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ABSTRACT 

I n  t h i s  paper the e l a s t i c i t y  problem f o r  a laminated t h i c k  p l a t e  
which consists of twc bonded d i s s i m i l a r  layers  and which contains a 
c i r c u l a r  hole i s  considered. The problem i s  formulated f o r  a r b i t r a r y  
axisymnetric t rac t i ons  on the hole surface by using the  Love s t r a i n  
function, Through the expansion o f  the boundary condi t ions f  n t o  Fourfer  
ser ies the problem i s  reduced t o  an i n f i n i t e  system o f  a lgebraic  equa- 
t ions  which i s  solved by the method o f  reduction. O f  p a r t i c u l a r  i n t e r -  
es t  i n  the problem are the stresses along the i n te r face  as they r e l a t e  
t o  the question of delamination f a i l u r e  o f  the  composite p late.  These 
stresses are calculated and are observed t o  become unbounded a t  the hole 
boundary. An approximate treatment o f  the s ingu lar  behavior o f  the s t ress  
s ta te  i s  presented and the  st ress i n t e n s i t y  fac tors  are calculated. 

1. INTRODUCTION 

I n  t h i s  paper the e l a s t i c i t y  problem f o r  a t h i c k  p l a t e  which con- 

s i s t s  o f  two bonded d i s s i m i l a r  homogeneous layers i s  considered. I t  i s  

~ssumed t h a t  the p la te  i s  i n f i n i t e ,  contains a c i r c u l a r  hole, and I s  

subjected t o  axisyrrmetric external loads. Even though the problem as 

statec! may have some appl icat ions,  from a p rac t i ca l  viewpoint the i m -  

por tant  problem i s  t h a t  o f  a laminated p l a t e  conta in ing a c i r c u l a r  hole 

and subjected t o  un iax ia l  membrane o r  bending loads away from the hole 

region. The l a t t e r  problem has important appl icat ions i n  the analys is  

o f  delamination f a i l u r e  of pe r fo ra ted  mul t i layered p l a t e  and s h e l l  

structures. I n  such st ructures the  i n te r face  stresses are known t o  

have a power s i n g u l a r i t y  which g rea t l y  enhances the p o s s i b i l i t y  of 
- * 
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delamination fa i lu re  [I ,2,3]. I n  a laminated p la te  under general load- 

ing conditions one may always separate a homogeneous solut ion and reduce 

the problem to  a perturbation problem i n  which the se l f -equ i l ib ra t fng 

t rac t ions on the hole surface are the only external loads. By expanding 

these t ract ions i n t o  Fourier series i n  e one may fur ther  separate the 

problem i n t o  i t s  simpler components i n  the independent variables r and 

z only. Thus, the axisymnetric problem treated i n  t h i s  paper may also 

be considered as the f i r s t  component o f  the general three-dimensional 

p la te  problem. 

The three-dimensional e l a s t i c i t y  problem f o r  laminated plates con- 

ta in ing a hole does not seem t o  havl:! been considered before (see, f o r  

example, [4] for a recent review). The ex is t ing  solut ions are mostly 

based on numerical techniques and are generally h igh ly  approximate [5-71. 

The c i r cu la r  hole problem f o r  a homogeneous th ick  p la te  was considered 

i n  [8] and 191. The technique developed i n  [9] w i l l  be used t o  solve the 

laminated p la te  problem considered i n  t h i s  paper. The re la ted problem 

o f  a layered semi- in f in i te  medium (i.e., the l i m i t i n g  case o f  the hole 

problem i n  which the hole radius i s  i n f i n i t e )  was considered i n  [ lo ]  
where the method o f  singular integral  equations was used t o  solve the 

problem. 

2. THE HOMOGENEOUS SOLUTION 

I n  t h i s  section we give the resu l ts  of some elementary solut ions 

f o r  a laminated p la te  without a hole which i s  subjected t o  cer ta in  uni-  

form loading conditions a t  i n f i n i t y .  F i r s t  we assume tha t  the composite 

p la te  which consists o f  two layers wi th  the e las t i c  constants El, vl and 

E i ,  v2, and the thicknesses hl and h2 i s  subjected t o  an average rad ia l  

membrane stress u0 a t  r = -  and i s  constrained t o  remain f l a t  upon defor- 

mations. Thus, def in ing 

we have 



and a1 1 the remaining st ress componeri t s  are zero. From 

i t  then fo l lows t h a t  

(1 -v,)m(l t k )  

where 

Next we consider the composite p l a t e  which i s  uni formly loaded by 

an average st ress uo i n  x -d i rec t ion  only. 

Defining now 

and again assuning t h a t  the  p l a t e  i s  constrained t o  remain f l a t ,  the 

nonzero st ress components al, a , a 
2 Y Y ~ ' ~ Y Y ~  

may be determined from 

Solving ( 7 )  we have 



Referring t o  the cy l ind r i ca l  coordinates the stress states i n  the 

layers 1 and 2 may be expressed as 

0 .-u 
u = - yyJ s in  20 , r e j  2 

= o , (j=1,2) . (9a-f) 'zzj ' 'rzj ezj 

Solutions s imi lar  t o  tha t  given by (4) and (8) may also be obtained 

f o r  other types o f  uniform external loads such as bending and thermally 

induced 1 oadi ng . 

3. SOLUTION OF THE AXISYMMETRIC PROBLEM 

The problem o f  a laminated p la te  containing a c i r cu la r  hole w i th  a 

radius a may now be solved by superimposing on the homogeneous solut ions 

found i n  the previous section a perturbation solut ion i n  which the t rac-  

t ions -crraj(a,e,r), (a  = r,e,z; j=1,2; O:e<2n, -hpa<hl ) act ing on the hole 

boundary are the only external loads, where the stress state usd(r,e,z), 

( ~ , a  = r,e,Z; j=1,2) i s  given by the homogeneous solut ion. From, for  

example, ( I ) ,  (4), (8), and (9)  i t  may be seen tha t  the simplest such 

perturbation problem i s  an axisymnetric problem corresponding t o  the 



axisynnetr ical ly  loaded p la te  o r  to  the f i r s t  par t  o f  the unidi rect ion- 

a l l y  loaded p la te  (i.e., t o  the e-independent par t  o f  the solut ion given 

by (9)).  Thus, i n  t h i s  section we w i l l  consider the axisynmnetrfc prob- 
l e m  for the composite p la te  subjected t o  the fo l lowing boundary condi- 

t ions (Figure 1 ) : 

where a and T . are known t rac t ions act ing on the layers 1 and 2, re- 
j J 

spectively. Note that  the solut ion i s  independent o f  e and the shear 

stressoggl = 0, ( B  = r,z; jz1.2) everywhere. 

To formulate the problem the technique described i n  [9] w i l l  be 

used. Because o f  axisymnetry, i t  i s  su f f i c i en t  t o  use the z-component 

o f  the Galerkin vector only which i s  nothing but the Love s t r a i n  func- 

t i o n  Z(r,z) [11,12]. I n  addi t ion t o  the surface t rac t ions given by 

(10) the composite p la te  i s  subjected t o  the fo l lowing homogeneous 

boundary, cont inui ty,  and regu la r i t y  conditions (Figure 1 ) : 

Let Z1 and Zt be the Love s t r a i n  functions f o r  layers 1 and 2, re-  

spectively (Figure 1). I n  the absence o f  body forcer Z1 and Z2 sa t i s f y  



and the displacements and stresses are given by 

a a fi 1 a 
8 - (vv2- %)Z , Uee = (vv2- - -)Z , 'rr a z  r a r  

Looking f o r  a series type solut ion i n  z and taking i n t o  account the 

regu la r i t y  conditions ( IS),  the solut ion of (16) may be expressed as 

Subst i tut ing from (17)-(20) i n t o  the boundary and cont inu i ty  con- 

d i t i ons  (11)-(14) and observing that  these conditions must be sat is f ied 

f o r  a l l  values o f  r i n  acr-, a f t e r  some manipulations, i t  may be shown 

tha t  par t  o f  the resu l t i ng  algebraic system which coniains only the 

unknowns AJn, Bjn, Cjn, and D3, i s  separated and i s  overdetermined. 

Hence f o r  the conditions (11)-(14) t o  be sa t i s f ied  i t  i s  necessary tha t  

Considering (21) from (17)-(20) the displacements and stresses i n  the 

compost t e  p la te  may now be expressed as fol lows: 





t 

u = rzl 

- 



a3 n o n  K (a  r)[Oln + D5,,zan + ( 1 - 2 ~ ~ ) t ~ ~ J s i n a ~ z  

a3 n o n  K ( a  r )  [Cln + C5,,zan + ( 2v2-1 )D5,,1c~~anz , (32) 

a3K n l  (a  n r)sinanz[2v2D5n + C l n  + C5,,zan] 

a 3 ~  n l  ( a  n r ) c o s a , z [ - 2 ~ ~ C ~ ~  + Dl, + Dgnzan] . (33) 

(22)-(33) into the bcmdary and continuity conditions 

(1 1 )-(14) we obtain the fol lowing system o f  homogeneous a1 gebraic equa- 

t ions:  

Cl ,,sf na,.,h2 + [2v2cosunh2 - anh2si nanh23C5n 

- Dlncosanh2 + [2v2sf nanh2 + anh2c~~anh2IO5,, 0 (36) 

C; ,cosa h [(1 -2v2) sinanh2 - anh2c~~anh2]C5, n 2 

9 



where 

To obtain a non- t r iv ia l  solut ion f o r  the system o f  algebraic equations 

(34)-(42), the determinant o f  coeff icients must vanish, g iv ing 

The character ist ic  equation (43) gives the eigenvalues an, (n=1,2,. . .) 
of the problem. A close examination of the roots o f  (43) shows tha t  i f  an 

i s  a root  so are -a,, in, and -an. Therefore i n  solving the problem i t  i s  

suf f ic ient  t o  use the roots i n  the f i r s t  quadrant and consider the real  

par t  of the solut ion only. Further examination of the roots indicates tha t  

for  d iss imi lar  material s generally there i s  only one pos i t ive  real  root and 

the remaining roots are a l l  complex. Furthermore, the complex roots form 

two d i s t i n c t  sequences i n  the f i r s t  quadrant which great ly  f a c i l i t a t e s  

t h e i r  numerical evaluation. When the e las t i c  constants o f  the layers 1 
and 2 become equal (i . e. , f o r  a homogeneous layer) ,  the real  m o t  d i  oap- 

pears and the two sequences of complex eigenvalues become the roots of 

the fo l lowing character is t ic  equations : 



Equations (44) are known t o  correspond t o  the extension and bending prob- 

lems for  a homogeneous th ick  p la te  containing a c i r cu la r  hole i8.91. 

It i s  found tha t  ao8 0 i s  also a root of (43). T h e ~ ~ f o e ,  a par t l c -  
u l a r  solut ion must be added t o  tha t  given by (19) and (20) t o  account f o r  

the zero eigenvalue. Considered as sii;.;le "plates" the layers are sub- 
jected t o  stretching, bending, and transverse shear, The par t i cu la r  

solutions 27, and must therefore exh ib i t  the character ist ics o f  a l l  
three modes o f  loading. Thus 

where the f i r s t  t e n s  i n  each expression correspond t o  stretching, and 

the next two terms t o  combined bending and transverse shear i n  the i nd i -  * 
vidual plates. The term Q1(z2-r2/2) corresponds t o  a r i g i d  body trans- 

l a t i o n  i n  z-di rect ion and i s  added t o  (45a) t o  insure cont inu i ty  o f  

d i s p l a c m n t s  a t  the interface. The constants Ml , N1, PI, M2. N2, and 
P2 which appear i n  (45) are not independent. By using expressions (17) 

and (18) which re la te  the displacements and the stresses t o  the Love 

s t r a i n  function, a l l  f i e l d  quant i t ies can be wr i t ten  i n  terms o f  these 
constants. Then, by applying the boundary and cont inu i ty  conditions 

(11)-(14), a f t e r  some lengthy algebra and a f t e r  redefining the constants 

we obtain: 

* 
Note that  and Z! are o f  the form f ( r )  + g( r )h(z)  + miz) suggested 

i n  [9]. 



The stress f i e l d  generated by (46) can then be expressed as: 

0 a zz l  = o ,  a ; z l = ~ ,  

I n  the per turbat ion problem the stress states i n  layers  1 and 2 are 

obtained by adding the  respect ive stress components given by (24)-(27), 

(30)-(33), (47) and (48). Thus, the problem i s  reduced t o  one o f  determ- 

i n i n g  the unknown constants A,, Do, Aln, A5n, Bl n, B5n, Cln, C5n, Dl,,, 

and D5,, (n=1,2,. . .). However, from (34)-(42) i t  i s  c lea r  t h a t  the homo- 
geneous system contains on ly  one a r b i t r a r y  constant f o r  each eigenvalue 

a 1 2 , .  . ) For example, one may assume t h a t  Aln, (n=1,2.. ) i s  the n ' 
on ly  unknown i n  (34)-(42) and the remaining seven unknowns ASn, ... ,DSn 

may be expressed i n  terms o f  Aln a f t e r  solv ing the re1 ated eigenval ue 

problem. The unknown constants Ao, Do, and Aln, (n=1,2,. .) are then 

determined from the boundary condi t ions (10). To do th i s ,  we f i r s t  

subst i tu te  from the expressions (24), (47a), ( 3 0 ) ,  (48a) and (27), (47d), 

(33), (48d) i n t o  (10a) and ( lob) ,  respect ively. I n  the r e s u l t i n g  equa- 

t i ons  by expanding both sides i n t o  a series o f  an appropriate system o f  

orthogonal funct ions i n  -h2czchl and by matching the  c o e f f i c i e n t s  we 

obta in a l i n e a r  system o f  a lgebraic equations t o  determine the unknown 

coe f f i c i en ts  A,, Do, and Aln. The algebraic system i s  i n f i n i t e  and may 

be solved by the method o f  reduction. 

I f  we use the f i r s t  N+1 funct ions o f  a rea l  orthogonal system, the 

( rea l  par ts  o f )  condit ions (10) would g ive  2N+2 equations. On the other 

hand, since A,, Do, All (corresponding t o  the  rea l  eigenvalue al ) are 
rea l  and A12,A13,... are complex, t runcat ing the  ser ies (24), (27), (30) 



and (33) a t  the Nth term we would have 2N+1 real  unknowns. However, 

i t can be shown tha t  t h i s  discrepancy disappears i f  one selects an 

orthogonal system i n  which the f i r s t  function i s  a constant. Thus, 

i f  we subst i tute from ( U ) ,  (47d), (33), and (48d) i n t o  

corresponding t o  the coe f f i c ien t  o f  the f i r s t  coordinate function i n  

expanding the lefthand side o f  ( lob),  i t  can be shown tha t  the expres- 

sion becomes i den t i ca l l y  zero. On the other hand, the s ta t i c  equ i l ib -  

rium o f  the composite p la te  requires t ha t  

Thus, the f i r s t  equation obtained from the series expansion o f  ( lob)  
becomes an iden t i t y ,  0 = 0, and may therefore be ignored. 

Now l e t  us assume tha t  the t rac t ions are 

where u1 and o2 are constant, and cos[~k(z+h2)/(hl+h2)],(k=0,1,2 ,...) i s  

selected as the orthogonal system. By expanding (10) i n t o  cosine series 

and considering the f i r s t  N+l terms we then obtain 

(k=1, ..., N), 

13 



('nCln + YnD5n)cno - anC5nXndno 

+ ('nB1n - ZnA5n)eno + anB5nXnfno 

- a A  X h  1 - ('nAln + 'nB5n)gno n 5n n no 

Do 
+ $  (hl + Bh2) ( h i  - $h$) = - ulhl - u2h2 9 (54) 

where 







and B i s  given by (42). Even though i t  i s  difficult to investigate the 
regularity of the a1 gebraic system (52)-(54), the numerical results show 
very good convergence with Increasing N. 

4. NUMERICAL RESULTS AND DISCUSSION 

In the numerical example considered the following material proper- 
ties and dimensions are used (Figure 1 )  



The f i r s t  60 roots o f  the character ist ic  equation (43) obtained from the 

algebraic system (34)-(41) are given i n  Table 1. 

Two separate loading conditions are used t o  calculate the stresses. 

I n  the f i r s t  i t i s  assumed that* 

The second loading consists of a uniform pressure on the ea t i re  hole 

surface, namely 

Tables 2-5 show the calculated resu l ts  which are p a r t i a l l y  displayed 

also i n  Figures 2-5. Based on the calculated resu l ts  one could make 

the f o l  lowing observations : 

(a) Away from the hole boundary generally the convergence i s  qu i te  
good. It becomes slower when the hole boundary i s  approached. For the 

loading given by (57) the d iscont inu i ty  i n  t rac t ion  arr may be p a r t i a l l y  

responsible f o r  th is .  However, the main reason f o r  the lack of conver- 

gence o f  the calculated resu l ts  near the hole boundary appears t o  be 

* 
The stress r a t i o  1.964 corresponds t o  (8a) and (8b) f o r  the material 

p a i r  under consideration. 



the singular nature of the stress state a t  the intersect ion o f  the i n te r -  

face and the boundary [I-31. Thus, near the hole boundary more terms i n  

the i n f i n i t e  series were needed t o  obtain convergence comparable t o  tha t  

found i n  computing the stresses away from the boundary. * 

(b)  As r- a1 1 stress components go t o  zero. However, the decay 

in 'oej  i s  much slower than tha t  i n  aZLj and arZj, (j=1,2). 

( c )  From Figures 3 and 5 i t  may be seen that  the re l a t i ve  magni- 

t idues of the interface stresses a,, and a,, are rather small. Also, 

the stresses corresponding t o  a1=u2 (Figure 5) are an order of magnitude 

greater than those obtained f o r  a1 = 1.964 a2 (Figure 3). A p a r t i a l  ex- 

planation f o r  these resu l t s  may be found if one considers the homogeneous 

plates separately. I n  a homogeneous p l  ate ax i  symnetrical 1 y 1 oaded by 

urrl ( a , ~ )  ' -01 9 urZl (a,z) = 0, (O<z<hl ) the stress state i s  given by 

from which i t  fol lows that  

Thus, i t  i s  seen tha t  i f  the second p la te  i s  axisymnetr ical ly loaded by 

~ ~ ~ ( a , z )  = - 0 ,  arZ2(a,z) = 0, (-h2<z<O) and if = o 2 I 2  then i n  

the two plates the displacements would be ident ica l  along the interface 

and the stresses a,, and a,, would be zero everywhere. I n  the example 

under consideration p1/p2 = 2.077. Therefore, f o r  a1/a2 = 1.964 one would 

expect the magnitude o f  the inter face stresses t o  be rather small. 

Similar observations may be made wi th  regard t o  the comparison o f  aee 

and arr i n  bonded and unbonded plates. On the other hand, f o r  q1a2 

* 
The numerical resu l ts  given i n  the tables are obtained by using 20 t o  

30 terms i n  the series f o r  locations away from the hole and up t o  60 
terms near the hold boundary. 



one would expect higher in ter face stresses because of the greater  mismatch 

i n  the displacements along the in te r face .  

(d) For the  loading a1/a2 = 1.964 since the so lu t i on  i s  c lose t o  t h a t  
of a homogeneous p late,  t he  thickness e f fec t  should no t  be s ign i f i can t .  

Indeed, by vary ing a/hl it i s  observed t h a t  the  r e s u l t s  do no t  change 

s i g n i f i c a n t l y .  Also, i n  t h i s  case from Table 3 i t  may be seen t h a t  t he  

v a r i a t i o n  o f  age w i t h  z i s  neg l ig ib le ,  whereas f o r  sl/op=l Table 5 shows 

a s i g n i f i c a n t  v a r i a t i o n  i n  age. Again, note t h a t  i n  the  homogeneous 

p l a t e  age i s  independent of  z. 

(e)  The calculated r e s u l t s  i nd i ca te  t h a t  on the i n te r face  PO the 
stresses become unbounded as r approaches a, the hole radius. Theoret- 

i c a l l y ,  t h i s  i s  indeed known t o  be the case [I-31. The so lu t ion  given 

i n  t h i s  paper i s  i n  terms o f  i n f i n i t e  series, meaning t h a t  f o r  z=O and 

r-a c e r t a i n  ser ies should be divergent. I n  problems such as t h i s  one 

would have t o  determine the eigenvalues - i n  closed form f o r  l a rge  
I I 

values o f  n by examining the asymptotic behavior o f  the cha rac te r i s t i c  

equation, determine the re la ted  eigenfunctions again i n  closed form, and 

try t o  separate and sum the divergent p a r t  o f  the i n f i n i t e  series. Such 

a procedure seems t o  be q u i t e  impossible f o r  the problem under consider- 

at ion.  However, i f  one has a reasonably good so lu t ion  f o r  s u f f i c i e n t l y  

small values o f  r-a, one may then fo l l ow  an i n d i r e c t  method t o  es tab l ish  

the s ingu lar  behavior o f  the stresses i n  an approximate manner. To do 

t h i s  we note t h a t  from the plane s t r a i n  so lu t ion  o f  two bonded e l a s t i c  

quar ter  planes one may express the asymptotic behavior o f  the stresses 

f o r  z=O and f o r  small values o f  r -a  as fo l lows [3] 

where a i s  the r o o t  o f  the cha rac te r i s t i c  equation i n  the s t r i p  O<Re(a)<l 



where 

For real  material cordhinations i t  turns out  tha t  i n  O<Re(a)cl (62) 
has only one root  which i s  always real ,  and as0 i s  not a root  (meaning 

tha t  there i s  no need t o  invest igate the possible existence o f  a logar i th -  

mic s ingu lar i ty )  . For the material constants given by (56) and used i n  

t h i s  paper a i s  found t o  be 

Thus, the approximate asymptotic behavior o f  the stresses around (z=0, 
rsa) may be established by assuming tha t  a i s  known and by using the 

l a s t  two calculated points f o r  a i n  the expressions (61) t o  determine 
i j 

the corresponding constants A and Bij. The constants Aid are usual ly  
i j 

referred t o  as the stress in tens i t y  factors. For the present problem 

they are found t o  be 

21 



This i s  essent ia l ly  a curve- f i t t ing process t o  a smooth data. Conse- 
quently, for example, i t  was observed that  the next po in t  calculated 

from (61) i s  rather i n  good agreement wi th  the stresses given by series 

solut ion. 

ACKNOWLEDGEMENT 

The authors would l i k e  t o  thank Professor D. P. Updike of Lehigh 

University for the valuable discussions during the course o f  t h i s  research. 

REFERENCES 

0. B. Bogy, "Edge-bonded d iss imi lar  orthogonal e l  as t i c  wedges under 
normal and shear loading," J. Applied Mechanics, Vol. 35, Trans. 
ASME, pp. 460-466, 1968. 

V. L. Hein and F. Erdogan, "Stress s ingu la r i t i es  i n  a two-material 
wedge ," In t .  J. of Fracture Mechanics , Vol . 7, pp. 31 7-330, 1971. 

F. Erdogan and V. B i r ic ikog lu ,  "Two bonded ha1 f planes wi th  a crack 
going through the interface," In t .  J. Engng. Sci., Vol. 11, pp. 745- 
766, 1973. 

N. 3. Salamon, "An assesment o f  the interlaminar stress problem i n  
laminated composites ," J. o f  Composite Materials supplement, Vol . 
14, pp. 177-194, 1980. 

J. R. Dana and R. M. Barker, "Three-dimensional analysis f o r  the 
stress d i s t r i bu t i on  near c i r cu la r  holes i n  laminated composites," 
Report VPI-E-74-18, VPILSU, B l  acksburg, Virginia, 1974. 

R. M. Barker, J. R. Dana and C. W. Pryor, Jr., "Three-dimensional 
analysis of stress concentration near holes i n  laminated composites," 
Report VPI-E-72-27, VPILSU, Blacksburg, Virginia, 1972. 

E. F. Rybicki and D. W. Schmuser, "Effect of stacking sequence and 
lay-up angle on free edge stresses around a hole i n  a laminated 
p la te  under tension," J. Composite Materials, Vol. 12, pp. 300-313, 
1978. 



8. J. 0, Alblas, "Theorie van de dr iedimnsionale spannfngstoestand 
i n  een doorboorde plaat," Ph.D. Thesis, H. J. Paris-Amsterdam, 1957. 

9. F. Delale and F. Erdogan, "fhree-dimensional e l a s t i c i t y  so lu t ion of 
an i n f i n f  t e  p la te  w i th  a hole under extension," NASA, Technical 
Report, Lehigh Univers i ty , June 1981. 

10. F. Erdogan and M. Bakioglu, "Stress-free end problem i n  layered 
materials ," Internat ional  3. o f  Fracture, Vol . 13, pp. 739-749, 
1977. 

11. A. E. H. Love, A Treatise on the Mathematical Theory of E las t i c i t y ,  
Dover Publfcatfons, fnc. New York, 1944. 

12. R. W. L i t t l e ,  E las t i c i t y ,  Prentfce Hal l ,  Inc., Englewood Cl i f fs ,  
New Jersey, 1 9 n .  



Table 1. The f i r s t  60 roots o f  the character is t ic  
equation (43) 



Table 1 (Cont.) 



Table 2. Var iat ion o f  the stresses a t  the in ter face  PO, with  
r /a  for a1 /a2 = 1.964 

Table 3. Distr fbut ion o f  stresses i n  z- d irect ion for r/a=1.2 
and a1 /a2 = 1 ,964 



Table 4.  Var iat ion o f  the stresses a t  the in ter face  2-0, wi th 
r / a  for a l / q  = 1 .O 

Table 5.  D is t r ibut ion  o f  stresses i n  z- d i rect ion  f o r  r /a - i .2  
and a1/a2 = 1.0 

a  1 ( 202x1 o - ~ )  / 1 z z i  



Figure 1. Geometry o f  the composite plate 



Figure 2. Var iat ion o f  the hoop stresses ueel(r,O) and uee2(r,0)  w i th  
r /a  f o r  al /u2 = 1.964 and z = 0 



Figure 3. 0 of the interface ~ t ' e s s e s  ( 0  and ar~(r*o) 
with r/a f o r  u1/~2=1.964 



Figure 1. Var ia t ion  of the  hoop stresses oeel(r,O) and oee2(r ,0)  wi th 
r/a for 01/02 = 1 




