
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



r

=r.ia

rPtRONAuri

`k;

6 -Jy
^P

5P
r Y OF 

1 Ey,P

Bureau of Engineering Research
The University of Texas at Austin

Austin, Texas;I'_
(NASA -Iu-IulUUI)	 AULAL VEC1Ub E51IMA1ICh	 Irby-^s^l!
tuft C:LUSELY SDACE.D FPE^,ULbCY FLDES ('IEXd::
UhIV. dt Aclii,ytoLA.)	 41 E HL Aus/Mt AU1

^ SC L 20K
	

Unc:l3F,
GJ/39 09u l r

Report CAR 82-1

MODAL VECTOR ESTIMATION FOR

CLOSELY-SPACED-FREQUENCY MODES

by

Roy R. Craig, Jr.
Yung-T.,--ng Chung

Mark Blair

NASA Contract No. NAS8-33960

b

v ^ W

February 1, 1982



i

MODAL VECTOR ESTIMATION FOR

CLOSELY-SPACED-FREQUENCY MODES

A Report to

NASA Marshall space Flight Center

Contract No. NAS8-33980

by

Roy R. Craig, Jr.*

Yung-Tseng Chungt

Mark Blairtt

ASE-EM Department

The University of Texas at Austin

Austin, Texas 78712

* Professor, ASE-EM

t Graduate Student, EM

tt Undergraduate Student, ASE

February 1, 1982



IV	 MODAL VECTOR ESTIMATION FOR CLOSELY-SPACED-FREQUENCY MODES

1,	 Introduction

In describing the dynamical be,tavior of a complex structure modal

parameters are often employed: undamped natural frequency, mode shape,

modal mass, modal stiffness, and modal dampigj . From both an analytical	 {

standpoint and an exterimental standpoint, identification of modal para-

meters is ma,'e more difficult if the system has repeated frequencies or

even closely-spaced frequencies. The more complex the structure, the

more 111;ely it is to nave closely-spaced frequencies. in many cases this

fact makes it diffi(,ult to determine valid mode shapes using single-shaker

test methods. By employing band selectable analysis (zoom) techniques

and by employing Kennedy-Pancu circle fitting or some multiple degree of

freedom (MDOF) curve-fit procedure, the usefulness of the single-shaker

approach can be extended. However, for many structures such procedures

may still not be sufficient to give accurate modal representations.

It is the purpose of this paper to discuss techniques for obtaining

improved modal vector estimates for systems with closely-spaced-frequency

modes.

2.	 Closely-Spaced-Frequency-Modes

It is well-known that systems with unique frequencies possess unique

mode shapes, while systems with repeated frequencies do not possess unique

w
	 modes corresponding to the repeated frequencies, but rather, they possess



weakly-coupled subsystems.

l
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subspaces of modes. Thio is illustrated by the .simple 2 degree-of-freedom

(DOF) systems of Figure 1. Figure 2(a) shows the frequency response func-

tions WR F`s) of a 2[DOF system with widely-separated-frequency modes

(5.OHz and 5.5Hz), while Figure 2(b) shows a similar system with closely-

spaced-frequency modes (5.00Hz and 5.0514z).

The frequency spacing of the 2DOF system in Figure 2 is controlled

by the strength of the coupling spring. Klosterman (l) made a thorough

investigation of the dynamics of weakly coupled systems, such as the

types illustrated in Figure 3, and concluded that, for such systems,

"close agreement between computed and experimentally measured mode shapes

ci.,.Aot be expected," This results from the fact that "coupled system

mode shapes are very sensitive to small variations in the subsystems."

"fable 1 illustrates the effect of small variations in the mass of one

subsystem on the coupled system modes of a 2DOF spring-mass oscillator

when the coupling is "weak." It can be seen that, as noted by Klosterman,

small changes in the subsystem properties have an enormous effect on the

system modes when the system consists of weakly coupled subsystems.

Figures 4 and 5 show FRF's of a moderately complex piece of space

hardware. Figure 4 shows the Bode plot of a drive-point FRF over the full

data acquisition bandwidth, while Figures 5(a) and 5(b) show two Argand

plots over a 10-30H.z bandwidth. Clearly, this structure has closely-

spaced-frequency modes. In actual fact, the structure is comprised of

a tubular framework supporting several virtually identical honeycomb panels.

Thus, this structure is a classic example of a system which consists of
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1	 Although Klost,,,rman has noted that getting experimentally determined

modes to agree with analytically determined modes may be a hopeless under-

taking, we will address the slightly different proposition of determining

"good" (in some sense) experimental modes for systems having closely-

spaced frequencies.,

3.	 Modal Vector Estimation Using a Single Column Row o f the Frequency

Response Function Matrix

Techniques for estimating experimental mode shapes by using a single

column or a single row of the FRF matrix are well known and are incorporated

in various modal analysis software packages such as (MODAL-PLUS. Appendix A

gives the mathematical basis for using a single row/column of the FRF matrix

in identifying modal parameters. The most frequently employed techniques

for estimating mndal vectors from FRF's are the quadrature response method

and the Kennedy-Pancu circle-fit method. (2 ' 3 '1 Figure 6(a) shows the

correct modes of the 2DOF systems of Figures 2(a) and 2(b) along with the

quadrature response "experimental" modes which would be inferred from fre-

quency response functions. When the frequencies are not closely spaced,

acceptable results are obtained by the quadrature response technique, as

seen in Figure 6(b). However, when the frequencies are closely spaced,

there is difficulty, first, in identifying the natural frequencies at which

to identify the modes; and modes based on one shaker location do not agree

k	 with modes based on another shaker location, as can be seen by comparing

Figures 6(c) and 6(d).
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The use of quadrature response techniques in situations where fre-

quencies are closely spaced clearly leads to erroneous modal vector esti-

mates. It could be shown that even circle-fitting and MDOF curve fitting

would fail to produce good modal vector estimates in cases such as this.

Because of the difficulties in obtaining accurate modal vectors

for systems with closely-spaced-frequency modes by using only a single

column or row of the FRF matrix, it becomes necessary to examine the possi-

bility of using several rows/columns of the FRF matrix to obtain improved

modal vector estimates.

4.	 Modal Vector Estimation Using Several Columns/Rows of the Frequency

Response Function Matri x

Figure 6 illustrates the difficulty in obtaining valid mode shapes

from single-shaker data when the system has closely-spaced-frequency modes.

If only one shaker location is employed, some modes may not be excited at

all, and there may be superposition of contributions of several closely-

spaced-frequency modes leading to inaccurate modal estimates. If additional

shaker locations are employed, there may be ambiguity as to which shaker

location gives the best estimate of a certain mode. Several techniques

have been employed to combine the information from several rows/columns

of the FRF matrix. These include;

Modal Vector Weighting

Symmetry/Antisymmetry Weighting

Analytical Mode Weighting'(4)

A
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Ad Hoc Sort logic Averaging(5)

Modal Tuning; Force Appropriation

Asher Method(5-9)

Extended Asher Method(10)

Minimum Coincident Response Method(")

Multishaker Sine Dwell Testing(12)

Figures 7(a) and 7(b) illustrate the problems caused by the super-

position of the effects of closel y-spaced-frequency modes. In Figure 7(a)

it is seen that the presence of two modes is masked, and it appears that

a single mode with greater amplitude and greater damping, or possibly even

nonlinear effects, is present. Figure 7(b) shows the effect of mode

superposition on a non-driving-point FRF. Here two modes are clearly

u	 evident, but the apparent amplitude of each mode is reduced from its true

value. The methods listed above may be employed in an attempt to separate

out the contributions of individual modes in such situations,

Figure 8 illustrates the basis of symmetry/antisymmetry averaging.

Ground vibration testing of aircraft frequently employs symmetric/anti-

symmetric shaker configurations because of the inherent symmetry of the

structure. Even so, th( , .	 ,y be many closely-spaced-frequency modes

in either the symmetric or the antisymmetric set of modes of an aircraft.

From Equations (A-7) and (A-10) it can be seen that, when the system

has distinct roots, Pk , every row and column of the residue matrix

a 
	 contains the modal vector u k multiplied by a component of itself.
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Richardson and Kniskern (5) extended the sort logic employed in producing

mode shapes from a single row or column of the residue matrix and proposed

a sort logic which would make use of data from multiple rows/columns of

the residue matrix. Although they demonstrated some improvement in

modal vector estimation, they recognized that their sort algorithm was

based on "rather arbitrary rules," and that other "more 'optimum'"

approaches might be possible,

Modal tuning, or force appropriation, is a third approach to employ-

ing multiple columns or rows of the FRF matrix to obtain system modes.

The name "Asher method" is frequently applied to one such version of

modal tuning. Extensive research has been done on this method in France,

where the technique is referred to as "force appropriation." Reference g

is ,just one of a number of the French papers dealing with the use of

force appropriation for modal vector estimation.

The Asher method of modal tuning is based on the fact that when

a system is excited at an undamped natural frequency w^ by the appropriate

force vector Fr , the response will be in quadrature with the excita-

tion, and the quadrature response will correspond to the undamped natural

mode 
^r 

. (6) That is, for monophase harmonic excitation of an nDOF

system,

	

X	 = H	 F = ( H R + iHi)F

	

nxl	 nxn nxl

For the response to be in quadrature with the excitation
a

(1)
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Thus, the natural frequencies a lre determined from the condition that

det(H R(wr )) - 0 ,	 r x 1, 2,	 , n	 (3)
A

The force vector Fr required to tune the mode is given by Equation (2).

Finally, the mode corresponding to the frequency w r is given by

XNd - iH l (wr )Fr 	(4a)

or

^r X H I (wr )Fr 	(4b)

Figure 9 shows the mechanics of how Asher tuning employs two columns of

a FRF matrix to tune a moca.

In Equations (1) through (4) and in the example presented in

Figure 9, it was assumed that all columns of the FRF matrix were available,

i.e, that there could be forces 'imposed at all points where displacement

(velocity, acceleration) measurements were made. In actual fact, the

number of possible excitation points, p , is usually one or two orders

of magnitude smaller than the number of response points, n . f In this

case, Equations (1) through (4) are modified as follows;

X	 =	 H	 F	 p <n	 (6)
pxl	 pxp pxl

H R F = 0	 (6)

there it will be assumed that n , the number of response points, is
sufficiently large to constitute the "order of the system" as far as
the behavior of the system in the frequency +range of interest is concerned.

tj

a



1b

W
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A	 A
det(HR (w)) - 0 •# 

wr	 (7)

X (o
r

) a iHi(wr)Fr	 ^r	 (g)

In Reference 7 it is shown that the frequencies and mode shapes obtained

by applying Equations (5) through (8) to a pxp subset of the FRF matrix

are frequently good approximations to the true frequencies and modes,

but that "spurious modes" may also be produced wren p<n . Modal tuning

according to Equations (5) through (8) will be referred to as "standard

Asher" (SA) tuning. Examples of standard Asher tunin g will be presented

in Section 5.

As noted, when the number of excitation points is small, i.e.

p<<n , the use of standard Asher tuning may lead to "spurious modes."

These will have a response in quadrature with the excitation at the p

excitation points, but at other measurement points the response may

have a significant coincident component, thus giving the appearance

of a "complex mode." Several approaches have been suggested for employ-

ing a non-square submatrix of the FRF matrix.
(10111)

 The technique

proposed by Ensminger and Turner 
(11) 

may be referred to as the "minimum

coincident response (MCR) method." Thus, for harmonic excitation,

X = H	 F	 OR + iHl)F
mxl	 mxp pxl

N	 N N

XR = HRF

p<<n	

(g)
m<n

(10)
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► 	 Let the coincident response norm be defined by

c	 TXR  XR 	(11)

F

col

of

yes

Then, the force vector

subject to an amplitude

determined as functions

the F(w) which minimi

is appropriated such that a is minimized

lstrain.t. That is, F(co) and PM are

w only by determining an expression for

e	 subject to an amplitude constraint.

V

Min a (F(w)) b.

^	 F(w)	 c(w)	 (1^)

X4, - 1

where 
Xii 

is the quadrature response at the ith response point. This

+ 	 results in -a force vector given by

F	
H (H M

1— I - T (H RTH R ) -1 Hiir	
(13)

iS R R	 ii

where H ii is the ith row of the imaginary part of the FRF matrix.
N

Finally, the frequencies to 	 e( cu)are selected to minimize ew)

	

	 Equation, qua 

(13) is used to compute the corresponding Fr , and the mode shape is

determined from the quadrature response

N	 N N

X 
	 MI(wr)Fr	 (14)
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Ensminger and Turner reported good results from the application

of the minimum coincident response method to synthesized froquency

response functions based on ground vibration test data obtained for the

mated 747-Space Shuttle Orbiter. They also applied the standard Asher

method, Equations (5) through (8), to the same synthesized FRF's. They

concluded that "this approach (i.e, the minimum coincident response

method) was found to provide more consistent results than that based

on direct determination of roots of the real part of the transfer function

matrix (ile. the standard Asher method)." Gold and Hallauer (8) discussed

the application of the standard Asher method to synthesized TRF's, but

were 
unable 

to success full y
	__te_ a - 	 .  

ncl G calla u 1 C 4U  	 up^. l y tn^	
a

metnaa do a c tual  experimenta l   data.  

5.	 Modal Tuning Applications

A research program is being conducted to evaluate the use of the

standard Asher method and the minimum coincident response method in

estimating modal vectors of systems having closely-spaced-frequency

modas.
(13)

 The specific questions being addressed are:

(1) Is modal tuning using either the standard Asher(SA) method

or the minimum coincident response(MCR) method effective in producing

modal vector estimates in situations where the results of single shaker

methods are not adequate?

(Z) How do the modal vector results obtained by the (SA) method

and the (MCR) method compare?

(3) What is the effect, of the frequency resolution used in the

synthesis of FRF's on the modes produced by the SA method and the MCR

method?

s
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(4) How can residuals be employed in the synthesized FRF's

used as input to the modal tuning methods?

Although work is still in progress on this research project, some

tentative results in response to questions (1) through (3) will be pre-

sented. Figure 10 shows a flow chart of the major steps employed in the

modal tuning studies.

Figure 11 shows a coupled-beam model which permitted experimental

data to be acquired for a system with closely-spaced-frequency modes,

Figure 12 shows a typical FRF and the results of using the MDOF curve-

1.J...	 J	 .. ^Yn 1	 1 S	 L^ E 
a

nd RA	 v.d w 	 The or1 gI .1na'flTi 
proced

ure 
3
111 PIV ^AL"th LVe? ( IT.- he GE anu 47►1 col ^uall ^/ • The ul ryr IGf

experimental bandwidth was 10 Hz, which concentrated the spectrum around

the lowest pair of closely-spaced-frequency modes. Table 2 gives the

MDOF curve-fit results for the eight FRF's (2 reference points, 4 response

points). From Table 2 the following may be noted;

(a) Each FRF has two dominant roots in the 118-121 Hz range.

(b) Some of these dominant roots have phase angles significantly

different than +900,

(c) The "modes" based on having a .single shaker at 1 appear to be

at approximately 119.0 Hz and 119.5 Hz; while the "modes" based on having

a single shaker at 6 appear to be at 118.8 Hz and 120.0 Hz. However, the

119.0 Hz "mode" is radically different than the 118.8 Hz "mode."

The MDOF results presented in Table 2 were used as input to a

program which first synthesizes .analytical FRF's and then employs the
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synthesized FRF's as input to the $A and MCR modal tuning algorithms.

The modal tuning results for bandwidths of 10 Hz and 0.256 Hz are shown

in Figures 13 and 14 respectively, and the results for several bandwidths

are given in Table 3. From Table 3 the following may be noted;

(a) Two modes at approximately 118.8 Hz and 119.0 Hz are consis-

tently identified by both methads.

(b) Reducing the analysis bandwidth reduces the phase error of

the identified modes.

(c) The mode at 118,8 Hz appears to be much better than the mode

at 119,0 Hz, i.e. there appears to be less phase error. However, it

should be noted that the large phase errors in mode 2 are associated

with relatively small amplitudes. In Figures 13(b) ane 1 4(b) it may be

noted that the minimum of e(w) is much less sharp for the 119.0 Hz

mode than for the 118.8 Hz mode. This sharpness may be related to the

phase coherence of the mode, but this relationship has not beon thoroughly

evaluated.

(d) For the 118.8 Hz mode there is good agreement between the SA

mode and the MCR movie. For the second mode the agreement is not so good.

(e) The -tuned modes do not exhibit the symmetrical antisymmetric

behavior which was expected because of the apparent symmetry of the

structure. The explanation for this discrepancy may lie in the mode

sensitivity of weakly coupled systems as previously discussed.

8	 Attempts to employ the SA modal tuning techr, ,ae on some of the data

from the structure whose FRF's are shown in Figures 4 and 5 indi,.ated that
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it would be necessary to include residuals in the synthesized FRF'.. Work
V. 

on residuals is in progress and no results are yet available.

6,	 Conclusions

On the basis of the research described above, the following con-

clusions may be stated:

(a) Standard Asher tuning and minimum coincident response tuning

both provide rational means for employing multiple rows or columns of

the FRF matrix to improve modal vector estimates.

(b) The use of synthesized frequency response functions rather

than original experimental FRF's has two advantages: (1) far less memory

is required to store the synthesis parameters than is required to store

a complete FRF, and (2) the analysis bandwidth can be reduced to obtain

better estimates of the modal vectors.

®	 (c) Much additional research is needed, particularly in three areas:

(1) application of modal tuning to testing of more complex structures,

(2) use of synthesized FRF's for reference points where no actual shakers

were located, and (3) use of residuals where modal density is very large.

7.	 Appendix A - Single Column/Row Methods of Modal Parameter Identification

References 2 through 4, and many other papers, describe the basis

for using a single column or row of the FRF matrix to estimate modal

parameters. It is assumed that the motion of the physical system can be

.adequately described by a set of simultaneous second-order linear differen-

tial equations of the form

'a

a
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Mx(t) + CAM + Kx(t) = f(t)	 (A-1)

where

x(t) = system displacement vector (nxl)

f(t) = force vector

M = mass matrix

C = damping matrix

K = stiffness matrix

It is convenient to take the Laplace transform of Equation (A-1) giving

B(s) X(s) = F(s)	 (A-2)

a

a

where

X(s) = Laplace transform of displacement vector

F(s) = Laplace transform of force vector

B(s) = Ms  + Cs + K

s = (complex) Laplace variable

Equation (A-2) can also be written in the form

X(s) = H(s)f(s)

where

H(s)	 = (B(s))-1

(A-3)

(A-4)
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H(s) is referred to as the transfer matrix. H(s=iw) is referred to as

the frequency response function (FRF) matrix.

The element h ii (s) of H(s) can be written

2n-2	 2n-1
bi s	 + b2 s	 + ... + b2n-ls + b2n-2

	

h ii (s) _	 det B s	 (A-5)

For an n-dimensional system -there will be 2n roots of the equation

det(6(s)) = Q	 (A-6)

and if these roots are distinct, then H(s) can always be written in

the partial fraction form

	

2n	 ak
H(s) =	 E	 (A-7)

	

k=1	 (s_P k  )

where

Pk = kth root of Equation (A-6)

a k = residue matrix for the kth root

When the system is subcritically damped, as are practically all structures,

the roots 
Pk 

occur in complex conjugate pairs, which can thus be

written in the form

	

p k	-csk + iwk	pk = _'k	iwk	(A-8)
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U	 Modal vectors, u k , are defined as solutions to the homogeneous

equation
a

B(pk)uk =0
	

(A-9)

and, in terms of these modal vectors, the transfer matrix can be written

in the form

2n	 ukukT
H(s) =	 E

k=l	 s-Pk
(A-10)

or

T	 * *T

H(s) = E	
u s p ) + ukuk*	 (A-11)

k=1	 k	 (s-Pk)

From Equation (A-10) or Equation (A-11) it may be seen that each row and

each column of the transfer matrix (and, hence, the FRF matrix) contains

each modal vector multiplied by a component of itself. Thus, if the effect

of a single root could be isolated from the effect of all the other roots,

the mode u k should be identifiable from any row or column of the result-

ing H k (s) , where

T

H k{s) = skpk(A-12)
k

except those rows and columns corresponding to null elements of u k .

References 2 through 4 describe various methods for attempting to isolate

the contribution, H k , of a single mode in order to identify the elements

of the modal vector u k .
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M-

m'	 fl	 ^l	 f2	 ^2

1 .000 1.0000
1.000 1.0000 1.0002

1-1.00001.000

1.0000 -1.619%'
1.001 0,9994

(1.617
1, 0016

1.00()0)6

1.00001 10.1099
1.010 0.9910

(10.0098J
 1.0011

1.0000

1,0000 -100.1109
1.100 019100 1 .0010

91,0100 1.0000

Table 1. Effect of Subsystem Properties on System Modes of a Weakly
Coupled 2DOF System.
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Estimated Roots
H11

a
Root Frequency Damping Amplitude Phase

1 115.2 0.4707E-01 32.19 0.1799E-05
2 115.0 0.9298E-02 2.799 -0.1945E-05
3 119.0 0.2640E-02 104.4 1.684
4 119.5 0.5844E-02 11.33 0.2844
5 124.8 0.2241E-01 10.46 -3.142
6 124.8 0.5535E-02 0,2597E-02 0.7300E-04

Estimated Roots
H21

Root Frequency vamping Amplitude Phase

1 115.1 0.3076E-01 20.96 -0.2731E-05
2 115.0 0.6774E-02 1.287 0.2747E-05
3 119.0 0.2638E-02 105.5 1.692
4 119.4 0.6918E-02 12.86 0.7228E-01
5 124.8 0.1989E-01 8.361 3.142
6 124.8 0.4153E-02 0.4751E-02 -0.2091E-03

Estimated Roots
H51

Root Frequency Damping Amplitude Phase

1 115.0 0.8869E-02 0.9159E-01 0.1025E-05
2 119.0 0.2248E-02 21.34 1.479
3 119.6 0.2688E-02 21.75 -1.693
4 121.8 0.2591E-01 0.8192 -1.075
5 124.8 0.2374E-01 0.9778 -0.2076E-06

Estimated Roots
H61

Root Frequency Damping Amplitude Phase

1 115.0 0.1177E-01 0.1757 0.1314E-04
2 119.1 0.2258E-02 22.18 1.438
3 119.1 0.2723E-01 1.053 0.2236
4 119.6 0.2839E-02 22.71 -1.742
5 124.8 0.1433E-01 0.1876 -0.2673E-05

Table 2.	 MDOF Curve Fit Parameters for FRF's of Dual Beam Model
4
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Estimated Roots H16

4

Root Frequency Damping Amplitude Phase

1 115.2 0.4602E-01 2.207 -0,3383E-05
2 115.1 0.3774E-01 0.1315E-06 -2,032
3 115.0 0.3210E-02 0.4392E-02 0.2486E-03
4 118.9 0,2873E-02 12.55 1.5$9
5 120.0 0.2840E-02 13.00 -1.568
6 124.8 0.153BE-01 0.2645 -0.3002E-06

Estimated Roots H26

Root Frequency Damping Amplitude Phase

1 115.3 0.6888E-01 1.838 0.4750E-06
2 115.0 0.3831E-02 0.3873Er01 -0.1847E-05
3 118,9 0.2962E-02 12.19 1.589
w
Y

Inn nIGV.V nnc r nn
0.JLV7G-VL

In -.e
IL./V

I	 cyn
"1 •.7/L

5 124.8 0.1951E-01 0.5839E-07 -0.8005E-01
6 124.8 0.1038E-01 0.1001 -0.3857E-06

Estimated Roots H56

Root Frequency Damping Amplitude Phase

1 115.0 0.1351E-01 5.757 0.1010E-05
2 118.8 0.3026E-02 105.2 1.591
3 119.7 0.9514E-02 0.3043E-02 -1.827
4 120.5 0.2598E-01 17.09 -0.9058
5 124.8 0.7826E-02 1.399 -3.142

Estimated Roots H66

Root Frequency Damping Amplitude Phase

1 115,0 0.9683E-02 2.987 0.3488E-05
2 118.8 0.3012E-02 104.0 1.592
3 119.4 0.2926E-01 22.91 -0.7715
4 119.8 0.3661E-02 0.7704E-01 -2.299
5 124.8 0.9513E-02 2.130 3.142

Table 2.(Cont.) MDOF Curve Fit Parameters for FRF's of Dual Beam Model

d
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0

5A MCR

BW fl Mode 1 fl Mode 1

Pt. I Ampl. Phase Pt. Amp1 Phase(11z) (Hz)

1 1.000 0.00 1 1.000 -6.10

2 0.931 -0.80 2 0.940 -5.80
10 118.789 118,789

5 10.041 -1.90 5 8.697 •1.90

6 9.926 -1.90 6 8.589 -1.90

1 1.0000 0.00 1 1.0000 -1.00

2 0.934 -0.60 2 0.935 -0.50
4.0 118.804 118,804

5 9.277 0.40 5 9.063 x0,40

6 9,167 -0.50 6 8.954 -0.50

1 11000 0.00 1 1.000 -0.40

2 0.934 -0.60 2 0.934 -0.10
1.0 118.802 118.802

5 9.377 -0.10 5 9.283 -0.10

6 9.267 -0.20 6 9.174 -0.20

1 1.000 0.00 1 1.000 -0,30

2 0.933 -0.60 2 0.934 -0.30
0.256 118.801 118.801

5 9.427 0.00 5 9,363 0..00

6 9.316 0.00 6 9.253 0.00

22

Table 3, Effect of Analysis Bandwidth on Standard Asher and Minimum
Coincident Response Modes.
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SA	
^..

MCR	
_.

f Mode 2
f
l

Mode 2
BW

Pt. Ampl. Phase Pt. Amp1. Phase(Hz) (Hz)

1 1.000 0.00 1 1.000 -1.00

2 1.001 0.00 2 1.403 -0.90
14 119.023 119.023.

5 0.200 -34.60 5 0.048 -41.90

6 0.193 -17.3
0

6 0.043 -40.00

1 1.000 0.00 1 1.000 -1.00

2 1.001 0.00 2 1.003 -0.90
4.0 119.024 119..024

5 0,197 -34.70 5 0.048 -X42.0°

6 0.191 -17.10 6 0,043 -40.20

1 1.000 0. 0° 1 1.000 0.0

2 1.002 0.00 2 1.003 0.00
1.0 119,025 118.029

5 0.143 -36.20 5 0.036 -48.10

6 0.138 -10.60 6 0.035 -48.50

1 1.000 0.00 1 1.000 -0.10

2 1.002 0.00 2 1.003 0.00

0:256 119.027
-38.20

119.029
5 -47.605 0.101 0.037

6 1	 0.098 -0.30 6 1	 0.036 -47.90

23

Table 3 ( cont.). Effect of Analysis Bandwidth on Standard Asher and
Minimum Coincident Response Modes.
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