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DEFINITION OF SYMBOLS

A(k,w)	 = random Fourier amplitude at frequency w received from direction k
for an extended source

As = solve-for amplitude in fringe fitting

A(w) = random Fourier amplitude at frequency • w for point source

al = first harmonic of quantized stopping function

B = retarded baseline
r

B(t) = instantaneous baseline vector

b = bit interval = 250 nsec for BLKO

C = coefficient in dual-band calibration
s

C = coefficient in dual-band calibration
x

c = speed of light

Dc = delay function

D 
= amplitude normalization

d = source diameter
s

d(t) = normalized noise added to calibration signal

Cm = differential solid angle

E(x, t) = electric field at x, t.

F 
= quantization or fractional bit-shift filter

GA = DN/(2W)

G2 = average of square of bandpass amplitude across W.

Gi (w) = bandpass amplitude at station 3

g(wk) = amplitude normalization function, BAMPL

h(wk) = frequency-domain fringes

k = apparent wave vector
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apparent wave vector from reference point in source
a

K constant in charged particle delay equation
c

k model for direction of source wave vector
m

lag offset of correlator

i 0 lag value that produces largest fringe amplitude

N total number of lags in EFT over lag

N number of BWS channels
c

Ne
differential integrated electron content

N 
h

number of tones in passband

n normalized additive noise, statien j
i

N 
t

number of bits in fringe-stopping sum

N number of tones used
u

N1 9 N2 M upper and lower sum limits for FFT over lag

P 
N

= power of noise term associated with calibrator signal

Ps = total power of calibration signal

Q(v) = sample function

q r = normalized natural source signal

r(t G'" = cross-correlation function

R(u,v) = brightness transform

r = "calibrated" fringe amplitude
m

Sp (w) = natural source power spectrum

S(t) = total calibrator signal

ST(w) = frequency resolution function resulting from FFT over lag

tG
M common Greenwich time

t
o

= true time "origin"

t W correlator reference time
s

vii



t 
= reference time in fringe-fitting

t = true time

A
tbi = shorthand for arguments in Equation 16

tbj = bit time, station j

tcj = ¢-cal time, station j

T = additive noise temperature

T 
= natural source temperature

Ts = total or system noise temperature

u = component of sky-projected baseline vector in direction of
declination in units of wavelength

uR (t
G

) = complex stopped fringes for lag t at time t 

Vj = baseband voltage signal

v = component of sky-projected baseline vector in directioi of
declination in units of wavelength

v = average amplitude of tones in passband

of = fringe visibility = correlated flux/total flux

v 
= amplitude of nth harmonic of calibration signal

van = stopped tone

W = nominal bandpass width = sample rate/2 = 2 MHz

W 
= actual width of rectangular bandpass

W = doppler shifted width of rectangular bandpass

X = position in geocentric coordinates

xj (t) = location of station j as function of true time

xmj = model for position of station j

yj = doppler-shifted frequency, station j

= normalized analog signal at station jzj
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a	 right ascension

R	 = structure coordinate in direction of right ascension

Y	 structure coordinate in direction of declination

Afk	= frequency separation of kth pair

AT 
BWS= 

residual BWS delay

AT 	 = residual delay from fringe fitting

AT	 = residual delay in uncalibrated fringes

AT 	 = measured residual phase delay rate from phase slope

Al f	= stopped fringe phase

Amh	= "stopped heterodyne phase"

Afj (Wn) = stopped phase of n th tone station j

Arc	= corrected fringe phase

AWc	= true frequency minus nominal frequency

6	 = declination

C	 = tone power/total power

nj	 = all noise added to recorded signal, station j

A	 = wavelength of recorded radio signal

a 
	 = error in delay for kth BWS delay

a 
	 = rms noise associated with calibration signal

a s	= system noise error in phase for a single channel

a 
	 = system noise on stopped tone

a^	 = dispersive phase error for single channel

T	 = geometric delay plus clock synch offset

T aj	 = antenna delay before injection point, station j

*Use without subscript denotes difference j minus i
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TBWS
= final BWS delay

Tbj 0 error in bit time , station j

T cj 0 error in m--cal time , station j

T = group delay due to charged particles

T 
s conventional geometric delay

Tg = interim geometric delay

T ij = instrumental group delay , station j

T = Tmi	 Tm j

Tmj = correlator model delay, station j

TMA
= total model delay to be restored

= model geometric delay restoredTmg

T o = model geometric delay removed
mg

T tj = troposphere delay for station j

= delay between clock reference point and m-cal injection point,Tuj
station j

T^ = final phase delay

TmR
= delay concocted to represent phase-delay rate

ifs = solve-for phase-delay rate in fringe fitting

fB = phase shift due to source structure

c
= oscillator phase at clock reference point

4e = phase effect due to charged particles

O f = total fringe phase

*h = total heterodyne phase shift

mhj = heterodyne phase shift, station j

*Use without subscript denotes difference j minus i
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^ ^ ij *	 `Instrumental phase shift	 station j

#a(t
G
) - model phase for counter -rotation

mn a phase of nth m-cal tone at injection point

4 8
0 solve-for phase in fringe fitting

# t (wk) - calibration phase at frequency wk

+yj a signal phase at station j

on a stopping phase for nth tone

^ s a total phase in fringe model
i

w M RF frequency in geocentric coordinates

w = centroid frequency** of bandpass product, geocentric coordinates

wBWS = effective frequency for charged particle effect in BWS delay

we M nominal oscillator frequency

weff ' effective frequency for charged particle effect in BSA delay and
phase delay rate

Wk W wk	whi ` baseband value for frequency wk

i

W
 n frequency of n th m-cal tone

w z W reference frequency in fringe fitting

whj a
**

total heterodyne frequency	 , station j

w t a true frequency

Use without subscript denotes difference j minus i
**A primed value denotes best estimate
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ABSTRACT

A second-generation data acquisition and reduction system is now being used
at JPL to conduct long-baseline radio interferometry measurements. This system,
called the Block 0 system, improves upon the previous 48-kbs system in many ways.
Significant improvements include a higher recording rate of 4 Mbits/s, multi-
channel recording, multistation cross-correlation, phase calibration. S/X cali-
bration of charged particle effects, and single-observation bandwidth synthesis.
This report updates and improves the analysis previousl;- performed for the
48-kbs system and traces the form and flow of information from signal reception
to recorded bits at each station, through cross-correlation, phase-tracking,
phase calibration, and bandwidth synthesis, to final observable formation. In
this process, the data volume is greatly compressed for each observation, from
ti10g bits on the station tapes to only four final observables: amplitude, delay,
phase-delay rate and RF phase. It is shown that, after phase calibration and
propagation media calibrations, the final delay observable is the sum of a geo-
metric delay and a clock synchronization offset.
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SECTION I

INTRODUCTION

Over the last few years, a second generation system for the acquisition and
reduction of very long baseline interferometry (VLSI) data has been developed
at JPL. In most respects, this second generation digital system, the Block 0
system, improves considerably on the previous 48-kbs digital system, most signi-
ficantly by providing (a) a higher record rate of 4 Mbit /s, (b) multichannel
recording, (c) multistation cross-correlation, (d) phase calibration, (e) dual-
band calibration of charged particle effects and (f) single-observation bandwidth
synthesis. Because of these improvements, many changes have been required in the
data reduction theory. This report augments and modifies previous analyses
(Rai. 1) to encompass the new features. Even though many improvements have been
incorporated, some features of the BI.KO system were not optimally designed due
to various circumstances that prevailed during the development period. A new
system now under development, the Block II system, will greatly improve upon the
BLKO system, more nearly realizing the potential of VLSI.

The report is organized as follows. Section II provides a summary of the
data-processing steps found in the BLKO system. Detailed derivation and analysis
of those steps is presented in the subsequent sections. Section III gives
fundamental definitions for basic time-keeping quantities. Section IV derives
an expression for the recorded signal by tracing the signal from its free-space
form through the instrumentation. In Section V, a non-relativistic model is
developed for the "fast" fringescross-correlation function) produced by the BLKO
correlator, the CIT /JPL Mark II correlator. In some respects, this part of the
analysis repeats earlier 'work (11, but differs in important ways. Steps that are
essentially the same are only summarized. One new feature is that instrumental
terns are now grouped and defined in a more precise manner in order to demonstrate
phase calibration through the use of tone phase. Further, the analysis treats
delay offsetting of both bitstreams and provides an algorithm for correcting for
the fractional-bit-shift errors introduced by the correlator. Section VI analyzes
the fringe-stopping (counter-rotation) procedure used by the processor to com-
press the data. In-t^ tion VII, the stopped fringes are converted by a Fourier
transform from the lag domain to the frequency domain. Transformation errors
resulting from limited -lag reduction are discussed. Section VIII discusses phase
calibration and derives an expression for the phase of a stopped tone. In Sec-
tion IX, tone phase is used to correct fringe phase, thereby removing most instru-
mental effects and casting the phase into a form subject to simple interpretation.
In Section X, the fringe model used in phase tracking is formulated to match the
frequency-domain fringes generated by the Fourier transform. As in the lag domain,
there are four estimated parameters: fringe amplitude, bit-stream -alignment (BSA)
delay, fringe phase and phase -delay rate. Output amplitude is absolutely normal-
ized to first approximation by removing known constant amplitude factors.
Further, it is shown that BSA delay and phase delay are cast in the same form
with regard to instrumental effects. Finally, Sections XI-XIV present detailed
descriptions of the steps that produce the final values for delay and phase-delay
rate. Those steps include observable formation, model improvement, propagation-
media calibrations, and model restoration. It is shown that the final delay
observable is the sum of a geometric delay and a clock synchronization offset.
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"d	 SECTION II
,

SUMMARY OF THE BLKO SYSTEM

The BLKO system consists of several subsystems developed by a number of
individuals from the Jet Propulsion Laboratory and the California Institute of
Technology. The major subsystems and the people who developed them are data
acquisition instrumentation (E. J. Cohen, G. S. Parks, E. H. Sigman, L. J.
Skjerve, and D. J. Spitzmesser), phase calibrator (G. F. Lutes), correlator
(M.. S. Ewing and D. H. Rogstad) and postcorrelation software (G. H. Purcell,
J. A. Scheid and J. B. Thomas). This report presents a theoretical analysis of
the ;Locessing of a random broadband signal from a natural source and traces
the signal from its free-space form to the final output observables of amplitude,
delay, and phase-delay rate.

As shown schematically in Fig. 1, the random signal of a natural source
received at an antenna at RF passes through various filters, amplifiers and
mixers and a portion of it emerges at baseband spanning a 2-MHz-wide passband.
Details of the instrumentation are not discussed here since the instrumental
effects can be represented theoretically by a system bandpass function, a compo-
site heterodyne signal, and composite phase shifts and delays. The instrumenta-
tion can switch a heterodyne signal through a sequence of frequencies so that the
baseband signal cycles through a number of channels corresponding to 2-MHz win-
dows at selected frequencies at RF. In this "time-multiplexed" multichannel
mode, the dwell time on each channel can be as short as 0.2 seconds and as long
as several seconds. The baseband signal is infinitely clipped, sampled at a
4-Mbit/s rate in a two-level mode and digitally recorded in a time-multiplexed
format on magnetic tape by an IVC 825 or RCA 201 recorder. The several channels
separated in frequency permit the subsequent reconstruction of a very wide
effective bandwidth by a process called bandwidth synthesis (BWS).

When tapes from the antennas are sent to the correlator for data reduction,
they are played back at the original data rate and corresponding frequency chan-
nels are cross-correlated. Multiple baselines (-`10) and multiple channels (x,20)
can be simultaneously correlated. The output of the processor, called the stopped
(or counter-rotated) fringes, is passed to post-correlation software that (a)
transforms the fringes from the lag domain to the frequency domain, and (b) phase-
tracks the transformed fringes to extract for each channel several time-specific 	 !
values for amplitude, bit-stream alignment (BSA) delay, fringe phase and phase-
delay rate. In the process, fringe phase is corrected by subtracting the phase
obtained from calibration tones in order to remove unwanted instrumental effects.

The phase and BSA delay extracted from all channels can be used to obtain a
final measured delay by means of bandwidth synthesis. This process first com-
putes ambiguous delays by means of pairwise combinations of fringe phase from the
different frequency channels. Ambiguities are then removed by a multistep proc-
ess that begins with the unambiguous BSA delay and iteratively removes ambiguities
in the BWS delays for ever-wider channel-pair separations until the widest separa-
16n (and most precise delay) is reached.
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For each observation of a given source (1-10 minute duration), the output
observables of the BLKO system are usually one composite value per channel for
each of the following: fringe amplitude, fringe phase, phase-delay rate and BSA
delay. Further, one value of BWS delay is obtained for ea%:h channel pair. From
these observables, one can extract a best value of delay and of delay rate for
subsequent processing. Currently, the "best" delay is usually the BWS delay
from the most widely spaced channel pair. When two RF bands (typically 3.6 cm
and 13 cm) are r-tcorded, the final value for delay (delay rate) is obtained by
combining the best values for delay (delay rate) from the two bands in a way
that removes the effect of charged particles. The resulting delay should be
equal to the sum of the geometric delay and the clock offset, while the delay
rate is the time derivative of that delay.

A block diagram of the data reduction steps found in the current version of
the BLKO system is presented in Appendix G. This report omits later data reduc-
tion steps that simultaneously fit the delay and delay-rate observables from many
observations to obtain estimates for geophysical, astrometric and clock
parameters.
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then m-cal time is related to true time by

t - t + T
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SECTION III

CLOCK MODELING

Before proceeding to cross-correlation analysis, it will help to define a
few time-keeping terms. First, define

t = true (universal)time

Wt = true oscillator frequency (relative to true time)

W 
C 
= nominal oscillator frequency (e.g., S MHz)

Two "clocks" will be defined to assist in the analysis. The time of the
first clock, the "recorder clock", is registered by the bits on the tape. This
bit time is given in terms of true time by

t b = t+Tb	 (1)

where T  is the error in the recorder clock.

The second clock, the "^-cal clock", will be established, at least concep-
tually, near the point where the 5-MHz signal from the atation enters the phase
calibrator instrumentation, as illustrated in Figure 1. The phase at this refer-
ence point is given in terms of true frequency by

^^ = Wt (t - to)
	

(2)

where t is the (unknown) true time at which ^c = 0. As implied by Eq. (2), we
will assume that the oscillator is perfectly stable so that the only imperfections
in the station clock are offsets in epoch and rate. If phase ^c is measured at
the reference point, 0-cal time can be defined by

tc = ^c/Wc
	 (3)

where we assume t c is zero when me is zero. This is possible since a particular
zero crossing can be defined to be tc = 0. If the nominal frequency is related to
the true frequency by

WC = Wt + AWc	 (4)

7



where the clock error T  is given by

eW
T  e - Wc (t - t0 - t0	(6)

t

Usually the difference between We and Wt is small, less than a part in 1011

It is conceptually and instrumentally convenient to define a clock in terms
of a 1-pps signal that drives a counter to register the number of received pulses.
To establish the 1-pps signal, a particular set of position-going zero crossings

(one every 5 x 106 crossings for 5 MHz) must be selected. (Equivalently in
Eq. (2), a definition of Oc = 0 must be made.) This arbitrary selection for the 	 {

O-cal clock leads to an ambiguity which must be resolved in BLKO clock synch
measurements, as discussed in Appendix G. Clock synchronization with the BLKO
system will be measured relative to the O-cal clocks.

8



SECTION IV

THE RECORDED NATURAL SOURCE SIGNAL

This section derives an expression for the analog signal by tracking the
incoming signal from its free-space form through the instrumentation to its final
form at baseband. In this and subsequent sections, only a nonrelativistic theory
will be considered.

lr^ JLBI measurements, two antennas simultaneously receive the signal pro-
duced by a very distant, very compact natural source of random radio emissions.
In this section, we will assume for simplicity that the natural source is a point
source and leave it to Appendix A to g.enerali -!e the analysis to an extended
source. (That generalization greatly complica tes the analysis but changes the
final cross-correlation function only by inserting an additional factor in the
amplitude and an additional term in phase.) Due to the great distance of the
natural source, the incoming signal can be modeled by plane waves. Typical
natural radio sources used in JPL VLBI work emit noise with a wide smooth fre-
quency distribution. We can model one member of the random ensemble of noise
waves as a superposition of plane waves in the form

00

J

E(x,t) =	
A(w) exp[i(wt - k	 x)] dw	 (7)

_ro

J J
where E is the electric field at true time t and point x, k - wk/c is the apparent
wave vector of the plane wave and gives the apparent direction of propagation,
and AM is the (random) Fourier amplitude at frequency w. All quantities are
measured with respect to a geocentric frame with axes defined by true equatorial
coordinates of date. The adjective "apparent" refers to the aberration effect
that will be observed in a geocentric frame. For simplicity, the wave is
assumed to be linearly polarized. We will also assume at this point that the
wave propagates in a vacuum and will not include propagation media effects.
(Troposphere effects can be included as a simple additive group delay and would
add little to the analysis. Space-charge effects are treated in Section XIV.)

Relative to the geocentric frame, the electric field at a given station
becomes

	

M	
rr

	

E  (t) = E(xj (t),t) =

_m	
LL	 JJ

A(w) exp Ii(wt - k	x- j (t))1	 (8)

where xj(t) is the location of station j as a function of true time. Station
position is defined to be the intersection of axes of the antenna. (We will
include below an instrumental delay Ta to account for the fact that the natural
source signal is injected at the horn rather than at the intersection of axes.)
Phase is expressed in terms of true time since that time will be common to both
antennas in a nonrelativistic analysis.
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After injection, the signal passes through several filters and is
heterodyned to baseband under the combined effect of various mixing signals.
The phase effects of all intervening components can be grouped into three cate-
gories. First, the overall effect of the mixing signals can be described by one
total mixing signal, whjtj + mhj , where whj is the total mixing frequency and

mhj represents both a constant phase offset and variations in mixing phase that
are nonlinear in time. Second, all group delays after the injection point,
including effective group delays through filters, can be represented by one total
delay T IJ. Third, all instrumental phase shifts (except mhi and those of the
form wT lj ) can be represented by one total shift m lj . We also include a term Ta

for delays before the tone injection point. This delay is defined to be the
difference in path length for the radio wave in its actual propagation to the
tone injection point and its theoretical propagation to the intersection of
axes. This delay is necessitated by the definition of station location and
is theoretically incorporated by delaying the incoming plane wave. The formula-
tion with Ta assumes that dispersive phase shifts above the injection point are

negligible. If they are not, then alditional calibrations will be required to
remove them.

Figure 1 schematically illustrates the modifications to signal phase as the
signal progresses through the instrumentation from injection to recorder. The
block diagram has been simplified to show only one element of each type with
token phase shifts and group delays. Nevertheless, the following analysis is quite
general if the variables a:e properly defined to represent lumped effects of all
the elements in an actual system.

When the lumped instrumental effects are included, the doppler-shifted analog
signal at baseband for a given BWS channel at station j at bit time tbj can be

written in the form

m

Vj ( tbj ) =	 A(w) Gj (yj ) e'^j dw + c.c. + nj	 (9)

0

where

yj	 w(1 - k • xj /c)	 (10)

V,j = w(tj - T aj ) - k • xj ( t j ) - whj tj - ^hj - y  T Ij - m Ij (yj )	 (11)

In this expression, Gj is the amplitude of the system bandpass, n j is additive

noise, yj is the doppler -shifted ( station) frequency corresponding to w and

c.c. denotes complex conjugate. The time argument t j is the true time correspond-

ing to bit time tbj ( see Eq. 1).

In the BLKO system, the signal is sampled at a 4-Mbit /s rate and recorded in

a bilevel mode. That is, one bit is recorded for each sample point and that bit
is 1 if the signal is positive and 0 if the signal is negative. In subsequent
analysis, we will ignore this bit code and act as though +1 or -1 were directly

recorded on the tape.

10
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Before proceeding to cross-correlation analysis, we will reformulate the
expression for the analog signal so all components are normalized in the mea-
sured units of noise temperature. For station J, let the normalized analog sig-
nal corresponding to Vi be given by

z  (t) - [jTqj  q j (t) + Tni n  (t)	 Tsi	 (12)

where z, q, n are the total signal, natural source signal (first two terms in
Equation 9) and additive noise (18s1 term in Eq. 9), respectively. We will
assume these quantities are all normalized so that

(z2 > - ( q2> - <n2> - 1
	

(13)

The quantities Ts , Tq , Tn are the noise temperatures for the total signal, the
natural source and additive noise respectively. It is assume that the spectral
power for each noise source is fairly constant across the 2-MHz passband so that
one average noise temperature can describe the whole passband. (The noise power
per passband is actually kT SW, but the factor kW drops out in the ratios.) As
we shall see, the normalized form in Eq. (12) is more convenient for cross-
correlation analysis.
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SECTION V

THE CROSS-CORRELATION FUNCTION

The BLV correlator ( the CIT/JPL Mark II correlator) aligns the bits on the
two tapes, multiplies them bitwise and fringe -stops (counter-rotates) the result-
ing fringes. This section develops a detailed model for the cross-correlation
function, the expectation value of the product * of the aligned signals. We will
explicitly treat only one frequency channel, with the understanding that the cor-
relator also processes the other channels in their time sequence.

The expectation value of the bitstream product, the cross-correlation function
(fast fringes), is defined by

r(tG ,i) _ < Vi (tbi - Tmi - fib) 
Vi ( tbj - Tmi)	 (14)

where Tmi , TM are model delays used to offset the two bitstreams (see Appen-
dix B). We will use a tilde to denote a digital or quantized version of a quan-
tity as for the two-level value ( tl) for V i and for the lag (Tmi), which is quan-
tized to the nearest bit. The term ib explicitly represents arbitrary lag off-

sets (I - -7 to +8) about the central lag of the correlator, by offsetting bit-
stream i in units of the bit interval b. For the BLKO system, b is equal to
(4 Mbit/s) -1 or 250 nsec. The argument tG is the common Greenwich time defined
by the bits on the two tapes. That is, the correlator implicitly enforces the
assumption that

tbi - tbj = tG	 (15)

and uses tG as the time tag.
The van Vleck relation (Ref. 2) gives the cross-correlation function in

Eq. (14) in terms of the analog signals:

2 < V i (tbi - ?mi - Ab) V (tb	 ml )>r ( tG , R) et ^

	

	
2	 2 
	 (16 )

F<Vi^ ^Vi

*In the BLKO correlator, one bit stream is first multiplied by a stopping
sinusoid and the resulting pr,-,r 'uct is multiplied by the other bitstream, as
explained in Appendix B. Since multiplication is associative, we will reverse
the actual order for clarity.
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where small correlated amplitude (r << 1) has been assumed. ( In typical VLSI
measurements, one finds r < 0.2.) With the normalized representation of the
preceding section, the expectation of the normalized voltage product in Eq. (16)
becomes

^Vi(tbi) V (tb )> Gzi(tbi) z j (tbj )>	 (17)
Vi 1 C V21

=	 T T	
<gi(tbi)gj(tbj) 7	 (18)

si sj

since the additive noise nj is uncorrelated between stations. The arguments
tbj are shorthand for the sums of terms that are the arguments in Eq. (16). Thus
the problem is reduced to finding the correlation between the normalized natural
source components (qk) for the two stations, with the overall amplitude scaled
by a multiplicative system temperature factor. Note that this factor times
2/n gives the amplitude of the cross-correlation function for perfectly corre-
lated natural source components (i.e., <gigj> - 1.0).

We will now present on the basis of a plausibility discussion the final form
for the cross -correlation function. A complete derivation is given in Appendix A,
including Oe effects of source extent and the random nature of the source signal.

The natural source signal q is given by the first two terms in Eq. (9),
normalized to have unit power. Thus the product qi qj is given by a double
integral over frequency where the integrand includes the sum of two products of
the form A(w)A* (w') and A(w)A(w'). Under the expectation-value operation, only
tl,, product <A(w)A*(w ')> has a non-zero value and this occurs as a delta function
aL 'o - w'. (For a stationary random signal such as that from a natural source,
the amplitude at one frequency is uncorrelated with the amplitude at another
frequency.) Thus, the double integral over frequency collaases to a single
integral over frequency with one term in the integrand. If we let S (w) denote
the source power spectrum arising from <A(w)A*(w)>. the cross correlation func-
tion becomes

a

r(tG,t) 	
2 D	

Sp(w) Gi (y i ) Gj (yj ) e 0 f dw + c. c.

Nfo

t

w

(19)
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where

Tvl al
rm - of 

Tsi 
Tsj

DN =	 Sp M G2(yi)dw	 8 (w) G2 (yj )dw	 (21)

0

Of 0  - whj Tmj + Whi (Tmi + ab)

+ ka	 xj (tj - imj ) - x i ( ti - Tmi - ab)1	 (22)

+ W(Tb + T I	 a+ T
	Tmi + 

Tmj - ab) + 0I + 08

i

in which

^h	 (Whj tj + ^hj )	 (Whi ts + mhi
)	 (23)

and Tb, TI. Ta, and ml are differences between the corresponding station quanti-
ties in the order j minus I.

The terms in the cross-correlation function in Eq. (19) can be explained as
follows. Normalization of the signal in terms of system temperature generates cle
factor rm, as suggested by the derivation of Eq. (18). Included in rm is the
fringe visibility v f , which is equal to the correlated flux divided by the total
flux. This factor and a brightness transform phase shift mg are two of the three
modifications to the final cross-correlation function when the analysis is gener-
alized to include extended sources (see Appendix A). The third modification is to
change the point-source wave direction i to ka, a wave direction defined relative
to a somewhat arbitrary reference point within the extended source. The factor
of 2/n is the amplitude loss due to two-level sampling (see Eq. 16). The factor
of 1/2 is a consequence of complex representation of the fringes and gives the
proper definition for the power spectrum Sp (i.e., by cancelling the factor of 2
gained when the complex conjugate in Eq. (19) is added to obtain a real number
for the cross-correlation function).

In the denominator, the quantity D2 Isis the product of the total source power
from the two stations and arises from the normalization of the natural source
components at each station ( that is, from the requirement <q12 > _ <q 2 > n 1).	 1
Note that, as one would expect, the total power at each station is equal to the
integrated power across the passband where the power at each frequency is given
by the spectral power of the natural source multiplied by the square of the band-
pass amplitude.

f
Within the integral In Eq. (19), the various terms can be explained as

follows. Since a component of the natural source signal at one frequency is
uncorrelated with a component at any other frequency, the correlated signal can

15
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be obtained by multiplying each frequency component at one station by the
corresponding component at the other station and summing over all frequencies.
By corresponding frequency components, we mean the components with the same
frequency in geocentric coordinates. Due to the earth ' s rotation, a given geo-
centric frequency will be doppler shifted when measured by station instrumenta-
tion. Those shifts are accounted for by the doppler -shifted arguments yk in the

1	 bandpass functions Gk.

Since interferometers are differencing devices, the phase mf in Eqs. (19)
and (22) is the difference in the phase for the two stations, each with the
proper oi f ert in time. All of the phase terms in Eq. (22) can be derived in this
manner except for three which involve special considerations. First, the bright-
ness transform phase mg is a consequence of source structure as shown in Appen-
dix A and is included without proof. Second, in the instrumental delay terms
yj TIj, we have neglected small doppler effects of the order

(ka • xj /c) T Ij ti 10 6 * 10 
6 
sec 10 

12 
sec	 (24)

which can shift the phase by 0.01 cycle at X-band. In practice these small
doppler terms can be removed by applying a correction based on instrumental group
delay, if necessary. Third, the quantity Tb arises from the difference t i - tj
which, through the use of Eq. (1) plus ( 15), can be shown to equal

t i - t  = Tbj - Tbi a 
T 
	 (25)

where Tbk is the total error in bit time at station k.
i

Introduction of T 1 , an '.nterim delay approximately equal to the usual
geometric delay, simplifies fringe phase m f . We define t g by

WIT  
= a • Ix j (t j - tmj ) - xi(ti - Tmi - Lb)^	 (26)

This delay is discussed in Section XII. Note that Tg# depends weakly on t, so
that X-band phase changes by less than 0.005 cycle when one lag is traversed.
In the following analysis, we neglect this dependence and evaluate Tg at t , the
lag with peak fringe amplitude. Since this lag dependence can be accurately
modeled, it can be easily accounted for during processing, if necessary. When
Eq. (26) is substituted into Eq. (22), fringe phase becomes

mf • Oh - Whj tmj + Whi ( Tmi + Lb)

(27)
+W(T9 +Tb + T I +Ta -Tmi +Tmj - Lb) +•I+tB

The phase rate o f can reach about 20 kHz at X-band. Therefore, before the data
can be compressed by summing over bits, the fringe phase must be counter -rotated
to a very - low rate ( <0.1 Hz). The next section discusses that procedure.
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SECTION VI

FRINGE COUNTER-ROTATION

In most observations of natural sources. the system ro :se is much greater
than the correlated amplitude so that the SNR for a single bit product (Eq. 19)
is very small (0.0002 - 0.2). Thus many bits of data ( 11-104 - 109) must be col-
lected to raise the SNR to a usable level. However, due to the high phase rate
that the fast fringes typically possess ( as high as 20 kHz at X-band), the data
volume cannot be compressed by directly summing the fringes over time (bits).
This section explains fringe stopping, a process that counter -rotates the
fringes (i.e., digitally heterodynes the fringes to a low frequency) and thereby
allows sums over an interval of time correlation interval) that compress an
observation containing many bits (ti10 to 109) into a relatively small number
(100 - 1000) of points (correlation coefficients). In addition to permitting a
massive data compression, counter -rotation can, with modification, partially
remove the effects of model-delay quantization, as we shall see.

For fringe stopping to be successful, the model phase and model delay used
by the correlator must accurately reproduce the time dependence of the actual
fringes. Specifically, to avoid significant losses in amplitude in the output
fringes, the geometric model must be accurate to a part in 10 6 or better. The
model phase can then be constructed with sufficient accuracy to insure that only
a small fraction of a cycle of the stopped fringes will be traversed in a corre-
lation interval (e.g., 20 kHz x 10-6 x 1 sec - 0 .02 cycle). Thus, amplitude
loss due to incoherent addition can be avoided. We will assume the correlator
model delay is sufficiently accurate.

The model phase* used by the correlator for counterrotation is given by

mm (tG) - (whj - whi ) ( tbi - t a )	 whj Tmj + w
hi imi

(2A)
+ w' 6M j - tm j - TMi + Tmi )

where whn is the best estimate of whn and u k ' is the best estimate of the centroid
(w) of the bandpass product. The time t o is a reference time adopted at the cor-
relator and is usually the start of the observation. The last three terms Involv-
ing quantized delays are 3esigned to remove the average quantization effect from
the overall stopped phase (at effective frequency w).

To counter-rotate, the voltage product discussed in Section V is multiplied
at each bit by the appropriate model phasor and sumined over M t bits within a
correlation interval. producing one complex value for the fringes for that
interval:

ut(tG) p	 Vi(t^ - i^ - Ls) Vj (t^ - Tom ) a i0^tG)	 (29)
t t^

G

or sGilicity. we will neglect a constant-frequency term that can be incItWed in
model phase.
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where E denotes a sum over the bits in the interval and tG is now the common bit
time at the middle of that interval. (As explained above through Eq. 15, t4 is the
Greenwich time defined by both bitstreams.) The sum interval (correlation inter-
val), which ranges from 0.2 seconds to several seconds and contains at least
8 x 105 bits, is equal to the total dwell time for the given BWS channel within
a multiplexing cycle. By combining Eq. (14) with the expectation value of
Eq. (29), one finds that the expectation value for the complex stopped fringes
is given by

< u i (tG) > = N	 r(tG,.t) e-ifm (tG )	 (30)
t

t 

When Eq. (19) is substituted for r(t,t), two terms result: a sum-frequency term
and a difference-frequency term. For sufficiently high fringe ratesOf ti 100 Hz), the sum-frequency term essentially averages to zero in the sum
over time leaving only the difference term:

r	 uO

<uk (tG)> - N n D E	 Sp C  
G  e f dw	 (31)

t	
N t'	 0

G

where the stopped phase is given theoretically by

AO f = Of - Om 	(32)

AO  + WAT + 0 l - (w - whi ) Ib + (w - w') (T
M 

- Tm) + t 	 (33)
for which we have made the definitions

AT - T' +T +T +T - T	 (34)
g	 b	 1	 a	 m

h = Oh - (w' hj	 w' hi) (tbi - ts)
	 (35)

TM Tmi - T Mj	 (36)

Two terms of the form (whj -alhj )T
ttnn 

that are of the order of 10 -4 cycle or less
have been omitted. We would emphasize that Tm is the model delay used by the
correlator at the central lag (R= 0).

The fringe-stopping analysis in this section ignores the fact that the BLKO
correlator actually uses a trilevel quantized model for the stopping sinusoids,
as explained in Appendix B. We will assume that the use of such a model changes
the amplitude of the stopped fringes by a multiplicative factor but otherwise
will not significantly change Eq. (31). That multiplicative factor is the

t
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amplitude of the first harmonic of the quantized stopping sinusoid and is equal
to 1.176 for the quantization scheme used in the BLKO correlator (see Appendix B).
One can see how this amplitude factor enters by expanding the quantized sinusoid
in terms of its harmonics and showing that only the first harmonic beats the
cross-correlation signal to a low frequency. That is, the sum over correlation
interval filters out all terms except this low frequency term. Thus, except for
the coefficient of the first harmonic, the resulting fringes are assumed to be
the same form as those generated by the pure stopping function of this section.
Exceptions can occur in special cases due to interactions between various fre-
quency components in the signal and stopping function, but those cases will not
be treated in this report.

The theoretical expression for the stopped fringes can be rewritten by
interchanging the sum and integr«1 in Eq. (31) to obtain

al rm 0

	

i[^^f - (W-Whi)kb]

<u
Z
(tG)1 = n D
	 Sp(W) G i (yi ) Gj (yj ) Fq a	 dW
N

where

Aof = 0h + u)AT +  I + 0B

i(W - W') (T - T )
Fq(W ` w, ) _ N	

e	

m	 m

t t^
G

The factor al has been inserted to account for quantization of the stopping
sinusoid, as discussed above. The sum over time has been applied only to the
"quantized-delay phasor" (from fifth term in Eq. 33) since the time variation
of that factor will dominate when an accurate model delay is used. That is,
the rate of the residual phase (0 f ) can be made very small ( 0.01 Hz) so that
the phase AOf will change by only a small amount (0.01 cycle) over a sum
interval (ti1.0 second). On the other hand, the phase (W-w') (Tm Tm) changes
by 0.25 cycle over a delay quantization update interval, which can be as
small as 0.1 second. As explained in Appendix D, the quantization filter Fq
can easily be calculated on the basis of delay quantization history. Exceptions
to the above assumption of small residual rate can occur in "initialization" runs
involving a poorly known baseline or source position. However, this will occur
only for the first pass through the correlator since the results of that pass
can be used to improve the a priori for all subsequent passes involving that
baseline or source.

In the BLKO correlator, correlation sums are made over time intervals that
are often large compared to the delay quantization update interval (bit-jump
interval). An alternate correlator design is to form intermediate sums for very
short intervals over which the delay quantization error changes only by a small

(37)

(38)

(39)
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fraction of a bit. For each of these shorter intervals, the correlator would per-
form a Fourier transform from the lag domain to the frequency domain. After the
transformation, the quantization error appears purely as a phase effect that can

then be removed by appropriately counterrotating fringe phase. This approach
produces a slightly better SNR (by 0 to 3.5%) than the BLKO system because the
correlated signal is added coherently for each frequency across the 2-MHz
passband. However, it also increases the complexity and cost of the correlator.
By accepting a small loss in SNR, the BLKO system can employ a simpler corre-

lator and let postcorrelation software handle the quantization problem with
the quantization filter Fq. Even though the quantization problem itself does
not necessarily require it, the postcorrelation software (i.e., the phase
tracking program) does eventually transform to the frequency domain for other

reasons, as discussed in the next section.

20



SECTION VII

TRANSFORMI 1,1C TO THE FREQUENCY DOMAIN

After the stopped fringes leave the correlator, they are passed to the
phase-tracking program (PHASOR). In the present version of PHASOR, the stopped
fringes are Fourier transformed from the lag domain to the frequency domain.
The reasons for this transformation are as follows. In the lag domain, the
phase is implicitly referenced to the true centroid frequency, which depends
on bandpass shape. Since this reference frequency enters in the calculation
of BWS delay, uncertainties in bandpass shape can introduce errors in BWS
delay. In the frequency domain, an exact reference frequency can be forced
on the data so that output phase will not depend on bandpass shape. Thus,
frequency-domain analysis eliminates a possible source of error and avoids
the operational burden of precisely determining bandpass shape, at least for
phase measurements. However, for the most precise measurements of correlated
amplitude, it may be necessary to determine bandpass shape accurately.

One disadvantage of the frequency domain approach is that, in practical
applications, a Fourier transform can introduce phase errors. Those errors arise
because in practice only a small number of lags can be summed in the transform,
leading to poor resolution (= bandwidth/4) in the frequency domain. However,
accuracy studies show that the errors introduced are not as serious as one might
guess. When complex fringes based on typical bandpass shapes were simulated (see
Appendix E), it was found that a nine-lag transform reproduced the actual overall
input phase to better than 0:1 millicycle (with the peak amplitude placed at the
central lag to within 0.5 bit). For a nearly rectangular bandpass, the "odd"
frequencies (n/2N, n odd) more accurately reproduced the input phase than did
the "even" frequencies. The transformed shape deviated from the input shape
by as much as 9% for the 9-lag transform. These amplitude deviations should be
no problem since the transformed shape can be modeled if the actual bandpass
shape is known. An alternate approach is to determine directly the transformed
shape by measuring for a strong source of known strength the amplitude of the
cross-correlated signal in each frequency bin of the frequency-domain fringes.

Two other considerations arise in the choice between domains — phase calibra-
tion and fractional-bit-shift correction. Both of these corrections can be
carried out in either domain, although they are more easily applied in the fre-
quency domain. Thus, primarily because of the decoupling of phase from amplitude,
frequency domain analysis appears to be the preferred approach in phase-
tracking and that approach has been followed.

The remainder of this section transforms the fringes from the lag domain
(Eq. 39) to the frequency domain. For reference, Appendix C reformulates the lag-
domain fringes to cast them in a form used in the past.

Before transforming to the frequency domain, one must detect the fringes
and determine which lag offset produces the largest fringe amplitude. This is
accomplished by performing an FFT over time on the fringes for each lag offset
within a lag range believed to contain fringe power. The output of these FFT's
can be viewed as a function of lag and frequency (where the frequency variable
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is fringe frequency associated with time dependence rather than observing
frequency). The amplitudes of the FFT points are searched over lag and fringe
frequency to determine which lag and which frequency bin has the largest
amplitude. The maximum amplitude is checked to verify that it exceeds the SNR
threshold. Only fringes for lags near this central lag.are used in subsequent
processing.

The stopped fringes for each correlation interval (Eq. 37) are transformed
to the frequency domain by a discrete Fourier transform over a subset of the
16 lags passed by the correlator:

N2
iw't'b

h(w
k )	 ^j °t +t' e k
	

(40)1:
11=N 	

0

where b is the interval, to is the central lag with the largest amplitude
and .t' is summed over N t lags centered about to (Nt = N2 - N1 + 1). In the
present BLKO system, a 9-lag transform is used since the phase errors associated
with a nine-lag transform are apparently the best for values of Nt less than 12
(see Appendix E). For N t = 9, we would have N 1 = -4 and N2 - 4. The frequen-
cies wk are baseband frequencies spaced at equal intervals across the system
passband. To obtain an adequate sampling rate in the frequency domain while
maintaining statistical independence of the noise on the transformed points
h(wk), the frequencies are given the spacing

K+1 - wk I_ _ _ 1
2n	 Ntb

As observed above, the "odd" frequencies give the best phase accuracy so we will
use

Iwk) _ 2k-1
2w	 2Ntb	

k	 1, 2, ...	 (42)

= 2k-1 W	
(43)Nt

where W is the nominal channel bandwidth of 2 MHz (half the sample rate). For
Nt - 9 only the fringes associated with the first four values of k (i . e., k - 1 to
4) have significant amplitude. The frequency values for these points are W/9,
3W/9, 5W/9, 7W/9. The point at W (k - 5) has very small amplitude for the BLKO
passband.

Some of the comments found earlier in this section can be clarified by calcu-
lating the expectation value for the transformed fringes:

±i^wk^t'b

	

<h(wk)^ E but +t > e	 (44)
t ,	 o
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where wj = t1wkI and where the plus (minus) sign is used for USB (LSB). The sign
selection depends on the sign of w-whi, which is positive for upper sideband (USS)
and negative for lower sideband (LSB). By substituting the expression for <ul>
found in Eq. (37) and interchanging the sum and integral, one obtains

<h( ' ) >  - 8n D	 Sp G i G^ Fq ST(w'-wk) e i(e^f w,lob)dw'	 (45)
N

0

where

W1 =w - 
Whi
	

(46)

iAw(N +N )b/2 sin
(AwNlb/2)

S	 1T(Aw) = e 	2	 sin(Aw b/2)	 (47)

One can show

Lim ST (Aw) = 4wW 6(Ow)	 (48)
N —
X

where 6(x) is the delta or impulse function. Thus, for an infinite number of
lags we would obtain precisely the cross -correlation spectrum:

2	 ^(wk) Gi(yik) 
G i ( y ik)	 iA>Vf	

(+ i ^ wk^ lob - for USB\^ _
<h(Wk)> 7r al rm	 GA	 Fq e	 + for LSB J

where

DN

GA - 27rW

and

A^ = A^ + W (T i + T + T + T - T ) +	 +
f	 h	 k g	 b	 I	 a	 m	 I	 B

yik a 
Wk (1 - k•x1/c)

(49)

(50)

(51)

(52)
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There are practical limits to the number of lags that can be transformed.
For example, as more lags are used, the power is spread over more points in fro-
quency, making data reduction more costly. Further, the cost of the correlator
increases as the number of lags increases. On the other hand, transformation

errors decrease as the number of lags increases. A reasonable compromise for
4	 the BLKO system appears to be 9 lags. For this value, the power is spread over a

manageable number of points (4) in the frequency domain while transformation

errors are fairly small, as discussed in Appendix E.

In the following analysis, we neglect the small transformation errors and

use Eq. (51) to describe the phase in the frequency domain. If necessary, the
transformation errors can be corrected to a large extent through modeling.

It is informative to note that, for a flat power spectrum Sp and for
identical bandpass shapzs at the two stations, the bandpass ratio in Eq. (49)
can be converted through the use of Eqs. (21) and (50) to the form

Sp Gi (Yik ) Gj (Yjk)	 G2(wk)

GA	 G2

where the bar denotes an average across the passband. We have assumed that the
passband amplitude is nearly zero at W (2 MHz for the BLKO system) and that
doppler shifting is negligible (Afd/W ti 0.01 for the BLKO system). For a
rectangular bandpass this ratio is 1.0.

With the fringes in the frequency domain, the uncertain bandpass amplitude
appears as a multiplicative factor. The fact that this form (Eq. 49) decouples
phase from amplitude can be demonstrated heuristically by computing phase at
each frequency by means of the inverse tangent of the ratio of real and imaginary
parts. (This method is not actually used for phase computation, as seen in
Section X.) In such a computation, the amplitude would cancel in the ratio.
As mentioned above, another advantage of the frequency domain is that phase cor-
rections can be directly and simply applied to the fringes by means of a phase
counter-rotation to each frequency component h(wk). That technique is used in
the phase calibration procedure discussed in the next section.
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SECTION VIII

STOPPED TONE PHASE

This section digresses to treat the subject of phase calibration by means
of the tone generator and derives an expression for stopped tone phase. Appen-
dix F derives expressions for tone amplitude and tone SNR.

In VLBI measurements, the observed phase is corrupted by unknown and
unstable shifts due to instrumentation. Such phase effects can degrade the
accuracy of geophysical measurements and complicate measurements of clock
synchronization. However, most of these instrumental effects can be removed
through the use of a phase calibrator. The commonly used approach, pioneered
by A. E. E. Rogers (Ref. 3), is to inject at a point near the front of the
instrumentation a calibration signal consisting of a set of tones, equally
spaced in frequency and derived from the station frequency standard. Properly
used, this technique can both correct for system phase instabilities and allow
absolute calibration of interferometer phase so that clock synchronization is
possible.

The calibrator signal is injected at a low power level and is imbedded in
the radio source data. The phases of the injected tones for the current tone
generator are expected to be stable at the 10-psec level and can be calibrated
absolutely to the nanosecond level. Each channel bandpass will contain more
than one tone, but the exact number in a given application will depend on system
characteristics and specific accuracy goals. At the correlator, each tone is
counter-rotated to nearly zero frequency by digitally mixing each single-station
bitstream with a frequency that closely approximates the baseband frequency
for that tone. After the resulting tone phase has been extracted and differenced
between stations, it is subtracted from interferometer (fringe) phase. Since the
tones are subjected to the same instrumental effects as the natural source signal,
instrumental effects after the injection point cancel in the final difference.
(This report will not consider difficulties encountered in calibration of instru-
mental effects before the injection point.) After instrumental calibration, the
measured delay is reduced to the sum of a geometric delay and a clock synchroniza-
tion offset, as we shall see in the following sections. (For simplicity, propa-
gation media terms are ignored until Section XIII.)

in this section, tone phase is separated into the various effects that enter
the calibrator signal in transit from the clock through the instrumentation and
then through data reduction. Since the analysis will be based on an "ideal"
model for the system, extra effort might be required to account for deviations
from ideal behavior. It is beyond the scope of this report to assess all compli-
cations.

The model for stopped tone phase is developed in the following sequence:
(a) from the ^-cal clock to the injection point, (b) from the injection point to
the recorder and (c) through the data reduction procedure. The simplified block
diagram of the instrumentation shown in Fig. 1 will be useful in tracing the sig-
nal through the instrumentation.
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First, for step (a), the phase of the signal at the clock reference point
(^-cal clock) discussed in Section III and illustrated in Figure 1. is given in
terms of true time and nominal frequency by

me a We (t + T c )

	

(54)

as indicated by Eq3. (3) and (5). We have chosen to represent calibration phase
in this way since (a) the clock error T c is explicitly shown, (b) true time t is
common to both stations, and (c) tone frequencies are calculated at the correla-
tor on the basis of the nominal frequency wc. The signal will experience a
cable delay Tu so that its phase entering the tone generator will be given by

c	 c	 c
a W (t + T - 7 

u )

The "ideal" tone generator detects ' :he zero crossings of the 5-MHz input signal
and converts the positive-going zero crossing into rectangular pulses as indi-
cated schematically in Fig. 2. The nominal width ( T

p
) of the output pulses for

the current tone generator is about 20 psec. Repetition rates slower than 5 MHz
are obtained by blanking pulses. For example, by passing every 10th pulse, the
pulse repetition rate would be 500 kHz. The passed repetition rate will be
denoted by wp . As indicated below, the tone frequencies are the harmonics of
the fundamental repetition rate wp.

In practice, there will be deviations from the ideal waveforms shown in
Fig. 2, deviations such as delays, phase shifts and an amplitude distortion
arising in both the tone generator and connecting elements. For example, a zero
crossing is not precisely at the center of a rectangular pulse and the pulse
shapes are not perfect rectangles. This report will not consider such deviations
h-tt most of these effects can be formally included by making a complex Fourier
expansion rather than the cosine expansion presented below. ( It should be
pointed out that a constant deviation from rectangularity will cause clock syn-
chronization measurements to be biased by a constant error that is less than the
pulse width but will cause no error in geophysical/astrometric measurements.)

The output of the tone generator can be decomposed into its harmonics, which
will have frequencies given by nw (see Appendix F). The phase of the n th calib-
ration harmonic (tone) at the injection point will be given by

^n a W  (t + Tc - I ts )	 (56)

The small group delays from the input of the tone generator to the injection
point have not been explicitly represented since they (or any other group-delay
between ^-cal clock and injection point) can be included in Tu.

We are now prepared to model effects on tone phase introduced in transit
from the injection point to the recorder and then through the tone-stopping
process. After injection, the tones, along with the natural source signal,
pass through various filters and mixers until thev reach beseband within a
2-MHz bandwidth. As in the case of the natural source signal (Eq. 11), the
effects of these instrumental stages can be represented by lumped variables so

(55)
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Fig. 2. Input and output signals for ideal tone generator
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that the phase of the n th tone recorded at bit time t bj for station j
becomes

On(tbj) = wn (tj + Tcj - T uj ) - *Instr.	 (57)

where the instrumental phase effects are given by

= w t+ m	 + w T	 + m (w )	 (58)
Instr.	 hj j	 hj	 n Ij	 Ij n

Note that the delay Taj does not appear since the phase-calibration signal is
not subjected to antenna delays. Again, t j is the true time that Lorresponds
to bit time tbj at station J.

The recorded tones are processed at the same time the tapes are cross-
correlated. The correlator operator will use a best estimate for the basebsna
frequency of each calibrator tone to separately " fringe-stop" each tone in a bit-
stream (see AppendixF). That is, in effect, the correlator will subtract from
the phase of the n th tone the phase

^nj = (wn - wh j ) ( tbj - t s )	 (59)

	

_ (wn - whj ) ( tj + Tbj - t s )	 (60)

where whj is the best (nominal) estimate for the heterodyne frequency, tbb is
bit time at station J. and is is the reference time adopted by the correlator.
For phase calibration to work properly, it is necessary to use the same values
for wh i , and whj , and i s in both the tone model phase (Eq. 59) and the cross-
correlation model phase ( Eq. 28). Based on Eqs. (57), (58) and (60), the theo-
retical expression for the resulting stopped-tone phase at station j becomes

AOi(wn)	 0 n - ^nj
	 (61)

which is equal to

AO i (wn ) 	 -wn ( Tbj - Tcj + Tuj + T Ij - t s ) - ^ Ij (wn ) - emhj	 (62)

where the "stopped" hetetodyne phase is given by

	

nth j = wh j tj + 0h j - whj (tbj - 
ts)	

(63)

This puts the stopped-tone phase in the form we .rant, expressed in terms of con-
tributing effects due to instrumentation and data reduction.
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This analysis has neglected some subtle but important problems that can
seriously degrade the stopped tone phase. These problems arise from unwanted
intermodulation of frequency -omponents in the calibrated signal with frequency
components in the stopping Function, where the resultant, possibly aliased
frequency of the intermodulation product happens to be close to the frequency of
the stopped tone. With careful design, these problems can be substantially
avoided.

Several methods exist for extracting tone phase from the stopped tones. The
method used in the present version of the BLKO system is discussed in Appendix G.
In the following section, we will assume tone phase has been successfully
extracted.

Another fact ignored to this point is that measured tone phase, like
interferometer phase, has integer-cycle ambiguities. Ambiguity resolution for
tones falls into two categories — relative and absolute. By relative ambiguity
resolution, we mean the removal of ambiguities in a relative sense between tones
within a channel passband. If such ambiguities are present, the variation of
phase with frequency within a passband cannot be determined and correct inter-
polations in frequency cannot be made. For example, if one wishes to obtain an
absolute estimate of bitstream-alignment (BSA) delay after phase calibration,
one must either explicitly or implicitly determine the correct effective phase-
frequency slope for the tones in the passband. To remove relative ambiguities,
one must have an a priori estimate of the slope of phase vs. frequency, which
means one must have estimates for terms multiplying wn in Eq. (62). Those terms
are the correlator reference time ts, the calibrator cable delay* (Tu), the in-
strumental delay from the tone injection point to the recorder (T I ), and the
epoch offset Ob - T ) between the recorder clock and the m-cal clock. The max-
imum allowed a priori error on these terms depends on tone spacing. For example,
if the closest tones are separated by 500 kHz, then the collective a priori error0 a) on these terms must be less than one microsecond. Ambiguities on the other,
more widely spaced tones can be removed by an iterative procedure akin to the
bandwidth synthesis method. An example of relative ambiguity removal is given in
Appendix G.

After relative ambiguities have been removed, there will remain in tone
phase an overall (absolute) ambiguity which is the same for all frequency points
in the passband. Thus, the overall calibrated interferometer phase obtained from
each passband will not be corrected for absolute integer cycles due to instrumen-
tation. As we shall see, it is not necessary to consider absolute instrumental
ambiguities. Accurate measurement and application of only the fractional part of
overall tone phase is sufficient for the ultimate removal of absolute ambiguities
in correcteJ BWS delays and corrected interferometer phase, provided the BWS
channels are properly spaced.

*
More exactly stated, Tu includes all delays from the clock reference point to
the tone injection point.
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SECTION IX

PHASE CALIBRATION

The next step in data reduction is to correct the fringe phase from each
BWS channel with the phase derived from the tones injected by the phase calibra-
tor. We will assume that there are several tones spaced across each passband
and that integer-cycle ambiguities in tone phase can be removed in a relative
sense between tones (see Appendix G) so that calibration phase at any frequency
in a passband (i.e., at the frequencies wk in Section VII) can be obtained through
Interpolation. We will neglect errors in this process such as interpolation errors
that might occur as a result of phase ripple across a passband.

The calibration phase at frequency w k within a passband is given by the dif-
ference in tone phase obtained for the two stations:

mt(wk) . pm i (wk) - ,,,i
j
(Wk)	 (64)

Based on Eq. (62), this phase is theoretically equal to

	

0 t (wk) a Wk ( Tb - TC + Tu + T I ) + 4 1 + A®h 	(65)

where Tb, Tc. Tu, tI, mI and Afh are differences between stations in the order
j minus I. For simplicity we have assumed that all dispersive phase shifts in
O ij in Eq. (:l) occur after the tone injection point so that they appear iden-
tically in tone and fringe phase. if significant dispersive phase shifts occur
before the injecticn point, separate calibrations will have to be applied.

For each frequency component h(w i ) in the transformed fringes (.Eq. 49), we
will assume tone phase is subtracted rom fringe phase by means of a counter-
rotation (multiplying by e-00 of the fringes at each fringe point (correlation
interval). Other methods can be used to apply phase calibration at various
stages in processing, but all of those approaches will not be discussed here.
Fringe-point counter-rotation is chosen for the analysis in the text because it
purifies the phase at an early point, making the fringes easy to interpret and
use at an early stage. However, phase calibration in the BUCO system is currently
applied to the final overall value obtained for each observable from an observa-
tion. That approach changes the order of the operations described here and leads
to essentially the same final value for all observables. See Appendix G for a
description of that procedure.

When the fringes in Eq. (49) have been counter-rotated with the tone phase
in Eq. (65), one obtains

2a1	 SP(wk) G i (yik) GJ(y3k)ihoc
<h(wk)> ` ff	

A
rm	 G	 F  e

(66)
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where the corrected phase is given by

A^,c 111 Wk ( T g + Tc + Ta - Tu - tm ) t dB()	 (61)

We have dropped the lag-shift term (w'1 0A) in Eq. (49) aince it is known and can
also be counterrotatud out of fringe phase along with tone phase. Removal of
this term references the model delay to the central lag if the processor, thereby
insuring that the residual phase from all BWS channels is based on the same model
delay. As discussed in Section X, the current version of PHASOR does not correct
for the laQ-shift term until phase tracking of each BWS channel is completed.
We have removed it here to simplify the analysis.

At this point, it is instructive to make a simple interpretation of
interferometer phase given by Eq. (61). If separate measurements were made to
determine the cable delay T  and antenna delay T s , these quantities could be
removed from phase. The model delay TM is known exactly and could also be
removed. (In practice, these quantities are actually removed at a later stage
in processing, as discussed in Section XII1.) The interferometer phase would
then be left in a clean and useful form: wk( T'' +T C ). This is the phase that
would result from measurements made at RF by ideal instrumentation (i.e., no
cable delays, phase shifts, instabilities, etc.). Such ideal instrumentation
can he visualized as a "point RF recorder" placed at the intersection of axes
with no instrumental components to complicate the phase that is received and
directly recorded at RF at each station. Under such ideal assumptions, one
can easily derive the interferometer phase wk (T'g + T C ) by means of a simple
subtraction of the RF phases from the two stations after offsets to account for
geometric delay and clock offset.

In the calibration process described above, a subtle point has been
neglected. Only the fractional part (in cycles) of both interferometer phase
and tore phase can be determined when phase is extracted after counterrotation.
Thus. when tone phase is subtracted from interferometer phase, the subtraction
actually denotes removal of the fractional part of instrumental phase. We can
ignore integer-cycle errors at this point since we realize that there are
integer-cycle ambiguities due to delay modeling that must be resolved later in
the BWS process. The BWS process requires as input precise valitti for only the
fractional part of interferometer phase, free of unwanted instrumental phase
(fractional part). The integer-cycle part (due to Tg and T c ) is then determined
in a recursive process described in Appendix H. The output is a delay measure-
ment free of postinjection instrumental effects. It is a peculiarity of this
technique that, even though BWS delay and interferometer phase can be ultimately
calibrated absolutely with regard to instrumental effects, instrumental phase.
including integer cycles, is never absol -ely measured.
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SECTION X

PHASE TRACKING

At this stage, we are prepared to extract the observables of amplitude,
phase, phase- -delay rate, and BSA delay from the stopped fringes. More than one
method is available for extracting observables from the fringes. The two most
familiar approaches are phase-tracking and coherent integration across channels.
The coherent integration approach (Ref. 4) is based on relatively simple, fast
algorithms and has the important advantage of better SNR for signal detection.
However, for this approach to work, the fringes must be made coherent across all
summed channels by means of phase calibration. Since the phase-tracking approach
does not require such Poherence, we chose that approach in the early development
of the BLKO system wb, a ;)hastt calibration was not available. Further advantages
of the phase- track app,., :ach include (a) versatility in modeling and weighting
fringes, (b) easy access to intermediate observables for system trouble-
shooting, (c) computation of RMS fringe residuals, and (d) simple adaptability
to single-channel spacecraft applications with poorly known nonlinear phase.

In the phase-tracking technique, the fringes are analyzed (by a program
called PHASOR) to extract all of their information content, including phase as
a func +-ion of time during an observation. To obtain the time dependence, each
observation is divided into equal sections, whose length falls in the range of
a few seconds to a few minutes. As discussed below, the transformed fringes are
fit within each section with a parametrized function to determine four quanti-
ties: amplitude, bit-stream-alignment (BSA) delay, phase-delay rate, and phase.
The connection of phase between sections is discussed below. Phase tracking
results in a further compression of the data in that each observation will be
characterized by four parameters for each of 1-30 sections instead of 200-1000
complex fringe values.

As suggested by Eq. (67) and demonstrated below, a suitable mathematical
model for the fringes within a section is given by

T(wk ,tG)	 As g(wk)Fq eiq's	 (68)

where the model phase is given by

^s = (wk - ws ) T s + wk 
T^s 

(tG - t z ) + ^ s 	(69)

and

wk = ±lwk' + whi	 (70)

The parameters As , T 8 , T^, and ^s are the four solve-for parameters mentioned
above. The complex filter Fq accounts for the delay quantization and is derived
in Appendix D. The reference frequency t,;z and reference time t z will be placed
at the center of the bandpass and center of the fitting interval, respectively,
in order to minimize correlations and errors for phase, delay and delay rate.
With this selection, the solve-for phase ms will be the phase at frequency wz
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and time tZ. As implied by the fitting equation, it is assumed that the fringe
phase can be adequately modeled as a linear function of time and as a linear
function of frequency over the fitting interval. For some applications, the
amplitude function g(w' which becomes a real four-point array called BAMPL in 	 i
PHASOR, can be calculated with adequate accuracy from the equation

g(w ) m 
2 a G2(wk)	 (71)

k	 r 1 G2

where G is the measured bandpass amplitude (assumed to be the same for both sta-
tions as in Eq. 53). For a rectangular bandpass, we obtain g(U ) - gal/n. For
more accurate amplitude measurements, a more complicated relation than Eq. (71)
can be used as discussed in Appendix E.

Since the model is not linear in all parameters, a priori estimates of the
four solve-for parameters must be obtained before a least-squares fit can be
performed. Three of the parameters (AS , T S , i d s) are obtained from the FFT's
over time (one for each lag) that were used to detect the central lag (see Sec-
tion VII). FFT integration times can range, in theory, from a few seconds to an
observation length, depending on the application. The output of the FFT's over
time can be viewed as a function of lag and fringe frequency (ideally with a
sin x/x dependence in both directions) that peaks for unique values of those
quantities. The determination of the location of this peak in lag-frequency space
gives a direct estimate of the BSA delay ( T S ) and residual fringe frequency (and
thus delay rate, i ds ). The peak amplitude gives an estimate of fringe amplitude
As.

Once AS , T s and i ds have been estimated, one can make an initial estimate
of Os by means of a least-squares search (with the frequency-domain fringes) that
minimizes the differences in the actual fringes and the model fringes as a func-
tion of O S . In this process, the model fringes are computed from Eq. (68) using
as fixed values the estimates of A S , T s and i0s explained above. In the search,
0. is incremented in small steps (1-0.1 cycle) from 0 to 1 cycle. (This procedure
will reveal only the fractional part of phase. Procedures for dealing with the
integer part will be discussed below.) For each phase increment, the square of
the difference between the actual and model fringes is summed over time points in
the given section. The resulting values for the ( 1-10) sums are then searched for
the minimum that reveals which phase value was the best estimate. (In practice,
an interpolation between steps is carried out to obtain a more accurate estimate.)

After all four a priori estimates have been determined, the fringes are
subjected to a standard least-squares fit that simultaneously estimates all
four parameters for the section. Theoretical expressions for the resulting
parameter estimates can be formally demonstrated as follows. Comparison of
Eq. (66) and Eq. (68) indicates that the solve-for amplitude will be given by

T i T
AS m rm of T9--T	 (72)

si sj
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Further, the solution will require the phases to be equal so that we will have
from Eqs. (67) and (69)

(Wk - WZ ) T S + Wk T (tG - t Z ) + ^8 Wk Cr + T C + T a - Tu - Tm) + 0B (W^) + 2nn

(73)

where 2nn represents the integer -cycle ambiguity mentioned above. Fxpanding the
right-hand side of this equation in terms of frequency and time about w z and tz
and equating like terms on each side, one finds that the solve -for parameters
will be given by

3^

Ts = ATf + 8w

•	 ^B
T s = AT + 

W
z

ms = wz AT f + 0B (WZ ) + 2nn

where

ATf = T' + T + T - T - T
g	

C	 a	 u	 m

All of these terms are evaluated at time tz and frequency wz. The delay TM is
the model delay at the central lag of the correlator, as indicated in Section VI.

Thus, all three of these solve-for parameters depend on ATf. Note that
(ignoring the 2nn ambiguity and structure effects in W T S - Og/WZ = ATf, while
delay rate is approximately squal to the time derivative of that quantity. This
relationship between Ts and Os is a fundamental requirement for single-observation
bandwidth synthesis (BWS), a process that is used to account for effects of
integer-cycle ambiguities in Os. The removal of ambiguities between frequency
channels by single-observation BWS is discussed in Appendix H. For each BWS
channel, ambiguities are removed between sections within an observation by means
of another procedure to be discussed below.

Examples of fringes in the frequency domain are given for an intercontinental
baseline in Fig. 3 and for a short baseline in Fig. 4. The fringes in Fig. 3 are
the frequency-domain counterparts of the lag-domain fringes presented in Appen-
dix C. The solve-for values of amplitude, frequency, phase and BSA delay are
given at the top of the figure, where the errors are the covariance errors based
on RMS fringe residuals computed for the fit interval. (Note that amplitude has
been multiplied by 105 for convenience.) Except for amplitude, the solve-for
values in Fig. 3 are in agreement with the values for the acme parameters esti-
mated in the lag domain in Appendix C. Amplitude is different since different
normalizations are applied in the two domains. That is, the solve-for amplitude
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Fig. 3. Long-baseline example of stopped fringes for the BLK0 system
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in the lag domain is equal to the amplitude of the fringes ii: Eq. ( 37) while,
in the frequency domain, it is given to first approximation by Eq. (72). The
current ratio for these normalizations is about 2.0. For these particular fits,
the amplitude normalization matrix, BAMPL, has been assigned the values (1.02,
1.14, 1.14, 1.14) for the four frequency bins. These values appear to match the
data fairly well and are not very different from the theoretical BAMPL values
calculated in Appendix E on the basis of nominal bandpass shape. However, the
differences between the two BAMPL arrays illustrate the level of difficulty in
obtaining one bandpass shape that is suitable for all data. (For very accurate
amplitude measurements, it may be necessary to use a strong source of known
strength to generate calibration fringes from which both the relative magnitudes
of the BAMPL components and the overall BAMPL normalization can be determined
for each channel.)

By inspecting the plot, one can readily see that the solve-for values are
in accord with values easily estimated by inspection. The frequency can be
estimated from the period of the fringes. The phase is referenced in time to
the center of the interval (arrow) and in frequency to a nominal centroid
frequency (0.9 MHz). A value for phase can be estimated by interpolating to the
reference frequency at the reference time. BSA delay can be roughly estimated
by extracting the shift in phase (see dotted arrows in Fig. 3) between the two
outer frequency bins in the plot and dividing this shift by the frequency dif-
ference (2W/3 = 4/3 MHz) between the bins.

The short baseline fringes in Fig. 4 are provided to illustrate the dis-
continuity in the fringes introduced by a particular 1-bit jump in delay, as
modeled through F (see Appendix D) in Eq. (68). As mentioned earlier, such
discontinuities are also present for intercontinental baselines but occur
so frequently that a number of jumps are averaged over in a single fringe point.

Up to this point, we have considered parameter estimation for only one
section in an observation. In most cases, an observation is divided into several
sections of equal length (5 - 120 seconds), each of which is separately fit for
As , TV T s , and ^ s . An observation can be divided into sections so that there
is less Aance for the time dependence of the solve-for parameters (particularly
nonlinear phase rate) to violate the assumptions underlying the fringe model and
so that the time dependence can be observed. However, the section must be long
enough to provide -nough "SNR" for a successful fit.

Since fringe fits yield only the fractional part of fringe phase, addi-
tional effort is required to properly connect phase between sections. The phase
for the first section is forced to fall in the range 0-1 cycle. (It is this
arbitrary assignment that gives rise to the absolute ambiguity in overall phase
from the observation.) A preliminary estimate of the phase of the second section
is made by adding to the least-squares phase of the first section the phase change
predicted by multiplying the estimated fringe frequency (from the FFT or from
fringe fitting) by the time interval between section centers. This preliminary
estimate is then compared with the more precise but ambiguous phase produced by
the fit to the second section. The two are forced into agreement by increment-
ing or decrementing the fit phase by integer cycles. Clearly, the phase
extrapolation to the second section must be in error by no more than ±0.5 cycle
for this procedure to work. Once the ambiguity in the second section has been
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removed, its phase and the fringe frequency are used in the same fashion to
resolve the relative ambiguity in the third section, and so on, until the last
section is completed.

Figure 5 displays the phase values (lower curve) associated with the fringes
in Fig. 3. However, to obtain those phase values, the fringes in Fig. 3 were
rerun through PHASOR with the section length reduced from 60 seconds to
12 seconds. This shorter section length was chosen to better reveal the time
behavior of phase. As explained in the figure, a phase correction equal to
(wk - whi ) Lob has been applied in order to shift the measured phase, ms(ws), from
the peak lag (Lo) to the reference lag of the correlator (L=0). (See Eqs. 49
and 66 and the comments after Eq. 67.) Note that the phase rates of the two
plotted channels are about the same, as one would expect, and that the nonlinear
phase excursions of the two channels are highly correlated, as one would expect
for many error sources (e.g., ionospheric fluctuations and station oscillator
instability).

In summary, the output from this stage in processing consists of values
for amplitude, BSA delay, phase-delay rate and phase, computed for each frequency
channel as a function of time (section) across an observation. A formal error
for each parameter value is computed by means of a standard covariance analysis
based on the RI4S residuals found in the fringe fits.
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SECTION XI	 i

DELAY MODEL IMPROVEMENT

Although it is adequate for cross-correlation, the delay model used by the
correlator is fairly crude and is inadequate for subsequent processing. After
phase tracking, PHASOR replaces the inaccurate correlator delay model with a
more accurate model by appropriately adding back to the three solve-for param-
eters given theoretically by Eqs. (74 -76) the correlator model Tm '(which is
numerically passed) and then subtracting a new more accurate model. As indi-
cated by Eq. (26), the geometric component of the new model should accurately
reproduce the "geometric" delay that has been set up in fringe phase by time-
offsetting in the correlator. The new more accurate model delay is given by

T, 
= k

m 	 [ xmi ( tJ - Tmi ) - xmi ( t i - Tmi - kob)

m
(78)

g	 c 

where we have used the central lag (1 0 ) for the lag offset I under the assumption
that such an approximation is sufficiently accurate or that lag-dependent cor-
rections have been made (see Section V). The station positions Amk (t) are highly
accurate models for the motions of the stations, while km is an accurate model
for the source direction. In the most demanding applications, one must make a
distinction between the bit time (tb j ) and true time (t j ) when calculating the
above delay, since the geometric delay will be parametrized in terms of true time.
This can be accomplished by inputting a clock error (Tb j ) for each station and
using it to compute true time from bit time (see Eq. 1). The resulting values of
true time are then used in model calculations as suggested. in Eq. (78). The con-
fusing presence of a different true time for each statlea is a consequence of
correlator design, as discussed in Section V.

Model replacement is carried out for each of the three aforementioned solve-
for parameters from each section in an observation. For each section, the time
arguments in the model delay are determined from the section reference time (i.e..
tbj = tbi = tz = section reference time so that t i - tz - Tbi and tj = tz -
Tbj).

In addition to the geometric delay, one can also replace at this step the
model for troposphere, the clock or other delay components if desired.

In subsequent sections, we will still refer to Eqs. (74-76) as the theoreti-
cal forms for the observables, but with the understanding that the model delay
has been replaced with an improved value. The resulting change in the observa-
bles can be accounted for by changing Eq. (77) to the form

	

(ATf)new = (ATf)old + 
Tm - Tm	 (79)

= T' + T + T - T - T	 (80)
g	 c	 a	 u	 m

k

.y
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where TM is the new model delay. BSA delay, BWS delay, and phase delay (except
for cycle ambiguities and structure effects) are now all theoretically equal to
this expression for delay but are known at different levels of precision.

Even though model improvement is always applied in actual data reduction,
we will suppress it in our example observation so that data flow can be continu-
ously traced from figure to figure.

I

a

I.
f

42



COVARIANCE ERROR cv

4
v - SLOPE - 23.35 *0.11 mHz —1 0I0. 3 GIVES

1.491 -0.223
1.666

! 2

W

CHANNEL 3 AT 2271.0
of s 0.013 cycle
RMS - 0.031 cycle -4

SLOPE - 23.14 *0.1 mHz

^'t!^t

a

3

THE PLOTTED PHASE IS RELATIVE TO REFERENCE
LAG OF CORRELATOR J - 0. PHASE IN FIG. 3
HAS BEEN SHIFTED DOWN 4Y (w a - Whl) lob n
(0.225 cyelei/b0 a (♦1 100)

0

CHANNEL 2 AT 2299.2 MHz
G . 3 GIVES	 s# m 0.015 cycle (FOR 12 on)

0.49! - 0.225 -	 RMS - 0.034 cycle
0.273 ,

vv ,s#- COVARIANCE ERRORS RASED ON
RMS FRINGE RESIOMAL

1	 30

TIME, ex

Fig. 5. Example of stopped fringe phase

43



myMM

SECTION XII

OBSERVABLE FORMATION

After the four solve-for quantities (amplitude, BSA delay, phase delay
rate, phase) have been extracted from the fringes for each section across an
observation, they must be analysed to obtain the final observables. As men-
tioned above, the behavior of the parameters as a function of section (time)
is often informative when there are equipment problems, ionosphere signatures,
and the like. However, to reduce final data volume, it is usually desirable to
pass on to subsequent software one composite value per observation for each
parameter. Composite values for amplitude and BSA delay are obtained in PBASOR
by averaging the values for all sections in an observation. On the other hand,
all of the delay rate values from individual sections are discarded since a
better estimate of delay rate can be derived from the section phases as follows.

As illustrated in Fig. 5, the phase values at the section centers of a BWS
channel are fit by least-squares with a linear function of time to generate a
composite phase-delay rate (slope) and a composite phase (constant). The compo-
site phase from this fit becomes the final estimate for the RF phase for that
channel. In order to minimize correlations, the reference time for the composite
phase is defined in the fit to be the center of the observation. After the,f it,
phase residuals are computed to reveal nonlinear trends. In addition, a covariance
analysis based on the formal errors (obtained from fringe fitting) in section
phase is performed to obtain the formal errors in the composite phase and phase-
delay rate.

As mentioned above, the usefulness of the phase observable is greatly
reduced by an absolute ambiguity that currently remains unresolved in the BLKO
system. On the other hand, the composite phase-delay rate from the fit is
absolutely known (except for occasional and resolvable aliasing) and becomes the
composite observable for the given channel. For the final observables of phase-
delay rate and BSA delay, one has the option of either using the composite value
from one channel or averaging over all channels.

The calculation of the composite BWS delay observable is somewhat more
complicated. First, BWS delays are computed for each section of a channel pair
by combining the section phases according to the formula

AT	
ma - 

®b 	 (Sla) 
BWS s Wa - W 

where the phases (0a,0b) and frequencies (wa,wb) come from channels (a, b). From
Eq. 76, one finds the theoretical value for BWS delay is given by

AT BWS: AT f 
+ 8u^ + w

 2n1w
	 (81b)

a	 b

where the partial of structure phase approximates the associated finite difference
(assuming that Aw/W <<< 1) and where the last term represents the integer-cycle
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ambiguity. To reveal time dependence across an observation. a separate BWS delay

value is computed for each section in an observation. as illustrated in Fig. 6 for
the phase values in Fig. S. Integer-cycle ambiguities are then removed in a
relative sense by comparing delays from adjacent sections. (Residual delay
typically changes very slowly across an observation.) The section delays from
each channel pair are then fit by least+squares with a linear function of time
(section) to determine a composite BWS delay rate (slope) and a composite BWS
delay (constant) for that pair. In the fit, the reference time is defined to be
the middle of the observation. The BWS delay rates for the separate channel pairs
should be equal, within errors, to one another and (ignoring the effects of space
charge) to the phase-delay rates obtained above for the separate channels. Since
the BWS delay rates are less precise, they serve mainly as a consistency check.
(In cases with very poor a priori delay models, BWS delay rates can be used to
remove aliasing in phase-delay rates.) It should be pointed out that the rates
for the particular case in Figs. S and 6 should differ by about 15 gas due to an
artificial frequency-independent offset inserted in model phase during fringe
stopping. If that offset, which was included for fringe plotting purposes, is
removed from the rate in Fig. 5, the rates from the two figures are in fair
agreement.

Among the final composite values, we have an ambiguous BWS delay from each
channel pair and an unambiguous BSA delay. It is clear from Sqr. (74) and (81t)
that all of these delays are given theoretically by Sq. (77) plus the source
structure partial, except for integer-cycle ambiguities in the BWS delays. That
makes it possible to eliminate the BWS ambiguities by single-observation band-
width synthesis, a bootstrap technique that begins with the unambiguous (jut
least precise) BSA delay and successively removes ambiguities in the (increasingly
precise) BWS delays for ever-wider channel separations. The details of this
procedure are given in Appendix R and are illustrated by completing the reduction
of the long-baseline observation presented in preceding sections. When phase
calibration is available, a slight improvement in precision can be obtained by
using an alternate method to obtain BWS delay. In that method, the channel phase
values, corrected for relative ambiguities, are fit with a linear function of ob-
serving frequency to obtain the BWS delay (Elope). After extraction by either meth-
od, the BWS delay is given theoretically by Eq. (81b) without the ambiguity term.

In summary, the processing of a single observation produces one composite
value for each of four observables: amplitude. phase delay rate. BWS delay and
RF phase. Ambiguities are absolutely removed in the BWS delay but are not cur-
rently removed in RF phase. Therefore, RF phase is not used in subsequent process-
ing for geophysical information although it probably will be in the future.
Presently, the composite BWS delay from the most widely spaced channel pair is
generally taken as the final delay observable.
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i	 !	 SECTION XIII	 j

CALIBRATION OF PROPAGATION MEDIA DELAYS

For simplicity, we have neglected in the preceding analysis the delays
due to propagation media. In the case of the troposphere, the propagation delay
enters simply as a group delay (i.e., adds another term to ©Tf in Eq. 80). Con-
sequently, once the troposphere has been calibrated, its effect can be removed
from delay or delay rate by a simple subtraction. On the other hand, the treat-
ment of delays due to charged particles is a little more complicated.

The effect of charged particles on fringe phase (in radians) can be repre-
sented by

K N
Y0 - cW e	

(82)

where W is the observing frequency (rad/sec),	 is a constant, and N. is the
difference in the integrated electron content along the two raypaths of the
interferometer. The group delay corresponding to this phase shift is given by
the usual expression:

amK N

	

s e 	 c e
Te(W) 	

aW	 2
W

It can readily be shown that, neglecting source structure effects, charge-
particle effects will show up in the interferometer observables (Eqs. 74-76) in
the form

TB	 AT  + T e (WZ )	 (84)

	

{s at  + Oe (WZ ) /Wz	 (85)

	

$ a/Wz ` AT  + me(WZ)/Wz	 (neglecting 2nr)	 (86)

where Wz is the reference (centroid) frequency for the channel under considera-
tion. In some ex,,eriments, the final BSA delay and delay rate are obtained by
respectively averaging Ts and t® s over all channels in the band. In these cases,
the frequency Wz in Eqs. 84 and 85 should be changed to the effective frequency
given by

-2	 1	 -2	
(87)Weff s Nc	Wz

z

where Nc is the number of chavuels.

(83)



For the two-channel BWS delay (Eq. 78), the charged -particle delays enters
in the form

^e(Wa) - Oe(wb)

AT BWS ^ AT +	 Wa - 

W 
	 (88)

K N
11:
	 - W

 c e
ATfa Wb	 (89)

Thus the effective frequency for the charge -particle delay in two-channel AT BWS
is given by

WBWS	 wa wb
	

(90)

We are now in a position to discuss S/X calibration of charged-particle
effects. Suppose that we have measured the interferometer observables in
Eqs. 84, 85, 86 and 89 at both S-band and X-band. Note that T s, 'ems,ms/wz and
TBWS are all equal to a group delay term plus a charged -particle term proportional
to w-2 . One can easily show that the w-2  term for any one of these observable
types can be removed by means of a linear combination of the S-band and X-band
observables for that observable-type:

0	 = c 0 + c 0	 (91)
sx	 s 	 x 

where Os and Ox are the observables at S- and X-band and

f
c = W2 /(W

2
 - W2 )	 (92)	 i

s	 s s	 x

c = W2 /(W2 - w2 )	 (93)x	 x x	 s

The effective frequencies ws and wx are computed for each observable type as dis-
cussed above. With this choice of the constants, the calibrated observable Osx
will be independent of charged-particle effects (i.e., only the first term in
Eqs. 84, 85, 86 or 89 will remain).

The observables at S- and X-band can also be used to extract the electron
content (or its rate). The constants used in the linear combination for this
purpose are

	

c' _ - c' = K-1  w2 w2 /(W2 - W2 )	 (94)s	 x	 c s x x	 s
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'f	 I

This second linear combination will give

0'	 -N	 from 3SA delay t 	 (95)
sx	 3	 s

Ne	from delay rate 
;fs	

(96)

= N 	 from phase delay ms/wz (neglecting 2nn)	 (97)

_ -Ne	from BWS delay	 (98)

We should note that, if residual observables are used in the S/X combination,
as in the BLKO system, the model delay implicitly applied in OT f must be the same
for the S-band and X-band observables. In presenting the expression for the
coefficients in Eqs. 92, 93, and 94, we have assumed combinations of one obser-
vable type: BWS delay with BWS delay, phase delay with phase delay or delay rate
with delay rate. If BWS delay from one band is combined with phase delay from
the other, then the coefficients will change somewhat. Those expressions can be
easily derived and will not be presented here.

After S/X calibration, the residual observables are theoretically free of
charged particle effects except for dispersive errors in measured delay. One
"dispersive" effect in dual-band calibration, the source structure terms
neglected in Eqs. 84-86, is discussed in Reference [5).
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SECTION XIV

MODEL RESTORATION

For computational and interpretive convenience, residual delays (i.e.,
Eqs. 74, 75, 76 and Sib) rather than total delays have been utilized in the
reduction up to this point. However, since the desired final observable is the
total delay with the model delay restored, one must compute the model delay that
must be added to the residual BWS delay. The geometric component of this model
delay is chosen so that the geometric component of the resulting total delay is
equal to the conventional geometric delay. The conventional geometric delay is
defined as the difference in time of arrival of a wavefront at the intersection
of axes of the two antennas, where one station is taken as reference. As
derived in Appendix I, the model geometric delay resulting from this definition
is given by

•R

m - 
[ X'mi ( t i ) - xmi(ti))

r (t )	 (99)
}	 °g i	 c(1 + m mj/c)

where station i has been chosen as the reference station and where the
denominator accounts for the motion of station j during wave transit (transit
time correction). The source position km and station-position 16i(t) in this
expression must be exactly equal to those used in the model removed (Eq. 78).
The time argument ti, which becomes the time tag for the final observables, is
set equal to true time at the middle of the observation. (Since residual delay
and delay rate essentially remain the same over time intervals that typically
separates true time from bit time, one has the freedom to make this choice for
time tag).

It might seem strange that the restored model (Eq. 99) is not equal to the
model removed (Eq. 78). The models differ in the offsets in the time arguments
of the station positions (compare Eq. 78 with Eq. I2 in Appendix I). In the
model removed, both stations must be given argument offsets in order to match the
phase produced by the correlator when both bitstreams are offset by model delays.
The modeled argument offsets for the two stations must be precisely equal to
those correlator model delays! In the model restored, the conventional defini-
tion of geometric delay requires that only station j be offset in time where
that offset is equal to the geometric delay (see Appendix I). The reason one has
some freedom in selecting the restored model delay is that the delay effects
due to such argument offsets are small (TCMj Tg/c < 2 X 10-6 * 20 msec - 40 nsec).
This means that they can be accurately modeled and, therefore, accurately
removed or inserted. We can then choose to restore the model that makes the
final total delay conform to the conventional definition of geometric delay.

The total model delay to be restored is equal to Tmg plus all other terms in
T. except the geometric model Tmg (see Section XI) and is most easily expressed as

Tma a Tmg + Tm - T,
	

(100)

After this model is added back and after measured values for the "cable delay"
Tu and the "antenna delay" Ta are removed, the resulting delay observables from
Equations 76 and Sib (with ATf given by Equation 80) become
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(108)

for phase aetay ana

I'T
BWS 

29 T + 
aws	

(102)
z

for BWS delay (with ambiguity removed) where

T - T + T	 (103)
g	 c

The total geometric delay, which entered the preceding equations in the form 	 j

Tg = T o - To + Tmg	 (104)

now has the conventional definition given in Appendix I and is defined relative to
a reference position ka. Thus, except for structure effects and an integer-cycle
ambiguity, the BWS delay and phase delay are equal to the same delay: a geometric
delay plus a clock synchronization term. When these observables are obtained 	 k

through S/X calibration, the structure terms are evaluated at X-band. Strictly
speaking, the structure effect is a geometric effect and can be absorbed in the
geometric delay by placing the reference position at the effective position [5].
However, a single reference position cannot be used to make the structure effect
disappear for both T O and TBWS since the effective positions for the two observa-
bles usually are not the same.

For computational convenience, phase-delay rate, which as a measured residual
has the form given in Equation 75 (but is obtained from residual phase slope), is
passed to subsequent software not as an observed rate but as two delays whose
difference will represent the delay rate. The measured residual phase-delay rate
Alt is converted to two total delay values by the relations

T (t+ 6t/2) - TMA(t + 6t/2) + AT
f
 6t/2 (105)

OR

6t/2) = TmA(t - 6t/2) - AT 	 6t/2 (106)TOR(t -

where 6t - 1 to 4 seconds. In subsequent processing, these delays are converted
to a delay-rate-like observable b7 the relation j

6T
T(t + 6t/2) - T(t- 6t/2)

a OR OR (107)
6t 6t

#

This reconstructured rate observable is essentially equal to

i	 which is the time derivative of the phase-delay observable.
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With regard to structure effects, it can be shown (5), that, for each obser-
vation, one effective position can be found that, when used as the reference
position ice, will set the structure terms in both BWS delay and phase-delay rate
equal to zero. Thus, those observables can be represented by T S + Tc and f g + fc
where Tg is the geometric delay relative to the effective position for those two
observales.
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SECTION 7N

SUMMARY

t	
For each of several baselines (110), the BLKO system can cross-correlate

i	 and compress approximately a gigabit of recorded data for a natural source to
four final observables. After phase-calibration and dual-band charged-particle
calibration, the four final observables are fringe amplitude (Equation 72),
phase-delay (Equation 101), phase-delay rate (Equation 107), and BWS delay
(Equation 102). Multiple baseline observations of fringe amplitude, perhaps
coupled with triangle-closure values for the other observables, can be used in
subsequent analysis to study source structure. If the delay and delay-rate
observables are measured for many sources, they can be subjected to a multi-
parameter fit to obtain astrometric and geophysical parameters. 	 I

The Block II system now under development will be superior to the BLKO system
in many ways. The improvements include (a) a lower fringe-detection threshold,
as well as simpler and faster operation, through coherent integration across fre-
quency channels (a BLK II option that requires phase-calibration), (b) more fre-
quency channels (28), (c) a higher total bit rate through continuous recording
of each frequency channel, (d) better phase calibration by using four tones per
channel and by frequent "real-time" counter-rotation of fringe phase (at every
correlation interval), (e) reduced intermodulation and aliasing in stopped tone
phase by quantizing the tone-stopping sinusoids to 128 amplitude levels rather
than 3, (f) improved capability for spectral-line work (224 lag integrations),
(g) longer integration times for a given data-storage-array size by means of
data compression through digital filtering, and (h) an improved fractional-bit-
shift correction through frequent (ti every 10 msec) counter-rotation of fringe
phase. The Block II system is scheduled for completion in 1982.
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APPENDIX A

A COMPLETE DERIVATION OF THE CROSS-CORRELATION FUNCTION

This appendix presents a complete derivation of the cross-correlation
function, taking into account the statistics and the spatial distribution of
the emissions of the natural source.

The radio noise generated by a very distant extended natural source can be
expressed as a superposition of plane waves in the form

W

	

E(x,t) 

k	

A(k,w) exp[iw(t - k•x/c)] dw dP + c.c.	 (Al)

0

f	 where E(x,t) is the electric field at position x and true time t. For simplicity,
the electric field is assumed to be linearly polarized. The function A(ic,w) is
the Fourier amplitude at frequency w for the wave received from direction k. while
c.c. denotes complex conjugate. As in Section IV, all gVantities are measured
with respect to a geocentric frame. The wave direction k can be expressed as a
function of two parameters and, in the case of right ascension and declination,
becomes

k = -(cos6 cosa, cosh sina, sin6)	 (A2)

where a, 6 are the apparent right ascension and declination relative to true
equatorial coordinates of date. The quantity dQ represents a differential solid
angle such as cos6dado in the case of right asc_lnsion and declination. In the
following steps, we will use the wave vector: k = wk/c.

The electric field detected at antenna j is given by

Ej (t) = E(xj (t),t) _	 A(k,w) 
ei[wt k•xj(t)] dw dS2 + c.c.
	 (A3)

fo

where xj (t) is the position of antenna j as a function of true time. (See Sect-
tion IV for a definition of antenna location.) This signal will be received by
the antenna and passed through various filters and mixers. The modeling of the
composite effect of instrumentation is discussed in Section IV. Following that
derivation, the signal component due to the natural source can be written in the
form

W

V^(tbj ) a

	

	 A 	 Gj(yj) 
ei[wtj k•xj(tj)-aj(w,tj)]dw dSE + c.c. 	 (A4)

k

fMM
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where the doppler-shifted passband argument is given by

y  = w(1 - k•x1 /c) 	 (AS)

and where instrumental phase terms are given by

a  (w. t i ) wh j tj + ^hj + y  
TIj + WT  + IJ (yi )	 (A6)

As in the text, tj is the true time that corresponds to bit time tbj.

We will first compute the expectation of the product of two analog signals
as described by Eq.'(A4) and then compute the normalization. The expectation
value of the voltage product is given by

<Vi( tbi ) Vi(tbj)>

a

<A(k,w) A* (k' ,w')>G i (yi )Gi (y^ )eI* dw die dw' dQ'

fi ,^0 k 0

W

+	 ^A(k,w) A(k',w';^G i (yi )G^(yj)ei^c dw dt2 dw' dn'

k' 0 k 0

	

+ C. C.	 (A7)

where

	

yi = w (1 - k •x1/0	 (A8)

	

y^ = w'(1 - k' • xj /c)	 (A9)

= Wt  - k• xi (t i ) - w't 3 
+ -0. -1-
	 - aI (w,t i) + ai (w',t^)	 (A10)

and Joc is a similar expression that will not be nVeded. The quantities tk are
the offset values for true time corresponding to t bk as in Eqs. (16) and (17)
in the text (i.e., tbj = tbj + A implies tj = t j + A).

We will. assume that the natural source is completely incoherent, which
means

<A(k,w) A*(k',w')> 
2 

Sp (k,w) d(k - k') 6(w - w')
	

(All)

L^



i

f

where Sp(k,w) is the power spectrum for direction k and 6(a) is a Dirac delta
function. l That is, emissions from different areas of the source are uncorre-
lated. Furthermore, the noise emitted by a given area is stationary and there-
fore possesses uncorrelated frequency components. Since the signal is real, we
know

a	 A(k,w) = A* (k, -w)	 (Al2)

This relation and Eq. (All) give

<A(k,w)A(k',w')> = 2 S (k,w) 6(k-k') 6(w+w') 	 (A13)
p

i

m 0 for w and w' > 0	 (A14)

7

Under these assumptions, Eq. (0) becomes

<Vi(tbi) Vi(tbj)> i	 Sp(k,w) G i (yi) G3 (yj ) exp(i* l)dw dil + c.c.

fo

(A15)

where

y i ° w (1 - k•xi/c)	 (A16)

y  = w (1 - k • x^/c)	 (A17)
I

*1 = w (t i-t^) + k • Br - a i (w,t i ) + a^(w,t^)	 (A18)

The A(k,w) A(k',w) term has dropped out since w i -w' is not covered in the
region of the integration. We have also defined a "retarded baseline:"

Br	 xi (t^) - xi (t i )	 (A19)

Let two particular parameters 0,Y) define the direction vector. Supeose
the brightness distribution is very narrow about some reference direction ka

k  = k(Ba ,Ya )	 (A20)

For two particular direction parameters (8, Y)• the delta function denotes
6(8 - 6') 6(y - Y'). Furthermore, we will require 8 and Y to satisfy the
relation d6dy dR.
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If the brightness distribution in sufficiently compact, we can approximate the 	
}

wave direction by

k = ka + as ( (B - Ba ) + ay
	

(Y - Ya)	 (A21)	 i

ja	 is

where the partials* are evaluated at the reference point 0 a Ya• We then obtain

	

r .	 GVi(tbi) V^(tb^)> = 2	 R(u,v,w) G i (yi ) G^(y^) exp(iP ) dw + c.c.

o	 i

(A22)

where

'yi = w (1 - ka • Xi/c)	 (A23)

yj = w (1 - ka • xi /c)	 (A24)

^f = w (t i-t j ) +t a  I  - a
i (w .t i) + ai (w.t^)	 (A25)

and where

m f Cc

R(u.v.w)	 Sp(B.Y . w) e
-2ni[u(B-0a)+v(Y-Ya )I dBdy	 (A26)

Cc	 OD

for which

B
u= - as I	 ^	 (A27)

a

B
V = _ aY	 a	 (A28)

a

A = 2nc/w 	 (A29)

*Structure coordinates are usually defined as B - (a - ac) cos Sc and y • 8 -• do
where (ac, d c) is the origin of structure coordinates relative to r.a. and
declination. With this definition, the B partial and y partial are in the
direction of increasing right ascension and declination, respectively.
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With this definition, u and v are the components of the baseline vector
projected on the plane of the sky. Two approximations have been made in

4	 Eq. (A22). First, the weak i dependence in the bandpass functions has been
neglected so that the yi ,yj values have been evaluated at QCs. Second, the limits
of the (R,Y) integration have been extended to infinity under the assumption
that the brightness distribution is very compact and terminates the integration.
The function R(u,v,w) is referred to as the brightness transform. A more
detailed treatment of the brightness transform and of structure effects is given
in Ref. 5.

The fringe visibility is the normalized modulus of the brightness transform
and is a measure of the spatial extent of the source relative to the resolution
of the interferometer for the given observation. It is equal to the ratio of
"correlated flux" to total flux and is defined by

of (u.v.w) _	 R(0,0,w) I	 (A30)

Ruvw	 (A31)
•	 Sp (w)

where S (w) is the total power emitted by all parts of the source at frequency w.
For a point source, the fringe visibility is unity for all baselines. For a dif-
fuse source, the visibility is unity for a "null" baseline and decreases on
average as baseline length increases. The decrease can become substantial for
baselines satisfying

I Br ,'L 2d	 (A32)

s

where d a is the source diameter in radians and A is the radio wavelength.

In addition to this normalization of the brightness transform, we must
normalize the voltage signal in Eq. (A4). Using Eqs. (All) and A14), one can
easily show that expectation of the squared voltage is given by

(V^) z	 Sp(k,w) Gi(yj) dw dQ	 (A33)

0

W

Sp (w) G2(yj)dw
	

(A34)

0

where we have again neglected the weak dependence of y on k and evaluated yi
at the reference position ka. Using Eqs. (23), ( A6), IA22), WO and (A34), we
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can now compute the cross-correlation function for the normalized voltage compo-
nents for the natural source:

.e

<V i(tbi-Tmi-is) Vg (tb —Tm )>

<gi (tbi ) gj ( tbj )> -	 2	 2 112

<(Vi) > <(V j) >]

2D
	 Sp (w) G i (Yi) Gj (i►j ) ei* f t:r + C.C.

N 0

(A3S)

(A36)

where

DN 2 =	 sp (w) Gi (yi )dw	 Sp (w) Gi (ys)dw

foo f000

and, like Eq. 27,

4 f . w (Tg+Tb+TI +Ta- imi+imj -1b)

(A37)

(A38)

+ 0  - whj T mj 
+ whi(imi + ib) 

+ 0  + t 

in which Tb, TI, Ta, and 4, are differences between station quantities in the
order j minus L.

As explained in the text, the quantity T b = t i tis the difference between
the errors in the bit times of the two stations. ae have pulled o f out of the
integral, recognizing that resolution of the source will vary very little across
a 2-MHz passband located at KF. A phase term O R has been added to fringe phase
Of to represent the phase term from the brightness transform K. Further, we have
used the definition of the instrumental phase from Eq. (A6), properly offset in
time. In analogy with Eq. (26), a definition of an interim geometric delay has
been made:

wTg_ ka • Br	 (A39)

ka . [ xj ( t j -Tmj ) - xi ( t i- T mi 	 (A60)

where we have used the reference position k  of the extended source.
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As indicated in Sqs. (16) and (18), the final expression (Sq. 19) for the
cross-correlation function of an extended source is obtained by r-I tiplying
Sq. A36 by 2/r and by a noise temperature factor. One can easily snow that this
result for an extewd.d source is the same as that for a point source except that
(a) an amplitude fa ,^t.oi• (vf S 11 must be included, (b) a phase shift due to
structure suet be added to the phasy, and (c) the interim delay Tg is computed
relative to the reference position ka.
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APPENDIX B

BIT MANIPULATIONS IN THE CIT/JPL MARK II CORRELATOR

The JPL/CIT Mark II correlator has the capability of simultaneously
processing up to five stations, including all 10 passible baselines. There are
two stages in processing: single-station delay offsetting followed by two-station
(pairwise) operations. Figure B1 illustrates these two types of operations in a
5-station application and shows the numbering system for station pairs. Fig-
ure B2 presents in greater detail the operations performed on a particular pair.
Each bitstream is offset by a single -station model delay whose geometric compo-
nent is the transit time between the station and the earth center of mass. The
single-station delay for station i is given by

k	 xmi(tG)
Tmi = - 

m 

c	
+ T ti + Tci	 (B1)

where the first term is the geometric delay relative to the earth center of
mass, expressed in terms of station location xmi and apparent wave direction km
(both in geocentric coordinates). The term T ti represents the troposphere delay
along the raypath to antenna i, while Tei represents the station clock error
(offset and rate). The single-station approach works because the resulting dif-
ferential offset between the two members of a pair of bitstreams will contain the
differences for all important delay components. For example, the resulting dif-
ference in geometric delays can easily be shown to equal the desired geometric
delay (Eq. 26) between antennas (except Fir small effects due to argument offsets
that are accounted for in post-correlatio ►► software).

The pairwise operations illustrated in Fig. B2 consist of the following
steps. Since the difference between two rounded numbers is not necessarily equal
to the rounded difference between the raw numbers, the relative offset between
two separately rounded and offset bitstreams can be in error by as much as ±1 bit
relative to the desired rounded two-station delay. Thus a pairwise vernier cor-
rection (1, 2, or 3 bits) is applied to the first bitstream of each station pair,
where a 2-bit delay corresponds to zero correction. The same bitstream is then
simultaneously subjected to each of a number ( 16) of lags. At the same time, the
second bitstream is delayed by 10 bits so that its pairwise delay will match the
total pairwise delay (for zero vernier correction) applied to the first bitstream
in order to reach the reference lag (#8) for that bitstream (i.e., 2-bit vernier
+ 8 lags - 10 bits). The second bitstream is then multiplied in quadrature by two
pairwise stopping functions (cospm, sinom) with phase (and rate) given by
Eq. 28. The computation of phase through Eq. (28) must be based on total delays
(Tmi) used by the correlator in offsetting to the reference (central) lag. That
is, for each bitstream, the total unquantized delay is equal to the single-statiou
delay (Eq. B1) plus 10 bits (i.e., T i - Tmi + 10 bits). The quantized delay
TMi in Eq. 30 is equal to Tmi rounde to the nearest bit except that Tmi for the
first bitstream is shifted by (-1, 0, +1) bit according to the vernier delay
setting. After these pairwise operations, the two bitstreams (one now complex)
are multiplied bitwise and a complex sum over bits is performed for each of the
16 lags applied to the first bitstream.
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SINGLE-STATION OPERATIONS 	 i	 TWO-STATION OPERATIONS

PLAYBACK DECODE	 DELAY	 I	 VERNIER DELAY CORRECTION, PHASE

Fig. Bl. Block diagram of the CIT/JPL Mark II multistation/correlator
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Figure B3 illustrates in terms of devised bits these bit manipulations for
two bitstreams as they pass through the correlator. For the two possible levels
of the recorded signal, a plus sign (minus sign) is used to denote a +1 1-1).
Contrary to the impression created by the figure, the bits are processed serially,
not simultaneously. The figure depicts a correlation interval of 8 bits even
though correlation (averaging) intervals are typically 0.2 - 1.0 seconds
(0.8 - 4 megabits) in length. No signal pattern has been made evident in the
two bitstreams since the signal is typically much less than system noise for each
1-bit sample point. As indicated above, the first step is to offset both bit-
streams by their respective single-station delays given by Eq. B1 but rounded to
the nearest bit. For illustration, those delays have been set equal to very
small numbers (<3 bits) even though in practice they could be as large as
20 cosec (8 x 104 bits). After single-station offsetting, one bit-stream (left)
is subjected to the 1-bit vernier correction for roundoff errors, while the other 	 i
bitstream is multiplied by the quadrature stopping functions. For simplicity in
the pairwise operations, the vernier delay is represented as (-1, 0, +1) bit
rather than (1, 2, 3) bit; only one lag offset (i.e., no offset) is shown for
the left bitstream; and, consequently, the related 10-bit delay that would have
been required for referencing the right bitstream to the central lag (the only
lag in the example) is unnecessary. The stopping sinusoids are quantized to
three amplitude levels equal to (-1, 0, +1). Over a cycle of stopped phase,
the quantization subintervals are 3/8 cycle at +1, 1/8 cycle at 0, 3/8 cycle at
-1 and 1/8 cycle at 0, with appropriate shifting for sine and cosine. One can
readily show that the amplitude of the first harmonic 'as equal'to 1.176 for this
quantization scheme. For our example, the fringe rate has been set equal to
(8 bits)- 1 or 0.5 MHz in order to make each quantization subinterval equal to a
small integer number of bits. This rate, of course, is much greater than the
normal VLBI rates, which are 25 kHz or less at X-band. After multiplication by
the quadrature stopping functions, the second bitstream has branched into two
"counter-rotated" bitstreams, with some bits blanked out by the zeros in the
stopping function.

The two bitstreams derived from the second station are separately multiplied
by the first bitstream to give two cross-correlated bitstreams. The bits in each
of the product bitstreams are summed over the correlation interval to obtain the
excess (or deficit) of +1's relative to -1's. When divided by the total number
of bits in the sum (see N t in Eq. 30), the two sums become the real and imaginary
parts of the complex stopped fringes for which the theoretical expectation value
is given by Eq. 37 with al = 1.176 and R = 0. The time tag (i.e., bit time
tG = tbi m tbii in Eq. 29) for the correlation coefficients is the center of the
sum interval 3n (unshifted) UT seconds.

Phase calibrator tones are extracted in the correlator by means of an arti-
ficial application of the cross-correlation operations. To set up for single-
station tone stopping, each playback bitstream is cross-correlated with (multiplied
by) an artificial bitstream filled with +1's. The artificial "DC" bitstreams
are constructed in some or all of the bitstream channels left unoccupied by real
data. The model phase used for quadrature tone stopping is made to equal Eq. 60
by an artificial assignment of the parameter values in the interferometer phase
model in Eq. (28). Since tone stopping requires the use of unoccupied bitstream
channels (see Fig. B1), the maximum number of tones/frequency channel that can be

fextracted in a single pass through the correlator (without time-multiplexing
between tones within a channel) is 5 - Nr is the number of real bitstreams being

t
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processed. Thus, for two-antenna processing, a maximum of three continuous
tones/frequency-channel can be obtained. By correlator design, more tones/
channel could be obtained by time-multiplexing between tone phase models. How-
ever, as one increases the number of input bitstreams, increases the number of
time-multiplexed frequency channels, decreases the dwell time per channel or
increases the number of time-multiplexed tones within a channel, greater demand
is placed on the available memory and computing power of the correlator. It is
beyond the scope of this report to discuss correlator limits for these
parameters.

a
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APPENDIX C

REFORMULATION AND ILLUSTRATION OF FRINGES IN THE LAG DOMAIN

This appendix reformulates the stopped fringes in Section VI to place them
in the form that is commonly used in the lag domain. An example of stopped
fringes is presented.

The identity

eiwATt e
-*OAT t 	 1	 (Cl)

can be used to place the stopped fringes of Eq. (37) in the form

rm	i[A*f (w-whi)tbl

	

<ut(tG)> 
a a

l n Dc (AT t ) a	 (C2)

where the delay function is given by

i(w-w)AT

Dc 
(AT t ) = D	

Sp(w) Gi(yi ) Gj (yj ) F  e	 t dw	 (C3)
N

and where the overall residual fringe phase at the reference lag (1-0) is given
by

A*f = Ash + wAT + f  + ^ B 	(C4)

and residual delay by

	

ATt = AT - tb	 (CS)

The frequency w will be equal to the centroid of the bandpass product. One can
show that this choice for w will relegate virtually all of the time dependence
in the fringes to the fringe phase Tf. 	 j

Suppose that the natural source spectrum S p (w) is flat and that the handpass
shapes at the two stations are identical. Under these assumptions, the delay
function becomes

Dc(AT) 1	 G(yi)G(y1)Fgei(w-w)AT dw	 (C6)
N
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where D  in Eq. (21) becomes

DN	 G2(w)dw
	

(C7)

Given the bandpass shape, the quantization filter Fq, and the doppler shift in
yi and y this integral can be readily evaluated. The simple case of a
rectangular bandpass of width Wb proceeds as follows. The BUD system operates
in the single-sideband mode in which the total mixing frequency is placed at the
edge of the 2-MHz passband. If the doppler shift at station j is Dj and the
total mixing frequency is f j , then the centroid frequency will be

w _ 
f i +f i ±Wb - D i - 

Dj (C8)
211 -	 2 

where the plus (minus) sign is used for upper ( lower) sideband. Effective
bandpass width will restrict the limits on the integral in Eq. (C7) to the
range

W = w ± Wd /2	 (0)

where Wd is the bandpass overlap after doppler-shifting given by

Wd - W  - If  - f  + D i - D i i	 (C10)

provided there is overlap. Given these values, the integral in Eq. C6 becomes

t
4

F

Wd sin (nWdAT)
Dc (AT) a W 

	 7rWdAT
(Cll)

where we have assumed Fq - 1. The factor Wd/Wb , which lies between zero and one,
is the ratio of actual overlap to total bandwidth. It gives the fractional
power remaining after doppler shifting has caused misalignment of the two station
bandpasses and has thereby dropped power at the bandpass edges. For the BLKO
system, such losses are almost negligible since doppler shifting is very small
relative to a 2-MHz bandwidth. For example, the maximum doppler shift at X-band
is about 20 kHz so that Wd/Wb '- 0.99. (In the BLKO system, fi - fj is often zero
since the same mixing frequencies are often used at both stations. In narrowband
systems, the mixing frequencies are sometimes given different values so that therr
difference compensates for the bandpass misalignment caused by doppler shifting.)

Thus for a rectangular bandpass, the stopped fringes are given by

4

I.

=	 r  Wd sin(nWdAT R) ei[A*f-(w-whd tb1

< uR(tG)^	 al n W 	 nWdATI
(C12)
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where A*f is given by Eq. (C4). If power loss due to doppler shifting is
negligible (Wd/Wb - 1), the maximum amplitude of the fringes is given by
alrm/w for perfect bitstream alignment (AT - 0).

Examples of lag-domain fringes that correspond to the frequency-domain
fringes in Fig. 3 are given in Fig. Cl and are plotted as a function of time
for three lags (1). Note the phase shift of about n/2 between the sinusoids for
adjacent lags. This shift is a consequence of the term (w-w hi)Ib in Eq. (C2),
which is caused by lag offsetting of bitstream i. Since the average (centroid)
frequency at baseband (w - whi) is about 1 MHz, a shift of one lag will produce
a phase shift equal to

I (w-w )b = ±1 MHz * 1 bit
N	 hi

0 ±0.25 cycle

(CM

where the ± pertains to upper and lower sidebands. The actual phase shift is
slightly smaller (=0.22 cycles) since the bandpass falls off before reaching
2 MHz. In fringe stopping, the same stopping phase is used for the fringes
for all lag offsets so that this phase jump between lags is not removed. Also
displayed in this figure are fit fringes based on the model in Eq. (C12), where
the bandwidth (Wb-Wd ) has been set equal to 1.8 MHz. In the fit, the behavior
of the amplitude as a function of lag allows determination of the fringe ampli-
tude and BSA delay. For the first section, one can visually fit a sin x/x func-
tion to the amplitude vs lag in Fig. C1 and verify the fringe amplitude of -800
and the BSA delay of -0.3 bit that result from phase-tracking. By noting the zero
crossings, one can also verify the fringe rate of about 21 mHz and the fringe
phase of about 0.5 cycle at the indicated midsection reference time. The SNR
per fringe point is about 8 in this example.

With regard to amplitude, the solve-for amplitude in the lag-domain should
be approximately equal to a l rm/n (see Eq. C2) since no amplitude scaling is
provided in the lag-domain model fringes. This amplitude is smaller than the
frequency-domain result by about a factor of 2.0 due to amplitude scaling through
BAMPL, as explained in Section X.

77



500

0

-500

I.0

O

1 n N
(to►

REFERENCE
TIME

SECTION 1SECTION 2

A; - 609 *24, is - 21.30 *0.27 ^ Ha	 A;. 633 *24, 4,-24.0 *0.27 wH&
^s = 0.497 *0.0046 cycle, r, _ -0.321 *0.0541ag #$ - 1.690 *0.0046 cycle, r, - -0.321 *0.053 lag

(#^ AND r. RELATIVE TO PEAK LAG, 10 - N)

REFERENCE I	 RESIDUAL - 9sTlue

"b
X 5^

0

0-we

RMS FRINGE RESIDUAL = 112

300	 J - -0

0	
t

O	 O	 1"
O	 ONSET

-	 O	 RESPECT TO
COW"TOR

- LAG h
0	 30	 60	 90	 120

TIME, me

Fig. Cl. Long-baseline example of stopped fringes in the lag domain

78



QUANTIZATION FILTER

This appendix obtains an expression for the quantization (fractional-bit-
shift) filter by evaluating the sum

F (z)	
1 

E e

iz(Tm - Tm)
q	 N 

t 

We will assume in the following analysis that the correlator keeps the quantized
model delay within 0.5 bit of the model delay (i.e., Ji m - Tml 1 b/2). If one
assumes that delay rate (I ) is constant across the sum (correlation) interval
(which it very nearly will%e for correlation intervals as short as 1 sec or
less), then the sum over time can be converted to an integral over T. The
integral over T, however, must be broken into intervals with boundaries at bit
jump points.

We will model the general case in which the quantization error
(AT - Tm - im) exhibits the following behavior. In the first interval with
continuous behavior, let AT progress from AT 1 to b/2. This will be followed
by Nq intervals in which ui trnverses its full range from -b/2 to b/2. In the
final interval, AT then changes from -b/2 to AT2. By evaluating the appropriate
integral in each interval and summing, one can show that the quantization filter
will be equal to

izAT2 izATl

Fq (z) - 
T 1 TM, 

e	

iz	
+ N 

J b sizb/2/2	
(D2)

m2	 ml

where Tml and TM2 are the initial and final values of TM , , respectively, and
where NJ is the number of "jumps" in the quantized delay TM over the full
correlation interval (NJ - Nq + 1 - Tm2 - Tml)• Equation D2 is quite general
and is valid when there are no jumps in the quantized delay ( NJ - 0) and when
the delay rate is negative ( TM2 - Tml < 0 and NJ < 0).

Two limiting cases are of interest. First, in the limit of large N J , the
quantization filter introduces no phase shifts and, as one would expect, becomes
a pure sin x/x filter. This is also true whenever AT1 - AT2 - 0 and INJ I > 0.
Second, as the delay rate approaches zero, we will have Tm2 - Tml -► 0 and
NJ - 0. In this limit, we obtain the expected result

Fq (z) - exp[iz(Tm - jmA
	

(D3)

where Tm is the delay at the middle of the correlation interval.

(D1)
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The most important feature of the formulation of the quantization filter in
Eq. 02) is that only the initial and final values for Tm are needed to compute 	 ti

the composite effect of quantization over the whole interval. Given the initial
and final values, one can easily compute Tm2 - Tml . AT;. AT2 and NJ. For this
reason. Tml and Tm2 values for each correlation interval are numerically passed
to the modeling subroutine in PHASOR.

a
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APPENDIX E

ERRORS IN THE LAG-TO-FREQUENCY TRANSFORMATION

In the transformation of the fringes from the lag domain to the frequency
domain, the use of a limited number of lags can introduce errors in the output
phase and amplitude. This appendix develops a model to assess the magnitude
of such errors as a function of the total number of lags used in the transform.

To stress the important features in the lag transform. we cast the fringes
of Eq. (37) in the form

<uI > a	
H(w')eiw'(AT'-Rb) dw'
	 (E1)

0

where H(w') is equal to the bandpass product SpG G i and w' is the translated
frequency w' - w-whi . We will neglect doppler shifting and will assume that the
two bandpasses are identical (G iG i - G2 ). The delay AT' is the residual after all
model terms are subtracted. In this appendix, we will let the integer t equal
zero at the central lag, which is chosen, of course, to cancel all but the frac-
tional bit part of AT'. Thus the "remaining" AT' will fall between t0.5 bit.
Although we will not do it here. it can be shown that the quantization filter Fq
has little effect on the transformation errors and can be neglected. All phase
terms independent of frequency have been discarded since they will only cause a
phase shift in the transformed fringes and have no effect on lag transform errors
(although they are otherwise important).

The error calculation proceeds as follows.
shape and delay AT', the integral in Eq. (E1) is
of Ni values of I centered about the central lag
sor output. The resulting NR complex numbers or
inverse transformation in Fa.. (40), which :s the
transforms the fringes to the frequency domain.
in the frequency domain will belong to frequency
cies in Eq. (43). These frequency-domain values
the complex input integrand in Eq. (E1) (without

For a given bandpass-product
calculated numerically for each
thereby simulating the proces-
then subjected to the limited

way the postcorrelation software
The resulting complex numbers
"bins" centered at the frequen-
should be approximately equal to
to) at each frequency bin.

An example of the process is shown in Figs. Ela and Elb fora nine-lag trans-
form and a Butterworth filter approximating the BLKO bandpass. The solid lines
represent the input amplitude (G ) and phase (w'AT') in the frequency domain.
while the points represent the limited-lag transform output that should be
approximately equal to this input. For this particular case, the output ampli-
tude deviates from the input amplitude by as much as 92, relative to maximum ampli-
tude, while the output phase oscillates about the input phase by about t0.5 milli-
cycles. The directions of the deviations in this example are fairly typical,
although the magnitudes are not.
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Since complete results for all cases would be too lengthy, we haveL 
summarized in Table E1 the transformation errors calculated for certain useful
cases. Bandpass A roughly approximates the nL*:O bandpass, while bandpass B is
somewhat wider as explained in the table caption. The table was constructed
as follows. For a given bandpass shape and given lag count, the transformation
errors were calculated for various values of AT' between ±0.5 bit. Results are
shown only for odd bin frequencies [n/(2N I), n odd]. It was found that the
amplitude errors for fixed bandpass and fixed lag count (NI ) are virtually inde-
pendent of AT' while the phase errors depend strongly on AT'. The table gives
only the maximum error in bin phase across the bandpass for the worst case of
AT'. In addition, the table lists the worst-case error in aggregate phase
(referenced to the bandpass center) obtained from a weighted least-squares fit
of a linear function of frequency to the bin phase errors. In the fit, the bin-
phase values were weighted by the square of the bin amplitude. (As suggested by
Section X, such a fit is implicitly performed when the transform-d fringes are
phase-tracked.) Due to the oscillation of the bin errors, the worst-case errcr
in aggregate phase is typically much smaller than the bin phase errors. The error
in aggregate phase falls to an acceptable level (0.001 cycle) at 7 or 8 lags.
From the table, it appears that a 9-lag transform yields the smallest phase
errors, both bin and aggregate, for N I below 12. For NI - 9, bin-phase errors
are less than a millicycle and aggregate phase error is less than 0.1 millicycle.

With regard to amplitude errors, the table also gives, for each case, (a)
the largest discrepancy between input amplitude and output amplitude across the
passband, expressed as a percentage of input amplitude, and (b) an estimate of
aggregate amplitude error for the case in which bin amplitude in fringe fitting
is approximated with the actual bandpass amplitude in Eq. (il) (i.e., the bin
amplitude for NI - -). From the table, we see that the worst bin-amplitude error
usually occurs at the fist or last bin in the bandpass, where edge effects are
most significant. The aggregate amplitude error is 2 or 3% when the lag number
is 9. For very accurate amplitude work, this error can be eliminated in principle
by making accurate measurements of the bandpass shape and calculating bin ampli-
tudes by means of the simulation analysis described above. Although it does not
appear to be necessary for any current applications, bin-phase errors could be
largely eliminated in a similar fashion.

A word of caution is necessary in using these results. While the numerical
values can provide a useful rough estimate of transformation errors, the simulated
errors might deviate considerably from actual errors. The main reason is that
actual bandpass shapes can deviate considerably from the assumed ideal. Butterworth
shapes. More accurate representations of bandpass shape might lead to large
changes in aggregate phase errors, which were reduced to small values by cancel-
lation of large bin-phase errors of varying sign.

The shape of the transform bandpass obtained in this appendix can be used
to compute nominal values for BAMPL, the four-element array ii, PHASOR for nor-
malizing bin amplitudes in frequency-domain fits. On the basis of Eqs. (45)
and (49), one can readily show that

BAMPL = 1.176n 0.75 0 88 (0.94, 1.0, 1.02, 0.89)	 (E2)

a
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Table El. Transformation errors from limited-lag transforms
[Bandpass A (a BLKO) is an ideal 13-pole
Butterworth filter with -3 dB at 1.76 MHz;
Bandpass B is an ideal 7-pole Butterworth
with -3 dB at 1.83 MHz]

Largest Largest
Largest composite bin Composite

Lag bin-phase phase amplitude amplitude
count Band error, error, error,* error*
N1, pass mcycle mcycle X X

4 A 10.4 1.1 -21 -12

B 6.0 0.5 -13 -8

5 A 5.8 2.5 -7 -2.0

B 5.7 2.4 -7 -2.1

6 A 10.3 1.0 -17 -5.8

B 5.1 0.8 -9 -3.7

7 A 1.6 0.5 -7 -3.3

B 2.0 0.6 -7 -2.6

8 A 9.0 0.25 +5 -0.5

B 3.7 0.03 -6 -1.5

9 A 0.55 0.05 -9 -3.1

B 0.51 0.05 -6 -1.8

10 A 7.5 0.0? -7 -0.2

B 2.4 0.10 -7 -1.2

11 A 1.7 0.17 -10 -2.5

B 0.2 0.02 -7 -1.4

12 A 5.3 0.15 +7 -0.7

B 1.3 0.02 -6 -1.0

*As percent of maximum input amplitude.
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where the first factor is al and 0.88 is the value of GA in Eq. (50) computed on
the basis of the bandpass shape (solid curve) in Fig. Ela. (More exactly, for
constant Sp and identical band passes at both stations, GA becomes 'C2 after Sp
has cancelled in numerator and denominator of Eq. 49). The four numbers in the
array are the four bin amplitudes in Fig. Ela. The new factor 0.75 enters because
the correlator divides by the number of unblanked bits (0.75N t) rather than the
total number of bits (N t). The overall value for the BAMPL array becomes

BAMPL - (1.07, 1.14, 1.16, 1.01)	 (E3)

These values for BAMPL are uses as the default values in PHASOR. These BAMPL
values correspond to a "b-factor" of about 2.0 whereas experimental determinations
or the b-factor have resulted in a value about 252 larger. That is, if the
default BAMPL array is used, the output amplitudes are reported to be about 202
too small. The cause of the bulk of this discrepancy is not currently known.



APPENDIX F

THE PHASE CALIBRATION SIGNAL

This appendix treats the phase calibrator signal and includes an analysis
of (a) tone power, (b) the effect of bilevel clipping on the recorded signal,
(c) tone stopping, and (d) stopped-tone SNR. Since it is not necessary for
these topics, this appendix will not decompose tone phase into signal-path
components but will treat it as a single variable. An analysis of the compo-
nents of tone phase is given in the text.

The analog baseband signal (before clipping) can be represented in the
f orm

V(t) = SW + aNd(t)
	

(Fl)

where S(t) is the total calibrator signal and the second term is additive noise,
which includes instrumental effects, sky noise and source noise. We have
normalized the noise to unity (i.e., 7d > = 1) and included a factor ON equal
to the rms voltage of the noise term.

The calibrator signal can be decomposed in terms of its harmonics to give

V(t) - 11 V  
cos 0n + aNs(t)
	

(F2)

n

where mn is the phase of the n th tone and vn is the maximum voltage of the nth
tone. For more detail concerning fin , see Eq. (57) and the discussion in the
text. The amplitude v. will be discussed below.

Total power of the calibrator signal is given by

Ps a 
2 E vI 	 (F3)

n

while the power of the noise term is given by

PN a aN	 (F4)

If we specify total calibrator power relative to total noise power (both within
passband), we can express the tone amplitude in terms of O N . That is, if the
ratio (Ps/PN) of total calibrator power to total noise is E, then the ratio (SNR)
of tone amplitude to rms noise voltage becomes

v F2 hE

v 
	(FS)

i
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where Nh is the number of tones in the passband, and v is maximum tone	 !
amplitude, ideally assumed to be the same (vn - v) for all tones in the passband.
(It is unnecessary for our purposes to resolve the uncertain status of tones
on the passband edges.) We currently plan to keep the total calibrator power
low — about 2% of the system noise. Thus, if there are three tones in the pass-
band, the SNR for a tone becomes

2 x 

3 

.02 	 0.12	 (F6)
N

(For all examples, we will assume a nominal system with a 2% power level and
3 tones/passband. It is outside the scope of this report to determine optimum
values for these parameters.) This "single-sample" SNR is large compared to
that of typical intercontinental cross-correlation fringes, which are usually
in the range of 0.001 to 0.04. The tone SNR will be modified slightly below
when two-level sampling is taken into account and will increase when many bits are
collected in the tone-stopping process.

The maximum amplitude of the signal S occurs whenever all tones are in
phase and is given by

Smax ss Nh 
v	

(F7)
a 	 °N

This maximum occurs, of course, every time a calibrator pulse reaches the
recorder and equals about 0.35 for the example above. (The pulse width at
baseband is approximately equal to the inverse of the system bandwidth when a
number of tones are in the passband.)

As indicated in the text, the baseband signal is subjected to bilevel
sampling and recorded at 4 Mbit/sec. We will use a tilde (-) to denote the
bilevel value (±1) at each sample point. Unlike interferometric cross-
correlation in which both the signal and noise are random, here the tone signal
is deterministic and the noise d(t) is random. Thus the expectation of a
sample point becomes

<V> =	 Q(V)P(V)dV
	

(F8)

_Go

where the sampling function is given by

Q(V) = +1, V > 0
	

(F9)

= -1, V<0
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and where the probability distribution of V (about S in Eq. F1) is given by

P(V)	 1	 exp[-(V-S)2 MaN2 )J	 (F10)

aN

Equation (F8) becomes

SI GN

<V>	 ?	 exp (-z2/2) dz	 (Fll)n
fo

2 S_ 1 tS 3

., 
so that

lin 

S<V>
	
a 
	

(F13)

if one neglects higher order terms. As indicated above, the maximum value of

SIN in our example will be about 0 . 35 so that the maximum of the cubic term will
be about 2% relative to the first term (before tone stopping).

We are now prepared to analyze tone-stopping in the correlator. Let V k be
the recorded signal at time tk. For a given station, the correlator will
counter-rotate (tone-stop) a given tone as follows

N

Lt
VsnNVkexp(-i'^nk)(M)

t k=1

where *nk is the model phase for the n th tone at time tk and N t is the number
of sample points in the correlation interval. We will not take into account the
fact that the BLKO correlator uses a trilevel quantized model for the stopping
sinusoids. Such trilevel sinusoids possess higher -order harmonics that can cause
problems if tones are not properly placed in the passband. A discussion of these
problems is outside the scot..; of this report. Trilevel quantization also
results in a slight decrease in SNR and a change in stopped-tone amplitude, but
these effects are not significant in most applications. However, if absolute
calibration of tone amplitude is desired, the amplitude effect must be
considered.

i
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Given Eq. (M), the expectation value of the stopped tone given in
Eq. (F14) can be calculated as follows:

N
t

<Vsn> 
s 

N

	

	 <Vk> eXp(- i^'nk)	 (F15)

t k=1

N 
S

	

N
t 

n L
N,  exp(-i*nk)	

(F16)

kal

where Sk is the total tone signal S at time tk. The neglected cubic term in
Eq. (F12) can be represented as a sum of three-tone beat notes. One can show
that during tone stopping a given three -tone beat note will be reduced to an
insignificant level provided it possesses a different frequency than the original
tone frequencies. If this condition is not satisfied, the offending three-tone
beat note in a system with WON = 0.12 could fractionally contribute in ampli-
tude as much as

2

4 * 6 \a
	

1%, <0.0006

N

or 0.06% to the tone under consideration. Although this is not much by itself,
many equally spaced tones can generate many three -tone beat notes near a kiven
original tone frequency and the combined effect might be non-negligible. This
problem will deserve more thorough study if many tones are ever used.

Based on the decomposition of S in the first term of Eq. (F2), the stopped
tone in Eq. (F16) becomes

v

	<Vsn> = 
1 n exp[i( ^n - 41n )]	 (F18)
2n N

if we assume that the sum note and the other "high frequency" tones sum to
negligible levels. The phase difference fn - fin, presumed to be nearly constant,
is the phase difference at the middle of the sum interval. (We will assume stopped-
tone frequency is negligibly small. If it is not, there are straightforward,
simple ways to overcome the difficulty, such as the procedure used in the PCAL
program described in Appendix G.)

(F17)

i

k
s

i
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i	 The system noise on the stopped tone can be calculated as follows:

aV ^( Vsn - Van>) 

2	

(F19)

where V8n is the real part of the stopped tone in Eq. ( 714). Using Eq. (F14) one
obtains

av . N2 E <VkV I> - <V k> <Vi>] cos 
*nk 

cos 
^nA,	

(F20)

t kk

These expectation values can be evaluated to obtain

aV 
M

2N 1 + n L R(T) cos 2v vn T
J	

(F21)

t	 T#0

where the sum is over all bits except T - 0, R(T) is the bitstream autocorrela-
tion function for the analog signals and vn is the baseband frequency of the nth
tone. This derivation assumes that interbit correlations of system noise are
small. The first term represents the noise that would be present if there were
no correlation between bits. The second term accounts for small correlations
between bits and will be about 10% or less, the exact size depending on the
shape of the bandpass, the sample rate relative to bandwidth, and the value of
the baseband tone frequency vn. Note that, if the small second term can be
neglected, the noise on a stopped tone is the same for all tones.

Stopped-tone SNR will be defined as the maximum amplitude (modulus of
Eq. 18) of the stopped tone divided by the rms noise:

	

SNR - 1 v 1	
(F22)

2n a  a 

which through the use of Eqs. F5 and F21 becomes

1 2-7EN
SNR	 t	 (F23)

nNh

where we have neglected the small interbit-correlation term in Eq. F21. In analogy
with fringe phase calculations, the system noise error in the stopped-tone will be

a^ - SNR 1 (SNR >> 1)	 (F24)
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The following example will help illustrate the size of the system noise
error in phase calibrator corrections. Again, suppose we have a 22 total power
level for the calibrator signal with 3 tones across the passband. When 4 seconds
of BLKO data (record rate - 4 Mbit /sec) are reduced for a given tone, we obtain
from EQ. (F23)

SNR	
2 x 0.02 x 4 x 4 x

3yr	
10 
	 260	 (F25)

The associated phase error will he

21 '
ad - 0 . 0006 cycle	 (F26)

This phase error is the system noise error in the phase from one tone.
When fringe phase is calibrated, a number of tones (Nu) in the pasaband will
probably be used, in which case the system noise error in the overall phase
would be

oN
T _^F

2N
h 	 (F27)

°m 	 uN

J .•u	 j
For our example, the overall phase error becomes

1
r

a = 0 . 00035 cycle	 (F28)	 f

f
if all 3 tones are used. For a 40-MHz spanned bandwidth in a bandwidth synthesis
delay measurement, the corresponding delay error will be

X 0.00035 cycle	 0.36 cm
oT	 40 MHz	

0.012 nsec	 c	 (F29)

i
The factor of 3

_
2 is a result of the combination of two channels in the BWS 	 i

process.

Before closing the discussion of the calibrator signal, a more detailed
description of tone amplitude is in order. If the ideal calibrator signal in
Fig. 2 is decomposed into its harmonics, it can be shown that the amplitude of
the nth harmonic or tone will be given by

sin(w T /2)

Fp (Wn )	 C w Tn 2	
(F30)

n p

i

i

r.1



s
i
i

where tone frequency Wn is a multiple (nWp) of the nominal pulse rate W and
C is a constapt determined by input power. With a pulse width of Tp 10 psec,
the tone amplitude at X-band (8.3 GHz) will fall to about

(w T /2)2
Fp (Wx) a 1 - x 6	 n 0.95 Q31)

which represents a loss of about 5% relative to the maximum amplitude at lower
frequencies. The amplitude change across the passband at S- or X-band will be
even smaller. For example, if the passband is 100 MHz, the amplitude change
will be about 0.1% across the band at X-band. Thus, changes in tone amplitude
across the passband due to pulse shape appear to be negligible for an ideal
tone generator. Actual tone amplitudes might deviaca considerably from the
ideal behavior described here.
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APPENDIX G

THE CURRENT METHOD FOR PHASE CALIBRATION

In the text, it is assumed that phase calibration is applied at an early
stage in postcorrelation processing and that the correction is applied to
tine stopped fringes in the frequency domain by means of a frequency-specific
counter-rotation of the phase in each correlation interval. However, the cur-
rent BLKO system postpones phase calibration until a later stage of post-
correlation processing at which point a program called MERGE applies corrections
to the composite values for phase, BWS delay, BSA delay and phase-delay rate
that are passed by PHASOR. This version of phase calibration was coded first
because it could be more easily incorporated into existing software. The compo-
site interferometer observables are extracted as described in Section X except that
the phase-tracked fringes are not subjected to phase calibration. A block diagram
of the current data reduction steps is shown in Fig. G1.

To obtain tone phase, the stopped tones produced by the correlator are
passed to a special phase-tracking program (PCAL). In close analogy with PHASOR,
this program fits the stopped-tone signal in separate time intervals (sections)
within an observation with a model in which the three solve-for parameters are
amplitude, phase and phase rate. As in PHASOR, the solve-for parameters
obtained for the various sections are combined to obtain for each parameter e
composite value for the whole observation. For each tone, the composite ampli-
tude, phase and phase rate are specified at a reference time and frequency near
the center of the observation.

In general, tone phase cannot be subtracted from fringe phase directly
because the reference times and frequencies of those phase values are different.
First, tone phase is projected to the correct time using its measured phase rate;
then calibration phase at the correct frequency is obtained by interpolating
between the (time-corrected) phases of two tones. Typically, there are tones
within t0.5 MHz of the bandpass center. The resulting calibration phases are then
subtracted from the composite fringe phase channel by channel to obtain a value
for corrected fringe phase given theoretically by Eq. (77). For each observable,
it should be understood that "subtracting" the tone values actually means sub-
tracting the appropriate difference between stations, as in Eq. (64).

For phase-delay rate from a given channel, the composite tone phase-rate
values are used to interpolate to the reference frequency, and the resulting
value is subtracted from the composite interferometer phase-rate value. For BSA
delay from a given channel, the composite tone phases from that channel must be
analyzed to obtain the effective slope ("group delay") as a function of fre-
quency. In the case of two tones per channel, the slope is simply computed as
phase difference divided by frequency difference. As mentioned in Section VIII
and as illustrated below, one must have initial crude values for the slope in
each channel in order to resolve integer-cycle ambiguities in tone phase. The
correction is then carried out by subtracting this tone group delay from inter-
ferometer BSA delay for that channel. Finally, for BWS delay, the time- and

frequency-corrected calibration phase values from the channels are combined

in pairs as in Eq. (81a) to form tone "BWS delays" which are then subtracted
from corresponding interferometer BWS delays.
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An example of the instrumental phase measured with tones is given in
Fig. G2 for the BLKO dystem. The figure plots the phase for 19 tones in a
2-MHz bandpass recorded at DSS 43 for channel I in our example observation.
Although many tones were processed in order to produce this figure, no more
than three tones per passband can be processed for a two-antenna experiment if
only a single pass is made through the correlator, as discussed in Appendix B.
As irdicet4d in the figure, a linear function of frequency has been subtracted
ftum tone phase in order to reveal nonlinear effects introduced by the instri.1-
mentation. The large nonlinear trend that remains is due primarily to the narrow-
band IF-to-video converter. For this example, the total tone phase at the
reference frequency (0.9 MHz) is equal to 1.285 cycle and In obtained by adding
the indicated linear function to the plotted value. The time extrapolation
mentioned above was negligible for this particular example since the reference
time for tone phase was very close to that for the composite interferometer
phase.

Another feature of phase calibration should be noted in this example. To
reconstruct instrumental phase across the passband. one must resolve a slope
ambiguity equal to n/Af, where n is an unknown integer and Af is the separation
between the two closest extracted tones. For the present exam')le, the ambiguity is
10 vsec so that only crude calibration of the instrumental delsye discussed in Sec-
tion VIII is necessary to remove the slope ambiguity. Calibrations ty L. E.Young
give approximate vaa'ues2 for the three delays in Eq. (62):

(a) the epoch difference in the recorder clock and the m-cal clock
Tb j - T c j is 5 vsec,

(b) the delay ("cable delay") from the clock reference point (m-cal clock)
to the ^-cal injection point - T uj m1.5 Nsec,

(c) the delay from the injection point to the recorder - T Ij w 2.4 vsec.

These terms give a slope of -(Tbjj - T + T + Ti ) - -9 usec. We will
ignore the correlator reference time Ls si&Je, W this example, is is an
Integer multiple of 1 second and all tone frequencies and the reference fre-
quency are integer multiples of 1 hertz. Thus. the resulting products of
time and frequency each contribute integer cycles at desired sample points,

2The offset between the recorder clock and the m-cal clock. Tb - T C , is obtained
by subtracting the offsets separately measured for those two clocks relative to
the station 1 ppa. When T  is measured, one must make pertain that the m-cal
clock is based on the particular subset of positive-going zero-crossings (at
the reference point discussed in Section III) that are allowed to become pulses
at the output of the tone generator. Since. in our example, every 50th zero-
crossing of a 5-MHz signal is converted to a pulse, the separation between
passed pulses is 10 vsec. This pulse separation is re.ated to the 10-vsec slope
ambiguity for tone phase. which ie due to the ambiguity in time tags for the
"pulse-generating" zero-crossings at the reference point. Once those time tags
have been assigned. T c can be determined and the slope ambiguity can be worked
out, as will be illustrated.

f
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which would increment the slope in steps of 10 usec. As shown in Section Ili.
the is term in the slope disappears in the difference between stations anyway.
In addition to these modeled delays, the artificial method used in the correla-
tor for tone extraction introduces another unmodeled delay of 2.5 usec, which
brings the total slope to about -11 usec. This a priori estimate of slope
clearly selects as the closest ambiguity in slope the value -11.221 usec, given
that the ambiguity spacing is 10 usec. (Although the unmodeled delay introduced
by the correlator does impact single-station phase and slope determination, its
effects cancel in the difference between stations and will therefore be ignored
after this point.)

Nonlinear trends as large as those in Fig. G2 can lead to significant errors
in phase calibration. For the reference frequency approach presented above, the
true composite phase effect obtained by integrating across the passband can differ
considerably from the observed phase at the reference frequency, as suggested by
the asymmetrical weighting imposed on the large nonlinear phase excursions at the
bandpass edges. Further, the slope (BSA delay correction) obtained by using two
points in the central part of the bandpass will not be as steep as the actual
"average" slope of phase. However, the actual errors in composite phase and
slope are not as bad as this example suggests since an interferometer forms the
difference in phase between antennas and the above single antenna errors will
cancel to the extent that the system bandpasses of the stations are identical.
For BWS delay, further cancellation can take place between channels at the same
station. It is beyond the scope of this report to assess the magnitude of
phase calibration errors. The next generation system, the BLOCK II system, will
reduce such errors through the use of more tones.

Although the specific calculations will not be presented here, the composite
tone phase extracted for channel 3 at DSS 43 for the same observation was equal
to 1.007 cycle at the reference frequency. The results for the two channels can
now be combined to obtain the DSS 43 tone correction for BWS delay for the (1,3)
channel pair:

AT s (1.285 - 1.007) cycle s 55.6 usec 	 (G1)
(2276 - 2271) MHz

The same calculation can be carried out for the other station (DSS 14 in the
example observation) to yield a BWS delay correction for that antenna. The
results for the two antennas will be used in the next section in an illustration
of single-observation bandwidth synthesis.
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APPMMIS H

SINGLE-oRMUTIOh BATH SYMNESIS

One of the goals of VLB1 measurements is tie precise determination of
delay (:.e., ATf in Eq. 77). One can easily show that system noise error in
delay is ipversely proportional to the highest frequency (for phase-delay) or
frequency spread (for BWS delay) in the observed spectrum, provided integer-
cycle ambiguities in the associated phase or phase difference can be removed.
The BSA delay T. is based on the continuous single-channel bandpass and becomes
an unambiguous estimate of Airf . however, since this bandpass is relatively
narrow (2 MHz), the BSA delay is relatively imprecise. By comparison, the phase
delay (^s/w$), which is at RF, is an extremely precise measurement of delay except
for an integer-cycle ambiguity. One method for covering the range between these
two extremes in frequency without integer -cycle ambiguities is bandwidth synthe-
sis. In the BLKO bandwidth synthesis technique, one measures interferometer
phase at selected frequencies (i.e., channels at w$ = wa s wb ...) and then
iteratively removes the ambiguities in the difference phase Between successively
larger channel separations.

This appendix describes single-observation bandwidth synthesis, rather than
multi-observation synthesis as outlined by Purcell (Ref. 6). When phase calibra-
tion is available, as assumed in this report, one can resolve the ambiguities in
phase by using only the information found within each observation. Without phase
calibration, one must use a multi-observation approach that removes ambiguities
only in a relative sense by comparing adjacent observations. The single -observation
approach with phase calibration is preferable since it is simpler and faster and
produces an absolute measurement of delay that allows clock synchronization
measurements.

The original approach to single-observation bandwidth synthesis, as developed
by A.E . E. Rogers [4], is based on coherent addition of the fringes from the
recorded channels within an RF band. In contrast, the BLED approach is based on
the separate extraction of phase for each channel and the explicit manipulation
of those phase values to obtain BWS delay. This single-channel-extraction approach
can be carried out without phase calibration [6), which was a necessary capability
in the early stages of BLKO development.

The BUD single-observation approach relies on two conditions. First, except
for cycle ambiguities, the BSA delay and all channel-pair BWS delays must be
approximately equivalent in expectation value. (Compare Eq. 74 and Sq. 81b.)
Second system noise error in channel phase must be much less than one cycle (in
practice, c# ti 0 . 03 cycle). In this appendix, we will neglect charged particle
effects and will also assume that dispersive effects before the tone -injection
point can be calibrated. Although charged particle effects violate the first
condition in the strictest sense, the condition is adequately met for spanned
bandwidths of the order of 100 MHz or less at S-band.

When these conditions ate met, single-observation bandwidth -synthesis pro-
ceeds as follows. After extracting the phase for each channel, one computes a
composite BWS delay for each channel pair from the difference phase between
channels as described in Soction %II. The computed delays will possess integer-
cycle ambiguities as represented by the last term in Eq. 81b. These ambiguities
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in delay are removed by iteratively proceeding from the unambiguous but imprecise
BSA delay to the BWS delay of the most widely spaced channel-pair, using at each
step the result generated by the preceding channel pair.' At each step, one com-
putes the number of cycles that must be added to the kth BWS delay to place it
within ±0.5 cycle/Af k of the (k-1) t delay, where Afk is the frequency separation
for the kth channel pair.

As an illustration of the bandwidth synthesis process, Table Hl presents
for our example observation (see Figs. 3, 5 and 6) the BSA delay and the three
BWS delays obtained at five stages in the phase calibration and bandwidth synthe-
sis process: (a) the uncorrected delays derived from the fringes (PHASOR output),
(b) and (c) the delay corrections derived from tone phase (PCAL output) for each
antenna, (d) the phase-calibrated but ambiguous delays, and (e) the final unambig-
uous delays. For simplicity, only the BSA delay from channel 1 is used, although
averaging all three S-band channels should improve the BSA delay determination.
The tone BSA delay for each antenna was obtained from the phase-frequency slope
of tone phase, which was equal to -11.221 usec for the example of DSS 43 in
Fig. G2. An example calculation of tone BWS delay was given in the preceding
appendix for channels 1 and 3 for DSS 43. When the delay corrections are com-
bined with the uncorrected delays, one obtains delays that are ideally free of
unwanted instrumental effects but possess integer-cycle ambiguities. As dis-
cussed above and as schematically indicated in Fig. H1 for a hypothetical obser-
vation with low SNR, single-observation bandwidth synthesis can now be applied
by iteratively removing ambiguities while progressing from the leftmost to the
rightmost value for delay in Table H1. The final value for each of the four
delay observables should be the residual delay given theoretically by the com-
bination of delays in Eq. (77). Note that, while the final delay values for
the various channel pairs in Table H1 agree fairly well, they are not in agree-
ment at the system noise level, as one might hope. This disagreement is probably
a consequence of one or more of the following dispersive effects: (a) improperly
calibrated nonlinear trends in the phase-frequency response of the instrumenta-
tion (see preceding appendix), (b) dispersive effects in the input tones and (c)
dispersive effects such as multipathing before the tone injection point. It is
outside the scope of this report to estimate such errors. However, it should be
pointed out that the differences between BWS delays are not necessarily an indi-
cation of the error that will be propagated to geophysical/astrometric param-
eters since large components of the differences would be constant and those
components would therefore be absorbed by the clock parameter during multi-
parameter estimation.

A parameterized error analysis of the above BWS process leads to an asso-
ciated method for computing a channel placement that helps in minimizing the
number of inner channels and thereby increases precision. In this particular
method, it is assumed that a priori information is too poor to help with any
step in the ambiguity resolution process (except tone phase slope). To reliably
compute integer cycles for the (k+l) th channel pair, the error (o k) in the delay
for the kth channel pair and the frequency separation (Afk+l) for the (k+l)th
channel pair must satisfy the relation

Af	
a < 

0.5 cycle	
(gl)

k+l k -	 3

J
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where the factor of 3 serves to insure a 30 probability of success. The error
in delay for the kth pair is given by

1^2	 a

(208 + 4a4)	 j

	

0k =	 (2n Afk)	
(112)

where as is the system noise error in phase ( in radians) for a single channel
(but involving two stations) and a# (radians) is equal t : » the RSS of all other
dispersive errors in phase for a single channel from one station. The term
2a accounts for two channels while 4alaccounts for two channels at two
stations. For simplicity, we assume that dispersive errors have the same magni-
tude for both stations and all channels and are uncorrelated between channels.
The system noise error in phase (radians) for a single-sideband system is given
by

0s =	 1	 (83)
37 SNR.

where SNR, is the SNR at peak fringe amplixvde in the given channel. The factor
of 32 fringe is the improvement in phase precision resulting from the use of all
lags for the channel.

Inserting the last two equations into Eq. (H1), one obtains an expression
for the maximum allowed ratio (R) of channel separations (frequency multiplier):

Afk+l < R
Afk

where

	n 	 1

	

R - 3	 1 2	 (HS)

1SNR72 + 4a2^

and where a^ is still in radians.

Given the single channel SNR and the other dispersive errors in phase, one
can easily compute the frequency multiplier. Given the multiplier and the sepa-
ration of the first channel pair, one can compute the successive channel separa-
tions. However, the actual spread can increase somewhat more rapidly than the
above multiplier implies. As illustrated in Fig. H2, pair 2 tcomprised of chan-
nels 2 and 3) is given a separation of Af2 = RAfl where Af t is the separation
of pair 1 (channels 1 and 2). The separation of pair 3 (channels 1 and 3) is then
given by Af3 - (R+1)Afl . When a fourth channel is added, pair #4 (channels 3
and 4) is given a separation of R times the largest previous separation or
Af4 - RAf3 - R(R+1)Af l . The separation of pair 5 (channels 1 and 4) then becomes
Af5 - (R+1 ) 2Afl . Continuing this process, one finds that the outer pair separation

for a system with Mc channels would be given by (R+1 )Nc-2Afl.

(H4)
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This leaves us with the problem of specifying the maximum allowed
separation of pair 1 in terms of the channel bandwidth. The delays obtained
from bitstream alignment are based on the continuous channel bandpass and are
therefore unambiguous. These delays can be used to initiate the BWS process
by resolving the cycle ambiguity in the first channel pair, provided the
separation of the first pair is not too large. Without presenting all of the,
det$ils, we will state here that a rough estimate for the multiplier from
channel bandwidth to the first channel pair is given by Afl - R/1.8, where R is
computed by Eq. (HS). (The factor of 1.8 comes from (a) the fact that the
continuous channel bandpass makes inefficient use of bits relative to the case
where all bits are at the edges of the bandpass, and (b) the fact that tones
placed within the channel bandpass for intrapassband phase calibration would
not be placed at the bandpass edges but would be displaced inward by a safe
amount.)

Combining the above results, one obtains an expression for the separation
(dfM) of the most widely spaced pair in terms of the channel bandwidth (W) and
the number (Nc) of channels:

OfMWNc) = 

1R8 
(R+1) Nc-2 	(H6)

Relative to the first reference channel, the channel frequencies in units of
the channel bandwidth would be

R	 R (R+1) R (R+1) 2	R (R+1)
N c -2	

(H7)
^' 1.8' 1.8	 ' 1.8	 1.8

For convenience, the curves connecting AfM (Nc ), R and Nc are plotted in Fig. H3.
The right-hand vertical axis gives the total allowed dispersive phase error
(numerator in Eq. H2) associated with each frequency multiplier R on the
left-hand vertical axis. When using the graph to compute the required number
of channels for a given spanned bandwidth and given frequency multiplier, one
must adopt the next higher value of N c , if the point falls between two curves
of constant Nc.

The BWS approach outlined above is not optimal for all applications. For
smaller values of the frequency multiplier (R < S), the basic assumptions behind
Eq. B6 (e.g., single-channel detection) can be violated. Further, if good
a priori information for delay is available, it may be possible to omit some or
all of the inner channels required for ambiguity resolution. More generally,
totally different techniques can be used in postcorrelation data reduction. For
example, if detection and estimation were carried out through coherent addition
of BWS channels (Ref. 4), then one might choose to place the channels across the
RF band in a pattern based on detection capability in addition to final delay
precision.
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4	

GEOMMIC TDM MAY

This appendix derives an _Apression for the geometric delay in terms of
j station locations and source direction.

Suppose two antennas simultaneously receive the sisal from a very distant
point source. The difference in the arrival times at the two stations is
referred to as the geometric delay. Due to the greet distance of the source,
the signal can be represented as the plane wave in Eq. (7). All quantities will
be referenced to geocentric coordinates in a nonrelativistic analysis.

Let a particular wevefront reach station i at true time ti. This segment
will reach station j at true time tj when the following phase equality is satis-
fied.

k-xi(ti) - wti - k-xj (tj) - wt , 	(I1)

Let tj - ti + TS , where Tg is the geometric delay. Rearranging Eq. I1, we
obtain

^	 J	 J

wTg - k - [ xj (ti+Tg) - x i Nom	 (12)

This equation defines Tg in terms of station location and source direction but
it is not computationally convenient. An accurate approximation can be used
to obtain a more tractable form. Since Tg is small (x.02 sec for earth-fixed
antennas), expand Xj abuut t i to obtain

J	 J	 1
xj (tj) - xj (ti) + xi Tg	 (I3)

One can now use Eq. ( I2) to solve for Tg:

k - S(t')	 k - x (t') 1
T
9 
(t-	 c i	 1 -	 cj i	

(14)

where B is the baseline vector given by

B(ti) - xj (ti) - xi (ti)	 (IS)

As one would expect, the geometric delay is simply the Instantaneous path
difference divided by the speed of light with a small correction for the motion
of station j during wave transit. As noted in the text, this definition of the
geometric delay uses station i as the reference station. That is, if a segment
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of the ware strikfs station i at time ti, than that segment will reach station j
at time t i + 4g(ti), where the time tag for Tg is the arrival time at station I.

A coom►ent concerning the meaning of antenna position is in order. it
is customary to make the "intersection" of the two axes of rotation the point
that defines the location of an antenna. Sven 

though 
the signal is not received

at that point, corrections can be applied to the observed delays to woke this
point the effective point of reception. Two types of correction are required.
The first is a correction applied only to those antennae for which the axes do
not, in fact, intersect, as in a DSN equatorial mount. This correction depends
on pointing direction, and it, in effect, shifts one of the axes of rotation in
order to define a fictitious but earth-fixed point of intersection. The seed
correction is a constant delay correction to account for the fact that the sig-
nal is actually received at the food rather than at the intersection of axes.
This correction is equal to the difference between the transit time that a wave
would experience in its actual propagation to the injection point and its
theoretical transit time to the intersection of axes. This correction is nominally
the sane for all sources since the antenna always pcints toward the source and
therefore always presents the same geometry in the propagation direction. For
very accurate measurements, this correction may not be constant but may depend on
pointing direction.
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