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CHAPTER I
INTRODUCTION

There exists a great deal of interest in calculating the radiation
patterns of airborne antennas and other complicated radiating struc-
tures. One of the approaches that has found great success for analyz-
Eng ghese types of problems is the Geometrical Theory of Diffraction

GTD).

One of the biggest advantages of this method over others is that
complex structures can be modelled using much simpler structures. These
simpler structures can be analyzed using the results given in Chapters
Two through Five. To be able to obtain an accurate radiation pattern,
one must take into account the scattering structures. Thus, GID also
provides a means of identifying the significant contributions from
the complex structures in the resulting antenna pattern.

The scattering and diffraction by objects which are large in terms
of wavelengths is essentially a local phenomenon associated with speci-
fic parts of the object. GTD, which is a high-frequency approach,
is applied and extended here to include diffraction by flat dielectric
slabs.

The GTD method originally developed by Keller and his associates
at the Courant Institute of Mathematical Sciences [1,2,3] fails in the
transition regions adjacent to the shadow and reflection boundaries.
For that reason, many people did not see the importance of this method
for many years. The GTD is an extension of Geometrical Optics that can
be justified by the generalized Fermat's principle, which is introduced
in Chapter Three.

The Uniform (GTD), developed at The Ohio State University, provides
expressions for the diffracted field such that the total high-frequency
f!eld is uniformly continuous across all transition boundaries. Expres-
sions have been developed for electromagnetic fields diffracted from
edges and vertices in perfectly conducting surfaces due to sources eith-
er on or off perfectly conducting convex surfaces.

The problem of interest in this thesis is the radiation of an
antenna mounted on 2 perfectly conducting convex surface in the presence

of a m-sided, finite dielectric plate, as illustrated in Figure 1
where m=4,
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Figure 1. Curved surface mounted antenna radiating in the
presence of a thin dielectric plate.




It is assumed here that the plate will not be attached to the convex
surface. The total field at the point (p) may be expressed as

E—tot - =1 1 -E-i"ul" + 'E-tut + Ed , (1)

ggere E' is the source field, £ ja the reflected field from the plate,
E” is the transmittgd fieldt and E- is the total edge diffracted field.
The functions u', u , and u- are unit step functions included in
Equation (1) to emphasize the.discontinuities in the geometrical optics
(6.0.) solution. Note that E' represents the direct source field or
the curved surface diffracted field.

Chapter Six discusses a systematic way of computing the individ-
ual terms of Equation (1), and thus obtaining the total field by super-
imposing all the individual field components. The geometrical optics
solutions, the transmission, and reflection coefficients for lossy
dielectric slabs, which are needed in order to calculate the total
field are discussed in Chapter Two. The modified edge diffraction
coefficients valid for wedges whose walls are lossy or lossless
dielectric or perfectly-conducting plates are presenied in Chapters
Three and Four. It is assumed that the interior angle of the wedge
is either close to 0° or 180°, and the width of the dielectric plates
is less than a quarter of a wavelength in free space. Chapter Five
briefly discusses surface diffracted rays from arbitrary convex sur-
faces. Analytic and measured results for the radiation pattern of an
antenna mounted on a spheroid are discussed in Chapter Seven. Finally,
Chapter Eight is a summary of all the results presented here.




CHAPTER 11
GEOMETRICAL OPTICS FIELD

asymptotic high frequency_solut1on of Maxwellts equations, and it

in the incident and reflected fields as shown in (4]. Their fields
can be expanded in a Luneberg-Kline series for large w of the form
(4]

@

Evexp(-jky) ] T
m=0 (jw

m

where k is the wavenumber of the medium, and an exp(jwt) time de-
pendence is assumed and suppressed. The leading term of Equation
(2) is given by [5]

fo,p )
E(s) ~ exp[-jkw(S)]fo(S) = FO(O)exp[-ka(O)J '(?)]]—Es)'@?s_)' exp(-Jjks) ,

(3)

where s=0 is the reference point on the ray path, and pd,pz are

the principal radii of curvature of the wavefront at s=0 as shown
in Figure 2.

Equation (3) is known as the geometric-optics field. The
leading term in the Luneberg-K1line asymptotic expansion takes into
account the polarization and wave nature of the electromagnetic
field, which is not the case in classical geometrical optics. At
5=-p1, -Po, Equation (3) becomes infinite, so the solution fails
at the caustics. As one passes through a caustic in the direction
of propagation, the sign of p+s changes and the correct phase shift
of m/2 can be introduced.

From V.E = 0, one obtains [4]
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Figure 2. Astigmatic tube of rays.

where € is the unit vector in the direction of the ray path. This
equation indicates that the electric vector of the geometrical optics
field is orthogonal to the direction of propagation. Using
UxE=-juwH, one obtains an expression for H of the form

"~ YosxE (5)

- €
where Yc —‘/——u_ .

In order to calculate the reflected field, consider the geometry
of Figure 3, where the incident field is a high-frequency electromag-
netic field, and S a smooth curved perfectly conducting surface.

Using the boundary conditions_for the total electric field on S,
the following expression for E. is obtained

E"(0)=E{ (0)exp [—jk\pr(o )] =E'(Qg) -ﬁﬂ% [e.‘.e:‘.-e ie 1],
(6)
where OR is the reflecting point, R the dyadic reflection coefficient

and fq(QR) the incident electric field at Q- The unit vectors

eﬁ, eﬁ, and éi_will be defined more carefully in Chapter Four.
Combining Equations (3) and (6)
r.r
. _[py P

T(s) = E{0e) - R /L2 o iks)

, 7
(D;+s)(pg+s) (7)



Figure 3. Geometry depicting the reflection
by a curved surface S.

where pr, pr are the principal radii of curvature of the reflected
wavefroAt ag QR'

It can be shown that

1 t\rl\

S'sn=5.n ., (8)
This equation leads to the famous Law of Reflection. That is, the
reflected ray lies on the plane of incidence, and the angle of
reflection 6, is equal to the angle of ingidence 6;, where both
angles are measured from the unit normal n as shown in Figure 3.
The plane of incidence is the plane formed by the incident ray and
the[n?rmal to the surface at the point of incidence. It is shown
in [4] that:

11/ 1

7'2(‘{*‘7)“’1 (9)
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Expressions for f, and fa ar

e given in [6]. For the special case
of an incident spherical wave

2
1 1 sin292 +1sinze, + [ sinze2 . sin?2£\ i )
Fg cosg, "y K2 cosZ;; " —_Ré / 172
(11)

where gy, 02 are the angles between 3' and the principal directions
associated with the principal radii of curvature of the surface

R1, Ro, respectively. This is illustrated in Figure 4. Expressions
for the principal directions and the pr

incipal radii of curvature
of the reflected field for an arbitrary incident field are given
in [7].

A. Reflection and Transmission

It is obvious that the reflecti
for the slab shown in Figure 1 have t
to obtain the reflected, transmitted, and diffracted fields. The
slab can be a lossy or lossless dielectric, or a perfectly—conducting
plate. The two dimensional (2-D) case will be considered first,
and later in Chapter Four the expressions for the 2-D case are

generalized to the more general 3-D case, after a suitable coordinate
system is defined.

on and transmission coefficients

Consider the 2-p geomet>y illustrated in Figure 5, where 3!
refers to the incident ray, s” to the reflected ray, and 3 to the
transmitted ray.

Medium #1 is assumed to be losslesse

¢, i.e., €1=e{, uy=p3j, 0,=0,
and .7=1Y=0, and medium #2 s a lossy medium, but it is assumed that
this los$ is due to ;5 and ¢ only. Thus o,=iy+ "

2 5 and “2:“5’ u§=0, and

E,Z:Eé.

In order to find the reflection and
for the boundary shown in Figure 5, the bo
and E have to be satisfied, That is,
at the boundary, one cotains

[r“) - E‘Z)J Xn=0 nx [n‘” - n‘z-’] = 0. (12)

Applying the above equations to the case of Perpendicular polari-
Zation ?E-field Perpendicular to the

0 Z-y plane) one can directly
obtain the following expressions

transmission coefficients
undary conditions on H
assuming there are no sources

A
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Figure 4. Geometr

y for the analysis of the reflected
wavefront,

The reflecting surface is S.

—— =~ = ——— Intersection of a principul

plane of S at Q, with S
Intersection of ‘the plane of
incidence with the plane
tangent to S at (

— =—— — -— Extension of the reflected ray
below S.
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Figure 5. Geometry in the plane of incidence (z-y plane)
for a wave at oblique incidence.

wuzcosei - (R coset-ja)n]

RL = —ai,c580, # (8 Cos6,-Jan, (13)
and
Zwuzcosei
Te= VR = G cose] T8 Cosd,~Faln, (14)
where
ky = whney ky = wlipe, (15)
wj, U. Y
a = —*'2"'2__'_.‘:'._: M =‘/ E“‘ (16)
2 Bz-kisinzol !




. 2
6 . (k§+k€sinze‘) + V(g sin e’) + (wuya,) an
z 5 LA

thus one can express EI and Ef at the boundary {2=0) as

E[(z=0") = RE[(220")  Ef(z=07) = TjEf(z=0") . (18)

For a lossless, nonmagnetic medium, i.e., 02=O, w=k2, and My THo

one ohtains
2 . 172
cose - (rz/s] - sin e )
R, = - 77 » and (19)

cose + (ez/e] - sin 6 )

i
T, = 2€050 —iz - (20)
cose’ + (ez/s] - sin’ )

In order to express coset in terms of sine], one has to use
Snell's law for the lossless, nonmagnetic case

U4y E : € .
sing® =/ ——1 sing! = [} sing! . (21)
Hat) €2

The expressions for the other polarization (H-field perpendicular
to the z-y plane) are

€,/€ cosei(l-jtané) - (B'cosot-ja/k )
2 1**";"'-*~"- £ ] ’ (22)
cz/e]cose (1-jtan8) + (B'cos@ -ja/k])

Ry =

Zezle cosd’ (l jtané)
Tu'“'Ru et St (23)
€,/€,C0s0 "(1-jtans) + (B cose -Ja/k )

where
]

tand = G%E , and B' = B/k,. (24)

10
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For a lossless, nonmagnetic medium, i.e., o,.=0, , =) s H'=/b£7:;
one arrives once again to the familiar expréss

ion
i 2 i, /2
ez/e]cose - (ez/e]-sin 8')
Ry = R e Y72 o and
sz/e]cosel + (ez/e]-sinze])
Zez/e]cosei
Ty = - 17 (25)

ez/e]cose] + (ez/e]-sin401)
In this case, one can express HI and HI at the boundary (Z=0) as
H[(2=0%) = R H](2=0"), and H}(z=0") = T Hi(z=0") .  (26)

The simplest case is when medium #2 is a perfect conductor (02=w).
In that case

Ry

-1, T, =0, (27)
R,=1, andT, =0. (28)

B. Reflection Coefficient of Dielectric Siab

Now let us consider a more general problem, a dielectric layer
of thickness d with dielectric constant € ; (real number), and
“loss tangent" tand, as illustrated in Figure 6.

When an electromagnetic wave arrives at the front face, the
wave is split into two waves, a portion of its energy will be re-
flected and the rest transmitted into the layer. At the opposite
face of the slab the wave is split again, some of it being transmitted
and the rest reflected back toward the front face. This process
continues until the portion of the wave trapped inside the slab
has completely left the layer through the front or back faces.

11
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Figure 6. Reflection and transmission for a wave incident
on a dielectric slab. The dielectric slab may
have some loss.
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The total reflected and transmitted fields will be equal to
an infinite sum of waves, each of which can be related back to the
original incident wave, provjded that a plane wave propagation
approximation inside the layer may be assumed. Before deriving
the expressions for the transmission (T) and reflection (R) coef-

ficients, it will be helpful to define the following variables:

reflection coefficient for the initial external reflection
reflection coefficient for the internal reflection
transmission coefficient into the dielectric layer
transmission coefficien* out of the dielectric layer

phase term to account for the difference in path length
to the observer for differeni rays leaving the layer,
as illustrated in Figure 7

phase delay associated with the field in a single crossing
of the slab.

r N
’\~
:
;
\‘
\
LY

E a)
2 lsé \ .

£l

€
Er
2
7
i

Figure 7. Difference in path length to observer for

different rays emerging from slab,
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Thus, assuming there is plane wave propagation within the
layer, and the rays between the slab and observation point are

parallel, the total reflected field for either polarization (n or 1)
can be expressed as:

ro_ 2 3,4,2 i

or in a more compact notation

© . -2 -1 .
Efot * {Rl *TTe 1 (Rp)2"3(p4)20=2(p )n }E‘ . (30)

The above assumptions will be satisfied, provided that neither
the source nor receiver are too close to the dielectric slab,

From the definitions given above, it follows that:

pd=e-ade-j62’ p =6322kls‘"ets'"91 2, _~le/ky*intcoso, )2dk,

a , and PdPa=e
(31)
For the lossless case,
Pd = e (32)
where
_ _ . d
Ka = Wegig = Wegly L L = oo (33)

t

It can be shown that R2=-R], where both coefficients have been def ined
earlier. Recall that T]=R]+1 and T2=R2+l = I-R]. Substituting these
into Equation (30), and making use of the geometric series relation

«©

XO a" = T%E for |a|<1, (34)
n=
one obtains
2
T R1(] Pdpa) i 5
tot © 1 p2pe, E (35)
1"d" a

14
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Ezot(n,l) - R(u,l)Ezn,l) (36)

where A 0 Pzp )
Ru1) = ]("’é) d2a . (37)

’ 1- R1(n,1)PdPa

Note that for the case of parallel polarization, the reflected and
transmitted E-field, in general will not have the same direction
as the incident E'-field.

C. Transmission Coefficient of Dielectric Slab

By the same argument as in the reflected field, the total
transmitted field is also equal to an infinite sum, which can be
expressed by

t 3p p2,p5plpd i
or

where E' is the incident field at the front face of the slab, and
is the term used in order to refer the phase of the transmitted

P
fYe1d to the point of reference A, as illustrated in Fiqure 8.
Note that Pt is given by

jk]LCOS(ei-et)
P, =e . (40)

Following the same procedure for the transmission problem one obtains

2 i

(1 -RYY PPE
Et = __-_]__..d._E..__ (4])

tot 1 - R2P2P
1"d a
or
3 =T £] (42)
tot(n,1) = T(u,1) E(u,1)

15
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Figure 8. Transmitted ray paths.
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where

2
(- Ryu,a)) Pefe
2P *
da

T -
l
(81— R,

The coefficients T(n,l) and R(“,l

for flat layers of constant thickness,
is approximated by a plane wave.

17

(43)

) just derived, are valid,
where the incident field




CHAPTER 111

TWO DIMENSIONAL EDGE DIFFRACTED FIELD

The geometrical optics fields have two very serious defects,

which makes them marginally useful in solving the problem mentioned
at the introduction. These two defects are

(1) G.0. fields are equal to zero in the shadow region, and

(2) there is a discontinuity in the field at the shadow and
reflection boundaries.

The shadow and reflection boundaries are shown in Figure 9.

RECEIVER

PLANE L ¢ AT Q,

nmT ‘b)

Figure 9. Geometry for 2-D edge diffraction.
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To overcome these limitations an additional field, known as
the diffracted field is added. Keller, who was the first to intro-
duce this idea has shown in [1,2,3]) how it can be added in the high
frequency solution as an extension of geometrical optics. The
postulates of Keller's theory, known as the Geometrical Theory of
Diffraction (GTD) given in [4) are:

(1) The diffracted field propagates along rays which are
determined by a generalization of Fermat's principle
to include points on the boundary surface in the ray
trajectory.

(2) Diffraction like reflection and transmission is a local
phenomenon at high frequencies, which means that it depends
only on the nature of the boundary surface and the incident
field in the immediate neighborhood of the point of
diffraction.

(3) The diffracted wave propagates along its ray so that
a) power is conserved in a tube (or strip of rays),

b) the phase delay along the ray path equals the product
of the wave number of the medium times the distance.

Diffracted rays are initiated at points on the boundary surface
where the incident geometrical optics field is discontinuous, i.e.,
at points on the surface where there is a shadow or reflection
boundary. These rays, like the geometrical optics rays travel along
paths which make the optical distance between the source point and
the field point an extremum, usually a minimum. For example, a
ray path which transverses a homogeneous medium is a straight line,
and if the ray path lies on a smooth curved surface, it is a surface
extremum or geodesic.

The total high-frequency field at an observation point is
obtained from the fields of all the rays passing through that point.
The uniform GTD (UTD) requires that the diffracted field compensate
the discontinuity in the geometrical optics field at the shadow
and reflection boundaries so that the total high-frequency field
is everywhere continuous away from the radiating body. This implies
that the diffracted fields assume their largest values near these
gogndgfiﬁz, where their magnitude is comparable to those of the

.0. field.

A general expression for the high-frequency edge diffracted
field given in 4] is

. P, P - jks
E?s) o E?Q) . -(-‘1—];5-)‘(?2-;5‘)- e (44)

19




whera o is an arbitrary reference point,

to choose the point of diffraction on the

which it emanates as the reference point.

diffraction happqgi to be one of the causti
p

It is common practice
boundary surface from
This point or line of

cs of the diffracted
sz is independent of the reference point the

roach zero exists, The diffracted field for
e caustic is at an edge assumes the form

Moy = Wy @9 (45)

field, and since
limit as Py orop
the case where tﬁ

Curvature,
derivative

B. DISCONTINUITY (N
SURFACE CURVATURE

C. DISCONTINUITY IN
ELECTRICAL PROPERTIES 0. THIN WIRE
OF THE SURFACE DIFFRACTION

Figure 10. Diffraction from lines of discontinuity.
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According to Keller's 2nd postulate, diffraction is a local
phenomenon, and since one 1is dealing with a 1inear phenomenon, A
is proportional to the incident field at the point where diffraction
is initiated.

Assuming that the magnitude of the incident field is not varying
rapidly near the point of diffraction, & has the form:

R=T'(q) . b (46)

where QE is the point of diffraction, and b the dyadic diffraction
coefficient. The edge diffracted field can be rewritten as

td(s) = T(qp) - ﬁ,/;m"s e dks (47)

Applying the generalized Fermat's principle one arrives as
shown in (8] to the equation

~ ~ Ar A ”~
e.S'=e.s =@.5 . (48)

The unit vectors 3, §', s are illustrated in Figure 11, It follows
from Figure 11 where the angles By and B, are defined that

"

cosg; = e - s' 0<8; <u/2 (49)

A

e s 0<8,<n/2 (50)

cosB0
For the 2-D case

cosBy = cosB = 0 or By = By = 1/2 . (51)

(o}

Note that g) is the angle of incidence, and Bo the angle of dif-
fraction. Prom Equation (48) Keller's Law of diffraction follows:

The angle of incidence By is equal to the angle of diffraction
Bo. This means that the diffracted rays emanating from Qg form
a cone whose half angle is 8, and whose axis is the tangent to the

edge. The incident and reflected rays from QE also lie in this
cone,

21




B, FOR 2-D CASE

Bo = Bo=T2
d
€s
)
PLANE OF
DIFFRACTION (%,8)
[}
EDGE—~ FIXED Bo
PLANE OF
INCIDENCE
(5.9

(o) EDGE

Figure 11. Diffraction at an edge.
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The expression for p given in (8] is
J1 . fen(s!es)

|
5%
Pe asin 8o

radius of curvature of incidgnt wavefront at Q; in the
plane which contains s' and e.

unit vector tangent to the edge at QE‘

unit vector normal to the edge at QE and directed away
from the center of curvature of the edge.

a radius of curvature of the edge at QE' 0.

e

A special case, is the straight edge where a»» and the expres-
sion for p simplifies to

(53)

A general expression for the dyadic diffraction coefficient for

a perfect]y conducting wedge expressed in terms of the coordinate
systems (s, By, 7} and (5', By, ') (which will be defined in Chapter
Four where the 3-D case is treated) is

D(e,0'580) = - BB, D(6,0':8,) - $'30,(0,0';8) (54)

where Do is the scalar diffraction coefficient for the acoustically
soft (Dirichlet) boundary condition at the surface of the wedge,
and D, is the scalar diffraction coefficient for the acoustically
hard ?Neumann) boundary condition.

The region close to the reflection and shadow boundaries are
known as transition reoions. In these regions the total field
changes rapidly, and the magnitude of the diffracted field as indi-
cated before is comparstie with the incident and reflected fields,
which are discontinuous in these regions. The diffracted field
must be discontinuous at shadow and reflection boundaries to yield
a continuous total field everywhere as prescribed by UTD.




A. Scalar Diffraction Coefficients for a
erfectly-Conducting Wedge

Expressions for the diffraction coefficients of a perfectly-
conducting wedge which are valid both, within and outside the trans-

ition regions, but away from the edge and ¢'=0, ¢=nn surfaces, are
given by (8]

‘j"/4 + ' 1 +
D (d,p'38!) =8 — [cot(—‘-?—ﬁ—l“ —L-L)F kL a2 (¢-4')
; 0 2n/2nk sinB0 n [ ]

+ cot(XLE 0 el i Vo (g-91)] ¢ {cot(lﬂ%%‘l)F[kme(ww )]
+ cot(ll(ig:;'l)r[kL"°a'(¢+¢')]}] : (55)

4
where F(x) is known as the transition function. The variable a (¢*¢')
is a measure of the angular separation between the field point and a
shadow or reflection boundary. The additional superscripts o, n denote
that the radii of curvature are calculated at the reflection boundaries

n-1' and (2n-1)u-¢', respectively. Thece boundaries are illustrated in ! v
Figure 13.

The transition function is defined as follows:

o, ® L2
F(x) = 23/x % [ e dU 4¢

x

» X = kla(e+e') (56)

in which one takes the principal (positive) branch ¢f the square
root. When x is small,

F(x) ~{ /ax - 2xed™/4 _ % x? e'j"/4} el (1/4+x) (57)

and when x is large

F(x) v 1+ %: - % l? - &2-13 + ;g ll (58)
X X X
if x> 10
F(x) =1 (59)
and for all x
24




D

[F(x)| <1 0 < phase of F(x) < n/4, (60)

A plot of [F(x)| and phase of F(x) is given in Figure 12.

Llet g = ¢ + ¢', then

+
+ -
2°(8) = 2 cos? (20N - 8) o (61)
+
where N~ are integers which most nearly satisfy
+
2N - B=1 , and (62)
2anN” -8 = - (63)
B. Distance Parameters
The distance Parameters are defined as (8]
; S(pé*S)p;o; SiHZB0
pe(p]+5)(92+5)
S(pr+S) ror sinze
AR W [ 0 (65)
0e(p]+5) (oys)

where p], p] are the principal radii of curvatur
1* 72

e of the incident wave-
front at QE'

principal radii of curvature of

is the distance between the
caustics of the diffracted ray in the direction of s

[8]. Note that pg is given by

Further, p;, pg are the
the reflected wavefront at QE’ and pg

pecular reflection

2(n-n_)(s*. n)
Lr - l], i} _g_.,e_-__z._ , (66)
pe pe a sin BO

where n is the unit outward vector normal to the surface near the edge.
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Figure 13. Shadow and reflection boundaries for
different angles of incidence ¢°'.

When the edge is formed by intersecting planar surfaces, one

finds that L™ - L™ = L', But when the surfaces forming the wedge are
curved, the spreading of the reflected wave is different from that of
the incident wave. This means that the radii of curvature of the re-

wavefronts at the incident shadow boundary. Thus, the parameters
L], Lro’ and L™ are needed to obtain a continuous total field.

C. Scalar Diffraction Coefficients for a

Die]ectric-Die]ectric/Meta] Junction

To generalize the edge diffraction coefficients for the perfectly-
conducting case to include diffraction due to a junction of two di-
electric plates, or a dielectric-metal Junction as illustrated in Figure
14, the following assumptions are made

(@) n%1, or pn=2

(b) the width of the dielectric plates is a
small fraction of a wavelength,
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Let us assume that Ds is given by
h

S S S
D;(¢,¢';85) = L200(¢-¢') + Lan(¢—¢') + A200(¢+¢')
s (67)

h )
+ A0 (o%e')

s s s S
h .h ,h h
where Lo’ Ln’ A0 and An are constants, and

-jm/4 e A
D (¢t¢‘) =% cot("+ A i—l) F[kL] a+(¢f¢')], and
n 2n/2nk sinBo n
(68)
(otor) = 2008 (z=(g-8")) [ R )]
D (¢-¢') = —— cot FIKL® a (¢-¢")( ,
0 2n/2nk sinBo n ¢¢
(69)

where again the subscript o refers to the 0 surface and n to the
nm surface as illustrated in Figure 13.

It follows from Table I, and Equations (68)-(69) that D (¢-4')
s associated with the incident shadow boundary discontinuityodue to
the 0-side of the wedge, and D (¢+¢') takes care of the reflection
boundary+discontinuity associafed with the same face. Likewise,

the D (¢-¢') terms play the same role, but for the nm-face of the
wedge?

8 For_the perfect]y-conducting case, the reflection coefficient
i% R" = +1ﬁ Thus, for the special case (o=«) L0=Ln=] and

A0=An=R =41,

Since the coefficients Ao, An’ Lo and Ln multiplxing the Do,

and D terms in Equation (67) are all constants, the L' and L"
paranBters do not change. This adds a restriction to the surfaces
(dielectric) making up the wedge; they will have to be flat, so

the radii of curvature of the transmitted field is the same as the
incident field at the incident shadow boundary. This is a necessary

condition in order to obtain a continuous total field as will be
shown below.
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Near the shadow or reflection boundaries,

i.e., g=2enN*F(x-¢)

+ + .
cot(ﬂig) F(kLa™(B)) ~ n[/?iff sgne-ZkLteJ"/4}93"/4 (70)

where

e>0

Near the shadow boundary due to the 0-face of
¢‘+n boundary as shown in Figure 13.

(Lit region)

€<0 (Shadow region).

TABLE I

(71)

the wedge, i.e.,

when

The cotangent is singular

value of N
at the boundary

6= -m, aSB

5 surface $=0 is shadowed N =0
' cot (1=9-010\| 6 = o' + 1, a B )
n surface ¢=nm is shadowed N =0
n+§%+g') ¢ = (2n-1)m-¢', a RB
cot < n > reflection from surface é=nmw N =
cot(—i-glﬁ;l' ;'> ¢ =n-¢', aRs -

reflection from surface ¢=0

and

_:S:{I{i-___

2n/2mk sinBo

n

O R N I )
S T vy £ [ 5%335]

where the term containing e has been neglected because e+0. Recall that

Al

sinso -

_
i

o |-
°

e

[S(p; +s) o0,

i8-8

a sin'g,

1/2

7,3 i‘“J » and
oe(o]+5)(oz+5)

3C

[VanLi sgne-ZkLieej"/4}ej"/4 (72)

Lo + small continuous

terms

(73)

(74)




[ —

Further at the shadow boundary §'=s = !

= —, thus
8} 1
Pe
. i PRI
i p s(pg*s)oqp i
E%s8) v - 1 & §QE)¢/G —- V/-T—S;——-l—$-— sgne e Jks
s(pgts) T pg(pyts)(pyts)

+ small continuous terms. (75)

Equation (75) simplifies to

L ; Py PO s
E%(s8) ~ - 2 £¥(qe) —17—3-——;--— e kS Sone
(pq*s)(p,+s)

+ small continuous terms. (76)

The incident field at a distance s from the edge in the 1it side
of the ¢'+n boundary is

T
Ef(s) = elgqe) /002 -dks ) (77)
(s407)(s0,)

On the shadow side of the ¢ '+w boundary
. pipi X
ETANS(s) < Tl (ge) /el dks (78)
(01+s)(p,+s)

where T, is the tranmission coefficient for the O-face of the wedge.
Recall Phat T is valid for a flat sab only. The total field on
the 1it side 8f the ¢'+7 boundary (e>0) is

EXO(s) = E(s) + £(s) (79)

and in the limit as >0 from the 0+ side
i
. p . -L
e P L M I
(sm]Hsmz)

Etotal(s)

+ small continuous terms (8¢)

in the shadow side of the same boundary (e<0), and in the limit
as €*0 from the 0° side
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oi oi o L
tot i 1 %2 ~-Jjks, o
€ (s) = E°(QE) T €V (3= + 1)
(s+p;)(s+02) Z 7
+ small continuous terms (81)
but
£*°(e>0) = £%Ot(cqp) (82)
therefore
L L
--22+!=23+T0 (83)
or
Ly=1-T, . (84)

The same procedure is used at the ¢'-m shadow boundary due

to the nn-face of the wedge (see Figure 13) to obtain an expression
for L
n’

Ly=1-T (85)

where Tn is the transmission coefficient of the nnface of the wedge.

Near the n-¢' reflection boundary

-Jjn/4 / ) .
Do(¢+e') ~ - . n|Vaukt" sgne - 2k ced /4 ed™/4
2ny2mk sing, (86)

and

d ~-Jjks p i _ero sgne
ETRB) ™ Age™ ™ rpray E (QE)[meo‘L
+ small continuous terms (87)

where again, the term containing ¢ has been neglected. Recall that
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J:?E'

sinB_ ~ -
0
pg(S+p£°)(s+p{°)
where
1.1 2(n.ne)(s'-n)
r-1° . 2
Pe  Pq asing

(88)

(89)

and ﬁ is the unit vector normal to the o-face of the wedge near the

reflection boundary w-¢'. In addition,

s''n = - cosei

and
11, Znengcosd,
r ! asinzB
Pe  Pe 0

(90)

(91)

Letting nen, = cosa where « is the angle between n and n,, one finds

that

2c05acosei

=L

i .
Pe asin“g,

'o,—-

@ -

It can be shown that

! = _ ;
Ng*s cos(e] a)
and
Ng*s = cos(eihx)
at the u-' boundary. It follows that
cos(0. *a)+ L+ 2c0s0,cosH
Ton, ‘1-)_2.C_°.i‘_‘11_‘:’=11,+ RSO
RN asin°g Pe asin“g
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therefore % =.—% at the reflection boundary such that
Pr 1/2
A propro
E9(RB) ~ -e7I% 3 £¥(E) 172 sgne

(s+p;°)(s+o;° )

(96)
+ small continuous terms.

The reflected <ir1d at a distance s from the edge in the lit side of

the reflection boundary m-¢' is 1/2
pro ro

[o]
1 2 e‘JkS . (97)

(S+o{°) ( S+o;°)

E"(s) = E'(QE) R, [_

where Ro is the reflection coefficient of the o-face of the wedge.

The total field in the 1it side of the m-¢' boundary (e>0) is

ER(s) = £7(s) + Ed(s) + E'(s) (98)
and in the limit as >0 from the 0+ sid 1/2
ro ro
i 1 % ks, P '
EX(s) = E'(qE) e IKS(R -2) + E'(s)
(s+01°) (s+p5") (99)

small continuous terms.

For ¢, i.e., the shadow side of the reflection boundary,and taking

the limit es0 1/2
i oo, ro ‘
Etot(s) _E gqgl 12 e-JksA0 + Ei(s)
ro ro
(steq )(s*ep ) (100)

+ small continuous terms.

Since the total field has to be continuous, it follows that
A0 A0

Ry-—5=—3 Or A, =Ry - (101)

Following the same procedure at the (2n-1)n-¢' reflection
boundary due to the nu-face of the wedge, one finds that

A =R (102)
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where Rn is the reflection coefficient of the n-face.

Therefore D; in the 2-D case can be written in the following
way

B B
D (420%368) = (1-T )0, (4-9) + (1-Tp)D, (¢-0') +
Ry Dol#+e') + R D (g+') .
Equation (?03)ﬁre%uces to the more familiar expression for D; where
To=T,0, and R0=Rn=$] for the perfect conductor,

(103)

D(0:¢"485) = D (44') + D (g-4')7 [00(e+¢) + 0, (e+6")] (104)

Since the transmission and reflection coefficients for the dielectric
material were calculated forflat layers only, Equation (103) is valid
for wedges whose fares are flat dielectric layers. Note that for the

A

A g A

2-D case R'=R", and T'=T"

The thickness of the dielectric slabs are not arbitrary either,
because the diffracted field is calculated assuming that there
is one line of diffraction on the various edges of the slabs, instead
of two, which would be the case for thick layers. That is to say if
the s1abswereelectrica]ly thick, then one would obtain a diffracted
field from both edges making up the thick edues of the slabs.

It is possible to obtain a diffraction coefficient for the
curved surface dielectric-wedge case by adding two additional terms
similar to the D_ and D expressions. That is necessary because the
transmitted fiell waveffont may have different radii of curvature
from that of the incident field. The transmitted field can be expres-
sed as the sum of two fields; one of them having the same radii of
Curvature as the incident field, and the other obviously will have
a different wavefront. The two additional terms in the diffraction
coefficient will have the transition functions necessary to extend the
latter field (transmitted field with different wavefront from that of
the incident field) into the 1it region across the ¢'+n and ¢'-m
shadow boyndaries. In other words, they contain the two additional
L10 ang N parameters, and the transition function F(x) needed to
obtain a continuous total field everywhere. To complete the solution
one would have to obtain expressions for the reflection and transmis-
sion coefficients valid for curved dielectric layars.
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CHAPTER 1V
THREE-DIMENSIONAL SLAB SCATTERING

In order to expresc the geometrical optics and diffracted
fields in three-dimensions (3-D), it is necessaryto define a suitable
set of coordinate systems. Obviously there is an infinite number of
coordinate systems that one can choose, but certain ones will be more
convenient than others. Thus, one must pick the coordinate system
within which the expressions for the fields are the simplest.

A. Ray-Fixed Coordinate System

In the case of the geometrical optics fields, the natural
coordinate system is referred to as the "ray-fixed" coordinate system
and is defined by

6, =X, (105)
A x §'1

Gl =8 x0 , and (106)

o =sxd . (107)

where fi is the unit vector normal to the surface at the point of in-
cidence as shown in Figure 15, Note £' i{s the incident unit vector
in the direction from the source to the surface, and S is the reflec-
ti?n unit vector from the point of reflection to the observation
point.

The plane of incidence is the plane containing S and h, and
the plane of reflection is the plane containing %2 and n. It follows
from the law of reflection that both planes are the same. Note that
(+) and (u) indicate vectors perpendicular and parallgl to the plane
ofincidence, respectively. The unit vectors (§'.G$,G,) form an ortho-
qormal basis set of coordinates for the 1nF1dent and transmitted
fields. Likewise the unit vectors (s,G*,u") form an orthonormal basis
set for the reflected field.

B. Edge-Fixed Coordinate System

The coordinate system defined above, although ideal for the
G.0. fields, it is not the natural system for the diffracted fields.
The coordinate system used to define the dyadic diffraction coeffici~
ent is referred to as the “edge-fixed" coordinate system.
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Figure 15. Ray fixed coordinate system used for 3D
reflection and transmission.
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First of all, two new planes need to be defined: the edge-
fixed plane of incidence, which contains the incident ray and the unit
vector € tangent to the edge at the point of incidence QE, and the
plane of diffraction, which contains the diffracted ray and €. Both
planes are illustrated in Figure 16.

The unit vectors §' and § are perpendicular to the edge-fixed
plane of incidence and the plane of diffraction, respectively. The
unit vectors &' and § lie in the edge-fixed plane of .ncidence and the
plane of diffraction, respectively as iliustrated in rigure 16.

Agair, 1ct %' be the incident unit vector from the source to
the diffraction point QE' and s the unit vector from Q. to the obser-
vation point. From the“above definitions it follows tﬁat

A A.

R i (108)
l@ X 51

Bg=d xd (109)
exs

¢ == X ~ , and (110)
| x s'

Bo=éx8 . (111)

These vectors form the two orthonormal basis of the "edge-fixed"
coordinate system. Thus, the coordinates of the diffracted ray
(s,8_,¢) are spherical coordinates, and so are the coordinates of the
incigent ray (s',8',¢'), except that the incident (radial) unit vec-
tor s' points towafd the origin QE‘

C. DOyadic Reflection Coefficient

The reflected field in the “ray-fixed" coordinate system can be
expressed as

E'(s) = E'@R) - R £ (s) (112)
where

— A
R=¢lare, +2, 2R (113)
which is the dyadic reflection coefficient. Note that R, and Ry are
the scalar reflection coefficients for the parallel and perpendicular
polarizations, respectively.

Further, - 172
PP
fuls) = | =22 edks (114)
(ul+s)(02+s)
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Figure 16. Edge fixed coordinate system used for 3p diffraction.
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In matrix notation, the dyadic reflection coefficient has the
forin:

R = s (115)
and the reflected field is given by

)| R, o [ Elar)
! £.(s) . (116)

EN(s) 0 R|| Ej(R)

D. Dyadic Transmission Coefficient

Similarly, tre transmitted field can be expressed in the follow-
ing way:

Erans(s) = EY(QR) - T £i(s) (117)
where T is the dyadic transmission coefficient

F _ Al Al A A

T-= e, e, T, te T . (118)

Note that T, and T, are the transimission coefficients for the parallel
and perpendicular polarizations, respectively.

Further,
tt 172
P1P2 -jks
ft(S) = -—T——-——t— e s (119)
(s+pl)(s+02)

where the superscript t refers to the radii of curvature of the trans-
mitted field wavefront. Since the expresgions for T, and T, given
earlier are valid for flat plates only, oy and p, are equal to the two
radii of curvature of the incident field &avefroﬁt.

Etrans

In matrix notation can be expressed as

gtrans ) 0 El(QR)

= ft(s) . (120)

0 T

trans .
E
(s) 1 elar)

L

The angle of incidence to be used in computing the reflection
and transmission coefficients is given by

= -1 2
91 = ¢cos = (-S'+n) 40 (121)




Note that only two components perpendicular to the direction
¢f preopagation are needed to specify the geometrical optics fields,
because of the nature of the G.0. fields, i.e., they are always per-
pendicular to the direction of propagation.

E. Dyadic Diffraction Coefficient

a The ordinary plane of incidence which contains the unit vectors
s' and B, intersects the edge-fixed plane of incidence along the inci-
dent ray, and }pe edge-fixed plane of reflection, which contains the

vectors & and §' along the reflected ray. This is depicted in Figure
17.

Let the angle between the edge-fixed plane of incidence and
the ordinary plane of incidence be -a. It is shown in [8] that the

angle between the edge-fixed plane of reflection and the ordinary
plane of incidence is q.

It follows from Figure (16 that the components of the incident
electric field, parallel, and perpendicular to the edge-fixed plane
of incidence can be expressed in the following way:

E} = E) cosa- E! sing (122)
: L

TR

E¢. = E, sina+ E_L cosa (123)

or in the more compact matrix notation

B s T T -
where
— cos o -sin q
(=a) = (125)
sina €os a

Likewise, the components of the reflected field in the edge-fixed
coordinate system can be expressed as

E"B = E: cos o+ EI sin o (126)
[¢]
E; = -E; Sing + E_f_ oS o (127)

or in matrix notation

Ee.f. = Tla) E" (128)

where
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Figure 17. Comparison of the edge-fixed coordinate system and the ray fixed
coordinate system. The incident and reflected rays are perpendicular
to the page and directed outward.




cos o sina

T(a) = (129)
-sin & cos o

In a manner analogous to the 2-D case, the diffracted field,
which is valid for dielectric materials also can be expressed as

ed
BO =
= |RDy(4-0') + B D (6-4") + T D (¢+4')
d
“o i (130)
= , B _ D -Jjks
+D D, (¢+s*) 1.o fd(s), where fd(s) = [3To%sy ©
39 (131)

It has already been shown in Chapter III for the 2-D case,
that the coefficients multiplying the D terms are proportional to
the discontinuities of the geometrical optics field at the shadow and
reflection boundaries. The same is true for the 2-D case, except that
the coefficients are 2x2 matrices, which can be obtained by following
the same procedure as in the 2-D case.

To find f: one has to examine the ¢ '+ v shadow boundary (see
Figure 13), where D (4-4') is the only term that is discontinuous.
From Figure 16,it i8 easy to see that on the 1it side of the ¢'+n

boundary
i j
E E.
% %
. = - . . (132)
i i

On the shadow side of the same boundary, the transmitted field is
present. It follows that

34 ]
0 =
= -T(-q) , (133)

e ] ES

but the transmitted fielq inithe "ray-fixed" coordinate system can be
expressed in terms of (E',,E',) as

By
t 0 i
| [ 0 3
- T -a) |80 . (134)
3 R 3

0

Therefore (Et ,Et) in terms of (g:.,Ei.) is given by
fo ¢ 43 PBo ¢




t
Eg

e

T, 0 34
o 1 0
= -T(-a) T (-) s (135)
0

N E¢e

so the discontinuity at the ¢'+n boundary is equal to

cos o -sind | T, 0 cosa  sin

-1 0
+
0o -1 sin a  cosq {0 T ||-sin®  cos
’ Ei
o (136)
i
E &

thus, A is given by

-1+ Tﬂ cosa + Ti §in2q (W - T°) sinacosa
A=
(T“0 - Tf) sinacos a -1+ T..° sinza + '&(_) cosaz
(137)

where the "o" superscript refers to the o-face of the wedge.

To find T, one has to find the discontinuity at the (n-¢')
boundary, where D_(¢+¢') is the only term that is discontinuous.
On the 1it side of the l1-¢') boundary, the reflected field is ex-
pressed in the edge-fixed coordinate system by

r 0 i
= T(a) T™H-a) | | . (138)

r 0 1

E¢ 0 R, Egr

Therefore, the discontinuity is given by
cos a sin;] Rﬁ 0 cos o sin¢a E;

. o} i (139)
-sin a cos a 0 Ry -sin @ cos ¢ E¢.

which implies that
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= RS cosé RO sind (RO+RD) singcosy (140)
i : 140
-(Ry*R}) singcosq  -RQ sin +R cosd

Exactly the same procedure must be followed to find B and D.
That is, finding the discontinuities at the (¢'-7) and (2n-1)g=¢°
boundaries, where Dn(¢-¢') and Dn(¢+¢‘) happen to be discontinuous,
respectively. It follows that

_ r-1 + TNcos2 +T"sind (TN-T"singcos4
5 I L 0L (141)
- . . 2 2
(TS-{E)s1nacosq -1+ E?s1na+[2cosa
and N

- (kSCOSE -Qfsini (Rs+gz)sinacosa

o (Ry*R])si RDsinZ#RMcos? - (4
|- (Ry*R) )singcos, -R,sinG#R cosg

where the superscript “n" refers to the nm-face of the wedge.

The 3-D diffracted field can be written in matrix form as

d i
3] 0 By | [k
—
- -2 Jks (143)
d ’ 5(P+s)
3 -0, by | LEd,

where
Da = [1 - ﬂﬁcos% - {fsini] Do(¢-¢') + [1 - Tncos% - tﬂsin%]x
Dn(¢-¢‘) + [—Rﬁcos% + Rﬁsin%J Do(¢+¢') + [-chos% +
Rsing | b (e+e") (144)
D, = [tf—Tglsina;osa Do (o=t') + [tz-Tn]sinacosu D (=)

0 ¢ <3 ' nanl. .
+ [—R“ ~R_L] sina cosaao(¢»+¢ ) + [—R"-RJ_Jsmoposux

D (4te') (145)
45

]
|
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0. = [-T3+Tf]sinuc05a Dy(¢=¢') + [-T3+t2 sinacosa B (¢-¢*)

+ [R3+Rf]sinac05a Do(¢+¢u) + [R3+R2]sinacosa Dn(¢*¢')
(146)

2 2

a- (ﬁcosa Do(¢-¢‘) + [1 - Tssinza- [Epos%] X
2a - Ricos%] Do(¢+¢') + [Rnsin% -

= [1 - T0sin

o
Q
]

. 0
Dn(¢-¢ ) + [RuSIH
R"cos’ ]0 (o+6") (147)
L n

The diffracted field can, also, be expressed in a more compact
notation as

f?s) = E'(Q-E) - ﬁ(¢"¢;36)v4ﬂ}£57 o-Jks (148)

where

D(o's4i8) = BoBg Dy -'BoDy-Bab D -6'dDy  (149)

Note that for the dielectric case, the dyadic diffraction co-
efficient is equal to the sum of four dyads, but it reduces to dyadic
form for the perfectly-conducting wedge. That is, for the perfectly-
conducting case

Dp =D, =0 (150)
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CHAPTER v
CURVED SURFACE DIFFRACTION

It has been mentioned before that in certain cases surface rays
are excited along the surface of convex bodies as depicted in Figure

These rays can be determined using the generalized Fermat's
principle, According to this principle, a ray emanating from a point
source makes the optical distance between the source and observation
points an extremum. Thus, if the ray path lies on a smooth surface,
it follows a geodesic path on the surface and continually sheds
energy into the shadow region.

Surface rays, which are also referred to as creeping waves,
can be excited by sources which are located either on or off a smooth
convex surface, or by the illumination of an edge or other geometri-
cal or electrical discontinuity in an otherwise smooth convex surface.

Because of it'; many applications in practical problems, such
as the radiation of antennas mounted on convex surfaces, the case
when the sourcelies on the surface of a convex body is a very impor-
tant problem. The surface is assumed to be perfectly conducting, as
shown in Figure 19.

A plane tangent to the surface at the source point divides the
region in two parts; the 1it region and shadow regions. This plane
is referred to as the shadow boundary. The field in the deep 1lit
region is essentially nbtained from geometrizal optice, and the field
in the deep shadow region is relatively weak, leaving the fields in
the region adjacent to the shadow boundary a most interesting case.

A. Lit Region

From Fermat's principle, the source dF?(Q') excites waves which
propagate along straight line ray paths from he source to field point
in the 1it region as depicted in Figure 20, dP,(Q') is an infinites-

imal magnetic moment, and dF‘Q') an infinitesimal current moment ,
where

dP.(Q") = E(Q') x n'da’ (151)

[N
'U
o
—
O
~—
£}

I(g') de' n (152)
47




O
65(0@‘**
RB ?\05 $(
N A 2
~N |
~
RN ’ ——_F55
7,
7/ TN
[”— Sr
s8 L =A7F0 PLANE L € AT Qg
e
W EDGE
/ JYsr (SURFACE NORMAL
ES / DISCONTINUOUS)
sd
Figure 18. Surface diffracted field SD. ES refers to the

surface of the wedge.
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E(Q') is the electric field at Q', n the outward unit surface
normal at Q', and da' the area element at Q'. I(2') represents the

electric current distribution on the monopole, and 2' is the distance
parameter along the monopcle.

The field due to this source (dFQ(Q')) at point P is [9]

ii 172
~ 102 - jk% -2 -3
dEq(P, ) = dEp(P.) e v770+ O(m ‘,m>7]
g L g 0 (gb+pf)(gb+;g) £ L

(153)

i Note that Q' is the only caustic of the incident rays, so

i
p
and o, (the principal radii o‘ curyaturq of thgzinggdent field wavé-
front] are identical, f.e., p

= pz = p o[mg |mz |oooJ are higher
order terms which may be negl%cted in most cases.

Since dE@(PL) is independent of the reference point Pb, 95 can
be chosen to be“at Q', and it follows that

. 2
lim ?‘ dEg(P ) = Iy should exist (154)
[P

D.i+0

N
s -
0

S

[}
It is shown in (9] that IQ can be related to dFQ(Q‘) by

rﬁ = dPg(Q') - ?é

(155)
Combining equations (153), (154), and (155)
=& -Jks
= 1 € -2 -3

where

7 - _.%5 (B! nA+t 6B+6' 6¢eirp 0] (157)

m T L L L L ’

and

_ JkZO . P

T; == (M aM+n BN (158)

The coefficients A, B, C, D, M and N are defined in Table 11,
and Z0 is the free space wave impedance.

en component of the df field for the magnetic
51
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(dP,(Q")) is
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TABLE I1
Lit Region

Slot or th case

Monopole or dFe case

A B c 0 M N T0 F
2 . A . . , . . Lol i
H +T2Fcos9' s -T%cos?s’ | TF | T Feose' sinol H‘+T2Fcosel] sina' T F T(Q )0 (Q") | 2 -# cosg
0 0 o [0 0 0 9 14T cos s
0




dEn(P) = F5 [ (@) + b1)(H* + 12Fcosel) + (dP (') -
-Jjks

t') TOFCOSQI] . & — + O[m;?,m}?,...] (159)
and for the electric soufce case (dPé(Q'))
_JkZ g » . _-jks
dEg(PL) = —470 dPe(Q')sme1 [HY+ ToFcose1 ]e_s__ +
O[m'z,m_B,...] . (160)

_ Likewise, the b component of dE for the magnetic source !
de(Q') case is

AP ) = (@) - BITF + (P (0) - 1) x

2 ~Jks 2 -3 el
2 2 i e -2 -
(s* - ToFeos“e) ] x — * O[m2 my seee] ‘
and for the electric source dFé(Q')
-ikz . -Jks
b _ TIRE, Neso g € -2 -3
dEg(P) = = P, (Q Jsing T FE— *OR,.m,..]  (162) ;
where
. 3
HY = 13 ERATEE (163)
. : . 3
= -J&./3
s Wa(gz)e 2 (164)
and
% i
F = S H %o;ei . (165)

- 2
1+ Tocos 8

The angle o'is defined by n's = cos 6! as shown in Figure 2.
Further, ©

1 exp(- jt&
g(e) = —-J g 4T (166)
] el 351 w(n)

and
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v 1 - dr exp(-jt&) 167
) = - —TT (167)
© exp[-j—_,;]

where g(g) and a(g) are known as the acoustic hard and soft Fock func-
tions, respectively. The Fock type Airy function is given by’

3
1 e[rt-t /3]

Wl 1) = — de (168)

£xpl J’%J

and wi(t) is the derivative of WZ(T) with respect to 1. The Fock para-
meter for the 1it region is

g, = -m,(Q") cos @ (169)
with
mg‘(Q') = _hfzﬂLQ'; 1 1/3 s (170)
(1+T0cos 8 )
4 and kp,'(t') 1/3
m(t') = é ’ (171)

) where m(Q') is equal to m(t') evaluated at t'=Q'. Here o (t') is the
surface radius of curvature along the ray path at t'. 9

B. Shadow Region

Surface rays in the shadow region are illustrated in Figure 21.
According to the generalized Fermat's principle, a ray emanating from
the source ng(Q') at Q' propagates along a geodesic path Q'Q on the
surface and toward the observation point along the geodecic tangent

at Q.
The field df@ at P is [9]
172
°g°g -jks
de(PS) = dE@(PO) g I e 04 O[m'z’m°3,...]
li\so+pl ) (50+02)
(172)

where P_ is the reference point, and pi,pg are the principal radii of
curvatufe of the wavefront.
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Figure 21. Surface diffracted ray tube and ray coordinates
for the shadow region.
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Again, as in the 1lit region, dEp(P ) is independent of the
reference point P » where P_ is an arb trirydpoint It is common to

let P be at the 3iffractioR point Q, then ofo, Py*0. and s 0,

It follows that

.V d = - .
;;TQ ey dEm(P)) = Tp(a',Q) (173)

pf*o

d
P27%¢
then
172 .
dE(P,) = Tp(Q*,Q) [;(%ﬂ e kS om2,m3,... 1 (17a)

Since one is dealing with a linear

ti pheonomenon, Ly can be re-
lated to the source strength dP@ at Q' by

[g(0".0) = dPg(a',0) - Tp(e',Q) (175)
where T@(Q',Q) is given by [9]

Ta(Q,0) = " IBAT (0 + b, (01)s + b'bT,(0)s

172 1/6
A A 1 dw p (Q)
tl T (Ql HJ ‘Jkt lj 0 d
nT, JH]l e X Y] Py (176)

-jkz

+

Te(@,0) = 2 [t (q)m + n'bT(Q)s] eIkt
a7 Y2 [ o] V6 .
0] S P I (177)

As illustrated in Figure 19a, there is an orthonormal basis at
each point on the surface. Note that (t',n',b') and (t,n,b) are the

tangent, normal and binormal unit vectors to the surface at the source

point (Q') and diffraction point (Q), respectively. The components of
the two orthonormal sets are related by

t x n = b £ xn' = bt (178)
The quantities T (Q'), 1,(Q"),.

«os T.(Q') in Equations (176)
and (177) are the torsi&n factofs and are 99ven in Table III.
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Shadow Region
- MONOPOLE OR SURFACE RAY SURFACE nowsl SURFACE ]
TYPE OF CONVEX SLOT OR dp, CASE 45, CASE TORSION or cunvaTume 1 (o FRACTED
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SURFACE t DIRECTION OISTANCE
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a' is defined by 2. t' = cosa' where ;i is the principal direction unit vector
associated with R,1Q').
2.

The quantities E and G denote two of the three coefficients E, F, G that appear
in the "first fundamental form" of Differential Geometry.




Further, (179)
H=g(¢) and

s = oy 3o - (180)

The Fock parameter ¢ for the shadow region is given in [17] as

Q
o= | Tt g (181)
Q' g
where t is the geodesic arc length from Q' to Q. The width of the sur-
face ray tube at Q,dn(Q) is given by

- dn(Q) = pcdq, (182)
Combining Equations (174)-(177) one obtains for the d'P'm(Q')
(Q') dy

. ) -1/6 1/2
n - -j 1 An '.kt
dEp(P) = "y (P (Q')+b')H e J [%%TUT] {Ta%] X

1/2
1 -jks -2 -3
[:s S+Dc):l e + ol:m ,m ,_] (183)

P) = [Edvh(o-).ﬁ')ros + (dﬁh(q').%')s] ekt

S
(Ql) -1/6 [d_wﬂl/z ) ) 1/2 e-jks ,
oo (Q) dy s{p . *s)

g
0 [m'z,m':,‘,..._-l (184)

and for the dﬁe(Q') case

. -1/6 172
-jkZ l (Q") dy
n - 0 ' -jkt
dEe(PS) = 7 dPe(Q Y He » [aw—o] X

1 172 o-Jks + O[m'z,m°3,...J
S S+pc

b . 'szo ' -jkt (Q') dy
dEe(PS) = IT dPe(Q ) TO Se [%;-(-Q-)—' d-d'q_l X

case

b

dE
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172
‘ 1 _iks , o2 o3 ] 85
‘\ [—S—(—;‘_—pc—)— e + 0[m N | P s (1 )
f where
| T, = (0" g(Q") (186)

with T(Q') being the surface torsion at the source location. Expres-
sions for T(Q') are given in Table III.

The formulas given for surfaces rays are of interest, because
of the many practical problems where the fields radiated from antennas
mounted on convex surfaces need to be calculated.

Of particular interest is the prolate spheroid, because this
shape is used to model objects like the fuselage of an aircraft, the
mast of a ship, etc. Because the solution in the 1it region is
straightforward, the most critical aspect of this kind of problem,
is the calculation of the geodesic paths associated with the UTD solu-
tion in the shadow region. In [10] efficient numerical algorithms are
examined, where the spheroid is simulated by a perturbed cone or
cylinder model depending on the location of the source. When the source
is at the center of the spheroid, a cylinder model is used, and when
the source is off the center, a cone model is used.

Because the cone and cylinder are developed surfaces, it is
casy to find the geodesic path for a given radiation direction (et,e ).
Assuming that a new radiation direction does not differ much from th&
previous direction, this method uses the properties of the surface,
and the previous geodesic path to find the new diffraction point.

This approach decreases the amount of computer time needed to calcu-
late the diffraction points, and geodesic paths, making it a very

efficient and accurate solution for the radiation problem.
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CHAPTER VI

RADIATION PATTERN OF AN ANTENNA MOUNTED ON A
CONVEX BODY IN THE PRESENCE OF A DIELECTRIC SLAB

Many structures such as aircraft, ships, etc., can be modeled
using flat plates and some kind of convex body such as a cylinder,
sphere, spheroid, etc. The radiating system shown in Figure 1 is a
good starting point in solving more complicated structures in that it
makes use of all the results given up to this point.

As illustrated in Figure 1, consider the antenna mounted on a
perfectly conducting convex surface in the presence of an n-sided
finite flat dielectric slab, which in generalcan have some loss. In
arder to avoid some geometric complications, let us assume that the
dielectric slab is not attached to the convex surface.

The total field at point(p),which has to be at least a wave-
length away from any diffraction point is equal to the superposition
of the following field components as depicted in Figure 22.

(1) direct field from the source

(2) reflected fields from the finite dielectric slab

(3) transmitted fields through the finite dielectric
slab

(84) curved surface diffracted fields from the convex
surface

(5) diffracted fields from the edges of the slab

(6) vertex diffraction from each of the slab corners.

It is convenient to first examine the radiation from the antenna
without the presence of the slab. According to Geometrical Optics,
the region external to the convex surface is divided into 1it and
shadow regions by a plane tangent to the surface at Q'. This plane
is referred to as the shadow boundary, and the region adjacent to this
plane is known as the transition region.

Consider two types of antennas: slots and monopoles on a con- P
vex surface. The expressions for df@ that were given in Chapter V e
are valid for infinitesimal slot and monopole antennas mounted on an §

arbitrary perfectly conducting convex surface. They were obtained by UL
generalizing the solutions for a circular cylinder. That is justified -
on the basis of the locality of the high-frequency propagation which

is one of Keller's postulates. The generalization is necessary and

very useful in analyzing complicated structures.
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A. Pattern Factors

There are several ways of extending the expressions of Chapter
V to cases where the slots are not infinitesimal. One approach is to
integrate the short-slot solutions over the source distribution if it's
known. This is based on the superposition theorem, and one can approx-
imate the source distribution by an array of short magnetic dipoles
on the conducting surface.

A more efficient approach isto modify the short-slot solutions
as indicated in [12] and [13], where the results for the aperture
problem are obtained by multiplying the short-slot solution by an ap-
propriate pattern factor. The solution for the monopole antenna can
be found using the reciprocity theorem and the equation of continuity
for the slot case, as shown in [12] and [13].

The pattern factors were obtained by assuming that the slot
aperture on the convex surface could be approximated by a slot on a flat
plate. This implies that the dimensions of the slot have to be very
small in relation to the radii of curvature of the convex surface,

The pattern factors for an arbitrary convex surface are[10]

(a) for the shadow region

kB/s 2. . kA 1
5., 28 cos(S5(P -t)) J 51né-?(Pm.b )q (187)
m mx k 5 e 2 AA T
l- ?T‘Pm't ) 2 md’ J
Pa=n'll - cos(kl] (188)
(b) for the 1it region
COS(kBsinei(b 1)) sin(kAsinei(ﬁ -B‘))
P'il,:"}, _Zﬁ 2 m - —EA .m
m m ¢ s .. PR PP
1- (Bsing' (P .t1)) N6 (Pyeb")
(189)
5% _ 2, cos(kL n'.s) - cos(kL)
o=t coslkbnts) - o (190)
1-(n'.s)
ﬁm = unit vector in the direction of magnetic current

moment

A,8 = length of the short and long sides of the slot,
respectively,

It is assumed that a cosine distribution exists along the B
dimension and a uniform distribution along the A dimension.
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o T

L = length of the monopole, which is not to exceed a

quarter wavelength. All the other variables were
def ined before.

: Thus, by replacing dFF in Equations /159)-(162) and (183)-(185)
: in Chapter V by the pattern Factors Just given, one obtains expressions

for the fields due to aperture and monopole antennas on a convex sur-
face:

Lit Region

(a) ﬁ; (slot)

i ; - -Jks

- k a| R‘ 2 —2 ] i j
E;(PL) = %; [(5;-b )(H +T°Fcose‘)+(pm.t )T Feoso ] e — ¢+ {
-2 -3 |
o[mz !mz "“] (191) j
EX(p, ) = 3k [(F“-B')r F+(P* i‘)(SZ-Tchoszei)] E:EEE + j
m't’ " An M'm o ‘'m’ 0 s g
-2 -3 ;
O[mz m, seee] (192) ;

(b) F: (monopole)

-jkz A . .1 _-jks L ;

En(P,) = Tr_ﬂ[(rz.n')sine](HzHchose‘)]e—-g__ +o[m,m3,...] {

(193) |

-ikz . . -Jks Y ‘

EolP) = = Phent)sine TR 0w ? 3 ] (190)

Shadow Region |

(a) F; (slot)

-1/6 1/2 ‘

, » (Q* dy ‘

n = ~dk(ps 1, -gkt | rg(Q) 0 g

En(Pg) = (P -b') He FgTﬁT"‘ W X ‘

’— Ll 7 et o g ] (195) ;
L?(p*c_,_—sy s sess
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9

172 172
4y 1 -jks -2 -3
[WJ {;“T?;)J e Jks o[m “,m™~,...7 (196)

(b) PS (monopole)

b k . - kt n (Q") -1/6
oy [ ppens] oo [0

e
-1/6 172
-jkZ , 0q(Q')] dy
LRy s aivg -kt | Vg
arg - e ey e [0 o 1
1/2 .
1 -Jks -2 -3
[?(.p—cj‘-gz.} e + O[m ’m ’00.] (197)
. ] -1/6 172
T ”9‘:" ) Y0
EelPs) = 27 (Pen')T S e [ﬁg dy” *
1/2 .
{%151+S e~Jks O[m'z,m'°,...] (198)
c

The first step in the solution of each term of the total GTD
field is to determine the ray path using the law of reflection or/and
diffraction. Assuming the ray path is determined, one must then
examine the total ray path, to see whether or not it intersected an
obstacle. If the ray path is not interrupted, the field value is com-
puted and superimposed with other terms. On the other hand, if the
path is interrupted, one can still compute the field at the receiver
location, and then multiply it hy some factor to take into account
the transmission through the obstacle. Of course, if there is not
transmission, the transmission coefficient is zero and therefore the
field is, also, zero.

B. Source Field

The direct and curved surface diffracted fields are computed
using the results given in Equation (191) through (198). B8oth fields
are referred to as the source fields in this chapter. Obviously,
when the field point is in the 1it region, the 1it region solution is |
used, and the shadow region solution is used if the field point is |
in the shadow region.
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In order to determine the path of the reflected field from the

finite dielectric slab, the law of reflection is used.

To begin the

solution, the receiver image position is found as illustrated in

Figure 23

The source solution is then used to compute the TS field at
The second step is to check if the ray path from

the image position.

the effective source to the image position intersects the slab, If it
does intersect, the reflected field £ is computed as follows:
r [ s
Ex Txx Txy sz Ex
r s
= T T
Ey Tyx y n Ey (199)
r s
sz Tax sz T2z | B2
4L JL

If the ray path from the source to the receiver image position
does intersect the slab, then the reflected field is computed. The
T-matrix in Equation (199) represents the reflected field polarization
transformation matrix. It is determined from the aquations [13]

T o= (nESn - (T.E9)t (200)
(t.E5)t = ES - (ES.n)n (201)
" = 2(n.ES)n-ES (202)

or . . . .~
Tex X * Tyx y+T, 2= 2(nex)n-x (203)

A . TR
Txy X + Tyy y + sz z = 2(n.y)n-y (204)
sz X + Tyz y + Tzz z = 2(n.z)n-2 (205)

A

where n and t are the normal and taraent unit vectors to the dielectric
slab, respectively. Note that the T-matrix is independent of the re-

ceiver location, so in order to improve the efficiency of the numerical
solution, it can be stored in memory,

D. Edge-Diffracted Field

. The diffracted fields from the edges of the slab are obtained
using the diffraction coefficients presented in Chapters Il and IV.

Assuming that one has determined the ray paths for these fields, the
diffracted fields are given by
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Figure 23. Geometry used to determine reflected field from
plate.

i A'A AIA ‘lA ‘f
Tls) = Elae). Boltgla = ¢'BoDy = Bo#0. - ¢'¢04 ] «x

. (206) ;
's_C#S-)' e Jks

where D, D, D _, Dy are given in Equations (144), (145), (146), and Y
(147), ?espsctiSely.

Ei(QE) can be determined from the expressions for the source
field. In some cases, as illustrated in Figure 24, the incident field
on an edge of theplate is a surface diffracted field. To completely |
specify the field at Q., one has to cgnpute 5"9 values of the two
radii of cyrvature of Ehe wavefront p, and o,, and the amplitude and
phase of T at QE. Recal! that one csustic bf T (QE) is at Q as
shown in Figure 24, so

CONVEX
SURFACE

Figure 24. Surface diffracted ray incident on an edge of the
plate.
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:pf =5 (207)
whereas, the other radius of Curvature is given by
d d
92 = pC + pl (208)
such that for an arbitrary convex surface
_2£a6
c TiG/d - (209)

Note that E and G are defined in Table III, and t as before, is the arc
length along the ray path on the convex surface.

Recall that the edge diffraction coefficients are based on the
diffraction from infinite straight edges, and since theplate is finite,
there will be a discontinuity in the edge diffracted fields due to the
corners of the slab. To compensate for this discontinuity, a diffrac-

and one edge are given in [14], but they are not considered here. 1t
is enough to mention, that this coefficient in its present form pre-
dicts accurately the corner effect of various plate structures.

Probably the most difficult part in computing the edge diffrac-
tion field, is to determine the ray path. As depicted in Figure 25,

the law of diffraction (§'.& = §+&) is used to find the point of dif-
fraction (xd,yc,zd).

EFFECTIVE SOURCE
(Xgs1 Yess 2¢5)

{Xg,¥g,25)

RECEIVER
P (xe, Yes2y)

A
S_-
e 4

Axgyg2g) ——
DIFFRACTION POINT

Figure 25. Geometry depicting diffraction from straight
edge of finite plate.
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For any particular sour

ce,plate edge, and receiver location, the
diffracted ray path is unique.

The key in finding this unique path

is to determine the diffraction point along a given edge of the plate.
Efficient algorithms to calculate the diffraction point have been
developed at the ElectroScience Laboratory. These algorithms can cal-
culate the diffraction point for any edge, including the junction edge
(the edge formed by the junction of the plate and convex surface).

; ; The junction edge need not be straight, which complicates the solution.

For[a fomplete description of these algorithms refer to Reference [13]
or 15].
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CHAPTER VII
RESULTS

The final and probably most critical task is to ascertain the
validity of the solutions given in the previous chapters. This is done

here by comparing various calculated conical patterns with measured
results.

The geometry used to test the validity of the analytical solu-
tions is illustrated in Figure 26, where the source is mounted on a
2)x x 4) prolate spheroid. The source is a quarter-inch monopole or a
slot placed at 6_=90°, which means that the cylinder perturbation solu-
tion [10] is used to calculate the various geodesic paths.

It is necessary to define two coordinate systems to examine
various conical pattern cuts. One of them is the cartesian coordinate
system (R',¥',2') which defines the spheroid geometry as shown in
Figure 26. This system is then rotated into what is referred to as the
(X,y,2) system as illustrated in Figure 27. Note that the new carte-
sian coordinates are found by first rotating about the z'-axis the
angle ¢ , and then about the y-axis the angle © . The pattern is then
taken ifi the (x,y,z) coordinate system with ¢ fixed and varying ¢ from

0 to 360.
zl
4
E o
11 Mo
95 = 90° (e
SOURCE a=6"
\\j;_ ¢ =12"
ST '
o -
‘l \\\F y ' - 4GHI
\A\———/‘ H
e 36

RECEIVER
; Figure 26. Geometry used to test computed results.
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Figure 27. Definition of pattern axis,

It js appropriate at this point to describe in some detail the i
criteria used in deciding how many surface diffracted rays need to be
used for a particular radiation direction, In the shadow region as ﬁ
indicated in Chapter Vv, the energy propagates outward from the source )
along the geodesic paths. This is T1ustrated in Figure 28 for a :
2ix 4 A prolate spheroid. As the energy flows around the surface, it ;|
is continuously diffracted along the geodesic tangent toward the field |
point, and thys decreasing in magnitude in relation to be maximum field ;
strength. This implies t i |
1
1

source point has the greatest effect on the
dow region. The region on the spheroid where the magnitude of the syr-
face ray is not below a certain 1 i
is depicted in Figure 29, Thus, knowing the region of greatest
energy flow, one can i i

Ny rays to use for a
given radiation direction.

Calculated and measured roll-plane patterns (8 =0, ¢.=0,8=90)

are shown in Figure 30 for 4 quarter-~inch monopole antenna radiating
without the presence of the slap.

4 Both resylts agree very well except
in the region from ¢ =144 to $=21¢6°

|
» where the calculated resylts are 1
a few decibels below the measured results. This is due to the fact

that only rays 1 and 2 shown in Figure 31 are used. Because of the

dimensions of the spheroid, i.e., c=41 is only twice as long as a=2x,
the contributions of rays 3 and 4 are important and if included, the
70
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Figure 29. Region where the magnitude of the surface rays is

significant in relation to the pattern maximum,
i.e., 40 dB below.
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Figure 30. Ro1l plane ( %=O , ¢=0 ,€x90 ) patterns for a 0.25" monopole mounted at
65=90 . Only'rays I and 2 are included (see Figure 31).
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calculated pattern would resemble more closely the measured pattern
in that region.

In most practical applications, the ratio of the major and minor
axis is much greater than two, which implies that rays 3 and 4 are not
significant in the roll p13ne cut. In all the caculated roll-plane
patterns (o =0.,¢C=0.,e=90. ) that are shown here, only rays 1 and 2
are includef.

The results shown in this thesis are divided into two sets
according to the position of the dielectric and/or metal plate(s). The
first set includes calculated and measured conical patterns for the
geometry depicted in Figure 32.

Figures 33-39 show roll plane patterns for a quarter-inch mono-
pole located at 85=90 (see Figure 26) radiating in the presence of
metal or dielectric plates of different thickness and dielectric con-
stants. There is very good agreement between the calculated and
measured patterns even though in making the measurements, it was very
difficult to position the plate at the exact desired location due to
the lack of a reference coordinate system. Note that from now on, if
it is not specified, it is assumed that the source is a quarter-inch
monopole located at 65=90 °,

It was indicated that the GTD solution is equal to the sum of
several terms. Figures 40-41 show the individual terms of the solution
for a r>ll-plane cut ( =0=¢Y’e=90)’ i.e., source, reflected and dif-
‘racted fields, for a 10" x 10" dielectric slab of ¢ =10.0 and d=0.25".
Figure 42 shows the total field for the dielectric sfab and for a metal
backed dielectric.

Figure 44 shows the effect of the dielectric constant on the
total field for four different dielectric constants. A1l the patterns
are roll-plane cuts. Figure 45 shows the same results except the
dielectric slab is metal backed. -

Even though corner diffraction was not discussed in detail,
Figure 46 shows, the effect of adding the corner diffracted term to
the total solution and it is clear that the discontinuity around ¢ =70
is removed when the corner diffracted term is added. The conical
patterns are for ¢ 0.5 ¢.=0. ,0=75.1°,

More calculated examples are shown in Figures 47-48 for conical
patterns other than roll-plane cuts where both polarizations (§3,E )
are significant. Another common source besides the monopole is a %
antenna. Figure 49 shows patterns for axial and circumferential
0.4" x 0.8" slots located at 0=90°. It is assumed a cosine distri-
bution exists along the longer side and an uniform distribution along
the shorter side of the slot.

Tot
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Figure 32. End view of the geometry used to calculate
and measure the conical patterns depicted in
Figures 33-49,
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Figure 35. Roll plane (c_=0°,: =0°,6=90°) patterns for a 0.25" monopole mounted at 04=9M°
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Figure 40. Calculated radiation patterns (s = ° b = 0% e = 90°) for a 0.25" monopole
mounted at 6_ = 909 The dielectfic slabis a 10" x 10"

d = 0.264} tdn 5 = 0.0 (See Figure 32), b = 36
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Figure 41,

180°

Reflected Field Diffracted Field

Calculated radiation patterps (o = 0° 6 =020 =090° for a 0.25"
monopole mounted at e_ = 90° Th& dielectric slab is a 10" x 10" square,
€. = 10., d = 0.264" fan § = 0.0 (See Figure 32), bg = 36"




Total field for dielectric plate only Total field for a metal-backed
dielectric plate

€, 2=90°% for a 0.25" monopcle

10" x 10" square, Ep = 13.,
36".

Calculated radiation patterns (o_ = 0°, be =
mounted at 6_ = 90°. The dielectric slabis

d = 0.264", fan © = 0.0, (See Figure 32), o

Figure 42,
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Spheroid only Metal plate
(no plate)

27¢0° 90°
180°
€, = 2.55 Metal-backed dielectric plate
Dielectric plate only e = 2.55

Figure 43. Calculated roll-plane (o_ = 0°, ¢ 0°, 6 = 90°) patterns
for a 0.25" monopole moufited at 6% = 909, The dielectric
slab is a 10" x 10" square, of thickness d = 0.145", tan ¢
= 0.0 (See Figure 32), pg = 36".
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270°

Figure 44.

Mxh,.._ T .

Calculated roll-plane (0 =0, 4 = 0", 6 = 90 ) patterns
for a 0.25" monopole locdted at 0 = 9g . The dielectric
plate is a 10" x 10" square of th¥ckness d = 0.264",

tan § = 0.0, (See Figure 32), ng = 36",
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Figure 45.

Calculated roll-plane (v _ = 0°, G " 0”, u = 90’) patterns
for a 0.25" monopole moufited at n¢ = 90 . The plate is a
10" x 10" metal-backed dielectric plate of thickness

d = 0.264", tan & = 0.0 (See Figure 32), g = 36".
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Figure 46. Calculated patterns (ec = 0%, ¢ =0% o= 75.10°%) for =
0.25" monopole located“at e = 98°. The plate (metal or

dielectric) is a 10" x 10" Square. The dielectric plate
has a thickness of d = 0.264", e, = 10., tan § = 0. (See
Figure 32) o = 36".
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Figure 47, Calculated conical patterns for a 025" monopole Tocated at
8. = 900, The dielectric plate is a 12" x 12" square of
thickness d = 0.25", €. = 10., tan § = 0.0 (See Figure 32)
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Figure 48. Calculated conical patterns for a 9.25" monopole mount~:
at 6 = 90°. The dielectric plate is a 12" x 12" square at
thickness d = 0.25", ¢, = 10., tan & = 0.0 (See Figure 52)
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Figure 49. Calculated roll-plane (e _ = 0°. . = 0°, 8 = 90°) patterns
for a 0.4" x 0.8" slot 1§cated atSe = 900, The dielectric

plate is a 12" x 12" square of thicRness d = 0.25", € ® 10.,
tan 6 = 0.0 (See Figure 32) g = 36".
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In the geometry for the first set of results (see Figure 32),
the plate is located in both the 1it and shadow regions. That is, the
incident field along the slab is composed of the direct source field
and the surface diffracted field. The second set of conical patterns
is for the geometry depicted in Figure 50. In this case the slab is
located entirely in the shadow region, so the fields illuminating the
plate are surface diffracted rays only. Figures 51-56 show calculated
and measured roll-plane patterns for a quarter-inch monopole located
at o_ =90 . Again, the results are seen to agree ver well. Note that
therd is a discontinuity in the claculated patterns for the dielectric
siab case around ¢+ = 90, which implies that some extra term should be
added to the total field. In this case that term is the double-dif-
fracted field which was not included in the total field. This illus-
trates & very important property of GID, which is the fact that if any
term that is significant in the total solution is not included, it
shows up in the calculated pattern in the form of a jump or kink.

Thus, one has a self-correcting mechanism by which one can guage the
impact of the missing term and add higher order terms to the solution
until one obtains a continuous pattern.

The individual terms that make up the total field fer the geo-
metry of Figure 50 are shown in Figures 57-58 for a 12" x 12" dielec-
tric slab of thickness d=0.25" and «_=10. Figure 58 also shows tne
total field for the dielectric slab dnd for a metal-backed dielectric.

Finally, Figures 59-61 show the effect of the dielectric con-
stant on the total field for three different dielectric constants.

It is important to emphasize that all the results presented here
were obtained for a very stringent case due to the dimensions of the
spheroid which is approaching a spnere. To actually mocdel a missile
or aircraft fuselage, the electric dimensions of the spheroid would be
much larger than the ones chosen here, i.e., 22 x 4). Since GTD is
based on the assumptions of the locality of the diffraction phenomenon,
the larger the electric dimensions of the spheroid, one would expect
to obtain more accurate calculated patterns.
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Figure 51. Roll plane {(o_= 0°, ¢_ = 0° ¢ = 90°%) patterns for a 0.25" monopole mounted at i = 99°

on a 2x x 4x §pheroid.
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Calculated radiation patterns (o_ = 0°, ¢ = 0°, 0 = 90°)
for a 0.25" monopole mounted at §_ = 90°.€ The dielectric
slab is a 12" x 12" square of thifkness d = 0.25", e, = 10,
tan ¢ = 0.0 (See Figure 50) ng = 36",
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Figure 59. Calculated radiation patterns (6 = 0°, b
for a 0.25" monopole mounted at § = 90 .
plate is a 10" x 10" square. (Sed Figure 5
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Calculated radiation patterns (e
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for a 0.25" monopole mounted at § = 90°.C The plate
(metal and/or dielectric) is a 10" x 10" square.

(See Figure 50) bg = 36".
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Figure 61. Calculated roll-plane (6_ =0, ¢ = 0° ¢ = 90°) patterns {
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a 10" x 10" square of thickness d°= 0.264" (See Figure 50)
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CHAPTER VIII
SUMMARY AND CONCLUSIONS

The oblect of this thesis has been to calculate the high fre-
quency radiation pattern of an antenna mounted on a arbitrary convex
surface radiating in the presence of a dielectric or metal plate. The
Genetrical Theory « Diffraction was applied and extended here to
include diffraction by flat dielectric slabs. Chapter VI discussed a
systematic way of obtaining the total high-frequency field by super-
imposing the individual source, reflected, transmitted, edge diffrac-
ted and when needed the corner diffracted fields.

The geometrical optics field, the reflection, and transmission
coefficients for a lossy flat dielectric slab were discussed in Chapter
I1. The modified edge diffraction coefficients valid for wedges whose
walls are lossy or lossless dielectric or perfectly-conducting plates
were developed in Chapters III and IV. The interior angle of the
wedge is assumed to be close to 0° or 180°. Otherwise, the diffraction
coefficients are not valid. Although the present theory is valid for
thin dielectric plates whose width cannot exceed a quarter of a wave-
length in free space, it can be modified to treat the problem of dif-
fraction by thick dielectric layers. It is possible to obtain dif-
fraction coefficients for curved plates by adding two terms to the
diffraction coefficients; however, the transmission and reflections
coefficients would, also, have to be generalized to include curved
slabs. Since expressions for surface diffracted rays are needed in
the shadow region, Chapter V presented surface diffraction coeffi-
cients for an arbitrary convex surface.

The measured and calculated conical patterns for the two basic
geometries presented in Chapter VII are seen to agree very well, An
important property of GTD was demonstrated when the corner diffracted
term was added to¢ correct the discontinuity in the calculated pattern.
That is,when a higher order term is important but not included in
the final solution, a jump or kink will appear in the calculated pat-
tern. Thus, one has a self-correcting mechanism by which one can
guage the impact of the missing terms and add higher order terms to
the solution until a continuous pattern is obtained.

The most immediate application of the results presented here is
fn the modelling of structures such as atrcraft which are composed of
non-metallic parts that play a significant role in the radiation
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pattern. As a result of this study, an existing computer code was mo-
dified which calculates the near-field radiation pattern of antennas
mounted on an aircraft, which may have non-metallic parts. The electric
dimensions of the spheroid used to model structures such as the fuse-
lage of an aircraft or missile are much larger than the vnes used here.
Thus, more accurate results should be obtained due to the locality of
the high-frequencv diffraction phenomenon when the spheroid is larger
in terms of wa..iengths.
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