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ABSTRACT 
• 

The performance of laser glazed zirconia (containing 8 w/oY203) TBCs was 

evaluated in cyclic oxidation and cycl ic corrosion tests. Plasma sprayed 

zirconia coatings of two thicknesses (0.02 and 0.04 cm) were partial ly melted 

with a CO2 laser. The power density of the focused laser beam was varied 

from 35 to 75 w/mm2, while the scanning speed was about 80 cm per minute. 

In cycl ic oxidation tests, the specimens were heated in a burner rig for 6 

minutes and cooled for 3 minutes. The results obtained indicated that the 

laser treated samples had the same 1 ife as the untreated ones. However, in 

corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel 

equivalent, the laser treated samples exhibited nearly a fourfold life 

improvement over that of the reference samples. In both tests, the lives of 

the samples varied inversely with the thickness of the laser melted layer of 

zirconia. 

INTRODUCTION 

The development and the potential benefits of ceramic thermal barrier coatings 

(TBCs) for gas turbine high temperature components have been well documented 

in the technical 1 iterature. Some of the key early work from the 1950's to 

early 1970's was conducted at NASA Lewis Research Center (refs. 1 to 6). In 

the mid-1970's Stecura and Liebert (refs. 7-9) developed a successful zirconia 
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based TBC. This work stimulated further development and testing of TBCs for 

potential aircraft and non-aircraft applications (ref. 10). 

The duplex TBCs identified by NASA consist of an inner layer of oxidation 

resistant plasma sprayed NiCrA1Y bond coat and an outer, plasma sprayed 

yttria-stabilized zirconia layer. The bond coat is about 0.01 cm thick while 

the ceramic layer can vary in thickness from 0.01 cm to 0.04 cm or more. 

Although TBCs performed well in the clean combustion gases resulting from 

burning Jet A fuel or natural gas, preliminary studies (refs. 11 to 15) 

revealed that their durability was reduced when they were tested in combustion 

gases containing gaseous impurities such as sodium, vanadium, sulfur, etc. in 

general. The failures were observed to occur in the ceramic layer in a manner 

similar to TBC failures in clean fuel tests (refs. 13 and 16). The cracks 

initiated in the ceramic layer parallel and close to the ceramic/bond coat 

interface. This is in agreement with the findings of Levine (ref. 17) who 

measured the tensile strength of Zr02 - 12Y 203/NiCrA1Y TBCs and deter-

mined that this was weakest part of the coating system. The failures of TBC's 

tested in combustion gases doped with sodium and vanadium were correlated by 

Miller (ref. 18) in terms of dew points (ref. 19) melting points of the 

~ondensates and the temperature distribution within the coatings. Palko (ref. 

15) observed that liquid Na2S04 was absorbed into the open porosity of the 

ceramic coating and speculated that the difference in thermal expansion 

between the coating and solidified salt was the cause of spallation. To 

alleviate the. problems caused by dirty fuels, two approaches were undertaken. 

The first approach (ref. 13) was to develop new thermal barrier coating 

systems, e.g. calcium silicate, that would resist corrosive environments. The 
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second approach is represented by the present work. The idea behind this 

approach is to improve the performance of zirconia-based TBCs through partial 

densification of the ceramic layer by treatment with a laser. Densification 

of the surface of a ceramic coating was expected to reduce the coating 

penetration by salts contained in the combustion gases, and their attack on 

the bond coat. To test this idea, two separate experiments were performed. 

One experiment was a cyclic oxidation test of laser glazed TBCs in a Mach 0.3 

burner r ig fired with a Jet A fuel to determine the effect of glazing on 

coating performance in a clean environment. The other experiment was a cyclic 

corrosion test in a similar burner rig fired with Jet A fuel, but with the 

combustion gases doped with sodium to determine i f glazing reduced penetration 

of Na2S04 into the ceramic coat. The laser glazing approach is not unique 

in the sense that the laser surface fusion technique was used by others (refs. 

20, 21, 22) to "segment" ceramic coatings and ceramic turbine shrouds to 

increase strain tolerance. 

EXPERIMENTAL PROCEDURE 

Materials 

The composition of the NiCrA1Zr powder used to form the bond coat is listed in 

Table 1. The same table shows the composition of yttria-stabilized zirconia 

powder. The particle size of both powders was in the range between 200 and 

325 mesh . Waspalloy tubing (1.27 cm diameter and 0.124 cm wall thickness) was 

used as the substrate material for the cycl ic oxidation tests. Its nominal 

composition is shown in the third column of Table 1. Ho l low MAR M-509 erosion 

bars, cast to the configuration described by Hodge et al. (ref. 13) was used 

as the substrate for the cyclic corrosion test. The composition of the alloy 

is shown in the column 4 of Table 1. 
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Coating Applications 

The Waspalloy tubing was cut into 18 cm long pieces. Each piece was provided 

with fittings to permit internal cooling during plasma spraying. The 

procedure described in Reference 8 was used in sample preparation and plasma 

spraying. The coat~ngs were manually sprayed in air to nominal thicknesses of 

0.012 cm for the bond coat, 0.020 and 0.040 cm for the ceramic coat. The 

thickness of the bond coat varied from the nominal value by about ±20 percent 

in extreme cases and of the ceramic coat by ±15 percent. After plasma 

spraying, each tube was cut to about 9 cm lengths, appropriate for burner rig 

testing. The hollow erosion bars were plasma sprayed in the same manner as 

oxidation samples but without internal air cool ing. The nominal thicknesses 

for bond coat and ceramic coats were as before 0.012, 0.020, and 0.040 cm. 

For any single erosion bar, the bond coat thickness varied by as much as ±40 

percent and thickness of the ceramic coat by ±25 percent from the nominal 

values. These significant variations in thickness were due to the difficulty 

of manually spraying and in measuring a body without cylindrical symmetry. 

Laser Glazing 

A CO2 laser was used in this investigation to melt the surface of the 

ceram ic coatings. The laser beam was focused with a ZnSe (zinc selenide) lens 

(focal distance 30.5 cm) to cover a circular area of approximately 0.11 cm in 

diameter. Preliminary experimentation had shown that the laser beam with a 

power density of 50W/mm2 could melt plasma sprayed zirconia to a depth of 

0.01 cm at a scanning speed of about 80 cm per minute. Burner rig samples 

were glazed in an apparatus that allowed controlled rotation of the specimen 

about its axis and controlled translation along the same axis. By adjusting 

the speed of rotation and translation, the cylindrical surface of the sample 
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could be scanned in spiral fashion. Allowance was made for 50 percent overlap 

of the scans. Figure 1 shows the surface of a zirconia coating laser glazed 

with a 50 w/mm2 beam. The small area on the left side shows the as-plasma 

sprayed condition. The glazed surface is smooth and shiny. Thus glazing 

offers an aerodynamic benefit. Furthermore the laser glazed surface is 

segmented. Figure 2 shows the surface of a glazed zirconia coat on the flat 

portion of a corrosion sample at higher magnification. In evidence are the 

striations and the segmentation or mud-flat cracking produced by the laser 

melting. The average diameter of the segments is about 0.05 cm. The width of 

the bands represents one half of the laser beam diameter. Due to lack of 

cyl indrical symmetry, the scanning speed for the corrosion samples was not 

constant. The average speed was about 85 cm per minute. Laser beams with 

power density of 35, 50, and 75 W/mm2 were used. 

Burner Rig Testing 

The Mach 0.3 burner rig used in these tests is shown in Figure 3 and has been 

described in reference 23. Eight specimens were placed in a holder which was 

rotated at 630 rpm in front of the burner nozzle. The same type of burner was 

used for cycl ic oxidation and cyclic corrosion tests. In the cyclic 

oxidation test, the samples were heated for six minutes and then cooled with a 

stream of compressed air for three minutes. The burner rig was fired at a 

fuel-to-air ration of about 0.049 using Jet A fuel. The test temperature was 

1050 ± 200 C as determined with a calibrated (for emissivity and window 

absorption), disappearing filament optical pyrometer when focusing on the 

center of the sample surfaces facing the nozzle of the burner. About three 

minutes in the flame were required for the hot zone of the samples to reach 

test temperature. At the end of the three minutes of forced air cooling, the 

temperature was about 800 C. All of the TBC failures occurred or apparently 
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started on the back surfaces of the samples where the temperature was 

determined to be about 1000 C higher (ref. 24). In this test, the samples 

were visually examined and the temperature monitored at least once every day. 

Samples were tested until TBC failure (cracking and/or spallation) was 

observed. Figure 4 illustrates typical samples after test. All coatings were 

run in triplicate. After test, the specimens were photographed and mounted in 

epoxy for metallographic examination. 

The corrosion test was run at a substrate temperature of 843 0 C. The level 

of sodium, introduced to the combustor as an aqueous solution of NaCl, was 100 

PPM in the fuel equivalent. The sulphur content of the Jet A fuel was 

approximately 0.05 weight percent. The operation and calibration of the 

equipment was as described in reference 13. The samples were exposed to 

thermal cycles consisting of 55 minutes at temperature, followed by five 

minutes out of the flame, with the internal and external cooling air on. The 

samples were examined for failure after ten cycle intervals. Testing was 

stopped when TBC showed evidence of spallation. The reference non-glazed 

samples were run in duplicate and the laser glazed samples in triplicate. 

After the test, representative samples were photographed, plasma sprayed with 

copper (to facil itate electron probe analysis) mounted in epoxy and sectioned 

very slowly through the hot zone with a diamond wheel. No liquid was used 

during cutting and pol ishing in order to retain all of the sodium sulfate that 

penetrated the zirconia coating during test. These cross-sections were 

subjected to electron microprobe analysis and metallographic examination. 

Figure 5 illustrates typical corrosion samples after test. 

RESULTS AND DISCUSSION 

A. Cycl ic Oxidation Test 

The definition of failure in these types of experiments is rather arbitrary. 

In this investigation, the appearance of a crack or spallation of a small 
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piece of ceramic coating were the criterion for removal of the sample from 

test as illustrated in figures 4 and 5. In other investigations (ref. 21) a 

failure was considered to have occurred when the ceramic coat spalled from 50 

percent or more of the test zone. Therefore, it is difficult to compare the 

results obtained in two different investigations. In this investigation, the 

failures occurred on the back surface of the samples, where the temperature 

was about 1000 C higher than the test temperature of 10500 C. Figure 6 

summarizes the results obtained in the cycl ic oxidation test. Two sets of 

data are shown. One set pertains to a group of samples in which the thickness 

of the ceramic coating was 0.020 cm and the other set represents samples with 

0.040 cm thick ceramic coatings. In the first set, the group of samples 

glazed with the 50 w/mm2 1 aser beam did not perform as well as the group 

glazed with the 35 W/mm2 beam. Also in the case of 0.040 cm thick, ceramic 

coatings the power density of the laser beam, and consequently the thickness 

of the glazed layer, had small but negative effect on the performance of the 

TBC. There is a slight improvement in TBC life with increasing thickness of 

the ceramic coat. Expressing these observations in statistical terms one can 

say that within the 90% confidence level, laser power density has negative 

effect and that within the 95% confidence level. The thickness of Zr02 
coating has a positive effect on 1 ife of TBC's. The interaction term was 

found to be positive and significant at 90% confidence level. That means with 

lower thickness, the negative effect of power density is more pronounced. 

Examination of the figure 7, which shows the microstructure of a representa-

tive sample, reveals that the mode of failure was cracking in the ceramic 

coat, near and parallel to the bond coat/ceramic coat interface. This type of 

failure has been observed in all investigations dealing with cyclic oxidation 

tests of TBCs. Also, one can observe the amount of porosity in the plasma 
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sprayed ceramic coat and the complete densification of the laser glazed 

surface layer. The bond coat seems to be partly oxidized. Levine (ref. 25) 

performed cyclic oxidation tests on similarly prepared samples, which were not 

laser glazed, and obtained similar results (within 95% confidence level). 

Therefore, it appears that glazing did not negatively affect the performance 

of the TBC. In references 20, 21, and 22 it is claimed that a "segmented" 

ceramic structure, formed by precracking the ceramic in a direction 

perpendicular to the plane of the coating as a result of laser glazing may 

significantly increase its strain tolerance. Improved TBC performance, as a 

result of laser induced segmentation, was not observed in the present study. 

B. Cyclic Corrosion Test 

The experimental results obtained in the cycl ic corrosion test are summarized 

in graphic form in Figure 8. There are two sets of data. One set represents 

data obtained with 0.020 em thick ceramic coatings and the other set pertains 

to 0.040 thick coatings. It is evident that the glazed TBCs performed 

significantly better than the refernce non-glazed ones. At the 50 W/mm2 

power density level the improvement in life is nearly four-fold. Similar 

improvement can be observed when the thickness of the ceramic coat is 

doubled. As can be seen in figure 5 the l6cation of the failures is random. 

Figure 9 shows the microstructure of TBC near the leading edge. The samples 

failed in the usual manner, that is, cracking occurred in the ceramic coat 

near and parallel to the bond coat/ceramic coat interface. On several 

occasions an unusual type of failure was observed namely separation of the 

bond coat from the substrate. The degree of attack of the bond coat appears 

to be insignificant. Further examination of this microstructure reveals the 

loss of thickness of ceramic coating as the glazed layer is nearly gone. 

Since yttria stabil ized zirconia does not react with sodium sulfate (ref. 26) 

this loss may be attributed to erosion. Spallation was probably not 
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responsible for this loss since the surface remains smooth. Figures 10 and 11 

show electron microprobe traverses of non-glazed and glazed TBCs, respec

tively. Although determinations for several elements were made, only the 

traces for Na, S, and 0 are shown. The non-glazed sample (Fig. 10) which 

failed in 66 cycles exhibits a significant degree of bond coat oxidation/ 

sulfidation along grain boundaries as revealed by the oxygen and sulfur 

traces. It appears that every pore in the ceramic contains sodium sulfate. 

It can be seen that the glazed sample (Fig. 11) is considerably less affected 

despite the face that is exposure to the corrosive environment was 5 times 

longer. The oxygen and sulfur traces in the bond coat indicate less 

oxidation/sulfidation along the grain boundaries. Also the ceramic coat shows 

less permeation by sodium sulfate. In both cases there is a concentration of 

sodium sulfate at the ceramic coat/bond coat interface. 

The experimental data obtained in this investigation provide strong evidence, 

that laser glazing of zirconia based TBCs will improve their life in a 

corrosive environment as a result of reduced permeabil ity of the surface. 

CONCLUSIONS 

As a result of this preliminary study of the effect of laser glazing on life 

of zirconia based TBCs in cyclic oxidation and cyclic corrosion tests, the 

following conclusions have been drawn: 

1. The laser glazed zirconia based TBCs show at least a four-fold improvement 

over non-glazed TBCs in cycl ic corrosion tests. 

2. Laser glazing of zirconia based TBCs to give an aerodynamically smooth 

surface has no apparent effect on their life in cyclic oxidation tests. 

Glazed and non-glazed TBCs endured similar numbers of cycles in a Jet A fuel 

fired burner rig. 

3. The concept of increasing strain tolerance of TBCs by "segmenting" the 

ceramic layer through exposure to a high intensity heat source such as a laser 

was not borne out by this study. 
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TABLE 1. - CHEMICAL COMPOSITION OF MATERIALS USED IN THIS INVESTIGATION 

Element 

Bond coata 

Al 14 
B ----
C ----
Ca ----
Co ----
Cr 14 
Fe ----
Hf ----
Mg ----
Mn ----
Mo ----
N-i Balance 
S ----
S-i 0.08 
Ta ----
T"i ----
V ----
W ----
Y ----
Zr 0.1 

aNominal compositions. 
bNot determined. 

Content, 

Zirconia 

0.011 
NO 

- .----
0.078 

NO 
NO 

0.03 
2.10 
0.014 

NO 
NO 
NO 
NO 

0.05 
NO 

0.054 
NO 
NO 

6.28 
Balance 

13 

w/o 

Waspalloya MM-509 

1.4 NOb 
0.006 0.004 
0.07 0.56 

----- NO 
13.5 Balance 
----- 23.26 

2.0 max 0.32 
----- NO 
----- NO 
0.75 max NO 
4.3 NO 

Balance 10.95 
----- 0.011 
----.- <0.10 
----- 3.66 
3.0 0.30 

----- NO 
----- 6.50 
----- NO 
0.009 0.32 



Figure 1.-Photograph of a 0.020 cm thick, laser 
glazed ceramic coat of a cyclic oxidation sam
ple. Power density: 50 W/mm2. 

CS-S2-90S 

Figure 2.-Photomicrograph of a 0.020 cm thick, 
laser glazed ceramic coating. Power density: 
35 W/mm2. 
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Figure 3.-Mach 0.3 burner rig assembly. 

Figure 4.-Photographs of samples with 0.040 cm 
thick ceramic coat, after cyclic oxidation test at 
1050° C (6 min heating, 3 min cooling per 
cycle). 

A. Glazed with 50 W/mm2 laser beam 
Life: 2800 cycles 

B. Glazed with 50 W/mm2 laser beam 
Life: 2500 cycles. 
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Figure 5.-Photographs of samples with 0.040 cm 
thick ceramic coat after cyclic corrosion test 
at 843 0 C substrate temperature, 100 ppm Na 
doped Jet A fuel, 55 minutes hot, 5 minutes 
cooling per cycle. 

A. Non-glazed 
Life: 122 cycles 

B. Glazed with 50 W/mm2 laser beam 
Life: 355 cycles 

C. Glazed with 35 W/mm2 laser beam 
Life: 366 cycles 

CYCLE: 6 min HEAT - 3 min COOLING 
BOND COAT: NiCrAIZr - 0.012 em THICK 
CERA.MIC COAT: Z r02-8 wlo Y 203 - 0.020 AND 0.040 em THICK 

3000 2900 - 2800 

2000 

1000 

o 

2700 r--
r--

2500 r-- 2500 2500 
r-- r-- r--

- 1900 1900 - r--

1~ 1400 1500 1500 rr--.--

I--

0.020 0.020 0.040 0.040 
zr02 COAT THICKNESS, em 

35 50 35 
LASER POWER DENSITY, w/mm 2 

50 

Figure 6. - Life of zr02 TBC's in burner rig cyclic oxidation 
test at 10500 C. 
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Figure 7.-Microstructure of hot zone of cyclic oxi· 
dation sample after 2800 cycles to 1050° C. Cer· 
amic coat thickness: 0.040 cm; Laser beam: 

360 

300 

240 

180 

120 

60 

0 

50 W/mm2. 

CYCLE: 55 min HEAT - 5 min COOLING 
SALT CONCENTRATION IN THE FUEL : 100 ppm 
BOND COAT: NiCrAIZr - 0.012 em THICK 

CS·82·903 

CERAMIC COAT: Zr02-8 w/o Y~3 - 0.020 AND 0.040 em THICK 

-

-

-

r--

I--

I--

I 18 64 22 I 94 355 321 
O. 020 O. 020 O. 020 O. ()10 O. ()10 O. ()10 

Zr02 COAT THICKNESS. em 

o 50 75 0 35 50 
LASER POWER DENSITY. w/mm2 

Figu re 8. - Life of Z r02 TBC' sin bu rne r rig eo rros ion test 
at 8430 C (substrate temperature). 
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Figure II. - Electron microprobe continuous-ribbon traverse of TBC sys
tem consisting of MAR-509 substrate, NiCrAIZr bond coat and laser 
glazed 0.040 cm thick zirconia coating after corrosion test Life : 315 
cycles. 
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