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Abstract

The method of complex characteristics of
Garabedian and Korn has been successfully used to
design shockless cascades with solidities of up to
one. A new code has been developed using this
method and a new hodograph transformation of the
flow onto an ellipse, This new code allows the
design of cascades with solidities of u p to two
and larger turning angles, The equations of
potential flow are solved in a complex hodograph-
like domain by setting a characteristic initial
value problem and integrating along suitable
paths. The topology that the new mapping intro-
duces permits a simpler construction of these
paths of integration.

1. Introduction

The design of supercritical blades for turbo-
machinery relies heavily on the capability of
producing a wide variety of two-dimensional blade
sections, spanning from hub to tip and varying
from upstream to downstream stages. A code to
design these sections will have to cover a broad
sper.trum of design flow conditions. It should
be able to handle both low and high solidities,
chord-to-gap ratios of tip to two, as well as high
incidence angles and Mach numbers.

The method of complex characteristics and
hodograph transformation developed by Bauer,
Garabedian and Korn, [1], to design supercritical
wing sections and cascades has been widely used.
With this method, excellent shockless airfoils
have been designed and tested in this country and
abroad, In its latest version, the method solves
the problem of finding a shockless airfoil with a
given pressure distribution.

Because of the conformal mapping used by
Bauer, Garabedian and Korn to transform the hodo-
graph domain of the flow onto a circle, a restric-
tion exists in their method which does not allow
the design of cascades with high solidities.
Also, a poor resolution at the leading and trail-
ing edge regions may arise, in cases of high
incidence angles, as a consequence of this
mapping.

In this paper a new design technique is
described, based on the same complex characteris-
tics method, which uses a new mapping of the hodo-
graph domain onto an ellipse, This new mapping
leads naturally to the use of Tchebicheff poly-
nomials, rather than trigonometric polynomials,
to construct the solution of the equations. The
equations of flow are integrated along anew set
of paths which are more in accord with the topol-
ogy that the elliptic mapping introduces.

The heuristic idea behind the elliptic mapping
is the following. When the flow is mapped onto a
circle, the upstream and downstream points of
infinity are mapped into two interior points of
the circle, where two logarithmic singularities of
the solution, a source and a sink, are located.
By increasing the separation between these two
points the gap-to-chord ratio can be reduced. The
limiting case of infinite gap.-to-chord ratio, or
the isolated airfoil, corresponds to the case in
which both singularities coalesce. By mapping the
flow onto an ellipse, the two singularities can be
more widely separated, further reducing the gap-
to-chord ratio. A parameter related to the
eccentricity of the ellipse will be introduced to
control the solidity of the cascade,

With this new method we have achieved high
solidities. A good resolution of points defining
the body is obtained both at the leading and
trailing edge regions and larger incidence angles,
with thinner airfoils, can be achieved, In the
next section we review the method of, complex
characteristics, as applied to our problem.

Professor Paul R. Garabedian of the Courant
Institute of Mathematical Sciences proposed this
problem and made many suggestions during the
development of the code.

2. Hodograph Complex Equations

The equations of potential flow in hodograph
coordinates can be described by the Chaplygin
system

M2-1 ivq R v q	 a

'Pe 	 3 i'q,

in which • and * are the potential, and
stream functions, M is the local Mach number, q
and a are respectively the modulus and argu-
ment of the velocity vector, and n is the den-
sity. This system of equations is of mixed type,
elliptic and hyperbolic, in the transianic regime.

In the method of complex characteristics, the
variables are analytically extended into the four
dimensional domain of two complex variables,
where the characteristic equations can always be
solved. The system (1) can be written in the
canonical form, [1],
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lie two independent variables C and n are
arbitrary .complex analytic functions of the char-
acteristic coordinates
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where h is defined by
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and C* is the r_ritical speed.

We recall that the coordinates s and t are
conjugated characteristics coordinates, [1], in
the subsonic domain, This means that, for sub-
sonic points, s and t are complex conjugate
numbers when q and 0 a-e real. If the vari-
ables c and n ,ire defined in the form

s - f(c), t - f(n),	 (5)

with f analytic, then they are also conjugate
coordinates. Under this transformation the sonic
surface is mapped onto a cu' ,ve of each charac-
teristic plane, called the i )nic locus, [1],

In the hodog.raph t,•;etnod, we are interested in
solving an inverse ior& em. We construct a solu-
tion with the correct logarithmic singularities,
which represent a sink and source at infinity, and
we look at the zero stream line, on the phisical
real plane. as the possible candidate for the body
which generates the flow.

In the context of the complex system (2), the
correct mathematical problem to solve is the char-
acteristic initial value problem where initial
data is given in the two characteristic planes
emanating from the initial point (c0,n0) in
the four-dimensional space. The manipulation of
this initial data can and has lead in the past,
[1], to the construction of shockless solutions.
A ;iew and fundamental approach in the application
of hodograph methods was taken in [2], where the
unknown domain of the flow is mapped onto the unit
circle, by a conformal mapping of the type (5).
This allows for a systematic prescription of the
initial characteristic data, based on a given
pressure distribution over the airfoil. In the
next section we describe how this idea is
implemented.

and the sonic locus. This part of the boundary
will correspond to the subsonic part of the body.
Points in the remainder of the domain D do not
correspond to the real physical plane t and the
real supersonic part of the body have to be found
by searching for the zero stream line,

The elliptic domain and the corresponding
Tchebycheff polynomials can be defined in the
following form. 

`

Consider the conformal mapping

w . I ( + ; 1 < m < R	 (6)

of a circular ring in the plane onto the ellipse
with axes defined by the points

CA+>ff (R-^

and the slit ( /-1,1), We consider the class of
analyt', functions in the ring which have a
Laurent expansion of the form

F(c) •	 anCn =	
an (rn + 1n

J
,	 (1)

0	 \	 c

in which a - a-n, for all positive n. The
functions of the variable w

T n (w) - 2ncn + ^n^, n - 0, 1, 2,	 (8)

are actually the Tchebycheff polynomials of the
first kind, as can be easily verified.

We observe that a function of the type (7) has
the property

F(eia) - F(e is) , 0 < s < x	 (g)

This means that within this class of functions, we
are identifying points with the some real part in
the positive and negative parts of the unit cir-
cumference. Any analytic function on the ellipse
in the w-plane can then be written in the form

F(w) 4 u an rc n + 

ln/0	 `	 c

L..r a^Tn(w) 4 	
bnwn	 (10)

0	 0

This Ghows that the ellipse is equivalent to the
circular ring with the given identification of
points on the unit circumference. This identifi -
cation actually.makes unnecessary the slit intro-
duced by the mapping (6), making the elliptic
domain singly connected.

3, Elliptic Conformal Transformation

Following 1:4 idea described in the last para-
..	 graph, we use the transformation (5) to map the

flow onto an elliptic domain D of each coordi-
nate characteristic plane. Because of this trans-
formation, the coordinate characteristics are such
that real subsonic points correspond to the domain
of points of the form (t,c), when c is a
point enclosed by the portion of the boundary of
D where c and n are conjugate coordinates

We adopt as our computational domain, D, the
circular ring 1 < Ica < R, with the previous
identification oT poin'fs. The parameter R will
control the eccentricity of the ellipse and, in
this way, the snlidity of the cascade. Several
advantages arise from this formulation. The most
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important one is that we are now able to use Fast
Fourier Transform to compute the coefficients of
the mapping function

f (C)	 an (Cn + in

0

^	 (11)
C

of the flow onto our computational domain D.
Other advantages of this formulation will be dis-
cussed later.

The supercritical design problem can be formu-
lated as follows. Find al; analytic volution

•(C,n) - Re{t l (C,n) log (n - n1)

+ t2 (C,n) 
lr9 (n - n2) + 'P3(C,n))

i(r.n) n Re{* 1 (C,n) log (n - n1)

+ *2 (C,n) log (n - n 2 ) + *3(C,n))

(12)

of the system (2), with a1,y2,IP3 and *1,*g,*3
reqular functions, in the omain 0, where the
mapping function f defined by (11), satisfies
the uirichiet condition

Relf 1411 - log (h*(q)), i0 - R,	 (13)

With thedefinitions given, h* and h become
identical in the subsonic part of toe domain 0,
where we take the parameter k equal to unity.
In the remainder of this domain, h is not real
cnd the introduction of the function h* becomes
necessary, The consequence of using this
Oirichlet condition is that the designed airfoil
will not achieve the prescribed pressure distribu-
tion on the supersonic part of the airfoil.

The boundary conditions (13) and (14) are non-
linearly coupled. The nonlinearity of the problem
arises from the fact that the speed distribution
is given as a function of the are length, and in
(13) it is needed as a function of the coordinate
C on the boundary IC I - R. The relationship
between C and the arc length s, can only be
determined when the potential function is known.
On the other hand the solution of the boundary
value problem (14, is linked to the knowledge of
the mapping function f. An iterative procedure
Is then needed to solve the problem.

This iterative procedure is established by
first computing an incompressible solution
•(C).*(C) on the elliptic domain, in terms
of classic Jacobi elliptic functions. The in-
compressible solution is conformal invariant.
We can then, establish the relation between the
arc length s and the boundary variable C - Reia,
as we know v(s). This allows computation of
the +roappivy function f, using F.F.T. to solve the
Oirichlet problem (13) with prescribed values of
h* at a number N of equidistant nodes on the
circumference of radius R.

and the stream function satisfies the boundary
condition

Re (*(C,F)) - 0. ICI - R.

Once the mapping function is known, the system
(2) can be integrated, as T* are, then, known
functions of the variables C and n. We re-
mark that at eacn iteration an analytic solution

i
(14) s found. If the zero stream line is not self

ntersecting and has the proper closure at the
trailing edge, it represents a shockless airfoil.

The stream function is real valued for subsonic
points and the boundary condition (14) is w^Il
defined when a proper branch of the solution is
taken. The function h* is defined by

k q ^

	

^	 dq"/q'
cI

h*(q) - h(C* ) e	 *	 , k > 0.

4. Numter ical Solution

We concentrate in this section in the problem
of finding a solution bf the type (12) to the sys-
tem (2), once the mapping function f has been
determined, We introduce the notation

(15)	 Ln(r,*) - q n - T_4n

The reqular part of the solution, can be
expanded as a linear combination of particular
solutions obtained by taking as initial character-
isitic data a complete set of ortonormal func-
tions, namely the Tchebyche) f polynomials. The
coefficients of this linear comwination are then
determined by imposing the boundary condition
(14). This boundary value problem has been proved
to be well posed when the system (1) is reduced to
Tricomi equation, [4], that is, in the case of the
transonic small disturbance equation, In the
general case of the full potential equation that
we are dealing with here, a low condition number
for the matrix associated with the linear system
In question, both when the domain 0 is a circle
or an ellipse, indicates the well posedness of the
problem.

The .requirement that the functions (12) are
solutions of the system (2) with the pairs
(vi,*i)i- 1,3 being regular functions leads
to the homogeneous system, for each -value i -w 1,2
of the index i,

(16)

with

Vi - 
T+* i on n ° n i , i - 1,2
	

(17)
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and tQ the inhomogeneous system

LC(t31*3) n 0

(1e)

The problem (16) wit ►; the condition (17) is
known as the Riemann prob,^m for that system. The
solutions are the Riemann functions related to
that problem and can be explicity integrated along
the characterstic n - ni, in the form

Ci

T+. Crni
(19)

t i (C,n i ) - Ci 07—007,

and	 i ,p 1,2.

The complex constants 01 and C2 remain
at :cur dis posal. These two sets of Riemann func-
tions can be integrated with a finite difference
scheme, that will be described later. We can
Impose on the t . C i , i . 1 1 2, characteristics
the initial data

*i(Ci,n) - *i(n,vi)

(20)

Once these functions are determined, we can
integrate the inhomogen pous system (18). For
that, we expand the solution in the form

P3 e 93°) + r bn^ 3n)
1

(21)
N

*3 - *3o) + r bn^3n)
i

where (4p3°),*3°)) is a solution of the inhomogeneout.

problem (18) with the homogenous initial character-
tistic data

40) (C,n3) a *g°^ (̂,1 - 0 1 	 (22)

assigndd on the two characteristics emanating from
a point (C3,E3), which is subsonic and far from
the singularities {CS 1) and 42,T2). Each pair
of functions (4P3n) , 4 0 i

n) 
) are solutions of the

homogeneous system (16), with the initial .,harac-
teristic data

# 3(n) (C,n3) . *3 n	 . Tn(w), n n 1, ...,	 N

(23)

and where the T (w) are the Tchebicheff poly-
nomials described in (8). Once each of these
initial characteristic problems is numericril,i
solved, the coefficients b 	 on (21) can be
determined by imposinq the raundary condition (14).

A rectangular grid is used to numerically
solve each initial characteristic problem. Two
sides of this rectangular grid are formed by two
paths of integration, one in each characteristic
plane, These paths allow one to reach the desired
Part of the flow to be computed, Three kinds of
paths of integration are used, subsonic, transonic
rind supersonic paths.

To reduce the amount of computation, we divide
the exterior circ umference into eight sectorr. and
we aluiays take as initial point 43,C3) the
Identical points (0,1) and (0,..1). From each
singularity (C ,G	 and (C2"S2) we lay a path	 which
goes directly to lire point ^C3,G3) to compute 'the
Riemann solutions. The corresponding n-pat,b
will be the complex conjugate of the t-path.
Once we reach the characteristics through the
point (C3,C3) we continue computing the
Riemann solutions plus the solution of the in-
homogeneous problem (18) in the way described..

in those sectors in which all the nodes are
subsonic points, we use subsonic paths. In this
case the n=path is the complex conjugate of
C-path. As C and n are conjugate coordi-
nates at subsonic points, the diagonal of the
rectangle corresponds to real subsonic points.
The initial data has previously been defined by
the reflection laws (20), (22), and (23). In this
form the computation can be reduced to the tri-
angle below the diagonal. A path will consist,
then, of a segment that starts at t3, ends at
the outer circle, and continues with the circular
arc corresponding to the sector in question.

In those sectors, b0 ow the sonic locus, where
all, or some, of the nodes do not correspond to
real subsonic points we use transonic paths. The
idea is that to reach those points beyond the
sonic tine, the two-dimensional manifold formed by
the two paths has to avoid the sonic surface
M(C,n) - 1, where the equations become ill
conditioned. So, in the case of those paths, we
want the C-path and the n-p ath to not be con-
jugates of each other. The idea is, as in [1], to
traverse the corresponding sector in opposite
directions for each path.

Finally, the supersonic paths compute the real
supersonic zone of the body. They were introduced
first by Swenson and they use the property that a
point in the real supersonic zone can be reached
by two characteristics starting at the sonic locus
of each characteristic plane, [1], [5]. The com-
putation for th2 supersonic zone is done once the
coefficients b	 in (21) have been obtained.
So the problem ?18) is solved only once for these
points. This makes affordable, both in terms of
computing storage and C.P.U. time, the use of a
;much finer grid for the supersonic computation.
The analytic solution is path independent, by the
Cauchy Integral theorem, provided that we stay on
the proper branch of the solution.
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The finite difference scheme

"i, j - "i,J-t - 7-(s i,J - *i,9-1)

The real and imaginary parts of this vector mea-
sures the opening of the airfoil at the trailing
edge in the x and y-directions, respectively.
This formula can be used to check the accuracy of

( 24 )	 the computation, when the actual coordinates of
the body are obtained*

S. Results

is used to integrate the e quations. The average
values T* are calculated with a predictor-
corrector scheme which gives second-order accu-
racy. A Richardson extrapolation to the zero
limit includoil in the code gives third-order
accuracy.

Two complex constants were left at our dis-
posal in the computation of the Riemann func-
tions. To determine them we require, first, the
stream function to be single valued along the air-
foil. This leads to the condition for the ,lump
in +

^^^ - _ w^i m{^1 ( c 1 , 1)} + im1i24 2 ,c2)}] - 0	 (25)

On the other hand, the circulation r over the
airfoil is given, This imposes the dump condition
on

lm{^ i ( 1 , ^)}- Im{irz(^ 2 ,T2 )} . 2%	 (4e)

The location of the stagnation point and trailing
edge impose the two remaining conditions needed to
determine the four real constants.

With the potential and stream functions com-
pletely determined, the body is calculated using
the formula

(dVi\\x + iy -	
eie

Q 
	 + A di

l
	(27)

By looking at the residuum of this function, when
a loop is described around one singularity, jay
the source t - t2, we obtain the repeating -ector

ie2

Lx + iy3 . -2e e4
Z

X ['JF2(c2'Y) + 02 I
m {i2(c2,{2)}

J .
	 (28)

The modulus of this vector is the gap, or distance
between adJacent blades. If we consider, instead,
a loop which contains both singularities, we ob-
tain the ,lump in the function x + iy around the
airfnil

Lx + iy 3 - -2n

11[J^2 , iB^ (

1M(Vj(1j1Tj

 

r eq3	 )} + ni Im 

f *

 J(EJ,Td)

(29)

A computer code has been written to implement
the method described. The purpose of the code
is to extend the possibilities of theBauer-
Garabedian-Korn design code. We have followed,
when possible, their method. A different strategy
is uspd in the numerical solution of the equa-
tions, because of the different domain into which
the flow is mapped.

The code uses as input a given speed distribu-
tion, Other parameters used include the follow-
ing: the external radius R of the circular
ring, which controls the solidity, the number of
nodes in the exterior circle, equal to the number
of Tchehycheff polynomials used in the expansion
of the regular part of the solution, the number of
iterations, which controls the total number of
cycles (each o°-e includes the calculation of the
mapping function and a complete solution of the
equations). Additionally, two grid sizes can be
set, one for the subsonic-transonic computation,
and the other, a finer one, for the supersonic
computation. A Richardson extrapolation can be
included in the last iteration. The inlet Mach
number is specified in the case of compressor
design, and the exit Mach number is specified in
the case of turbines.

A typi cal run takes 12 minutes of IBM 370-3033
CPU time. We remark that, while a Made design
can imply many runs to achieve the desired design
conditions, most of these runs can be executed
with a coarse grid, small number of nodes, and
only one iteration, which can reduce the G.P.U.
time of each run to less than one minute, until
the approximate design conditions are obtained.

Figure I represents a high solidity cascade
designed with the new code. A solidity of 2.05
was obtained, with a turning angle of 42 degrees.
The supersonic zone reached, though, has a mod-
erate peak Mach number of 1.07. We use 128 nodes
which delivers 193 computed points on the bocy.
It can be seen that a good resolution of points is
obtained both at the leading and trailing edge.
Figure 2 represents a typical hodograph plane with
the integration paths. Figure 3 shows a highly
staggered rotor tip section with an inlet flow
angle of 55 degrees.

6. Conclusions

A new design method has been developed for
the design of supercritical cascades based on an
elliptic confo ► mol transformation of the hodograph
plane and the use of complex characteristics.
With this new method we have been able to handle
high solidity cascades.

Because we use, as in the Bauer-Garabedian-
Korn method, an input pressure distribution the
code can easily be coupled with a boundary layer
calculation. In this way, the pressure distribu-
tion can be modified until the desired separation
criteria is met.



The effects of the stroam tube convergence and
radius change in the design of turbomachinery
blades are well known. The incorporation of those
effects in the present code would enhance its
capabilities. A possible way to achieve this
would be by reducing the three-dimensional problem
to a set of two-dimensional pr0lems by means of a
Garlekin-type decomposition. The presence of a
shroud in turbomachinery rows makes this method
more appealing than in the case of isolated
airfoils.
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