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ABSTRACT

In this paper the elasticity problem for a laminated thick plate
which consists of twc bonded dissimilar layers and which contains a
circular hole is considered. The problem is formulated for arbitrary
axisymmetric tractions on the hole surface by using the Love strain
function. Through the expansion of the boundary conditions into Fourijer
series the problem is reduced to an infinite system of algebraic equa-
tions which is solved by the method of reduction. Of particular inter-
est in the problem are the stresses along the interface as they relate
to the question of delamination failure of the composite plate. These
stresses are calculated and are observed to become unbounded at the hole
boundary. An approximate treatment of the singular behavior of the stress
state is presented and the stress intensity factors are calculated.

1. INTRODUCTION

In this paper the elasticity problem for a thick plate which con-
sists of two bonded dissimilar homogeneous layers is considered. It is
assumed that the plate is infinite, contains a circular hole, and is
subjected to axisymmetric external loads. Even though the problem as
statec may have some applications, from a practical viewpoint the im-
portant problem is that of a laminated plate containing a circular hole
and subjected to uniaxial membrane or bending loads away from the hole
region. The latter problem has important applications in the analysis
of delamination failure of perforated multilayered plate and shell
structures. In such structures the interface stresses are known to
have a power singularity which greatly enhances the possibility of

*This work was supported by NSF under the Grant CME-7809737 and by NASA-
Langley under the Grant NGR-39-007-011

**Department of Mechanical Engineering and Mechanics, Drexel University,
Philadelphia, Pa.




delamination failure [1,2,3]. In a laminated plate under general load-
ing conditions one may always separate a homogeneous solution and reduce
the problem to a perturbation problem in which the self-equilibrating
tractions on the hole surface are the only external loads. By expanding
these tractions into Fourier series in 6 one may further separate the
problem into its simpler components in the independent variables r and

z only. Thus, the axisymmetric problem treated in this paper may also
be considered as the first component of the general three-dimensional
plate problem,

The three-dimensional elasticity problem for laminated plates con-
taining a hole does not seem to hava been considered before (see, for
example, [4] for a recent review). The existing solutions are mostly
based on numerical techniques and are generally highly approximate [5-7].
The circular hole problem for a homogeneous thick plate was considered
in [8) and [9]. The technique developed in [9] will be used to solve the
laminated plate problem considered in this paper. The related problem
of a layered semi-infinite medium (i.e., the 1imiting case of the hole
problem in which the hole radius is infinite) was considered in [10]
where the method of singular integral equations was used to solve the
problem.

2. THE HOMOGENEQUS SOLUTION

In this section we give the results of some elementary solutions
for a laminated plate without a hole which is subjected to certain uni-
form loading conditions at infinity. First we assume that the composite
plate which consists of two layers with the elastic constants El’ Vi and
E2, Vos and the thicknesses h1 and h2 is subjected to an average radial
membrane stress % at r=« and is constrained to remain flat upon defor-
mations. Thus, defining

arr](r,e,z) =0 orrz(r,e,z) =0, (1)

we have



%61 ® 91 » Tgg2 T 92 (2)

and a1l the remaining stress componerts are zero. From
ophy * oghy = op(hy*hy) o cppy ® eppp (3)

it then follows that

9 % % Too k(T=v,)

(1-97) (14K)
% T-v mk(T-v,] * (4a,b)

where
m= E1/E2 , k= h1/h2 . (5)

Next we consider the composite plate which is uniformly loaded by
an average stress % in x-direction only.

Defining now
OXX](x’y’z) = U] ’ Uxxz(xs.Y9z) = 02 ’ (6)

and again assuming that the plate is constrained to remain flat, the

nonzero stress components 91 Ops oyy1, °yy2 may be determined from

ojhy + oghy = og(y*hy) 5 €pyq = £

+ = = . -
°yy1h'l oyyZhZ 0o, oyl = Eyy2 (7a-d)

Solving (7) we have



g (14K) [M(1-vyv,) + m2k(1-vg)]
1-vf + ka(l-v]vz) + m2k2(1-v§)

%

02 = 00(]+k) - G1k Y

01 - m°2

Oyl " R, (8a-d)

» Iyy2 = Koy

Referring to the cylindrical coordinates the stress states in the
layers 1 and 2 may be expressed as

o"j=—~j-2—¥-ﬂ+—=j—2mcos 28 ,

Ye0j - Slt%lll - Si:;xXi cos 26,

L Si:;XXi sin 26 ,

92i = %rzj = Ogzj * 0 , (j=1,2) (9a-f)

Solutions similar to that given by (4) and (8) may also be obtained
for other types of uniform external loads such as bending and thermally
induced loading.

3. SOLUTION OF THE AXISYMMETRIC PROBLEM

The problem of a laminated plate containing a circular hole with a
radius a may now be solved by superimposing on the homogeneous solutions
found in the previous section a perturbation solution in which the trac-
tions - (a 8,2), (a=r,0,2; j=1,2; 0<6<2n, -h2<z<h]) acting on the hole
boundary are the only external loads, where the stress state Oy J(r 8,2),
(g,a = r,8,z; j=1,2) is given by the homogeneous solution. From, for
example, (1), (4), (8), and (9) it may be seen that the simplest such
perturbation problem is an axisymmetric problem corresponding to the
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axisymmetrically loaded plate or to the first part of the unidirection-

z11ly loaded plate (i.e., to the e-independent part of the solution given

by (9)). Thus, in this sectfon we will consider the axisymmetric prob-
lem for the composite plate subjected to the following boundary condi-
tions (Figure 1):

oppj(32) = 05(2) 5 o,5(a,2) = 15(2z) . (§=1,2) (10a,b)

where o3 and T3 are known tractions acting on the layers 1 and 2, re-
spectively. Note that the solution is independent of 6 and the shear

stresss%ej=0, (B=r,z; j=1,2) everywhere.

To formulate the problem the technique described in [9] will be
used. Because of axisymmetry, it is sufficient to use the z-component
of the Galerkin vector only which is nothing but the Love strain func-
tion Z(r,z) [11,12]. 1In addition to the surface tractions given by
(10) the composite plate is subjected to the following homogeneous
boundary, continuity, and regularity conditions (Figure 1):

(rshy) =0 , (r.hy) =0, (acre=) (1)

Orz1 0221

UY‘ZZ(r’-hZ) =0 , Uzzz(r"hz) =0 , (a<r<w) , (12)
07‘21(r’0) = Grzz(r:o) ’ GZZ](r’O) = GZZZ(r’O) ’ (a<r‘<~) 9(13)
Ur](l",O) = urz(rro) ’ uz](r,O) = uZZ(r’o) ’ (a<r‘<°°) ’ (14)

rri(=2) =0, opulmz) =0, (§41,2) (15)

Let Z! and Z2 be the Love strain functions for layers 1 and 2, re-

spectively (Figure 1). In the absence of body forces Z] and 22 satisfy

22 . 2,92 .13 , 3% =
vev ZJ(V‘,Z) Q0 , ¢ FTYs + 37 + 3zc  ° (§=1,2) , (16)

P e



and the displacements and stresses are given by

2 2

uu, = - %;% o 2uu, = [2(1-v)92 - é%zlz 5 (17)
B rup2. 22 . 13

Opp * 37 (V2 32T %0 = 3z (vo2- T

3 32 3 2
9p2 * 3z (22 - 2712 4 o, = 5% [(1-v)92 - é%zﬂz - (18)

Looking for a series type solution in z and taking into account the
regularity conditions (15), the solution of (16) may be expressed as

Z, = nZ-][A]nKo(anY‘)+A3naan](anr)+ASnZunKo(anr)]sinanz

+

nZ][B]nKO(anr)4—B3naan](anr)+'85n2unKo(anr)]c05anz , (19)

Zz = nZ] [C]nKo(anr) + C3nanr‘K] (anr‘) + CananKo(anr')]S‘inanz

+

nZ][D1nKo(anr)+'D3naan](anr)+-Dsn2anKo(unr)]c05anz . (20)

Substituting from (17)-(20) into the boundary and continuity con-
ditions (11)-(14) and observing that these conditions must be satisfied
for all values of r in a<r<=, after some manipulations, it may be shown
that part of the resulting algebraic system which concains only the
unknowns A3n’ BBn’ C3n, and D3n is separated and is overdetermined.
Hence for the conditions (11)-(14) to be satisfied it is necessary that

A3 = B3n = C3, = D3 = 0o . (21)

Considering (21) from (17)-(20) the displacements and stresses in the
composite plate may now be expressed as follows:



e 7 a2
Un 2;;I{nz] dnK](unr)[A]n + Aanun + Bsn]COSunZ
- Z] a2Ky (a,r)[By + Bgnzay - Ag lsina 2} (22)
ns

2—— {ngl u2 sina ZKo(“nr)[('2+4V1)BSn + A

+ Aanun] + nZ] cﬁ €oSsa ZKo(anr)[(2-4v])A5n

+ By, +Bgza 1} (23)

rel 2 a3(By[Ky(agr) + =5 K,(a r)]

+

snzlanK,(ar) + = r Ky (anr)]

- A [ ‘r Ky (agr) + (1427)K (a r)]isina z

ECHEN
n=1

n[Ko(anr) + — a7 K (a r)] + A Z[anKo(anr)

+

F K (a1 + B [(142v))K (o 1)

—l; Ky(a,r)1} cosa z (28)

+

E a2 sin z{Eligﬂ:l By +Bg za_ - Az ]
- r In " "5n“%n = "sn

Q
f

801

® (a r)
2v1an 5n o(u r); + nZI an cosa z{

+

[y

+ Agpzap + Bgp] - 2vi0.Bg Koo )} (25)

5n"o

9221 7 ° nZ] a3 Ko(apr)[By, + Bgpza, + (1-2v;)Ag, Isina 2



3 -
+ nZ] unKo(anr)[A1n + Aanun + (2v] ])Bsn]COSanZ . (26)

B o 3

arz] n§1 anK](anr)S1nunZ[2v1Bsn + A]n + Aanan]
- 3 -

nZ] anK](anP)COSanZ[ 2v]A5n + B]n + BSnZan] » (27)

. ] 2
U, = zﬂz {nz1 al K1(mn|r')[(:]n * Cepza, + D5, Jcosa, 2

nZ] G% K](Gnr)[D]n + Danan - csn]SinanZ} ’ (28)

1, v 5 .
uZZ '2@ {nZ] an S1nanZKo(anr)[(-2+4\)2)Dsn

+ C]n + Canan] + nzl a:COSanZKO(anP)[(2-4v2)C5n

* 0y * g 20 1), (29)

1n

I a3y (K (ar) + &]_r Ky (a r)]

er2 T ne "
+ Dsnz[anKo(anr) + % Ky (e r)]
- c5n[¢r— Ky (agr) + (1429,)K (a,r) Tising, 2
i n§1 A CanD (7] + 5l (o)1 + Cpalagk,(o,r)
+E Ky (ay)] + Dy [(142u,)K (o 1) + a—"‘? K, (a,r)] Jeosa z, (30)
® K](anr)
902 = - nZ] of sina,2( ——— [0y, + Dgp2ey,



- C5n] + 2v2anCSnK°(anr)} + nzl a% cosa, z{
K](Gnr)
—— [c1n + Cgaan * DSn] - szanDsnKo(anr)} , (31)

3
nz] Gn Ko(anr)[DTH + Dsnzun + (1'2V2)C5n]s1nﬁnz

Q
"
(]

222

3
nz] a’ l'(o(otnr)[cln + Cgo2ay + (2v2-1)05n]c03anz » (32)

+

\
[}
]

1 a:K](anr)sinanz[szDSn * Gt Csnzan]

“rz2 nel

nzl agK](anr)cosanz[-szcsn + 0y + Dsnzan] . (33)

Substituting from (22)-(33) into the bcundary and continuity conditions
(11)-(14) we obtain the following system of homogeneous algebraic equa-
tions:

-A1nSi"anh1 + [Zv]cos%h1 - “nhISi"“nhl]ASn

-Bycosa hy - [2v]Sinanh] + “nh1°°5“nh1]BSn =0 , (34)
Aypcosa hy + [(Zv]-l)sinunh] + anh]COSanh]]Asn - Bypsinaghy

+ [(2vy-1)cosa b, - anhysina hy 18, =0 (35)
C]nsina,’h2 + [2v2c05unh2 - anhzsinanh?_]cSn

- Dlncos%h2 + [2vzsinanh2 + anh2c05anhz]05n =0 , (36)

anCOSanhz +0[(1-2v2)sinanh2 - anh2c05anh2]C5n



= A5, + Byt 290Dy = 0 (38)

App * (2vy=1)Bg = €y = (2u,-1)05, = 0, (39)

BA, + 885, - Cip - D =0 (40)

8(2-4v,)Ag, + 8By, - (2-4v,)C;, - Dy =0 (41)
where

g = 112/\4.I . (42)

To obtain a non-trivial solution for the system of algebraic equations
(34)-(42), the determinant of coefficients must vanish, giving

8(a,) = 0 (43)

The characteristic equation (43) gives the eigenvalues s (n=1,2,...)
of the problem. A close examination of the roots of (43) shows that if ay
is a root so are -a, &n’ and -En. Therefore in solving the problem it is
sufficient to use the roots in the first quadrant and consider the real
part of the solution only. Further examination of the roots indicates that
for dissimilar materials generally there is only one positive real root and
the remaining roots are all complex. Furthermore, the complex roots form
two distinct sequences in the first quadrant which greatly facilitates
their numerical evaluation. When the elastic constants of the layers 1
and 2 become equal (i.e., for a homogeneous layer), the real root disap-
pears and the two sequences of complex eigenvalues become the roots of
the following characteristic equations:
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s1n2xn + ZAn =0 , sin&xn -ZAn =0 , Ay * an(h‘+h2) . (44a,b)

Equations (44) are known to correspond to the extension and bending prob-
lems for a homogeneous thick plate containing a circular hoite {8,9].

It is found that a =0 is also a root of (43). Therefore, a partic-
ular solution must be added to that given by (19) and (20) to account for
the zero eigenvalue. Considered as sii,le "plates" the layers are sub-
jected to stretching, bending, and transverse shear. The particular
solutions Z?, and Zg must therefore exhibit the characteristics of all
three modes of loading. Thus

Z? *= Nz r o+ M1zzzn r+ P]r2m1'+ Q1(22-r2/2) .

Zg = Npz gnr + Mzzzznr'+ Pzrzzn r . (45a,b)

where the first terms in each expression correspond to stretching, and
the next two terms to combined bending and transversc shear in the indi-
vidual plates.* The term Ql(zz-rZ/Z) corresponds to a rigid body trans-
lation in z-direction and is added to (45a) to insure continuity of
displacements at the interface. The constants M1, N1. P]. Mz, NZ’ and
P, which appear in (45) are not independent. By using expressions (17)
and (18) which relate the displacements and the stresses to the Love
strain function, all field quantities can be written in terms of these
constants. Then, by applying the boundary and continuity conditions
(11)-(14), after some lengthy algebra and after redefining the constants
we obtain:

\Y

Z? = Dyzen r + Aozzzn r+ ?TT:%TT ﬁ,rzzn r+ 01(22-r2/2)

v
Zg = Boozzn r+ aAoiﬁn r+g eré%ET Aorzln r (46a,b)

- .
NoEe]that Z? and Zg are of the form f(r) + g(r)h(z) + m{z) suggested
tn [9].
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The stress field generated by (46) can then be expressed as:

0 1 0 1
Sopl = 7T (D°+2Aoz) : Oge1 % T I (D0+2A°z) ,

0 0
Ozz] = 0 Y g = 0 ’ (47a-d)

° =?§z(Do+2Aoz) , ogez=-FBz(D°+2Aoz) ,

rr2
0 - 0 -
0,22 = 0o, Tpyo = 0 . (48a-d)

In the perturbation problem the stress states in layers 1 and 2 are
obtained by adding the respective stress components given by (24)-(27),
(30)-(33), (47) and (48). Thus, the problem is reduced to one of determ-
ining the unknown constants Ao’ - A]n’ ASn’ B]n’ BSn’ C1n’ c5n’ D]n’
and Dg,,» (n=1,2,...). However, from (34)-(42) it is clear that the homo-
geneous system contains only one arbitrary constant for each eigenvalue
aps (n=1,2,...). For example, one may assume that Ape (n=1,2..) is the
only unknown in (34)-(42) and the remaining seven unknowns A5n""’DSn
may be expressed in terms of A1n after solving the related eigenya]ue
problem. The unknown constants Ao, Do’ and A]n’ (n=1,2,..) are then
determined from the boundary conditions (10). To do this, we first
substitute from the expressions (24), (47a), (30), (48a) and (27), (47d),
(33), (48d) into (10a) and (10b), respectively. In the resulting equa-
tions by expanding both sides into a series of an appropriate system of
orthogonal functions in -h2<z<h] and by matching the coefficients we
obtain a linear system of algebraic equations to determine the unknown
coefficients Ac’ Do’ and Aln' The algebraic system is infinite and may
be solved by the method of reduction.

If we use the first N+1 functions of a real orthogonal system, the
(real parts of) conditions (10) would give 2N+2 equations. On the other
hand, since Ao’ Do’ A11 (corresponding to the real eigenvalue a1) are
real and A;,,A;4,... are complex, truncating the series (24), (27), (30)

12



and (33) at the Nth term we would have 2N+1 real unknowns. However,
it can be shown that this discrepancy disappears if one selects an
orthogonal system in which the first function is a constant. Thus,
if we substitute from (27), (47d), (33), and (48d) into

h
1 . h

J 0,42 r 0082 + f lo qdz (49)

.h2 'h2 (o]

corresponding to the coefficient of the first coordinate function in
expanding the lefthand side of (10b), it can be shown that the expres-
sion becomes identically zero. On the other hand, the static equilib-
rium of the composite plate requires that

r 'rzdz + J'Hrldz =0 . (50)
0
_hz

Thus, the first equation obtained from the series expansion of (10b)
becomes an identity, 0=0, and may therefore be ignored.

Now let us assume that the tractions are

01(2) = =07 02(2) = -0y T](Z) =0 , 12(2) =0 , (51)

where o, and o, are constant, and cos[nk(z+h2)/(h]+h2)],(k=o,1,2,...) is
selected as the orthogonal system. By expanding (10) into cosine series
and considering the first N+1 terms we then obtain

N
3
Re ngl anK](una)«szDsn + C-ln)ank + anCSnbnk

+ (-2vplg, + Dy + apDgd, + (Z“IBSn + AjnJenk

toaghgafo + (-2viAg, + Bind9nk * %aBgphnkt = 0
(k=1,---’N)’ (52)

13
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)
Re
n=l

3 ]
a3 (X 0y = YpCon)an, + DgnonX b

n"n nk

- (xncln * YnDSn)cnk - unCSnxndnk

- (XnAIn *

n 5n"n nk

ZnBSn)gnk -a A X hnk}

n s5n'n

D A
+ E% (m +8n, ) + 2 EQ%E [(-1)k - cosyh, + B(cosy h,-1)]

= oM - ohy

where

s (k=1,...,N),

3 -
Re nzl mn{(XnD.In YnCSn)ano + D.aXb

5n'n"n no

- (ch1n + YnDSn)Cno -aCc Xd

* (XnB1n - LA

- (XnA1n + ZnBSn

n“5n"n"no

Je +aB. Xf

5n’"no n 5n'n no

Y90 = %nP5nXahne?

Do AO ,
+EZ' (h] + th) +EZ' (h" - Bh%) = - O'-Ih~I - Uzhz ’

Ko(ana) +

]
ﬁ K-I (ana) N

(142,)K (2 2) + —l—-K](ana) ,

ana

(142v K (a,a) + ;ﬁ; K(a2) o (n=1,2..,8)

sinykh2

Yk

km
’ n =-m ’ -Y 2D e——— ’
k k k h]+h2
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(k=1,2..,N)

]

(53)

(54)
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AR WLl

1 cosvkh

1l " k2
iny,h cosy, h
1 Sy ] Y
7 s sin(yk+an)h2 ol B [cos(yk-an)h2 - 1]
k ™n k n
"7 Ve sin{yg-adhy o (021,008 k=1,..0N)
n
9 cosYkh2 1 cosYkh2
bnk = - 2’ Yk*an hZCOS(Yk+Gn)h2 + Ewsin(Yk‘.’un)hz
-3 YoFar hzs1n(yk+an)h2
¥ 2 Yk"'un O '°°S(Yk+°‘n)h2] + ? Y% hZCOS(Yk-an)hZ
1 c05ykh2 . 1 siny h2 )
- §'T§;:E;72S1"(Yk'°n)h2 + s = hysin(y,-a )h,
-2 (y.-a ) [V - cos(y,-apdh] 5 (n=1,...,N; k=1,...,N) ,
Yk™%n
R cosvkh2 . 1 sinykh2
Chk = 7 7 7a s1n(yk+an)h2 A - cos(yk+an)h2]
k n k' 'n
cosy h siny_h
+'% Y -2 : sin(yg-ap)hy + %__;_:E_Z [1-cos(v-ap)hp]
k °n k n
(n= 1,..,N; k =1,..,N) ,
o cosvkh2 1 cosvkh2
doi * = 7 yde - 2SOty * 7 Trranp [1-cos(ycragihy]
iny, h siny h
1 SN2 ] k"2 .
ty -Tk-;.—n— hzcos(yk+an)h2 -5 Wsm(ykﬂxn)hz

cosYkh2

Yk™%n

hzsin(yk-an)h2 + %
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4y v hzcos(Yk'°n)h2 z-r;;:;-7231n(vk-un)hz ,

(n=1,..,Ns k=1,..,N)

enk - ‘2’ _Y—k-"’-a-n- - [COS(Yk+un)h-| ‘1 3 '2' Si n(Yk+Gn) h1
+ 7-—;;:;;— [COS(Yk'Gn)h]‘1] - 2-—;;:;;— Sin(yk-cxn)h.l .
(k=1,2,..,N3 n=1,...,N) ] »
1 cosykh2 cosy h,

ok = 72 7 hycos (v, ¥ap)hy + ’zr“"’?s‘"(*k+°n)“1

1 sinykh2 ' s1ny h

vy Yo h]s1n(yk+an)h] 1———-—72[cos(vk+an)h1-1]
1 cosvkh2 1 coswkh2 )

g Meostiel™ T 2 Tyee P sin(vy-on)h
1 cosykh2 ] s1ny h

(n=1,...N; k=1,...5N)

1 C°SYkh2 _ ] sinykh2
gnk =% —-_—Yk+°'n S'H‘I(Yk+ct")h.l + v ——-——-——Yk+an [cos(yk‘l'an)h] -1]

T 7—-;‘-(-_';-— sin (Yk-an)h] + ——Y—: [COS('yk-a )hn‘ 1]

(n=1,..,N; k=1,..,N)

Pk = ¥ ";;:r hysin (rtsplh * 7 T Leostncren)y 1
iny h siny
1 51y k2
e M coslrtenlt 2 7 Trrocp S0l
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1 05y hy 1 cosv h,
Y7 e M osinlygeghy ¢ ﬂrTyz Leos(vy-ay )by -1]

y sinv hy siny h,

(n=1,..,N; k=1,..,N) ;

- c05anh2-1
no an
b= hzcosanh2 s1nanh2 ,
no ®, ag
. Sinonh2
cno @, ’

hzsinunh2 . (1-c05anh2)

Q.
[}
-

- pd
no a n Qn
. = 1-cos<:nh1
1
no e,
i h]COSanh1 . s1nanh]
no o a= '
n n
Sinanh]
gno = a 4
n

h-lsinoznh.I (1-cosanh])

v 3
Qa [+
no n n

=¥
[}

(n=1,2..,N) . (55)

and 8 is given by (42). Even though it is difficult to investigate the
regularity of the algebraic system (52)-(54), the numerical results show
very good convergence with increasing N.

4. NUMERICAL RESULTS AND DISCUSSION

In the numerical example considered the following material proper-
ties and dimensions are used (Figure 1)
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2.3, 2.35 . (56)
hy hy

The first 60 roots of the characteristic equation (43) obtained from the
algebraic system (34)-(41) are given in Table 1.

Two separate loading conditions are used to calculate the stresses.
In the first it is assumed that*

opp(2:2) = =0y s 0.,(2,2) = -0,
01/02 = ]-964 1] Grz‘l(agZ) = Or.zz(a,Z) = 0 . (57)

The second loading consists of a uniform pressure on the entire hole
surface, namely

O’rr-l(a,Z) = O’rrz(a,Z) = -GZ ]

0pp1(2s2) = 0 0(a,2) =0 . (58)

Tables 2-5 show the calculated results which are partially displayed
also in Figures 2-5. Based on the calculated results one could make
the following observations:

(a) Away from the hole boundary generally the convergence is quite
good. It becomes slower when the hole boundary is approached. For the
loading given by (57) the discontinuity in traction .. may be partially
responsible for this. However, the main reason for the lack of conver-
gence of the calculated results near the hole boundary appears to be

*
The stress ratio 1.964 corresponds to (8a) and (8b) for the material
pair under consideration.
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the singular nature of the stress state at the intersection of the inter-
face and the boundary [1-3]. Thus, near the hole boundary more terms in
the infinite series were needed to obtain convergence comparable to that
found in computing the stresses away from the boundary.*

(b) As r+= all stress components go to zero. However, the decay

in o is much slower than that in ¢ and Opzj® (§=1,2).

CIR) 22§
(c) From Figures 3 and 5 it may be seen that the relative magni-
tidues of the interface stresses Tpz and a,, are rather small. Also,
the stresses corresponding to 910, (Figure 5) are an order of magnitude
greater than those obtained for o]='l.964 gy (Figure 3). A partial ex-
planation for these results may be found if one considers the homogeneous
plates separately. In a homogeneous plate axisymmetrically loaded by
an.](a,z) = -0y, on](a,z) =0, (0<z<hy) the stress state is given by

(o]
_ 1 _ .
Oprl = T TFa)Z = %ae1 * %1 S0 0 951 =0 (59)
from which it follows that
= ] U] Z - = (0 =0 (60)
€901 Zu] (r7a)2 ~ “Crr1 * Er2l » €221 ¥

Thus, it is seen that if the second plate is axisymmetrically loaded by
°rr2(a’z) = -0y, °r22(a’z) =0, (-h2<z<0) and if o/uy =0,/uy, then in
the two plates the displacements would be identical along the interface
and the stresses - and Oz would be zero everywhere. In the example
under consideration u1/u2='2-077- Therefore, for c]/az='l.964 one would
expect the magnitude of the interface stresses to be rather small.
Similar observations may be made with regard to the comparison of Tee

and Opp in bonded and unbonded plates. On the other hand, for 9179

*The numerical results given in the tables are obtained by using 20 to
30 terms in the series for locations away from the hole and up to 60
terms near the hold boundary.
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one would expect higher interface stresses because of the greater mismatch
in the displacements along the interface.

(d) For the loading c]/az==1.964 since the solution is close to that
of a homogeneous plate, the thickness effect should not be significant.
Indeed, by varying a/h1 it is observed that the results do not change
significantly. Also, in this case from Table 3 it may be seen that the
variation of Tge with z is negligible, whereas for °1/°2’] Table 5 shows
a significant variation in Tgg- Again, note that in the homogeneous
plate Tg0 is independent of z.

(e) The calculated results indicate that on the interface z=0 the
stresses become unbounded as r approaches a, the hole radius. Theoret-
ically, this is indeed known to be the case [1-3]. The solution given
in this paper is in terms of infinite series, meaning that for 2=0 and
r=a certain series should be divergent. In problems such as this one
would have to determine the eigenvalues , in closed form for large
values of n by examining the asymptotic behavior of the characteristic
equation, determine the related eigenfunctions again in closed form, and
try to separate and sum the divergent part of the infinite series. Such
a procedure seems to be quite impossible for the problem under consider-
ation. However, if one has a reasonably good solution for sufficiently
small values of r-a, one may then follow an indirect method to establish
the singular behavior of the stresses in an approximate manner. To do
this we note that from the plane strain solution of two bonded elastic
quarter planes one may express the asymptotic behavior of the stresses
for z=0 and for small values of r-a as follows [3]

Ay

%3 % {r-a

1-a

'a + Bij(r'a) + vee s (i,§=r,2z) (61)
where a is the root of the characteristic equation in the strip O<Re(a)<l

(cosma + Cqq tacypt C]3a(a+1 }/2)(cosma + Co1 +Cont

+ C230(G+] )/2) - (d]]+d]20)(d21+d226) =z 0 ’ (62)
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where

1 m1(1+x]) 3(1-m])
‘W*z-° Z(m]+x2; - 21I+m1n]$ ’

6(l-m1) 4(1-my)
c = s € 2 - s
127 Tt 137 T Ve

1 m(ikg) o 3(1-m,)
%1'2‘?5;37'ﬂﬁ@ﬁg

6(1-m,)
- 2 4(1-m,)
2 = T, * %23 = - —>P,
2°2 ]+m2K2
3(1+x2) 'I+o<.l '|+n<.| 1+K]

d

d

1N 21m2+n1) 2(1+m2x2) A 1+m2K2 - Mo+,

3(1+x2) ]+K2 ]+K2 ]+K2
d = - d T et css————

m] = UZ/U1 m2 = ul/uz ’ Ki = 3’4Vi ’ (1=]s2)

For real material comhinations it turns out that in O<Re(a)<1 (62)
has only one root which is always real, and a=0 is not a root (meaning
that there is no need to investigate the possible existence of a logarith-
mic singularity). For the material constants given by (56) and used in
this paper a is found to be

a = 0.048940 . (63)

Thus, the approximate asymptotic behavior of the stresses around (2=0,
r=a) may be established by assuming that a is known and by using the
last two calculated points for °1j in the expressions (61) to determine
the corresponding constants A1j and Bij' The constants Aij are usually
referred to as the stress intensity factors. For the present problem
they are found to be

21
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a a 2 .a 2 _.a

1.964 1.608 0.776 0.082 -2.224
1.000 1.144 0.562 0.990 -20.918

This is essentifally a curve-fitting process to a smooth data. Conse-
quently, for example, it was observed that the next point calculated
from (61) is rather in good agreement with the stresses given by series
solution.
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Table 1. The first 60 roots of the characteristic

equation (43)

Re(ﬂnh] ) Im(anh‘l )

2.576640149 0

LM WWWWWWWWWWNMNNNMNN N NN N et b bt b = s b
W= OWOOSNOTOMMBWNMHFHEDODWOLVONOOIEAWLWNEFEOOVONOOMEBWNNFHEOWODNOITOL AW =3

1.293810176
2,885866996
4,384613298
4.508247667
6.169990276
7.%82619850
7.752063359
©.342477506
10.77125258
10. 92034586
12.50012425
13.94523374
14.07574872
15.65192294
17.11030656
17.22622651
18.80069246
20.26975009
20.37415766
21.94765603
23.42541951
23.52055621
25.0934437

26.57843058
26.66594450
28.23841688
29.72949401
29.81062486
31.38280031
3C. 87908457
32.95478667
34.52674116
36.02753210
36.09855559
37.67034054
39.17507330
39.24201876
40.81367039
42.3218827

42.38523874
43.95678339
45.46809202

0.7551679918

0.9781794212
1.228997641

1.340085172
1.451922791

1.528341711
1.602698086

1.661164351
1.717452823

1.764831059
1.810326620

1.850159284
1.888423334

.922785421
.955843539

.986056608
.0515177619

.042135663
.068169865

.092505940
.116052348

. 138231174
.1£9728360

.180101156
.199880230

.218718904
.237036178

—

NN NN NN NN N N -
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0.8298514402
1.587138202

2.113409611

2.453236163

2.705188038

2.905787940

3.072577814

3.215377334

3.340252251

3.451217584

3.551071015

3.641841058

3.725045967

3.801851958

3.873174424



Table 1 (Cont.)

Re(anh1)

Im( Gnh'| )

a4
45

47
48
49
50
51
52
53
54
55
56
57
58
59
60

45.52826175
47.09971910
48.61380260
48.67112277
50.24250782
51.7590938
51.81384877
53 18517321
54.90402880
54.95646096
56.52773403
58.04865835
58.09897623
59.67020534
61.19302391
61.24140822
62.81259940

2.254555535
2.271613599

2.287986286
2.303948118
2
2

. 319314977
334313681

. 348791111
. 362936830

. 376622132
.390007063

.402982400
2.415684503

~ NN NN
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3.939745157

4.002158438

4.060903496

4.116387922

4.16895489



Table 2.

Variation of the stresses at the interface z=0, with

r/a for o01/02=1.964

r/a 9661/2% | Oag2/20y | 955/ (20px107%) | o /(20,x10™)
1.025 0.955 0.460 - -11.0
1.037 0.933 0.449 -1.0 -9.7
1.050 0.910 0.438 -1.5 -8.9
1.075 0.868 0.417 -1.8 -7.7
1.100 0.829 0.399 -1.8 -6.7
1.150 0.758 0.365 -1.5 -5.1
1.200 0.697 0.335 -1.1 -3.9
1.300 0.594 0.286 -0.3 -2.3
1.500 0.446 0.215 0.3 -0.8
1.750 0.328 0.158 0.3 -0.2
2.0 0.251 0.121 0.1 -0.05
3.0 0.111 0.054 0. 0.

4.0 0.063 0.030 0. 0.
5.0 0.040 0.019 0. 0.
Table 3. Distribution of stresses in z- direction for r/a=1.2
and 01/02 =1.964
-3 -2
0. -1.1 -3.9 0.697
0.25 -2.1 -2.1 0.692
i=1 0.50 -1.5 0.4 0.687
0.75 -0.5 1.2 0.682
0.90 -0.1 0.7 0.679
1.0 0. 0. 0.677
0. -1.1 -3.9 0.335
-0.25 0.1 -0.5 0.339
j=2 -0.50 -0.4 1.7 0.344
-0.75 -0.3 1.6 0.349
-0.90 -0.08 0.9 0.353
-1.0 0. 0. 0.355




Table 4.

Varjation of the stresses at the interface z=0, with
r/a for oy/02=1.0

r/a 0661/2% | 9002/205 | 935 (205x107%) | o /(20,%1072)
1.025 0.672 0.324 - -10.4
1.037 0.653 0.312 -0.9 -9.2
1.050 0.635 0.301 -14 -8.5
1.075 0.605 0.286 -1.7 -7.3
1.100 0.578 0.273 -1.7 -6.4
1.150 0.529 0.250 -1.4 -4.9
1.200 0.487 0.231 -1.0 -3.7
1.300 0.415 0.199 -0.3 -2.2
1.500 0.313 0.151 0.3 -0.8
1.750 0.230 0.111 0.3 -0.2
2.0 0.176 0.085 0.1 -0.05
3.0 0.078 0.038 0. 0.

4.0 0.044 0.021 0. 0.
5.0 0.028 0.014 0. 0.
Table 5. Distribution of stresses in z- direction for r/a=1.2
and 01/02= 1.0
2/h; | oo /(20,x1078) | o_..(20,x1072) | .../20
i zzi 2 rzit= 2 gei’ =72
0. -1.0 -3.7 0.487
) 0.25 -2.0 -2.0 0.444
i=1 0.50 -1.4 0.4 0.399
0.75 -0.5 1.1 0.350
0.90 -0.1 0.7 0.321
1.0 0. 0. 0.302
0. -1.0 -3.7 0.231
§=2 -0.25 0.1 -0.5 0.270
-0.50 -0.4 1.6 0.318
-0.75 -0.3 1.6 0.369
-0.90 -0.07 0.8 0.400
-1.0 0. 0. 0.423
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Figure 1. Geometry of the composite plate
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Figure 2. Variation of the hoop stresses oggei(r.0) and ggq2(r,0) with
r/a for 01/02=1.964 and z=0
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Figure 3. Variation of the interface stresses dpz(r,0) and orz(r,0)
with r/a for o1/02=1.964
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Figure 4. Variation of the hoop stresses oggi(r,0) and ogg2(r,0) with
r/a for oy/02=1



r/Q
...[2
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Figure 5.
with v/a for 01/02=‘1
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