 0) executes simple harmonic

motion described by the equation

a28/aa2(s
D

3 s - ^	 Y2 (s - 30 )	 (24)
28(30)

x	 about 3^. Thus

2v	 28(30)	
1/2

6	 v	 B10(30)

from which we identify

it	 1	 2B

2 LRi's	
B11

For the ranges of p0 in Figs. 2 a single intensity minimum occurs on each

model Pield line at the z = 0 magnetic equator with the ex ception of a small

region around p0 _ 15 R 3 near the outer terminus of Saturn's ring current. We

shall return shortly to a brief discussion of this anomalous region. For any

meridional field with continuous components and having north—south symmetry

a 2 { Bz j	 1 aB	 aB	 aB

az	 B 2z	 az	 a 1

a 2 1 B )	 1 aB	 aB
— 2-= + — ° (2 ^ ^ 14 1)	 (26)
az	 B az	 az

with the right hand side, of course, evaluated at z = 0. The curves marked

am = 0° in Figs. 2 have been constructed using Eqs. ( 25) and ( 26). The po =

0, X u	0 dipole value of H z w /(18) 1/2 follows directly. The diminution from

this dipole value for p 0 > 0 is due mostly to a large (a Bp /az) 2 term in Eq.

(26) which reflects the 'hairpin' character of field lines near the equator,

especially in the p0 > 15 Hi region of Jupiter's magnetosphere.

13
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An interesting aberration occurs in the po +' 15 8 near equatorial region

of Saturn 1 3 magnetosphere. Over a small radial vange of perhaps .5 R S in

extent, the point of minimum B bifurcates from the z = 0 plane into the

northern and southern magnetic hemispheres. As this region is approached

along the equator, B 11 diminishes so that an equatorial particle executes

slower bounce motion which is manifested by an increasing H s . When the point

of minimum B leaves the equator, 8 11 changes sign, z = 0 is no longer an

oscillation point, and Hs no longer has a real value. It is apparent from

Fig. 2b that the field minimum departs less than 10' in latitude from the

equator, for particles oscillating about the equator can mirror at am = 100.

Such a non—equatorial trapping geometry was suggested for Jupiter by Barish

and Smith 119751. At p0 : 16 Rs , outside the Saturnian ring current, Hs is

again finite for all am , indicating that the point of minimum B is once more

at z = 0.

With regard to drifts, let us again establish contact with previous

dipolo work (Hamlin et al,, 1961; Lew, 1961; Thomsen and Van Allen, 19811 by
defining (cf. Eqs. (16) and (20))

3 m
° c

3 Y2-1	 L	 F
< W >	 ( — )	 ( 27)

2 eRJ S	 Y	 Bils	 G	
J ► S

Here Bi's is the magnitude of the dipole field at the planetary equator (4 G

for Jupiter; .209 G for Saturn) and L is as previously defined in Eq. (23).

Thus

sm	 1	 Rs
I ds	 --

c3	 2_
	 m

0	
(1- B 

112	
p

F 3mo	 Y1	 L	 1

G	 2 eRi's Y	 Bi's	 Sm	 1
1 ds ---- B —1/2

o	 (1 — -8
m

(28)
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with F/G independent of particle species and energy. in general F/G is a

function of Am and po , but in the case of a pure dipole field its 
P  ( y L)

dependence vanishes, and, like H previously, FIG becomes a function of gm

alons.

t

F
Figures 3a and 3b show F/G for the Jovian and Saturnian models

respectirtely in the same format used in Figs. 2. The L-independent dipole

values are again the limiting forms as p0'+ 0 and the magnetospherec current

becomes a negligible factor.

For both magnetospheres the most significant deviation from the dipole

results is for equatorially mirroring (A m = 0 particles). For such particles

Eq. (28) becomes

'
F	 3 M0 0

3  
Y
2 
-1 a	 -1 R,(z=0)

—) J S (am = 0, po ) = (— 	 2	 ° )
G	 2 eR J'S Y	 Bi's	 p0 R?,S

which upon substitution from Eq. (16), noting that B p (z_0) = 0, B  = B, and

p  = LRi'S becomes

F	 1 B	 R	 aB	 1 B	 R	 aB
J,S J ' s	 p	 J,S J S	 z

(G)J s (Am=O,po) _ — L2 B2	
(	 - 40 I )	 L2B2'	 (29)

3	 a z	 3	 ap

(The dipole case where F/G(A m =0) = 1 follows immediately from Eq. 29.) The x 

0° curves in Figs. 3 are plotted using Eq. 29.

For Jupiter the deviation from the dipole result is an order of magnitude

or more near p  = 25 RJ. The enhancement is a consequence of the B 2 factor

in Eq. (29) and the very weak field at the center of the current sheet. In
a

15
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fact the magnetic field is so weak and changes so rapidly due to the strong

38p/ az that one should worry about the smallness of c and the validity of the

adiabatic approximation. Knowing that one can go to low enough particle

energy that c is small, we shall proceed here and. return in the next section

to quantify this limitation.

We have evalu4ted F/G numerically and found for Jupiter very little

dependence on am at given po over the range 10 0 < am < 60'. Hence we have

drawn in Fig. 3a only two of the closely nested curves in this im interval.

The reason is that the numerator integral in Eq. 28

Sm	 1	
RIt d s -----) 1/2

0	 0 - B )	 p

Bin

picks up a large (almost its entire) contribution from the z = 0 region where

B is small: a particle may mirror far from the equator but the major

contribution to its drift motion occurs in that brief interval during which it

passes through the equator. The denominator integral

0

S	 1
j mds	 o LRJHJ

0	 (1 - B )1/2

Bm

on the other hand has contributions from all s values, with a sizable amount

coming from the region about the mirror point. Thus LR J HJ increases with am

at fixed P  as the particle traversal distance increases. However, in a
nearly compensating fashion L decreases with am (at fixed po ) so that L 

2 
H 
J 

is

approxiasately constant.

Note finally that (F/G) J reverses sign for lm = 0 particles in the region

0  > 30 R J : the sense of the gradient drift changes from generally promrade

i
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tation to retrograde, or vice

charge on a particle. This

sign of aBz/ ap(Z = 0) . It is

is no longer seen in (F/G) J (Am

off z z 0 and which are also

a

(with respect to the direction of planetary ro

versa, depending on the sign of the electrical

reversal..results from a shift in the algebraic

an effect which is confined to the equator and

10°0 .po ); other effects taking place closely

important because of weak B 3e^ ,on dominate.

4

	

	
For Saturn the magnetic field at the z=0 center of the ring current is,

relative to the field at higher latitudes, nowhere near as Weak as at Jupiter.

Hence equatorial drifts, while important, are not of sole significance.

Rather than being an order of magnitude larger than dipole, (F/G) S is more

usually a factor of 2 greater. What is evident in Fig. 3b and is not apparent

in Fig. 3a are discontinuities in F/G at the inner and outer edges of the ring
i

current. These discontinuities result, cf. Eq. (29), from discontinuities in

aBz/ap as I(p), cf. Eq. (15), turns on and off at p o = 8.5 R S and 15.5 RS

respectively. A discontinuity is also present at p  : 5 R  in Fig. 3a, but

its evidence is masked by the dominance of the continuous aB z/a p arising from

the Jovian dipole. The discontinuity is evident to a lesser extent at Saturn

for am = 1Q°, but it clearly has disappeared by the time lm = 30° is reached.

Were the current distribution I(P) continuous, these discontinuities

would undoubtedly disappear. However, we expect the qualitative characteLr of

(F/G) S would be preserved, so long as significant aI/ap is concentrated near

8.5 RS and 15.5 RS.

Note finally the gap in the a m = 00 curve for 15 RS < po < 15.5 RS.

Although Eq. (28) yields a real value for (I'/G ) S in this interval, we know

from our bounce time discussion that z z 0 is no longer a stable oscillation

point: the canceling numerator and denominator integrals in Eq. ( 28) for z=0

x	 particles are in this instance both imaginary.

DISCUSSION

'Teak B(zo0) means that particles have large gyro—radii at the equator.

Large aBp/a z (z-0) means a short scale length L for the magnetic field. The

adiabatic approximation and our results are hence suspect, particularly for

17



Jupiter. As a measure of the range of validity of the adiabatic approximation

we have determined the value of particle kinetic energy K for which c = 1 at z
P

0. This value depends on am o for particles mirroring high off the equator

Pass through it with shallow pitch angles and cor ►sequent small gyro-radii
i

compared with particles of the same energy which are mirroring at the equator.

If we take L to b y B(z=0)/aB
p
/az(z=0) it is straightforward to show that

the c = 1 condition leads to the following equation for K = (y-1)moc2

K	 3x10 1 B2 (z=0)	 1	
2 1/2

moc2	 moc2 
asp/az(z=0) since

Here 
0 is the ionization state of the particle (+1 for protons, -1 for

electrons etc.) and moc2 its rest energy in MeV. Particles with kinetic

energy lower than that given by Eq. (30) have gyro-radii smaller than L, and

hence this K is the upper energy limit for adiabaticity. In Fig. 4a we have

plotted the characteristic factor Kc = 3x10-4 B2(z_o)/aBp /az(z_0) for that

portion of the Jovian magnetosphere where adiabaticity is suspect.

Note that this quantity is always at least an order of magnitude larger#

than m0  = . 511 MeV for electrons, so that K e a KC /sinc e is at least 5 MeV in

magnitude. We thus conclude that electrons up to approximately 5 MeV are

adiabatic and have been treated validly in this paper. The limit is in fact

considerably higher for electrons with larger am because of the (since)-1

factor in Eq. (30).

The case is, however, different for protons and heavier ions. Shown also

in Fig. ( 4a) are solutions to Eq. ( 29) for protons with 3 different values of

A

sinc e . Values of sinc e = .05

mirroring at am = 300 and 
1m

magnetosphere. Note that the

equatorial protons, with ^0(S

and .01 correspond roughly to particles

600 in this P  region of the Jovian

adiabaticity condition is quite severe for

LnO e = 1) being as small as 15 keV. However, for

protons mirroring at higher latitudes K  is greater than 600 keV.
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For heavier ions and for all but the smallest sine e , we can expand the

square root in Eq. (30) according to ( 1 +c 2 ) 1/2 , 1 + c 2/2 and obtain

z2
_	 2

Ki 
2moc2sin2ee 

Kc

For S+ with sine  = . 05, K  is 167 keV at p  = 29 RV and thus a sizable

portion of the sulfur ions in Jupiter's magnetosphere may be non-adiabatic.

Figure 4b shows the corresponding situation for Saturn. Note that

because Saturn's field lines are far less distended than Jupiter's,

aBp/ az(z=0) is much smaller, and the maximum energy for which particles are

adiabatic correspondingly higher. All electrons below 300 MeV are at least

marginally adiabatic. The 3 proton curves correspond once again to particles

mirroring at the equator (sine e=l) and at approximately 30 9 (sine e = .4) and

60 9 (sine e = .05) magnetic latitude near p  = 12 RS.

In Figures 5 we plot for each magnetosphere the value of K  for which <w>

is equal in magnitude to the planetary angular rotation frequency

n i
' s (2n/n J ° 10 hrs., 2A /n5 2 10.7 hrs.). Recall that <w> depends on the sign,

of particle charge and is retrograde with respect to planetary rotation for

electrons and prograde for protons, expect for equatorially mirroring (am =09)

Particles in the P  > 30 R  and 14 R S < P  < 15 RS regions where aBz/ap

switches sign (cf. Eq. 29) and the reverse is true for both species. If we

neglect the nonalignment of Jupiter's dipole and rotation axes, the values in

Fig. 5 are thus in general those at which an electron has no drift motion in a

non.-rotating coordinate system: <;> just balances the §xB motion which drives

particles to co-rotation. Corresponding values of K  have not been plotted

but are approximately 1/2 to 3/4 as large as K e , depending on the value of po.

With the exception of those equatorial regions where aB z/ ap is small so

that compensatingly high particle kinetic energy is needed to produce

significant gradient-curvature drifts, the values of K  in Figs. 5 are well

within the range of validity of adiabatic theory. On the other hand, the

situation is different for protons: values of K  scaled from Figs. 5 are of
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the order of, and in the case of equatorial protons less than, the limits
displayed in Figs. 4.

CONCLUSIONS

The adiabatic motions of charged particles in the distended Jovian and

Saturnian magnetospheres are qualitatively similar to those in a dipole field
but are quantitatively quite different. Cuiding'center bounce times may be

shorter or longer depending on a particle's mirror latitude; particles

mirroring near the magnetic equator experience a stronger-than-dipole mirror

force and hence bounce more rapidly than in a dipole field; on the other hand,

particles mirroring far from the equator bounce along field lines whose length

is significantly enhanced by the distention, and hence such particles have

bounce times longer than if they mirrored at the same spatial location in a

dipole field. For Jupiter's magnetosphere non-diplar effects on the bounce

time are important for radial distances ranging from 10 R  to 35 RJ , the

largest distance we have considered, and they vary by a factor of roughly 3

from dipole results. For Saturn the ring current affects the bounce over the

8 RS-16 RS region, but owing to its weakness relative to Jupiter's magnetodisc

current the dipole correction factor is no more than 1.2 - 2.

The bounce-averaged angular drift rate is significantly affected by the

field distention. This is so even for particles mirroring at high latitudes

where the distention is small; much of their azimuthal drift takes place,

especially in the case of Jupiter, during passage through the magnetic

equator. In the case of Jupiter the angular gradient-curvature drift is as

much as 10-15 tides the dipole value and is of most importance between 20 R 

and 35 R J , For Saturn the correction is more nearly a factor of 2 and is of

most importance near the inner and outer edges of the ring current at 8.5 
RS

and 15.5 RS*

.S

.

The direction of the gradient-curvature drifts is generally that of

co-rotation for protons and in the opposite sense for electrons -- the same as

it is for the planetary dipole. In the middle magnetosphere of each planet

the magnitude of the gradient-curvature drift in the model field is

approximately equal in magnitude to the co-rotation speed for electrons and
protons in the 100 keV - 1 MeV range.
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Corrections which we have evaluated are thus important in assessing the

an13otropie3 of 100 keV and higher energy particles and should also be

accounted for in calculating losses to moons orbiting through the middle

magnetospheres. In the case of Jupiter, absorption by Callisto at o 27 RJ

would be modified significantly by our results. However, no absorption

signatures of this moon have been reported from either the Pioneer or Voyager

particle experiments. At the orbit of Ganymede near 15 RJ , where absorption

has been seen [Burlaga et al., 19801 along with signatures of a radially

distended magnetic field [Connerney et al., 1981a], we have found the

non—dipolar correction to be as large as a factor of 2.5 for equatorial

particles and it should be incorporated into a quantitatively accurate

analysis. For moons and rings of Jupiter lying within 14 R J of the planetary

surface, effects of the magnetodisc lie mostly in modification of the bounce

period (of. Fig. 2a) for equatorial and near equatorial particles.

In the case of Saturn. Rhea at 8.8 R S lies in a region where significant

non—dipolar effects occur. The deviation of Rhea's absorption as observed in

the Voyager 1 cosmic ray experiment [Vogt et al., 1981] from its expected

dipole position has been explained successfully using the ring current model

[Connerney et al., 1981b]. This suggests that the correction factors which we

have calculated and which are most important in this radial region should be

applied to any quantitative lifetime calculations.

Finally we mention that because of the diminished scale length of the

magnetic field near the equator, protons and heavier ions become non-adiabatic

at energies above a few hundred keV. This energy particle appears to dominate

the particle energy density of the Jovian middle magnetosphere [Krimigis et

al., 1981] and may via its non—adiabatic meandering motion [Sonnerup, 19711
I

across the field reversal sheet contribute significantly to the magnetodisc

current.
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TABLE 1. Parameters of the Vomer MiddX* M89neUO3phere Magnetic Models

Saturn

ao	4 G Ri 3	 209 G As 3

4010	 4.5xio-3 G	 5XI04 G

Ro	5 Hi	 8.5 RS

R
i	50 Ri	15-5 RS

D	 2.5 Rj	2.5 RS
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FIGURE CAPTIONS

Figs. 1. Magnetic field lines in the model Jovian (Fig, 1a) and Saturnian

(Fig . 1b) magnetospheres intersecting the equator at several values po,

Shown in dotted lines are dipole field lines which intersect the

planetary surface at the same latitudes as model field lines (dipole p 

labels indicate the correspondence), Note the different scales on the z

and p axes. Because of strong m agnetospheric plasma currents, Jovian.

field lines can be grossly non-dipolar; much of the Jovian middle

magnetosphere maps to a small range of latitudes at the surface of the

planet. Lines of constant magnetic latitude are also shown.

Figs, 2. Plots of the bounce period quantity H (cf. Eqs. 21 and 22) for

Particles in the model Jovian (Fi g . 2a) and Saturnian (Fig. 2b)

magnetospheres. H depends on the equatorial crossing distance p  of a

field line and the particle"s mirror latitude X  on that field line. As
0  .. 0, H approaches its value in a dipole field, which depends only on
im s For each k m , the ratio H(po , am )/H(O,im ) is the ratio of the bounce
time of a particle mirroring at am on a model field line passing through

the equator at distance p o to the bounce time of a particle of the same

energy mirroring at the same spatial point (pm , zm) but in the dipole

field alone.

i;
Figs, 3. plots of the azimuthal drift rate quantity F/G (cf. Eqs. 27 and 23)

for particles in the model Jovian (Fig. 3a) and Saturnian (Fig. 3b)

magnetic fields. F/G depends on the equatorial cro;.ring distance p o of a

field line and the particle's mirror latitude am on that field line. As
po + 0, F/G approaches its value in a dipole field, which depends only on
am. For each am,, the ratio F(p o , am ) G(0,am)/G(po , am) F(O,am ) is the
ratio of the longitudinal drift rate of a particle mirroring at am on a

model field line passing through the equator at distance p Q to the

longitudinal drift rate of a particle of the same energy mirroring at the

same spatial point (pm , zm ) but in the dipole field alone.

Figs. 4. Shown for the model Jovian (Fig. 4a) and Saturnian (Fig. 4b)

magnetospheres is the quantity K. = 3x1O -482
(z_0)/a Bo

/az(z=0) which is
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characteristic in determining limits of`adiabaticity (of. Eq. 30), Shown

also are valaes or proton kinetic energy as determined From Eq. (30) at

which the proton gyro—radius equals the scale length of the field as

determined from B(Za0)/iBp/az(zz0) for representative values Of

equatorial pitch angle 9 e 4 For electrons K  is always greater tnan K.

and hence the adiabaticity condition is less severe on them, as would be

expected on the basis of their smaller -;ass.

Figs. 5, Shown for the model Jovian (Fig. 5a) and Saturnian (Fig. 5b)

magnets,pheres is the value K. of electron kinetic energy at which the

longitudinal drift rate <w> equals the planetary angular rotation rate

nJ,S . With limited exceptions, which are discussed in the text, 
I 

le

aen:*o- of <w> is prograde for protons and retrograde for electrons.

Discontinuities in the Saturnian curves at 3.5 R S and 15.5 R S for

equatorial particles reflect discontinuities in <0 owing to

discontinuities in aB x/ap which occur at the boundaries of the model

current sheet. At po 
o 

30 RJ and p0 s 14 RS , Ke	 • fotP equatorial

particles because of the vanishingly small values of ";BZlap iii these

regions. Values of Kp are approximately 1/2 to 3/4 as large as those

shown here for electrons.

27



O
cr.

0	 LO
o	 LO

M
LO 0

CNJ

oo,

.000,

U")

0
C%4

cd

Ln

PL4

O

LO



CO ^ Ct' ,,,, M
cn

v

N	 —	 O^ j

IFMWKM41slMfY1^^1- 	 ^AM

re	 Y	 Mlles s• f. Y	 f	 ! rLSiw.Y.• k!lfy! a ♦.• . ilNli.lsan fsw of	 lrfwif	 s.vY. '1Jw•fwkR *wfwi iLSf

O	 O
N	

cr. O
CD

^o

cn

101, .010

FY)	 /	 d-

/	 cn

co

°	 1	 iac
U')\	 co

o	 \^
O

cn ^,

L



50

0°

10°

*PAW

30 355	 10	 15	 20	 25

P, R0
Figure 2a



LLE

I,

1.2

1.0

HS

r	 0.8

0.6

00
50

X m = 640

5 0

`T00

300

200

100
0

50

00

M

04



4

-4

n AM

600-

(F/G)i



.	 ..«	 a. s as a ♦ . a	 ...w :A. a "iaaw . tR^»;.1!» 	 Kw ^rr• ^rwr--».M wr. riv► w a	 sew ^etrx.bKa+^M Mu

2.0

1.6

1.2

(F/G).S

8

.4

m = 0°

10°

30°

60°	 0°
L

10 0,,

0°

0



Kp (sin ee = 1)

100

10-1

102

jolt #**r

103	
Kp (sinee=.Ol)

102

Kp (sin ee =.05)

10'

MeV
	 K6



^^^is+ffiSll6lt ^^^ :.

•	 .,	 r.. .,w?.r+... r.•.n^.,r.^. . .: a..rsa^m naLL« ...^• r. rwxaa ,..	 .n rruai ..r	 a	 r.	 • r

106 	—
I

10`if

Kp(sin ee=.05)

10,

MeV	 p (sin 8e =.4)

10^
	

Kc

102	
Kp( sin ee = I )



Ke
(MeV)

XM= 60'
10

30°

00-

35

OR



Ke

(MeV)

..1 
#1

a	 lu ,	 I ?-	 14	 16

Po /RS

Figure 5b


	1982014258.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif




