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ABSTRACT

Compound decision theory is employed to develop a general statistical
model for classifying image data using spatial context. The classification
algorithm developed from this model exploits the tendency of certain
ground-cover classes to occur more frequently in some spatial contexts than
in others. A key input to this contextual classifier is a quantitative character-
ization of this tendency: the contexi function. Several methods for estimat-
ing the context function are explored, and two complimentary methods are
recommended. The contextual classifier is shown to produce substantial
improvements in classification accuracy compared to the accuracy produced
by a non-contextual uniform-priors maximum likelihood classifier when these
methods of estimating the context function are used, This improvement in
classification accuracy is peaid for by a substantial increase in computational
requirements. An approximate algorithm, which cuts computational require-
ments by over one-half, is presented. Further reduction in computational
requirements may be possible with a suggested hybrid algorithm. The search
for an optimal implementation is furthered by an exploration of the relative
merits of using spectral classes or information classes for classification
and/or context function estimation. Finally, an unsuccessful attempt to dev-
ise a context measure for use in conjunction with context function estimation
is described. Recommendations for further research are included in the con-

cluding chapter.
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CHAPTER I - INTRODUCTION

The machine classification of multispectral image dala collected by
remote sensing devices aboard aircraflt and spacecrafl has usually been per-
formed such that each pixel (picture clement) is classified individually and
independently [1]. The information used by this classifier is only spectral or,
in some cases, speciral and temporal. There is no provision for using the spa-
tial information inherent in the data. In contrast, when scanner data arec
displayed in image form, a human analyst routinely uses spatial information
to establish a context for deciding what a particular pixel in the imagery
might be, Using this context together with spectral information, Lthe analyst
may easily identify roads, delineate boundaries of agricullural fields, and
differentiale between grass in an urban setting (e.g., lawns) and grass in an
agricultural selling (e.g.. pasture or forage crops) where a point-by-point
classifier utilizing spectral information alone would have much difficully in
doing so.

The ECHO (Extraction and Classification of Homogeneous Objects) pro-
cess is a variety of contextual classifier which has been found useful for clas-
sifying data sets which contain homogeneous objects that are large compared
to the resolution of the imagery [2]. This classifier cannot be used efTeclively,
however, il the data set does not contain a significant number of these large

homogeneous objects.
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A gencral statistice! :lassification method which exploits both spatial and
spectral information when classifying multispectral image data is the subject
of this paper. This contextual classifier exploits the tendency alluded to ear-
lier of certain ground-cover classes to be more likely to occur in some con-
texts than in others, In principle, this classifier can be used to advantage on
any image data set, even those that do not have identifiable homogenous
objects such as is generally the case in forested, urban and other inhomo-
geneous areas. However, the relatively high computational complexity of the
contextual classifier limits its use to classification problems where the
expected increase in accuracy is worth the increased computation cost.

The theoretical basis of this statistically based contextual classification
algorithm is presented in Chapter II. This theoretical development is an ela-
boration and clarification of the development given by Swain and Vardeman in
[8]. Chenter III presents exploratory experimental results including an
evaluation of the performance of the algorithm on data which is simulated so
as to meet the assumptions of the classification model and preliminary
results of applying the algorithm to real Landsat data. Research problems
indicated by these results are discussed at the end of Chapter 11I. The ensu-

ing chapters discuss these research problems in detail.
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CHAPTER 11 - THRORETICAL BASIS AND CLASSIFICATION MODEL

Consistent, with the general characteristics of imaging systems for
rersote sensing. we assume a two-dimensional array of N =N xNj random
observations Xy; having fixed bul unknown classificalion ¥, as shown in Fig-
ure 1. The observation Xj; consists of n mcasurements (usually conlaining
spectral and/or temporsal infermation), while the classification ¥;; can be any

onc of m spectral or information classes* from the set (1 = fwy, w20, Om i,

1 :
! ’19“ ’012 cr 19”\12
Vo1 Va2 -+ Vo,

P O O, !

| S

Figure 1. Atwo-dimensional array of N=N XN pixels,

Let X denote a vector whose components are the ordered obsurvations:

X =[Xy11=1,2...Nuj=12...N]".

* Spectral classes are spectrally differentiable subclasses of information

classes (the classes of interest).
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Similarly, let ¥ be the vector of states (true classifications) associated with

the observations in X
B o= [0;]i=1,2,. . Nj=1.2,..,N.]".

Let the action (classification) taken with respect to pixel (i,j) be dennted
by a;;€€Q. The loss suffered by taking action ay when the true class is ¥y is
denoted by A(®¥;,a), for some fixed non-negative function A(','). In the most
general case, the actions a;; may be a function of all the observations in X,

IPor this case, the average loss suffered over the N classifications in the

classification array is

L(BX, = 'j‘vl‘“ _?\<’49ij'aij()_(>)~
i

The expected average loss {or risk) is then
1
Ry = E[FZA(%-%Q{))] (1)
1§

where the expectation is with respect to the distribution of the vector of
observations.

Our goal is to determine the dependence of the decision function a;(')
on X in such a way that, for any given classification array 3, the risk Ry will
be minimum. One way to approach the problem of making Ky small is to view
8 as a realization of a random process in two dimensions and to derive a deci-
sion rule which is Bayes versus this "prior distribution" for ¥. Simplifying
assumptions concerning the nature of this process are generally made to find
an associated Bayes rule which is both simple and has small Ky for most 3.

This is the approach of Welch and Salter [4], who make assumptions on the
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random process suflicient to guarantee that the Bayes decision conceruing
pixel (i,j) depends on X only through Xj; and the four rxearest'ne;ghbors of Lthe
pixel.

Rather than looking for a prior distribution for ¥ and an associaled
Bayes decision rule, we will adopt an approach for controlling Ky through
ai; (") that is more closely related to the large body of statistical literalure
traceable to Robbins [5], and known as compound decision theory. See, for
example, the works and references of Van Ryzin [8,7], and Vardeman [8].

The following notation will be useful Let ¥?€0P? and XP e(R™)? stand
respectively for p-vectors of classes and n-dimensional measurements; each
component of ¥? is a variable which can take on any classification value;
each component of XP is a randon. n-dimensional vector which can take on
values in the observation space.

Now we restrict the decision function a;; (‘) to depend only on a specified
subset of the observations in X. This subset includes, along with Xy, p-1
observations spatially near to, but not necessarily adjacent to, X;;. These p-1
observations serve as the spatial context for X;; and are taken from the same
spatial positions relative to pixel position (i,j) for all i and j. Call this arrange-
ment of pixels together with X;; Lhe p-context array, several examples of
which are shown in Figure 2. Group the p observations in the p-context array
into a vector of observations X;; = (Xx,Xg,...,Xp )T and let ¥;; be the veclor of
true but unknown classifications associated with the observations in X;;. Note
that the %¥;; and X;; are the particular instance of ¥ and X? associated with
pixel position (i,j). Correspondence of the components of ¥;;, X;;, 97 and X?
to the positions in the p-context array is fixed but arbitrary except that the

p'* components always correspond to the pixel being classified.
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i-1,j+1

k i ij B Lit+2

( _

a p=2 choice a p=2 choice

s

A i-1,] i~1,j
G |
; ‘_ i,j-1 L. i,j-1 L Lj+1 |

+1,]

a p=3 choice

a p=5 choice

Figure 2. Examples of p-context arrays.
We shall seek an optimal decision rule of the form
@i (X) = d(Xs;) (?) ;
for a fixed function d(*) mapping p-vectors of observations to actions. This i
decision rule is independent of location, depending only on the values of the :
' .
observations in the p-context array and their relative locations. It provides
the classification for the p* pixel in the p-context array. The risk associated :
with any rule of this form is, from equation (1), )
1 Bird (X)) = = L"MrdX\]
Ry = ‘N‘Z; ¢ i (_'Lj) 7\7 (W5, (_7._7/ ;
g
1 E

=¥ 2 E E[A(9p.d (Xy))] (3)

19 .=19-"

Yij J/




where ¥, is the p'* element of BP. If we reyuire that the distribution of X is
such that every X;; for which ¥;;=9? has the same marginal density, i.e., the
marginal densities depend only on the measurement values in X;; and the set

of classifications in ¥;; and not the location (i,j), we can then write

Fa

Ful 10y=097) = f(|9P). (4)

Writing equation (3) in more detail using the class-conditional density
S (|9®7), we have
Ry= % B [MOdE")f &P |57)axr
h

BPeqp N t,5 wit
By =P

= % G(0P) [N, d(XP))f (XP | 9P )dx?
PP en?

= [ T C(IPINBp.d(XP))f (XP | 0P )dX? (5)

WP (P

where G (9¥”), the "context function,” is the relative frequency with which 9P
occurs in the array . For any array 1, a decision rule d(X?) minimizing Ry
can be obtained by minimizing the integrand in equation (5) for each XP;

thus for a specific X;; (an instance of X?), an optimal action is:
d(X;;) = the action (classification) a which minimizes

2 C(IPIN(Fp.a)f (Xy | BP). (6)
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In practice, a "0-1 loss function" is usually assumed, i.e.,

3 0, ifv=o0a
MBa) =1y foxq .

Then equation (8) simplifies and the decision rule becomes:

d(X;;) = the action a which mazimizes

Yl C(IP)f (Xiz | OP). (7)
P eP,
1’p=a

A further assumption we make at this point is class-conditional indepen-

dence of the observations (pixels) comprising X. In this case,
£ Gy 27) = TL7 (e 19) (8)

where X, and ¥, are the k' elements of Xi; and ¥P, respectively. Evidence
that this is a reasonable assumpution may be found in [9]. An approach for
studying the effect of this assumption on this particular problem is also sug-
gested in Chapter VIII. Invoking the class-conditional independence assump-

tion, the decision rule (7) becomes:

d(X;;) = the action a which maximizes

RICI I FICALRE ®)
ene, k=1

P
'opu.

If the term f(Xpla), corresponding to the pixel to be classified, is factored

out of the sum the specific contribution due to context is mads more

apparent:
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The context contribution is the term in brackets.

The optimal choice of d(') cannot be implemented in practice since it
depends on G(¥P) and the f(X;|¥:) which are unknown. Methods for
estimating the f (X, |9, ) are well established from considerable experience in
using the conventional non-contextual maximum likelihood decision rule [1].
When the classification set (0 consists of spectral classes, the f (X, |¥:) are
assumed to be multivariate normal densities. In the case where the
classification set (1 consists of information classes, the f (X} |9, ) are assumed
to be weighted sums of multivariate normal densities.

Methods for estimating G(9P) are not so well established as those for the
S (X | B ). We can, however, expect that, at least for large N = N{xNp, a deci-
sion rule in which G (%) is replaced by an eslimate E‘(_'Qp) based on the Xj;
will have risk I:?l, appoximating that of the optimal rule. (We call this Lhe
"bootstrap eflect.”) That this is the case when p = 1 (equivalent to an optimal
pointwise classifier with estimated a priori probabilities) and suitable forms
of estimation are used is a consequence of the work of Van Ryzin [8]. The
notion of attempting to approximate the risk of the best rule of the form
shown in equation () for p > 1, given its first general treatment in Gilliland
and Hannan [10], has not been as thoroughly studied as the p = 1 version.
But related work for p > 1 in sequence versions of compound decision Ltheory
[11] suggests Lhe validity of the generalization.

Comparing equation (6) with the results of Welch and Salter [4] and rein-

terpreting the C(9”) as the marginal of an a priori distribution for 4, one
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may view equation (8) as a generalization of the Welch and Salter contextual
classification rule. The advantages of the present formulation are that one
need make no possibly unrcalistic assumplions about the distribution for ¥
and has complele freedom to choose both p and the form eof the p-contexl
array. There are situations (e.g., locating clouds and their associated sha-
dows in a scene) in which context arrays other than those involving immedi-

ately neighboring pixels would be useful, a possibility unique to this approach.
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CHAPTER III - EXPLORATORY EXPERIMENTS AND DISCUSSION

The earliest experiments performed with the contextual classifier were
exploratory in nature. The classifier concept feasibility was first established
using simulated data, and the easiest and most obvicus implementation of the
contextual classifier was then used for a real Landsat data test. The test
results from Lhis implementation pointed to several research problems which

are taken up in Lhe following chaplers.

Simulated Data Experiments

The initial experiments exploring the eflectiveness of contextual
clu sification using the sel of discriminant functions defined by equation (9)
to classify multispectral remote sensing data were performed on simulated
data by Kit and Swain [12]. Simulated data were used so that the
classification melhod's characteristics could be investigated undisturbed by
unkown effects due Lo deviations of real data frormm Lhe assumptions underly-
ing the classifier. Each simulated data set was based on a non-contextual
classification of multispectral remote sensing data which had been judged to
be very accurate {produced by careful analysis of multitemporal data). Such
a classification could be expected to embody the contextual content of the
actual ground scene. Using the classification map and the associated
estimated mean vectors and covariance matrices of the classes (developed in
performing the non-contexbual classification), data veclors were produced by

a Guassian random nuraber generator and composed into a new data set.
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Thus the new data set had the following characteristics;
1. Fach pixel in the simulated data set represented the same class
as in the "template” classification. We will refer to this template as
the "reference classification."
2. All ciasses in the data set were known and represented.
3. All classes had multivariate Gaussian distributions with parame-
ters typical of those found in real data.

4. All pixels were class-conditionally independent of adjacent pixels.
H. There were no mixlure pixels.

Data sirnulated in this manner are somewhat of an idealization of real
remote sensing data, but the spatial organization of the simulated data is
consistent with a real world scene and the overall characteristics of the data
are consistent with the contextual classifier model. In essence, then, the
experimental results based on the simulated data demonstrate the
effectiveness of the contextual classifier, given that the underlying assump-
tions are satisfied. Experiments using the real data are discussed in the sub-
sequent section and chapters.

Three classifications were selected and simulated data sets generated
representing a variety of ground cover types and textures. Data set 1 was
agricultural (Williston, North Dakota), with ground resolution and spectral
bands approximating Lhose of the projected Landsat-D Thematic Mapper.
Da‘a set 2a was Landsat-1 data from an urban area (Grand Rapids, Michigan).
Data set 2b was from the same Landsat frame as 2a, but from a locale having
significantly different spatial organization. Each of the simulated dala sets

was square, 50 pixels on a side.
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Figure 3 shows the classification results obtained. The "non-contextual”
classification accuracy is plotted coincidenl wilh the verlical axis of cach
graph, Data set 1 was classified using successively 0, 2, 4, 6 and 8 neighboring
pixels as context; dala sets Ra and Zb werc classified using 0, 2, 4 and 8
neighboring pixels. The accuracy improvement resulting from Lhe use of con-
textual information in these simulated data sets was found to be quite
significant.

As noted in Chapter Il, to perform contextual cls .sifications using the
discriminant functions defined by equation (9), it is n :cessary to have avail-
able the class-conditional density functions for the classes Lo be recognized,
f(X;19;), and the context function, ¢ (¥P). In remote sensing applicalions,
the class-conditional densily functions are typically estimated from Lraining
samples. For the experiments described above, the f(X;|¥;) were taken Lo
be the multivariate Gaussian distribitions from which the data were gen-
erated (these were originally the class-conditional densily funclions used Lo
produce the reference classification used subsequently to produce the simu-
lated data’ An important question is how in praclice to determine the con-
Llext function. In Llhe foregoing experiment, these relative frequencies were
simply tabulated from the reference classification (actually, from an areca
somewhal larger than classified in this test). But in a real data situalion,
such a reference classification is not available, else there would be no need Lo
perform any further classification.

Looking Lowards exiending the work of Kit and Swain to Lhe real dala
case, we first invesligated a straightforward approach to estimating the con-
text function whercin we tabulated the relative frequencies from a uniform-

priors non-contextual maximum likelihovod classification of the same data.
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Conceivably, one might then refine the estimate of the context function by
making another estimate of the context function from the initial contextual
classification, and even iterate in this way until no further improvements in
classification accuracy were oblainod. The crucial question here is how sensi-
tive the contextual classification method is to the "goodness" of the context
funclion estimate.

The potential of this iterative "classify-and-count" method was f(irst
tested on the simulated data set 2a. Prior to this test the classificalions
using context functions determincd by tabulation from the reference
classification were rerun using a tabulation of the context function from just
the 50-pixel-square area classified, rather Lhan from the larger area (R78 x
320) used to obtain the estimate for the results presented in Figure 3. This
was done to provide a better comparison to what could be accomplished using
the iterative classify-and-count mecthod. Also, the results were evaluated in
terms of information classes rather than spectral classes, as was the case in
Figure 3, in order Lo serve as a better comparison with real data tests.

Using the classify-and-count method, seven iterations (classifications fol-
lowed by re-estimation of the context funclion) produced an improvement of
22.5 percent in overall accuracy compared to the non-contextual
classification using equal a priori probabilities (from 70.5 percent to over 93
percent). Average-by-class accuracy rose only slightly (from 77.5 percent to

81 percent).* This compared with an increase of over 27.5 percent in overall

* Classification performance can be tabulated in two ways. Owerall accuracy
is simply the overall number of correct classifications divided by the total
number attempted. Awverage- by- clrss accuracy is obtained by first comput-
ing the accuracy lor each class and then taking the arithmetic average of the
class accuracies. The latter is signifieanl when the classificalion results exhi-
bit a tendency to discriminate in favor of or against a subset of the classes.
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aceuracy (14.5 percent in average-by-class accuracy) obtained using the con-
text function tabulated from the reference classification. These results arc
summarized in Pigure 4,

As seen in Pigure 4, several values of p (number of pixels in the p-context
array) were used at each step of the iteration process, At each lteration, the
best classificalion found by varying p, as judged by trading off overall accu-
racy against average-by-class accurac,, was used as the template for the esti-
mate of the context function for the next iteration. The best classification on
the first iteration was obtained for p = 3 (nearest neighbors to the north and
west), which was also the case for the second iteration. For the second itera-
tion, the average-by-class accuarcy actuaily was slightly better for p=5 (four-
nearest-neighbors), but the overall accuarcy was substantially higher for the
p=3 choice. On the third iteration, the p=5 choice was selected since the
overall accuracy was only slightly lower than for the p=3 choice while the
average-by-class accuracy was substantially higher for the p=5 choice. The
best classifications for the fourth and ensuing iterations were also the p=56
choice.

This implementation of the classify-and-count method involves a large
number of classifications, usually three or more per iteration. A simpler
approach would be to do just one classification per iteration and increase the
number of nearest neighbors used for each iteration. As shown in Figure 5,
for simulated data set 2a the final result using this method was virtually the
same as for the more involved procedure.

Just how much of the accuracy improvement was due to effectively mak-
ing better estimates of the prior probabilities? After five iterations doing
non-contextual classifications using prior probabilities estimated from the

previous classification (the initial classification was a uniform-priors
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100

Context distribution determined e e e i o e n g o e
from reference classification, »*#~
L

95!"‘ /”

Prad 7th (final) iteration

—_—
e »4

\\
e Template for 4th iteration ——————
v’ ®

=
85|- Template for 3rd Iteration 3rd Iteration

2nd iteration

P

//
7’

P q

90} i

e

late for 2nd itera
80r- Temp r 2nd iteration
1st iteration
75} -

Overall Performance [% correct]}

Template for 1st iteration

70F

65 | | ] | ! ! | L I
0 0 1 2 4 8

Uniform Est.
Priors Priors
Number of Nearest Neighbors

Figure 4. Contextual classification using the iterative classify-and-count method
for estimating the context function (simulated data set 2a).
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ORIGINAL PAGE IS
OF POOR QUALITY

1004

90}

nn=nearest neighbors

80l The number in parenthesis

at each dot is the average-
by-class performance
(78.8) [% correct)

Onn=Estimated Priors

Overall Performance (% correct]
=
3

(77'5)'0 Uniform Pri
70YOnn= Uniform Priors

65 | ] 1 1 | |

Iteration

Figure 5. Contextual classification results based on simplified iterative tech-
nique (simulated data set 2a).

[ <2 R R A s

R A e it i an

I e R T A Ak e i e i . T

T e S SO P

P L Y U Y



|
'F
|
I

R N TRAAE ST iz
R TR P R R R TP A R ]

19

classification), the improvement in overall accuracy saturated at 87.1 per-
cent, but the average-by-class accuracy had degraded to 84.7 percent. This
compares closely to the non-contextual classification with prior probabilities
tabulated from the reference classification, which had an overall accuracy of
87.5 percent and an average-by-class accuracy of 65.4 percent. It appears
from this result that the context serves to improve the overall accuracy com-
pared to that of the estimated-priors non-contextual result while resisting

degradation in average-by-class accuracy.

Real Data (Landsat) Experiments

Having observed excellent performance of the contextual classifier on
simulated data, the next step was to see how well it would perform on real
data. A 50-pixel-squarc segment of four-channel Landsat data was chosen
which included approximately equal amounts of urban and agricultural area
located to the southeast of Bloomington, Indiana. Parameters for the spec-
tral classes were estimated using the 100-pixel-square area centered on the
50-pixel-square segment. A very careful non-contextual classification using
14 spectral classes was performed to delineate agricultural, urban and
forested areas. As there were too few forest pixels to delineate forest test
areas reliably, the classification was tested only for accuracy in discriminat-
ing between the agricultural and urban classes. Of the 2500 pixels in the seg-
ment, a total of 867 pixels were manually interpreted as agricultural and 450
pixels as urban. The identification was made by interpretation of color
infrared photography taken by an aircraft on the same day as the Landsat

pass (June 9, 1973).
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The results obtained when using the full classify-and-count method on
this data set were not as favorable as the results obtained with the simulated
data. See Figure 8. The non-contextual classification using uniform prior
probabilities had an overall accuracy of 83.1 percent and an average-by-class
accuracy of 82,7 percent. The best classification obtained using this result as
a template to estimate the context function was a p = 2 (one-nearest-
neighbor) classification based on the neighbor to the north (85.2 percent
overall, B84.7 percent average-by-class). Interestingly, the one-nearest-
neighbor result based on the neighbor to the west produced a slighty poorer
classification (84.2 percent overall, 83.8 percent average by class), although
this difference may not be statistically significant. No apparent features in
the scene would account for the difference (i.e., seen by visual inspection),
but there is no reason to expect that Landsat data are strictly isotropic. This
phenomenon will be pursued further in Chapter VIIL

A second iteration was performed using the one-nearest-neighbor (north)
classification from the first iteration as template for estimating the context
function. Here the two-nearest-neighbor (neighbors to the north and west)
classification was the best with an overall accuracy of 85.3 percent and
average-by-class accuracy of B4.8 percent. Using the best second iteration
result as template, the best classificaton for the third iteration was again the
one-nearest-neighbor (north) case with 85.3 percent overall accuracy and
84.9 percent average-by-class accuracy. The fourth iteration produced no
further improvement. The contextual classifier thus produced just over two
percent improvement in both overall accuracy and :verage-by-class accu-

racy.
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Template for 3rd Iteration

8 Template for 4th lteration

3rd lteration
Template for 2nd iteration—>

85}

4th lteration —%%
/z,

84}

Overall Performance %

83<3_Template for 1st Iteration

82 1 | 1 I 1 | [ 1 4
O 0 1 1 2 4 8
Uniform  Est. 45 25
Priors  Priors  Window Window

Nearest Neighbors

Figure 8. Contextual classification of the Bloomington, Indiana, data set using
Lthe classify-and-count method for estimating the context function. "205 win-

dow" refers to one-nearesl-neighbor-to-the-north, '"45 window"” refers to one-
nearest-neighbor-to-the-wezt.
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The classify-and-count method was also tested on a 50-pixel-square agri-
cultural scene. This was the northwest corner of the Large Area Crop Inven-
tory Experiment (LACIE) Segment No. 1860 in Hodgeman County, Kansas.
This data set was a four-channel Landsat data set collected on April 18, 19786.
The class-conditional densities were estimated for the 16 spectral classes
from randomly located training fields scattered throughout the entire 117-
by-194-pixel Landsat data frame. The training fields were chosen by selecting
pixel coordinates from a random number table and surrounding the selected
pixel by the largest homogeneous rectangle up to field size 20-by-20. The
classifications were tested for accuracy over five information classes (pas-
ture, idle, wheat, corn and alfalfa) from "wall-to-wall" pixel-by-pixel ground
truth.

The results obtained using this LACIE data set are summarized in Figure
7. Here the non-contextual classification using uniform prior probabilities
had an overall accuacy of 78.7 percent and an average-by-class accuracy of
72.0 percent. The best classification (after five iterations) was a p=9 (eight-
nearest-neighbors) classification with 80.5 percent overall accuracy and 73.0
average-by-class accuracy. Thus, the contextual classifier could only manage
here a 1.8 percent immprovement in overall accuracy and a 1.0 percent

improvement in average-by-class accuracy.

Research Problems Indicated by the Exploratory Experiments

In the previous sections we saw that, on simulated data, the classify-and-
count method produced estimates of the context function which in turn pro-
duced substantial improvements in classification accuracy. The classify-and-

count method did not produce such good results with real Landsat data. It
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8ir 3rd Iteration
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o Iteration
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Figure 7. Contextual classification of LACIE Hodgeman County, Kansas, data
set using the classify-and-count method for estimating the context function.
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seems that for real data, the uniform-priors non-contextual classification is
not a sufficiently accurate representation of the scene context to serve as
basis for making a context function estimate which would lead to improved
classification results. It may be that the classification of the simulated data
was accurate enough becausc the class-conditional densities, f (X |9, ), were
modeled exactly, whereas the class-conditional densities were not modeled
exactly for the real data classifications. The inaccuracy of the model in real
data cases may contribute to producing estimates of the context function,
G(gp), which contain more erroneous class configuration counts than in the
simulated data case. Such erroneous counts would cause poorer contextual
classification results. Also, as we will see in Chapter IV, the classify-and-count
method generally introduces a statistical bias into the context function esti-
mate which would further contribute to the poor results observed. Whatever
the reason for the poor performance of the classify-and-count method on real
data, a better method for estimating the context function,is needed. Chapter
IV addresses this problem.,

A second research problem area pointed out by the early experimental
results is that a straightforward implementation of the contextual classifier is
very computationally intensive. Depending on the number of neighbors used
as context, the contextual classifier implemented on a PDP-11/45 compuler
needs anywhere from Y% hour to 8 hours elapsed time to classify a 50-pixcl-
square data set. Chapter V looks into strategies for reducing computational
requirements.

A third research problem area involves certain assumptions which were
made in the implementation of the contextual classifier used for the lests

presented earlicr in this chapter. TFirst, the classification set (1 was assumed
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to consist of spectral classes rather than information classes, and
classifications were always made into spectral classes rather than informa-
tion classes. This assumption is explored in Chapter VI. A second assumption
was the class-conditional independence assumption represented by equation
(8) in Chapter 1l. An approach for studying this assumption is discussed in
Chapter VIII as a part of a discussion of areas for further research.

Chapters IV through VIII detail various approaches for dealing with these
research problem areas. How these approaches relate to the main research
problems and to our major goals of (a) advancing the theoretical understand-
ing of this problem and (b) developing a contextual classification algorithm
for use in practical problems is summarized in Figure 8. The solid lines
represent connections of major significance, while the dotted lines represent

less significant connections.

i s

TR R R TR R Rl B £ S S R Ay S

R

3SR T N N AN

=

o
2



ki R i et M A AR E T EERERA

"goreasaa jo sordo) Suoure sdigsuorye[aiisiu] -g sanfig

0
Y]
, butpue3saspun SWeTqoxd TesT30RAd IOJ
, Te2T18a09Yyy, I2yjang (s)uyltaxobTy pepusumiossy
M T T T
3 \ S—— — ol
- L~ e~ i
- ~ ~ ~ - - ~—
- ~ - -~ - —-—
j sasse[) uotydumssy Rexay Iojewrlsy paseTqun
1 UoT3}RWIOIUT aouspuadapug Suyl1I0HTY Ix93uoD-d puR ‘poylsK IsMod
L snsaaa TBUOTITPUOD~SSBT) 93eurtxoxddy Teutadp ‘POYISH PoOpPTLRD
N sesse) jealoads JO UOT3RUIWTTH pue pTIigiH butiotpsig -YIanir-punoin
IA ze3dey)d ITIA x93deyd A a93deyn IIA x@3adeyp AI xa3dey)d
M P
L -~
y -~
-~
-~
-~
r
-~
-~
e
suotT3dumssy aATSUIjUT UoOTIRPWIISY

TeT3TUI ATTeuotzeindwo) uoT3idung 3x83u0n

.
3

$3TNSaY yoxeessy Araeg

Aq pe3eoTpUl sweTqoig

e NPT . s . .




SRRRCI P

e T

TR T T

TR

27

CHAPTER IV - CONTEXT FUNCTION ESTIMATION

As we saw in Chapter 1II, the classify-and-count method of context func-
tion estimation produced unsatisfactory results for real Landsat data. These
poor results spurred us to search for alternalive methods of estimating the
context function. Before we can discuss these alternative methods, however,
we must briefly mention the spectral-class-versus-information-class question,
since this question has some effect on the estimation methods to be dis-
cussed.

The contextual classifier implementation described in Chapter IIl per-
formed classifications into spectral classes and used context functions taken
over spectral classes, Information classes could have been used for either or
both of these purposes. One could:

1. estimate the contexl function over spectral classes and classify

inlo spectral classes (a pure spectral-class formulation), or

2. estimate the context function over spectral classes and classify

into information classes, or

3. estimate the context function over information classes and clas-

sify into spectral classes, or

4, estimate the context function over information ciasses and clas-

sify into information classes (a pure information-class formulation).
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These four options are explored in detail in Chapter V1. Having mentioned
these implementation options, we can now turn to the search for effective

context function estimation methods.

Ground-Truth-Guided Method

One alternative to the classify-and-count method is what we call the
"ground-truth-guided method."” The ground-truth-guided method is based on
the idea thal ground-truth information, if available, should improve the con-
text function estimate when incorporated into the estimate. In this method,
representative porlions of the ground truth data are designated as a training
sct for estirmating the conlext function and a test set for evaluating the
classification results. The ground-truth data used for context function esti-
mation must be in spatially contiguous blocks of size somewhat larger than
the p-context array. The ground-truth data are, of course, represented in
terms of information classes. When the estimation is to be done in terms of
spectral classes rather than information classes, the following method is
used:

1. Perform a non-contextual classification of the training set using
uniform prior probabilities allowing the classifier to choose only
among spectral classes associated with the information class desig-
nated by the ground truth.

2. Estimate the context function by tabulation from the resulting
100-percent accurate classification of the training set.

3. Classify the entire scene with the contextual classifier and evalu-

ate the results over a test set disjoint from Lhe training set.
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When the cstimation is to be done in terms of information classes, the res-
tricted spectral class classification in step | above must still be performed. In
this case, however, this classification is used to provide (by tabulation) an
estimate of the weights for the weighted sums of normél densities that make
up the class-conditional densities over information classes. The weights
represent the relalive frequency of observing a spectral class given that a
particular informalion class was observed. The entire scene is then classified
in terms of informalion classes using the contextual classifier, and evalualed
over a test set disjoint from the training set, as in the spectral-class case.
Both the spectral- and information-class formulations (options 1 and 4)
of the ground-truth-guided method were tested on two B50-pixel-square
Landsat data sets. One data set was a LACIE data set from Hodgeman County,
Kansas, containing pasture, wheat corn and fallow fields. This is the same
data set described in Chapter IIl, except that two confounding spectral
classes have been eliminated from the set ], leaving a total of 14 spectral
classes. The other data set was from Tippecanoe County, Indiana, containing
residential and commercial areas in northern Lafayette and West Lafayette as
well as areas of forest, agriculture and waler (the Wabash River). This data
set was a four channel Landsat data set collected on June 20, 1978. Ground
truth was obtained by visual inspection of large scale black and white aerial
photographs taken on March 9, 1976 supplemented by ground inspection per-
formed in January 1981. TFor both the Tippecanoe and LACIE data sets, the
restricted speclral-class classification was performed over the first 25 lines of
the data set and Lhe context function was estimated over those 25 lines. Con-

textual classifications of the scenes were performed and classification
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accuracies were evaluated over the last 25 lines as well as over the entire

data set.
Tables 1 and 2 present the results from contextual classifications using
four-nearest-neighbor (4nn) estimates of the context function (the p=5
{ choice in Tigure 2) for both the spectral- and information-class formulations
| of the ground-truth-guided method (gtgm). These results are also compared
to the accuracics obtained from uniform-priors and estimated-priors non-
:.9 contextual maximum likelihood classifications. The prior probabilities for the
{ estimated-priors non-contextual classifications were estimated by tabulation
from the uniform-priors non-contextual classification. These results show
that contextual classifications using the ground-truth-guided method for
estimating the context function give significantly better results than non-
F contextual classifications on these data sets., For these cases, the spectral-

»
class formulation of the ground-truth-guided method generally produces

somewhat higher classification accuracies, However, since the spectral-class
estimate of the context function has substantially more non-zero elements

than the information-class estimate, contextual classifications using the

spectral-class formulation generally take over twice the computer time
required for the information-class formulation.

| While this method produces estimates of the context function which give
) the best classification results of all methods discussed in this paper, it suffers
; the limitation that it requires large areas of spatially contiguous ground-truth
data. When such detailed ground-truth data are not available, which is often
the case since such ground truth is expensive and time-consuming to obtain,

some other method is needed.
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Table 1. Compari-an of the contextual classifier using the ground-truth-
guided methoa .iuh non-contextual classifiers; Hodgeman County, Kansas,
Landsat dala sel (14 speclral classes).

e e,

il T
% Accuracy
: lines 26-60 lines 1-50
} Classification Average- Average-
f Overall by-Class Qverall by-Class
uniform priors 81.5 78.2 82.6 74,3
estimated priors 82.2 78.3 82.8 4.1
4nn gtgm, spectral 85.4 81.8 856.7 77.9
[ 4nn gtgm, information 85.3 81.4 85.0 76.0 ]

Table 2, Comparison of the contextual classifier using the ground-truth-
guided method with non-contextual classifiers; Tippecanoe County, Indiana,

y Landsat data set,
f % Accuracy ?
; lines 26-50 lines 1-60
)’ Classification Average- Average-
Overall by-Class Overall by-Class

uniform priors 82.7 81.7 a1.8 83.4

estimated priors 84.7 82.0 83.7 83.7

4nn gtgm, spectral 88.7 91.1 89.3 90.7

4nn gtgm, information 88.2 87.3 88.2 88.2
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Power Method

The classify-and-count method requires no ground-truth data besides
that needed Lo estimate the class-conditional densities, f (X |®). However,
as we have seen ecarlier, this method does not produce consistently good esti-
males of the context function. In Chapter IIl we noted that the uniform-
priors non-conltextual classification does not seem to be a sufficiently accu-
rate represenlalion of the scene conlext for the classify-and-count method to

perform well. The context function esltimates generally contain several

erroneous class configuration counts.

There are several ways in which the context function estimates from
non-contextual classifications of real data could be "cleaned up."” Assurning
that the small relative frequency counts are more likely to be erroneous, one
could employ a procedure which derletes all class configurations with fre-
quency counts below a certain threshold. Or one could divide the count for
each class configuration by a fixed number and take the integer part of the
resull as the new counl, deleting all class configurations with counts that
become zero.

Both of the afoerementioned clean-up procedures could result in totally
eliminating rarely vccurring but valid classes from the context function. To
avoid this problem, we devised an ad hoc procedure which we call the "power
method."”

The power method forms a new estimate of the context function by rais-
ing the relalive frequency count for each class configuration to a power. For
powers greater Lhan one, the class configurations with larger counts are
favored more heavily lhan those with relatively small (and possibly crronce-

ous) counts. Conversely, for powers less than one, the class configurations

Y 5
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with large counts are not so heavily favored. At the extreme, a power of zero
results in all class configurations being equally favored as in a uniform-priors
non-contextual classification. In no case is an actually occurring class
configuration deleted from the context function estimate,.

The power method was first tested on a simulated data set to investigate
the method's characteristics undisturbed by unknown effects due to inaccu-
rate modeling of the real data sets. Spectral-class classifications using
spectral-class context were performed using data set 2a (described in
Chapter 1II). See Figure 9 for a summary of resuits. The results seem to indi-
cate that when the model is exact, as the power is increased (up to a certain
point), the classification results tend towards the results obtained when the
context function is determined from the reference classification. Also, as
expected, as the power used is decreased below unity, the results tend
towards a uniform-priors non-contextual classification.

The power method was also tested on the Bloomington, Indiana, data set
described in Chapter Il using spectral-class conlext and classifications. Fig-
ure 10 surmnmarizes the results using the power metnod on two-nearest-
neighbors context (north and east neighbors) based on an estimate of G ()
from the non-contextual uniform-priors classification. Trading off overall
accuracy against average-by-class accuracy, the best classification was pro-
duced using a power of 5, for which an overall accuracy of 87.0 percent and
average-by-class accuracy of B6.1 perccnt was achieved. Note that the
results in Figure 10 follow the same general trend as the simulated data
resulls in Figure 9.

A second iteration of estimating C(_Qp), this time over four-nearest-

neighbors context, was then made based on the classifications listed in Figure
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from reference classification
875 } _
®sa2 ny 661 .
633
850 t
*782
8 825 T 80‘90
5 . The number at each dot
v g23_ 810 is the average -by-class
2 800 + . accuracy ( % correct ).
™ 1 819
§ 815,
- .82_0
8 751 o
9
o 808
& 750}
725 J
700 773 4 + t - '
0 1 2 3 4 5

Power of Context Distribution Estimate

Figure 9. Power method results using as context one-nearest-neighbor
(south) on the simulated data set. Context function, G (¥?), estimated from
uniform-priors non-contexiual classification except where noted otherwise.
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Power of Context Distribution Estimate

Figure 10. Power method results using two-nearest-neighbors (north and
east) context on Bloomington, Indiana, data set. Context function, G(%7),
estimated from uniform-priors non-contextual classification.
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10. The second estimate of ¢ (¥P) based on the classification using the first
estimate raised to a power of 10 produced the best classification results wilh
an overall accuracy of 88.5 percent and an average-by-class accuracy of 87.5
percent (using G(¥7”) raised to a power of 5). See Table 3 and Figure 11 for a
summary of resulls. This second estimate of G (¥?) gave a total 5.4 percent
improvement in overall accuracy and 4.8 percent improvement in average-
by-class accuracy over the non-contextual classification, This compares with
a 2.2 percen!. improvement in overall accuracy produced by the classify-and-
count method in Chapter [11.

Table 3. Second iteration power method results. Best four-nearest-neighbor
classifications with G (9 ) based on the classifications in Figure 10.

| ! Accuracy, %

. Power Used Power Used in Average-
(in Figure 10 this Classification Qverall by-Class

[

[ 2 5 86.5 85.8

i 3 5 86.3 85.7

|

|

: 5 5 87.3 86.7

( 7 5 88.1 B87.2 |
I

; 10 5 88.5 87.5 I
t 15 3 87.7 87.2 i

l
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The power method was tested again on the Bloomington, Indiana data set,
this time using information-class context and spectral-class classifications.
(In implementing the power method elements of G(¥”) calculated from equa-
tion (33) in Chapter VI were raised to a power rather than elements of H(P).)
Using a power of 7 in this case produced overall and average-by-class accura-
cies of 89.6 and 89.5 percent. These accuracies rmatched those produced in

two iterations of Lhe power method when spectral-class estimates of the
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Figure 11. Power method results using four-nearest-neighbors context on
Bloomington, Indiana, data set. Context function, G(¥”), estimated from
two-nearest-neighbor {(north and east) context classification with context
function raised to power 10.
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context function were uscd. Additional iterations in either case produced no
further improvement in classification accuracies, Figure 12 compares using
information-class estimates with using spectral-class estimates in the power
method for the Bloomington, Indiana, data set.

A test of the power method was also performed on the LACIE data set (16
spectral classes) using spectral-class context and classifications. The
spectral-class formulation results were similar to the Bloomington, Indiana,
data set results. Again using two-nearest-neighbor context (neighbors to Lhe
east and west), the best classification was produced using a power of 7. Here
the overall and average-by-class accuracies were 83.7 percent and 73.8 per-
cent, respectively, as compared to overall and average-by-class accuracies of
78.7 and 72.0 percent, respectively, for the uniform-priors non-contextual
case (evaluated over the entire scene). The best second-iteration result,
using four-nearest-neighbor context, was produced with an estimate of G (97)
made from the power of 15 first iteration classification and raised to a power
of 10. This classification had an overall accuracy of 86.7 percent and
average-by-class accuracy of 75.6 percent for an improvement of 8.0 percent
and 3.6 percent, respectively, in overall and average-by-class accuracies.
This compares to improvements of 1.8 percent and 1.0 percent, respectively,
in overall and average-by-class accuracies produced by the spectral-class

classify-and-counl method when evaluated over the entire scene. When
information-class context was used, the results were not as good. Two-
nearest-neighbor context (north and west neighbors) raised to a power of 7

produced overall and average-by-class accuracies of 80.2 and 72.5 percent,

respectively.
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Figure 12. Summary of four-nearest-neighbor contextual classification
results from the Bloomington, Indiana, data set. Here the power method is

performed using both spectral-class and information-class estimates of the
context function as tabulated from the uniform-priors non-contextual
classification. Note thalt the power of zero result is equivalent to the
uniform-priors non-contextual classification.
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Prior to making the second-iteration estimates of G(®¥”) in the above
tests, it was assumed that a more accurate classification would necessarily
producc a better estimate of G(¥). The resulls quoted here indicate this is
not always the case. This makes the power method more diflicult to use,
since classifications must be made using estimates of 0(197’) based on several
classifications from the previous iteration in order to find the best estimate.
Despite the good results possible with the power method, these ambiguities

make this method difflicult to use, and not useful for practical applications. A

search for a better generally applicable method for estimating the context .

function has led to the unbiased estimation technique described next.

Unbiased BEstimator

One tactic for seeking an optimal estimate of the context function,

G(®P), is to look for an estimator function, T ,(X), which minimizes the

mean-squared error given by
MSE = B[Ty(X) - ¢ (2*)] . (10)
Equation (10) can be rewritten as
MSE = Var[Tg(X)] + b? (11)

where Var[T »(X)] is the variance of the estimate T, (X) and b is the bias

given by
b =E[T19p<£_()]—c(_1_9p) (12)

Finding the minimum mean-squared-error estimate is generally a difficult

task, but since bias represents a systematic error, a reasonable approach
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would be to control bias before considering the variance. The best one can do
in controlling bias is to seek an unbiased estimator, i. e., one for which b = 0.
As we saw in the previous section, the classify-and-counl melhod per-
formed poorly in tesls on real Landsat data sets. One reason for this is Lhat
the estimate can be statistically biased. 7To prove this, consider the
classification model as presented in Chapter II. In addition to the symbol
definitions given there, we make the following definitions, Letl _?2 be the vector

of classifications
F=[Byli=1.2.. Nyj=1.2.. N7

where '?9,-1 is the classification estimate from a non-contextual classification of
the observation Xj;. Let @ij be a p-vector of classification estimates associ-
ated with the observations in the p-context array X;. Similarly, let _@” be
such an estimate associated with an arbitrary p-context array, X?. Let
nPe(P represent an arbitrary p-vector of classes. The classify-and-count

method can be described by the following estimator function for G (9% ):

Ny Ny

TypX) 8(3P) = 3 5 1 (Xy,07) (13)
- i=1j=1
where
1, 1 9 = By

I{Xy5.0%) = [

0, otherwise.
The expected value of Tl,,,(i_() is then

1 Ny N, 1 Ny N,
2y 11(29:‘-191”) = . A—‘E[’@_’irﬂp)]

E[TuX)]AE '
i=ly= i=1j=1
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1
=N Py Py E[’Q{i}-ﬁ”)]’- Y, G(n®) f S (XPI9P)dXP.  (14)
Dﬂcnll 1.4 with npenp Xpe(R")p
oy =a" with 3P =P

Equations (12) and (14) show that the bias of the classify-and-count

method is Lhe difference between a weighted sum of C(7”) and G(v?). Note

TR

that this bias is independent of N, and cannot be reduced by increesing the
, sample size. The bias can be non-zero or zero, depending of the values of
’ G(n?) and integrals in (14). To show this explicitly, let's consider the simple
special case of a two-class problem (m=2) estimating non-contextual relative
frequencies of classes (p=1) for univariate random observations (n=1). Let
the non-contextual classifier used to produce § be the uniform-priors

maximume-likelihood classifier with the decision rule:

d(Xiy) = the action a which maximizes f (X la)

for all a €fwi,wz}. The densities, f(Xy|a), are assumed to be normal with
mean and variance u; = —1 and o1? = 1 for class w; and mean and variance

i2 = 1 and 0,% = 1 for class wp. For class w, we have:

e T ———T T T

2
E[T,(X)]= AC(“““/

lul

2 0
f X lwy) dX = kz_jlc(“k):/‘f (X |wyg) aX

) 27 (X o)
0- 0-
, = Clw)[+ + erf——51] + G(wp)[ % + erf—F2]
i 2 o] 2 U2
_ 1 0+1 1, .0-1
; —G(cul)[2 + erf 1 ]+C.'(c.:2)[2 + erf I ]
i = .84C(wy) + . 16C (wa). (15)

The sum in (15) is equal to G(wy) only if C{w;) = GC(wz) =%. For any other
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values of € (w,) and C(wp) the estimate is biased. Similar comments apply for

class wpy where we have
E[Ty,(X)] = .16C (&) + .84C (wp). (18)

We have shown, then, that the classify-and-count method does indeed gen-
erally produce biased estimates of the contex! funclion.

The unbiased estimator we have adopted is presented in the statislical
literature by Van Ryzin [6] and Hannan et al. [13)]. This unbiased estimator
can be mosl easily described by first considering Lhe p=1 case and then gen-

eralizing to the arbitrary p-context array. ['or p=1, we examine the equation

S (X)[t}if (X 100 (@)

ax = §|[menr ienadlo@)  an)

where 7 is the number of classes; f(X|w), [=1,2,...,m, are the class-
conditional densities described earlier; and the functions A, (X), k=1,2,...m,
can be any set of m linearly independent functions. Equation (17) is valid
provided all indicated sums and integrals are well defined, which will, for
example, be the case when all of the functions in (17) are bounded. The func-
tions C(w;) and f (X !w;) are always bounded because G(w,) is a relative fre-
quency function and f (X |w;) is a multivariate normal density function. The
functions hy(X) considered in the following development will also always be
bounded.

The left-hand side of (17), which looks like the expected value of kg (X),

can be estirnated from the data X as follows:

f"k(X)‘gf(Xlw;)c(wl) dxX = .;/_
=1 h

i=

Ny Ny -
1, zihk (Xi5) 2hy(X) (18)
j:

e e we
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where N, N, and N are as defined in Figure 1, and k € {1,2,...,m}. Combining

equations (17) and (18) we have

Te) = B[ fneCi)r (lanaxlo @) = § e ) (19)
where

I 2 [ (X7 (X eoy) dX (R0)

Applying (19) m times, once for each class, we can write

hi(X) Iy Ty oo Ty || G(wy)
hoX)|=ar Taz ' Tam||C(w) (21a)
Em(&,) Imi Imz """ I )G (wm)

This can be more succinctly represented in vector-matrix notation as

Y

_’l"

IG. (21b)

Now G can be estimated by solving

n

Gerthhr (2R)

—

where T = (T1(X),T2(X),....Tm (X))" is the vector equivalent of T(X) in (10),
(11) and (12).

To show that 7 is indeed an unbiased estimator for G, we note that

B(T)=EB(™ )= E(). (28)
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Looking at Z (i) clement by element we have

— 1 NlNz
5[ [ 281355 5 netrty) (24a)
1N’I‘V“PF[ (X )]
= = A
N G
1 NINE
= =05 S () 10 10y) dXy
i=lj=1
m
= 'j%fl: f h'k(X'Lj f(X-le"yu) 1]
=1 1,
with
1"U =(J‘
m
Z Clew) J e (X) F (X ey)dx (24Db)
Thus
E)=1¢
and (23) becomes
ET)=I"BR)=I"IC=C (25)

proving that T is an unbiased estimator for .

It is convenient to use for the functions hx(X) a function of the class-

n
conditional densities. More specifically, let ki (X) = (8n)% f (X |w,) and write
(20) as

Ly = (@BME [ 57X |w)f (X ]ew)dX

L DLl T
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where n is the dimensionality of X. Assuming the w, are normally distributed
spectral classes with respective mean vectors y and covariance matrices X,

(k=1,2,..,m), we find

-1
Ty = |det(Ze + 5| ¥ expl-SGu—m)" (Tu+Z)™ Gumm) . (26)

When the w, are information classes, the /; are weighted sums of terms of
the form given in (28). The weights are estimated by using the unb.ased esti-
mator wilth p=1 for the speclral classes which make up each information class
being considered.

The calculation of the estimate of ¢ can proceed in one of two alterna-
tive ways. The vector A can be calculated for the entire image (as in (21a)),
then multiplied by /™! to give T 2(; or as the hy (Xij) are calculated at each
data point (pixel), the product with /=! can be performed. The average of
these products over the entire image is then I £C. The melhods are com-
pletely equivalent; the difference between them amounts to a change in order
of summation. However, the second method must be used when this unbiased
estimator is extended to the arbitrary p-context array case, because the use
of the first method for large values of p would require an impractical amount
of storage. In calculating the estimate of G(¥”) at each image data point
using the second method, individual unbiased estimates of the prior probabili-
ties of each class are made for each position in the p-context array, and
cross-products of these prior probabilities are taken to form the unbiased
estimate of GC(¥”) based on thal image point. To save computer storage
space, the cross-products having values below a specified threshold are

ignored. The estimate of G(®BP) for the entire image is the average of the

e



r
E

47

estimates of C (9P ) based on all the individual image points in the scene.
The unbiased estimator can be implemented so as to provide an adaptive
estimate of the context function. The local context functior estimate for a
particular nyxn, block of image data is made from a mxmy block (m2n,
and mg2ny). The nyXng block of image data is then classified using this local
estimave of the context function. This process is repeated until the entire
data set is classified. Better results have generally been obtained when
m>ny and mp>ng. If my=n, and me=n,, the context function estimate is not
accurate for the pixels at the edges of the image data block being classified.
Tests on three 50-pixel-square Landsat data sels have indicated good choices
for n, and ng ranging from 10 up to 25 with Lthe corresponding choices for m,
and mg being 8 to 10 pixels larger than the values chosen for ny and ns.
Table 4 presents the accuracies resulting from contextual classifications
for three Landsat data sets using four-nearest-neighbor (4nn) estimates of
the context function. The results using the spectral-class formulation are
shown for the whole scene (non-adaptive) version and for an adaptive version
employing local context function estini~tes for 25x25 pixel blocks made from
the same 25x25 pixel block. The results using the information-class formula-
tion are shown for an adaptive version employing estimates for various niXn,
pixel blocks made from a miXmjp pixel block cenlered on each niXny pixel
block. The uniform-priors non-contextual classification results are given for
reference. The adaptive unbiased estimates generally performed best, espe-
cially when m>n, and my>n, The information-class formulation generally
performed as well as the spectral-class formulation, with the information-
class formulation performing substantially better on the Bloomington, Indi-

ana, data set. As noted earlier in the discussion of the ground-truth-guided

T S L

2 T e B g e OB




S TR

SRR R TR EARN e T TRt R

48

Table 4. Comparison of the contextuai classifier using various unbiased esti-
mator formulations and the uniforni-priors non-contextual classifier.

Data Set

. Classification

Z%Accuracy

Average-
Qverall by-Class

Hodgeman County,
Kansas, 50-pixcl-
square Landsal
(evaluated over
lines and columns
8 through 50;

14 spectral

class LACIE)

uniform-priors non-contextual

4nn unbiased, spectral class
whole image est. (nonadaptive)

4nn unbiased, spectral class
adaptive est., 25x25 from 25x25

4nn unbiased, information class
adaptive est., 25x25 from 35x35

Bloomington,
Indiana, 50-pixel-
square Landsat

uniform-priors non-contextual

4nn unbiased, spectral class
whole image est. (nonadaptive)

4nn unbiased, spectral class
adaptive est., 26x25 from 25x25

4nn unbiased, information class
adaptive est., 17x17 from 25x25

Tippecanoe County,
Indiana, 50-pixel-
square Landsat

uniform-priors non-contextual

4nn unbiased, spectral class
whole image est. (nonadaptive)

4nn unbiased, spectral class
adaptive est., 25x25 from 25x25

4nn unbiased, information class
adaptive est., 25x25 from 25X25

4nn unbiased, information class
adaptive est., 10x10 from 20x20

82.0 76.9
83.1 75.8
84.0 77.8
84.0 78.0
83.1 82.7
84.4 84.4
84.3 83.9
88.9 88.3
81.8 83.4
86.2 87.9
86.7 88.1
BE.2 89.1
86.9 89.7
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methnd, the information-class formulation has the further advantage of hav-
ing substantially fewer non-zero elements in the context function estimate,
causing contextual classifications using an information-class formulation to
require, in these tests, less than half the computer time required for contex-
,( tual classifications using a corresponding spectral-class formulation.

Figure 13 shows computer generated gray-scale maps of classifications of
the Tippecanoe County, Indiana, Landsat data set. The contextual
classification looks visually closer to the reference classification than might
: be expected based on the accuracy improvement over the non-contextual

classifications. This is due to the tendency of the contextual information here
to provide a smoothing effect, making classification maps ..1at are not only
more accurate, but also more pleasing to the eye. This smr oothing effect will
not necessarily occur on all data sets. There is nothing inherent in \ae con-
textual classsification algorithm that would force smoothing when none is
called for. The smoothing eflect should only occur when the c'ontextual infor-

mation so indicates.

Summary

In our search to find successful methods for estimating the context func-

| tinn, we have explored the ground-truth-guided method, the power method, , 4
and a method utilizing an unbiased estimator. Tests on 50-pixel-square data

sets have shown that all of these methods can provide estimates of the con-

text function which produce contextual classifications with accuracies sub-

stantially higher than those obtained with a non-contextual classifier. We

have seen, however, that the power method involves ambiguilies (the optimal

power value) that make it impractical for general use. Fortunately, the ‘4
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(a) (b)

Figure 13. Visual comparison of classification results, Tippecanoe County,
Indiana, Landsat data set. (a) Uniform-priors non-contextual, (b) estimated-
priors non-contextual, and (c) four-nearest-neighbor adaptive (17x17 from
27x27) unbiased estimator (d) reference classification.




51

unbiased estimator method performs excellently in those cases for which the
power method would have been usecd, i.e., where large areas of spatially con-
tiguous ground-truth are not available and hence the ground-truth-guided
method cannot be employed.

The ground-truth-guided method can be used whenever large areas of
spatially contiguous ground-truth data are available. In tests performed on
50-pixel-square data sets, the ground-truth-guided method outperformed the
unbiased estimation method. However, the unbiased estimator produced con-
textual classificalions which were nearly as accurate as those obtained using
the ground-truth-guided method.

A pure spectral-class formulation was seen to perform slightly better
“than an inforration-class formulation for the ground-truth-guided method.
An adaptive pure information-class formulation was seen to perform generally
as well as or better than any other formulation of the unbiased estimator. In
either case, the information-class formulation was seen to have a significant
computational advantage.

The results of this chapter suggest candidales for successful implemen-
tations of the contextual classifier which should be tested with larger data
sets. Further discussion of this topic will be deferred to Chapter VIII, after

the other rescarch areas mentioned in Chapter 111 are explored.
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CHAPTER V - REDUCTION OF COMPUTATIONAL REQUIREMENTS

The contextual classification algorithm is very computationally intensive
in both the spectral-class and information-class formulations, requiring a
large amount of computer time. To reduce execution time, one could exploit
the latest improvements in the raw speed of computer components and/or
one could take advantage of special computer architectures involving multi-
ple processing elements [ 14]. Alternative tactics explored in this chapter are
(a) looking for a less computationally intensive algorithm which approximates
the original contextual classification algorithm and (b) looking for a way to
selectively apply the contextual classifier oniv where there is an advantage in
doing so. We call the latter approach the "hybrid algorithm" because it uses a
uniform-priors nen-contextual classifier whenever that classifier can classify
a given point "confidently,"” resorting to the contextual classifier only on
"difficult” pixels. Before we consider the hybrid algorithm, we will first
explore an algorithm which approximates the contextual classification algo-
rithm as developed in Chapter II. If such an algorithm produces
classifications that do not differ significantly in accuracy from the original
algorithm, the approximate algorithm, possibly combined with the hybrid
idea, would be the preferred algorithm in practical applications using conven-

tional (serial) computers.
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Approximate Algorithm

To come up with a reasonable approximate algorithm, one must examine
the computer implementation of the original decision function*. Consider the
case where the set (1 is defined over spectral classes, classificalion is into
spectral classes, and the class-conditional independence assumption is taken.
The densities f (Xi |¥ ) in equation (9) are assumed to be multivariate normal
with mean vector Mok and covariance matrix Eq,k giving

iy 1
2 -1 ,
1S9, | Zexp|-Y(Xi~Ms, ) T3} (X =Ms,) (R7)

f (K |2) = [51;;

where n is the dimensionality of the observation X, (see [1] for the rationale
behind this assumption in the non-contextual case). Using the multivariate

normal assumption, the decision function in equation (2) becomes
d(Xi;) = the action a which maximizes dg (X;;)

where

np 1
Y
|Zo, |2 exp|-WXi ~M9,) 5} (X =M 4,)] . (28)

daXi) = % c@nﬁ%
P eqP, k=11"

wp=a

mn
Let do(Xy) = In[d, (X;;)x(2m) 2 ]. Maximizing d,(X;;) is equivalent to

maximizing d, (X;;). Letting Q19k(Xk) = (Xp _Mﬂk)TE’Jkl(Xk —-My,), we have

-1
de(y) = In| 3 C(8)TT 150, 1 Zexpl-4Qs, (Xi)]
gP (P, k=1

wp=a

the programming language "C". Test runs were also made on a PDP-11/70
computer.
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=ln| 3 expllnG(sP)-%3 [mlzvkiwﬂk(xk)”
BPeP, k=1
197,=o.
=1In| 3, exp[F(Xy 97)] (29)
WP enr,
p=0

where
P (Xy,57) émc@;p)—%ﬁl 0125, 1485,(%)] .

In the simulated and real data sets studied (see Chapter IlI), the term
exp[F (X, 9P )] ranges over a larger negative exponential range than available
on the PDP-11/45 (an exponential range of 10*% is available). To circumvent
this problem it was necessary to use the following procedure,.

Let

Mo (Xii) 4 max F(Xi;,97)
9P P,

ﬂp=a.

and rewrite dq(Xy;) as follows:

do(Xi;) = Injexp[Ma (Xy)] D) explF (X, 07 =M, (Xy)]
2P eiP,

19,, =a

= My (Xy) + In| 3, exp[F (X, 0P )-M, (Xy)]] . (30)
B2 eiP,

19?:“

Calculating d,(X;;) in this way ensures that at least one term of the sum docs

not cause underflow because the exponential of the maximumn term, M, (Xi;).
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need not be calculated. This procedure also makes it less likely that other
terms in the sum will cause underflow (the 7(X;.97) tend to be large negalive
numbers),

In checking out this particular implementation of the decision funclion,
it was noted Lhal Ma(i(ij) was in most cases significantly larger than the loga-
rithmic term in equation (30). This observalion suggested the following

approximation of the decision function:
d(X;;) = the action a which maximizes M, (X;;), (31a)
or in the notation of equation (9):

d(X;) = the action @ which maximizes for all Y? €0 with ¥,=a
6 ()17 (i 10) (315)

Comparing equations (30) and {(31a) one can see that the implementation
of equation (31a) requires less computation and storage than equation (30).
In equation (31a), the logarithmic term in equation (30) need not be calcu-
lated and the individual values o! '){i,-.gp) for a particular action a need not
be stored; only the maximum value is needed. We would expect, then, that
this approximate algorithm will take less computation Lime than the original
algorithm for any data sel. The effect of the approximation on classification
accuracy, however, may be data denendenu.

The performance of the approximate algorithm was compared with the
original algorithm in tests using the simulated data set and the real data sets

described in Chapter I1I. Included in Lhe comparisons were algorithms that

take only the Lhree or five maximum terms in the summalion in equation (9).
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These additional algorithms serve to give an indication of how many term n
the summation are needed to produce classifications equivalent to those pro-
duced by the original algorithm. The results of this study are summarized in
Table 5. The context function for the simulated data set Lest was estimated
by tabulalion from the refercnce classification frem which the simulaled data
was generaled and the context function for the LACIE data set was tabulated
from the first 20 lines of a ground-truth-guided non-contextual classification
as described in Chapter IV. (A ground-truth-guided classification is per-
formed just like the usual non-contextual classification except that the
classifier is restricled to selecting spectral classes from the information class
indicated by the ground truth data.) Both data sets were evaluated over the
entire 50-pixel square area. The context function for the Bloomington, Indi-
ana, data set was tabulated from the entire 50-pixel square area of a ground-
truth-guided non-contextual classification. Since the Bloomington data sct
has only 1317 ground-truth pixels, the ground-truth-guided classification
degenerated to the usual unguided non-contextual classification over the
remaining 1183 pixels. The Bloomington data set was evaluated over the 1317
ground-truth pixels. Eight-nearest-neighbor context was used in all cases.

As can be seen in Table 5, the approximate algorithm performed very
well in terms of overall accuracy as compared to the original algorithm. The
table also shows that in the two real data sets, the five largest terms of the
sum in equalion (9) are all that are needed to produce identical
classifications Lo those produced by the full sum (the original algorithm).

The accuracy of the approximate algorithm was also tested in two cases
where the "power method” was used for estimating the context function (sce

Chapter IV for a description of the power method). Table 6 displays the
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classification accuracies resulting from applying the power method to the

Bloomington and LACIE data sets in the same manner as described in Chapter

Iv.

Table 5. Performance of approximate algorithm in terms of accuracy. Con-
text function estimated from ground-truth-guided classification,

r—nsas

Overall Accuracy, %

Data Set Orig. Alg., 5 Largest Terms 3 Largest Terms Approx. Alg.,
Fa. (9)  of Sum in g, (9) of Sum in Bq. (9) Eq. (3la&b)
Simulated 96.84 96.88 97.04 97.04
LACIE 87.62 87.52 87.52 87.47
Bloomington 95.60 95.60 95.62 95.52

Table 8. Performance of approximate algorithm in terms of accuracy. Con-
text function estimated using power method.

1
Overall Accuracy, %

Data Set Original Algorithm, Approximate Algorithm,
FEquatior. (9) Bquation (18a&b)

Bloomington 88.46 88.38

LACIE 86.70 86.66

Again the approximale algorithm produced overall accuracies that were
very close Lo those produced by the original algorithm. To put these minor
accuracy differences in proper perspective, it helps to note that a conven-
tional uniform-priors non-contextual classifier produced overall accuracies of

83.07 percent on the Bloomington data set and 78.73 percent on the LACIE

data set.
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The approximate algorithm was compared with the original algorithm in
terms of computation time on the simulated data set and the two real
Landsat data sets. Highly optimized versions of each algorithm (written in
the "C" programming language) were run on PDP-11/45 and PDP-11/70 com-
puters. Also compared to these two algorithms was a highly optimized ver-
sion of the original algorithm that simply ignored underflows rather than
attempting to circumvent them. This version allowed comparison of the
approximate algorithm to a simulated implementation of the original algo-
rithm on a computer with adequate exponential range.

The length of time the classifier took to process the 50-pixel square data
sets depended strongly on the number of nonzero elements of the context
function. (The number of terms that need to be evaluated in the sum in equa-
tion (9) and the number of terms to be compared in the maximization of
equation (31b) is equal to the number of nonzero elements in the context
function.) The ratio of timings between the three programs remained fairly
consistent, however, across all data sets. Tables 7 and 8 display typical quiet
system* timings on a PDP-11/45 computer for cases of few nonzero elements
of the context function (480) and relatively large number of nonzero elements
(193). Table 2 gives the timings for the case displayed in Table 8, but run on
a PDP-11/70 computer,

The three tables show that the approximate algorithm averaged less than
half the real or user time taken by either of the other two algorithms. This

amounts to a significant improvement in computation time.

* The runs were made during early morning hours when few other tasks werce
being performed by Lhe computcer.
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Table 7. Performance of approximate algorithm in terms of timings. 50-
pixel-square LACIE data set, two-ncarest-neighbor context, 480 nonzero cle-
ments in contuxt function, PDP-11/46 computer.
Algorithm Time in Seconds*
Original Algorithm
With Underflow Protection 2636
Original Algorithm
Without Underflow Protection 2388
Approximate Algorithm 1186
s I ————
Table B, Performance of approximate algorithm in terms of timings. B50-

pixel-square simulated data set, two-nearest-neighbor context, 2193 nonzero
elements in context function, PDP-11/45 computer.

Algorithm

Time in Seconds*

Original Algorithm
With Underflow Protection

Original Algorithrn
Without Underflow Protection

Approximate Algorithm

14702

14290

8675

* Timings are given in terms of "user time", which is essentially time spent
doing computations.
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Table 9. Perforrmance of approximate algorithm in terms of timings. 50-pixel
square simulated data set, two-nearest-neighbor context, 2193 nonzero ele-
ments in conlext function, PDP-11/70 compuler. '

r !

Alge . ithm Time in Seconds

Original Algorithm

With Underflow Protection 5832

Original Algorithm

Without Underflow Protection 6573
| Approximate Algorithm 2526

I J

In summary, experimental results from one simulated and two real data

sets show that on these data sets the approximate algorithm takes
significantly less computer time while producing classifications that do not
differ significantly in accuracy from classifications produced by the original
algorithm. By the nature of the approximate algorithm, it is expected that ‘ 2
similar time savings will occur when the approximate algorithm is used on
other data sets. Whether or not the accuracy results presented here can be
expected with other data sets depends on the extent to which the data sets
tested here are representative of remotely sensed data in general. We feel

that they are fairly representative.

Hybrid Algorithm

A second way to produce classifications with accuracy comparable to the
original contextual classification algorthm but with less computation may be
to use a "hybrid" algorithm which would use a uniform-priors non-contextual
classifier whenever that classifier can classify a given point "confidently."
resorting to the contextual classifier only on "difficult” pixels. In other words,

when the multispeciral information alone al a given pixel were adequate to
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confidently classify the pixel, the contextual information would not be used.

A simple measure of the "confidence" of classificalion by a uniform-
priors non-contextual classifier would be the magnilude of the largest
discriminant function at a given pixel. Another measure would be the
difference between the classifier's two largest discriminant function values al
a given pixel divided by the largest discriminant function ("normalized
difference”). If either of these factors exceeded specified thresholds, the
classification indicated by the uniform-priors non-contextual classifier would
be accepted. Otherwise, the contextual classifier would be invoked. Such a
method should save considerable computation time, depending on the per-
centage of pixels that must be classified by the contextual classifier.
Classification accuracy should not suffer significantly because the pixels
classified 'confidently" by the uniform-priors non-contextual classifier
presumably would have been classified identically by the contextual classifier.

A confidence measure must be efficient and accurate in order to be used
to good advantage here. A perfectly eflicient and accurate confidence meas-
ure for this problem would indicate (or flag) a low confidence classification if
and only if Lthe non-contextual classification would be different than the con-
textual classification. A practical confidence measure could approach the
accuracy ideal of flagging all pixels that have different non-contextual
classifications from the contextual classification. Such a practical confidence
measure could not be expected to be perfectly eflicient, however, for any
confidence measure would be expected to produce a number of false alarms
(pixels being fAagged which have identical non-contextual and contextual
classifications) since we would expect by chance Lhat a porlion of the low

confidence non-contexlual classifications will have the same classification as
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the contextual classification. An eflicient and accurate confidence measure
would flag all or nearly all the pixels that had different 1 « 'ntextual and
contextual classifications, and would also produce a minimum number of [alse
alarms.

A preliminary test of the hybrid approach was performed using the 50-
pixel-square Tippecanoe County, Indiana, data set. In this test, the conlex-
tual classification compared wilth the uniform-priors non-conlextual
classification used a four-nearest-neighbor context function estimated by
using the pure information-class formulation of the adaptive unbiased estima-
tor of context (Chapter IV). The best result, in terms of efliciency and accu -
racy, was obtained by flagging those pixels which were below a threshold value
of .90 for the normalized difference or below é threshold of 1072 for the larg-
est discriminant function. Here 758 pixels were flagged (out of 2500 in the
image), 621 of which were false alarms. There were 287 pixels which were
actually different between the contextual and non-contextual classifications.
Thus, 149 pixels that should have been flagged were not flagged. The non-
contextual classification had an overall accuracy of 81.8 percent and
average-by-class accuracy of 83.4 percent. The contextual classification had
overall and average-by-class accuracies of 86.9 and 89.7 percent, respec-
tively. The hybrid classification had overall and average-by-class accuracies
of 84.0 ad 86.6 percent, respectively.

The results indicate thal these simple confidence measures are not very
accurate or eflicient indicators of pixels that would be classified differently by
the non-contextual and contextual classifiers. It is apparent that a more
sophisticatred apprnach is neceded. Such an approach would Lake into arrount

the location of each measurement in the measurementl space in relation Lo
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the multidimensional contours of the class-conditional density functions. A
confidence (or reliability) measure of this Lype is suggested in Alvo and Gold-

berg [15], bul will not be pursued further here.
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CHAPTER VI - SPECTRAL CLASSES VERSUS INFORMATION CLASSES

In Chapter IV we briefly mentioned the spectral-class-versus-
information-class question. This chapter addresses this question in detail. To
reiterate, the spectral-class-versus-information-class question involves four
different options. One could:

(1) estimate the context function over spectral classes and classify

into spectral classes (a pure spectral-class formulation), or

(2) estimate the context function over spectral classes and classify

into information classes, or

(3) estimate the context function over information classes and clas-

sify into spectral classes, or

(4) estimate the context function over information classes and clas-

sify into information classes (a pure information-class formulation).

The question is, which option is the best to use?

In Chapter 1V we concluded that a pure spectral-class formulation per-
formed slightly better than an information-class formulation for the ground-
truth-guided method. A pure information-class formulation generally per-
formed as well as or better than any other formulation of the unbiased esti-
mator. In either case we noted that the pure information-class formulation
had a significant computational advantage over the spectral-class formula-
tion. This chapter explores the spectral-class-versus-information-class ques-

tion with respect to the simplest context function estimation method: the
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classify-and-count method. The tests of the classify-and-count method
described in Chapter Il assumed spectral-class context and spectral-class

classification (option 1). We will now discuss spectral-class context and

information-class classification (option 2).

Spectral-Class Context and Information-Class Classification

Since classification results are normally evaluated over information
classes rather than spectral classes, it may prove fruitfull to classify directly
into information classes. When a classification problem is formulated so as to
classify into spectral classes, one is actually maximizing accuracy with
respect to spectral classes rather than information classes. In order to max-
imize accuracv with respect to information classes, one must formulate the
classification problem so as to <lassify into information classes. In spile of
this theoretical justification for classifying into information classes, it uaas
generally been noted in non-contextual classification problems that
information-class classification does not always produce an improvement in
classification accuracy over that produced by a spectral-class classificalion.
Hixson et al. [18] could only cautiously report a small improvement in
classification accuracy in certain cases where a non-contextual maximum
likelihood classification was done directly into information classes rather
than into spectral classes. Will information-class classification fulfill its
theoretical promise for the contextual-classifier when utilizing spectral-class
context?

The contextual classification decision rule must be reformulated slightly
to study this question. Let the set (1={w;,wg,...,n} represent spectral classes

and the set I'={yy,72...,72}, nSm, represent informalion classes. Note that

SELAR SN & :m
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each element of I' is a subset of the spectral classes such that if w; € 7; then
n

w; € 7 for k # jand (Y 73 = . Let 9P €(P and ¢P €I? stand for p-vectors of
=1

classes over spectral and information classes, respectively.

Where the possible actions are defined over information classes, and the
contextual information is defined in terms of spectral classes, the decision
rule is obtained by maximizing a function as in equation (7) summed over the
spectral classes contained in the action (information class) considered.
Invoking the class-conditional independence assumption as in equation (8),

the decision rule becomes:

d (Xi;) = the action a €I" which maximizes

MR CR I EALD (32)
gEa wPelr, k=1

ﬂp=a

where the o are the spectral classes making up information class a, and 9
and X, are the k** elements of WP and X;;, respectively. Note that this
classification decision rule entails no more computation than a pure
spectral-class decision rule as in equation (9). In fact, slightly less computa-
tion is needed with this decision rule because fewer comparisons are needed
between values for d{') since there are fewer possible actions a when
classification is done into information classes.

This decision rule was tested on simulated data set 2a. The results are
reported in Table 10. Here the context function was tabulated from the origi-
nal reference classification. In all cases, except the uniform-priors non-

contextual classification, the information-class classificalion gave resulls
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which were virtually identical to the spectral-class classification. The
informalion-class classification was more accurate than the spectral-class
classification for the uniform-priors non-contextual case. These resulls would
seem to indicate that the potential of contextual classification into informa-
tion classes using spectral-class context is limited in terms of accuracy
improvement. What would be the result if the context function was estimated
in terms of information classes? We shall now address this question.

Table 10. Comparison of spectral and information class classification options

using spectral class context, simulated data set 2a, reference classification
as context template.

Classification Information Class Spectral Class
Class'n Accuracy, % Class'n Accuracy, %

Qverall Ave.-by-Class | Overall Ave.-by-Class

uniform-priors

non-contextual 72.1 78.2 70.4 77.5
estimated-priors
non-contextual 87.8 65.6 87.5 65.4
two-nearest-neighbors :
(north and east) 93.2 78.5 1 93.0 78.4

l
four-nearest-neighbors 97.1 87.5 97.1 87.5
eight-nearest-neighbors 98.2 92.0 98.2 92.0 }

Information-Class Context and Spectral-Class Classification

Uo to this point we have assumed spectral-class context carries more
usable contextual information than information-cla.-s context. It may be the
case, though, that the information-class context carries most of the contex-

tual information. Also, for the common case where the number of spectral
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classes may be half or a third the number of spectral classes, estimating over
information classes rather than spectral classes leads to a large reduction of
dimensionality of the context function. The large dimensionality of the con-
text function in the spectral class formulation may in and of itself be a
significant, source of estimation error due to our attempting to estimate tne
large number of elements in the context function from too small of a sample.
If this is indeed the case, the lower dimensionality of the context function
estimated over information classes should lead to a more accurate estimate.
The combination of the higher accuracy attainable with the information-class
context function estimate and the possibility that information classes carry
most of the contextual information may lead to more accurate classifications
when information-class context is used.

As before, let the set (Q={w{,wg...,0,{ represent spectral classes and let
the set I'={¥1,72....7,), nSm, represent information classes. Let B*€(® and
¢Pel? stand for p-vectors of classes over spectral and information classes,
respectively. If we assume that the spectral cl. -es carry no contextual
information outside of that carried by their information-class membership,
we can calculate the context function over spectral classes, G(ﬁp)‘ from the

context function over information classes, H(_{p), as follows:

c(wP)= 5 H(gp)kﬁlmklm. (33)

LPel

The weights, p (¥, | ¢, ), represent the relative frequency of observing a spec-
tral class, ¥, given that a particular information class was observed. Insert-
ing equation (83) into equation (9) gives the decision rule for information-

class context and spectral-class classification (option 3), viz:
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d (Xy) = the ection a € which maximizes

v LZ H) T @l ) TT7 e 192 (34)
wPer, leper k=1 k=1

'0F=a

We might expect that spectral classes do carry sume contextual informa-
tion outside of their information-class membership. If this were the case we
should observe that, if the context function estimales are very accurate, Lhe
spectral-class estimale would produce bstter results than the information-
class estimate using equation (33) when used in the contextual decision rule
(9). This is precisely what happens when the context functions are deter-
mined directly from the reference classification for the simulated data set 2a.
Using two neighbor context (north and west neighbors), the spectral-class
estimate produced overall and average-by-class accuracies of 93.0 and 78.4
percent. The corresponding information-class estimate result was 91.2 and
74.0 percent. As expected, the information-class eslimate produced a
significantly less accurate classification.

When a iess accurate estimate of the context function is used, one might
expect that the information-class estimale would produce more accurate
classification results. This is what happened when the uniform-priors non-
contextual classification was used to form the context function estimate for
simulated data set 2a. Using two-neighbor rcontcxl (north and west neigh-
bors), the spectral-class estimate of the context function produced overall
and average-by-class accuracies of 78.4 and 81.1 percent. The corresponding
information-class estimate result was 79.8 and 81.7 percent.

These simulated data results show that the information-class estimate of

the context function produces less accurate classifications than those
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produced with a spectral-class estimate when the context function is known
very accurately. However, the information-class estimete produces more
accurate classifications when the context function must be sstimated less
accurately as from a uniform-priors non-contextual classification. This indi-
cates that the information-class estimate is sufliciently less sensitive to
errors from an imprecise estimate of the context function so as to produce
better results despite any additional information spectral-class context may

carry.

The first real-data test was performed using the Bloomington, Indiana,
data set. For two-neighbor context (north and west neighbors), the spectral-

class estimate produced overall and average-by-class accuracies of 84.5 and

84.2 percent. The corresponding information-class estimate result was B5.9
and 85.8 percent. These results are quite similar to the .wo-neighbor simu-
lated data-results.

A test was also performed using four-nearest-neighbor context. The
spectral-class context function calculated from the information-class esti-

mate by equation (33) had to be thresholded in this case, i.e., context vec-

R N T

tors, 9P, with relative frequency of occurance less than a threshold value

(here 6x107%) were eliminated from the sum in equation (34). If a nonthres-

- -

holded context function were used here, there would be so many separate
5 context vectors to sum over in equation (34) that the computer program
would take an impractical amount of time, even over a small 50-pixel-square
test area. The four-nearest-neighbor spectral class estimate produced
overall and average-by-class accuracies of 84.5 and 84.1 percent. The

inforination-class estimate produced accuracies of 88.2 and 88.7 percent
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The same tests were repeated using the LACIE data set. For two-
neighbor context (north and west neighbors), the spectral-class estimate pro-
duced overall and average-by-class accuracies of 80.0 and 72.1 percent. The
corresponding information-class estimale produced accuracies of 80.4 and
72,4 percent. This accuracy improvement is much smaller than that obtained
with the Bloomington, Indiana, data set, and may nol even be statistically
significant. In the four-nearest-neighbor-context case, two different
information-class estimates (one thresholded at 8x10~5, the other at 4x1075)
produced lower accuracies than did the spectral-class estimate.

Before we attempt to draw any further conclusions from these results,
we should invesligate the remaining oplion in the spectral-class-versus-
inforrnation-class question. This option {(oplion 4) estimates the context func-
tion over information classes as does the option just discussed, but it also

classifies into information classes rather than spectral classes.

Information-Class Context and Information-Class Classification

When the contextual classifier decision rule was derived in Chapter I, the
set 0 and the p-vector ¥? were not restricted to be spectral classes as they
have been in this chapter. If (1 is replaced by I' and 9% is replaced by (P, the
desired information-class formulation of the decision rule follows directly

from a derivation identical to that leading to equation (9):

d(X;;) = the action a € T which maximizes

S H() 1o &) (35)
. ¢Perp, k=1
{p=a

Here H(¢(P) is the context function over information classes, the g (X, |¢:) are

b s
e e
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the information-class-conditional densities, and ¢, is the ' element of <P,

Under the usual methods of estimation, the density g (X, |¢:) is a weighted
sum of normal densities, viz.,

glXelée) = 3 p(Wklr) S (X [O) (38)

By €4

where the p (U, | ¢4 ) are as in equation (33).

An informalion-class formulation of the contextual classifier decision
rule identical to that given in equation (35) can be arrived at from. a different.
perspective. The conlextual classification decision rule defined by equation
(32) classifies over information classes as does equation (35). The context
functlion, G(¥7), used in equation (32) was assumed to be estimated directly
from a spectral class template. If, rather, the spectral-class context func-

tion, G (¥P), is calculated from /7 (¢?) using (33), equation (32) becomes:

d(Xy;) = the action & ¢ I'which maximizes d, (Xi;)

where

daX)= 2| S C) T (X l5k)
ocn g )P, k=1

'01,:-'0

-5 |5 Lz H(f)f’lpwklck)]ﬁf(xkf«m
gea |yr P, ¢P el k=1 k=1
197,:0

= ) H(EP)LZ ﬁp(ﬁkwk)f(xkh?k)
¢Pelp, B8P e¢p k=1
tp=a
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- ¥ H(f)[fl
gern, k=1
tp=a

> (O] &) S (X))
8P 47

= ¥ HEM[To(e ).
rerr, k=1
¢{p=a

which is identical to equation (33) as suggested. It proved initially to be more
convenient to implement the decision rule given in equation (35) by imple-
menting equation (32) and calculating G(0”) using equation (33). This was
because the program implementing the original pure spectral-class formula-
tion could be trivially modified to implement equation (32), and a small pro-
gram written o calculate the spectral-class context function from the
information-class context function using equation (33).

The classificalion results obtained using the information-class formula-
tion (option 4) are compared in Tables 11 and 12 with those obtained using
other formulations. In Tables 11 and 12, options 3 and 4 show nearly identical
results. This is consistent with the results shown in Table 10 where options 1
and 2 gave nearly identical resulls. (Option 2 was not tested in Tables 11 and
12 for this reason.) These results show that information-class classification
produced nearly identical results as those produced by the spectral-class
classification irregardless of whether information-class or spectral-class con-
text was employed.

Tables 11 and 12 also show that information-class context generally pro-
duced better classification results. This result is consistent with the expecta-
tion expressed in the discussion above about the relative merits of
information-class and spectral-class context. l'or an inaccurate method of

context function estimation such as the classify-and-count method, we
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Table 11. Cnmparison of spectral- and information-class classification and
context options, Bloomington, Indiana, data set, uniform-priors non-
contextual classification as context Lemplate,

Context Option Accuracy, % ﬂl

]
Overall Ave,-by-Class !}

|
uniform-priors ;l
non-contextual (-) spectral-class class'n 83.1 82.7 !

two-nearest-neighbors (1) spectral-class context
(north and west.) and spectral-class class’'n 84.5 84.2

(3) information-class ccntext
and speclral-class class'n 86.9 85.9

(4) information-class context
and informalion-class class'n 85,7 85.8

' four-nearest-neighbors (1) spectral-class context
and spectral-class class'n 84.5 84.1

(3) information- "lass context i
and spectral-class class'n 88.2 88.7

(4) information-class context
and information-class class'n  87.¢ 88.2

expected thal information-class context would produce belter classification
results.

Earlier we noted that information-class context produced betlter
classification results with the unbiased estimation method, while spectral-
class context produced better results with the ground-truth-guided method.
This result is consistent with the discussion and results of Lhis chapter. Since
for the tests performed on the ground-truth-guided method and the unbiased
estimation method, the ground-truth-guided method produced the best
classification results, we would expect that Lhe spectral-class formulaticn
would perform relatively better for the ground-truth-guided method than for

the unbiased estimalion melhod.

b
et e e w«&mmamiuw;aﬂsj

e BB e 2 e a8 L0 b R PN 3IOK, AL e £55. e

i S AR s

. RN S e

p
]
i
1
{
é
{

e Ag AP B e




RS, T

A

75

Table 12. Comparison of spectral- and information-class classific-.tion and
conlext oplions, LACIE dala set, uniform-priors non-contextual classificalion
as context Lemplate.

Context Oplio~ Accuracy, % '

Overall Ave.-by-Class 1

—

|
i; uniform-priors !
I non-contextual (-) spectral-class class'n 78.7 72.0
!
1" two-nearest-neighbors (1) spectral-class context !
5 {north ad wesl) and speclral-class class'n 80.0 72.1 i
|

‘ " (3) information-ciass eontext
L and spectral-class class'n 80.4 72.4
(4) informalion-class contuxt

and information-class class'n 80.6 72.8

four-nearest-necighbors (1) spectral-ilass context
and s pectrai-ciass elass'n 79.6 72.1

(3) information-elass context
and spectral-class class'n 78.3 71.5

(4) information-class context
and information-class class'n - 78.2 71.4
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CHAPTER VII - PREDICTING THE OPTIMAL P-CONTEXT ARRAY

Prior to the development of the unbiased estimator, methods were
sought with which Lo improve the practical effectiveness of the classify-and-
count and power methods for estimating the context function. For both of
these methods, il was noliced that a smaller p-context array (p = 2 or 3) was
generully more cfleclive in early iterations. For general scenes, nearest-
neighbors seemn lo provide Lhe most useful contextual information, but when
contextl arrays of fewer Lhan four nearest neighbors are used, it is nol clear
which neighbors should be used. The praclical effectiveness of the classify-
and-count and power methods could be improved if an effective prediclor of
the optimal p-conlext array could be found.

One could discover the oplimal p-context arrays at each iteration by sim-
ply performing a large number of contextual classifications over a training
set. This could be quite Lime consuming, however. A more desirable solution
would be Lo predict the optimal p-context array al each iteration from some
characteristic of the data such as a '"context measure" before actual
classifications are performed.

Suppose thal the conlext function, G(9¥%) is such that it can be written in

product form, i.c.,
C(BP) = Cy() Ca(8") (87)

where ¥' and 9" are, respectively, q and p-q vectors of classes. The clernents
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of ¥' are identical to the first q elements of ¥7, and the elements of ¥" are

identical to the last p-q eclements of ¥, If this factorization can indeed be

realized, equation (9) can be rewritlen as

d(Xy) = the action ¢ which maximizes

LE m(g)ﬁﬂkak) LY Ca(9) IPI S (X 19) (38)
'en? k=1 BUenr v, k=g+1

0P=u

where the ¥;, k=1,2,...,p, are the elements of ¥*. Since the term in the first
set of brackets is independent of the decision a, it is just a constant factor
rclative to the decision process and can be ignored when classifying the point
at (i.j).

If G(¥P) can be factored as in equation (37), then ¥' and ¥" are slalisli-
cally independent. This suggests that a measure of departure from indepen-
dence of ¥ and ¥" may be useful as a measure of additional contextual infor-
mation carried by Lhe pixel positions in ' over Lhal carried by Lhe pixel posi-

tions in ¥". One rmecasurc of this departure is
2
DY [01(;12’)‘0;-_(12”) - G(¥?) (39)
VPP

where C (') and Cp(8") are marginals of G(9¥”). Thus the departure of the
factorizalion of G(9¥P) into its marginals from a Llrue factorizalion is here
defined as the "contlexl measure” AGY.

To investigate the use of the context measure AG? in predicting the
optimal p-context array we use the [ollowing approach. Establish ¥" as a

fixed (p-g)-dimensional classification vector which we shall call the "core
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array". Calculate the values of AGY for various g-dimensional classification
vectors ' with elements distinet from the core array. Only those o-
dimensional arrays that are expected to add significant contextual informa-

i tion need be invesligaled. The best p-context array would be the (p-q) pixel

localions of ¥" combined with the q pixel locations of the ¥' Lthat produced
the largest value for AG?. Of course, Lhis assumes thal the contextual infor-

mation contributed by the ¥' pixel locations is nol so erroneous as to actually

? decrease classification accuracy. This may not be a reasonable assumption in
all cases as we will sec in some of the real data Lests thal are reported later
in Lhis chapler.

AC? was tesled as a context measure to predict the best p-context array
in terms of relative pixcl locations as shown in FFigure 14. Usually pixel loca-

; tion 5 was Lhe pixel to be classified. In some cases pixel location 1 was used

| as the pixel to be classified.

| !

1 2 S ‘

‘i

4 5 6 |

—

‘ Lo 8 || 9 ‘
1 |

Figure 14. Pixel locations used in testing AG?.

The first test of AGY was performed on the simulated data with spectral-
class context functions estimated by tabulalion frcn: a the reference

classification (the "ground truth"). One-neighbor contexl was considered. As

e taiasie o e

can be seen in Table 13, AGY clearly predicted Lhal the besl neighbor Lo use
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for context would be one of the four nearest neighbors (pixel positions 2, 4, 6
or 8). It was nol conclusive from the tabulaled results whether any particular
nearest neighbor was better than the others as context. Nevertheless, this
test seemed to indicate that ACY works quite well when the context is per-
fectly known.

Table 13. ACP tested on simulated data with contexl functions determined
from reference classifization.

. .:
' A " Accuracy, % E!
‘f Pixel Pixel AC Ex101 Overall Average- ll
Location Localion by-Class_J:
8 5 5.09 92.7 74.0 1!
! 2 5 4.99 91.6 73.5
%’ 4 5 4.90 91.7 718 |
|
', 6 5 4.90 91.7 73.9 E
'ﬁ 7 5 3.42 90.8 71.2 ;‘
3 5 3.31 90.4 69.8 j
F- 5 3.26 90.6 706
1 5 8.19 90.6 70.1 n_j
| |
;: 7 1 2.58 90.3 66.6 |
’; 3 1 2.27 90.2 708
: 8 1 1.98 89.4 67.9 5
1 6 1 1.87 90.4 70.2
i 9 1 1.63 89.9 a5 !
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AGY was tested again on simulated data, but with the context function-
estimated using the classify-and-count method. Here the context should still
be fairly accurate, since the classify-and-count method did perform well on
the simulated dala set. Table 14 shows thal AGP correlates fairly well with
classification accuracy.

Table 14. AG;}’ tested on simulated data with context functions estimated
from uniform-priors non-contextual classification.

v " Accuracy, %
Pixel Pixel AG Ex 105 Overall Average-
Liocatlion Localion by-Class
8 ) 7.56 79.9 81.7
2 5 7.30 79.1 B1.9
4 5 6.13 78.8 80.8
6 5 6.11 79.0 81.4
7 5 4.71 78.8 80.9
3 5 4.53 78.8 80.6
9 5 4.28 78.4 80.8 .
1 3) 4.22 78.3 79.7
7 1 3.77 78.5 80.9
8 1 2.73 78.0 80.0
3 1 2.66 78.0 80.9
8 1 2.31 78.0 80.8
9 1 2.17 78.0 80.1
J
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The first real-data Lest of ACP was performed on the Bloomington, Indi-
ana, data sel described in Chapter 1lI. The results are displayed in Table 15,
Here the differences in the value of Lhe contexl measure AG# were nol well
correlated with the accuracy of the classificalion results. Similar resulls
were seen in a test using Lhe LACIE dala set described in Chapter 1IV. [t may
be thal in these real data cases, the context as estimaled from the non-
contextual classification is not sufTicienlly accurale for the context measure
to function properly as a predictor of the best p-conlext array.

Table 15. ACP tested on Bloominglon, Indiana, Landsal data set. Conlext
functions estimated from uniform-priors non-conlextual classification.

v Ca Accuracy, % ]II

Pixel Pixel AG Ex 105 Overall Average-

| Localion Location by-Class :
4 5 7.69 84.2 83.8 |

| 6 5 7.68 84.6 B4.1 |
;{ 2 5 5.40 85.2 84.8 |
5[ B 5 5.31 83.8 83.4 ||
.r 3 5 3.79 84.2 83.8 ;
g 7 5 3.61 84.0 83.5 ‘
1|| 1 5 3.04 84.4 84.1
(- 5 2.96 83.7 B2 |
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Tests with the power method wore performed on the two real data sets to
see how significant this failure of AC¥ to predict some best p-context array is
in these cases. Table 18 summarizes the results of two iterations of the power
boolstrap method in which various two-neighbor contexts were used in the

first ileration. Four-nearest-neighbor context was used for the second ilera-

tion.

Table 16. Power method results for various pixel locations of the two-
neighbors used for first iteration context. Classified pixel location is localion
5. Second iteralion uses four-nearest-neighbor context.

2nd lteration Accuracy, %
1st [teration Best PowerBest Power

Data Set Context 1st 2nd Overall Average-

Pixel Locations Iteralion lteration __By-Class
LACIE 2&4 15 10 86.7 75.6
LACIE 2&8 15 10 86.7 75.8
LACIE 4 &6 15 10 86.7 75.6
Bloomington 2&8 10 5 598.5 87.5
Bloomington 2&8 10 5 88.8 87.8
Bloormnington 4 &8 7 3 88.2 88.2
Bloomington 4 &8 10 5 89.7 89.2
Bloomington 3&7 7 3 87.2 87.1

For nearest-neighbor context, the choice of 1st iteration context makes
virtually no difference for the LACIE data set in terms of 2nd iteration accura-
cies. There are some differences in the Bloomington data set results. As
might be expected, the non-nearest-neighbior case (1st iteration pixel loca-
tions 3 and 7) produced a lower 2nd iteration accuracy. It would not be

expected from the results of Table 15 that nearest-neighbor pixel locations 4
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and 8 would produce better classificalion accuracies.

IL should be remembered thal Lthe Bloominglon dala set results are
evaluated from jusl over half the pixels in the D0-pixel square scene (1317 pix-
els) while the LACIE data set is evaluated from ground truth over the enlire
50-pixel square scene. Also, the Bloominglon dala set ground truth was
derived from aircraft infrared photography while the LACIF ground truth was
from a ground survey. The combinalion of Lthese facls may serve to make the
Bloomington dala set results sufficiently noisy Lo make the varialions in Lhe
accuracies displayed in Table 16 are not statistically significant.

If indeed no one particular nearest neighbor is belter as context in these
two real dala ceases, it remains to be explained why ACGP produced a larger
value for pixel localions 4 and 6 versus pixel locations 2 and 8 on the Bloom-
ington data scl. (Table 156) and on the LACIE data set (not shown). An interest-
ing fact that comes to mind is that Lhe Landsat sampling rate is significantly
finer in the arross-track direction than for the along-track direction. The
neighhoring pixels which are geographically closer to the pixel in question
should show more sltatistical correlalion to that pixel than Lhose neighbors al
a larger geographical distance. Thus, we should expect Lthat AGCE would pro-
duce larger values for Lhe pixels in Lthe across-track direction (pixel localions
4 and 8) than fer the pixels in the along-tracik dircclion (pixel locations 2 and
8) from Landsal sampling characteristics alone. Unfortunately, the sampling
difference reflected in the values of AC had no consistent effect on the per-
formance of individual necarest-ncighbor pixels as conltexl for contextual
classification.

The above resulls indicate that ACP is not a useful predictor of the

optimal p-conlext array. However, the results presented in Table 11 suggest
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that such a predictor may not even be necessary for the optimal use of the
classify-and-count and power methods. Also, in Chapter IV we saw thal the
ground-Lruth-guided and unbiased context funcltion estimalion melhods poer-
formed consistently well with four-nearest-neighbor context, All of Lhese

results tend to obviate the need for a predictor of the optimal p-context

array.
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CHAPTER VIII - SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

This paper has explored the theorelical basis and implementation of a
general statistical classification decision rule which exploits both spatial and
spectral information when classifying multispectral irnage data. A contextual
classifier based on this decision rule depends only on general contexbual
informalion, and can, in principle, be used to advantage on any remotely-

sensed multispectral image data sct.

Summary of Results

Tine theoretical derivation of the contextual decision rule was presented
in Chapter II. This theoretical development was an eclaboration and
clarification of a development given by Swain and Vardeman in [3]. 1t was
noted in Chapter I thal the optimal decision rule cannot be implemented in
practice since it depends on the context function, C(_1_9_P). and the class-
corditional densities, f (X |®:), which are unknown. Thus, the performance
of the contextual classifier depends directly on how well G(9?) and the
S (X | ) can be estimated.

Methods for estimating the class-conditional densities are well esta-
blished from considerable experience with the non-contextual maximum likel-
ihood decision rule. One of the principal research topics of this paper has
been the development of efiective and practical methods for estimaling the
context function. A simple method for estimating the context function, the

classify-and-count melhod, was explored in Chapter IIl in tests on simulated
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and real Landsat data sets. The results of thesc early exploratory experi-
ments pointed to the three main arcas of research described in the remain-~
ing chapters of the paper.

The poor performance of the classify-and-count method on real Landsat
data sets pointed to the need for a better context function estimation
method. Speculation on the reasons for the inadequacy of the classify-and-
count method led to the formulation of two alternative methods: the ground-
truth-guided method and the power method (Chapter 1V). The reported tests
have shown the ground-truth-guided method to be an eflective and practical
method, provided that suflicient ground truth is available in spatially contigu-
ous blocks. While the power method does not need such special ground truth
and can provide significant improvements in classification accuracy, the
power method turned out to be impractical to use. An unsucrcessful attempt
to develop a context measure to use in conjunction with the power method
(and the classify-and-count method) to improve its practicality was described
in Chapter VI,

For cases where sufficient spatially contiguous ground truth is not avail-
able for estimating the context function, an unbiased estimation method was
developed (Chapter IV). This unbiased estimator has the additional advantage
of being amenable to an adaptive implementation, so that the resulting con-
text function estimate is more closely tailored to local conditions in the
image data.

The second research problem area suggested by the early experimental
resultsg is the need to reduce the computational complexity of the contextual
classifier. An approx;mate algorithm was developed (Chapter V) which
requires less than half of the computer time taken by the original implemen-

tation in the tests performed. A faster hybrid algorithm was also suggested in
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Chapter V but is not yet perfected. It was further noted in Chapter IV that a
pure information-class formulation of the contextual classifier is significantly
less computationally intensive than a formulation involving spectral classes.

The third research problem area involved certain assumptions made in
the original implementation of the contextual classifier. Chapter VI explored
in detail the relative merits of using spectral classes or inforrnation classes as
the basis of conlext function estimation and classification when using the
classify-and-count method. The ennclusion drawn was thal in this case, for
real Landsal dala sets, the contextual classifier performed better when the
context function was estimated in terms of information classes. No
significant difTerence in performance was observed when the classification
was done in Lerms of spectral classes or in terms of information classes. In
Chapter IV we noled that a pure spectral-class formulation performed slightly
better with the ground-truth-guided method and that a pure information-
class formulation performed best with the unbiased estimator. This question
will be mentioned again in the discussion of directions for further research.

A second assumption included in the third research arca was the class-
conditional independence assumplion represented by equatior (8) in Chapter

II. This assumption has yet te be studied (see below).

Directions for Further Research

The research presented in this paper suggests further study in two direc-
tions. One would be to pursue the theoretical foundations of the contextual
classifier, in particular the effect of the class conditional independence
assurmption. Another direction of study would be Lo investigate a practical
implementation of the contextual classifier which can be used eflectively with

data sets larger than the 50-pixel-square data sets employed throughout the
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present study. We address the implementation question first.

Two particular implementations of the contextual classifier are good can-
di“*ates for further study. These are implementations which use (a) the
..+ ~uand-truth-guided method and (b) an adaptive version of the unbiased esti-
¢+ alion method Lo estimate the context function. In either case, the approxi-
mate algorithm should be employed. Research into the hybrid algorithm
should be pursued and, if research results are favorable, this algorithm
should be incorporated into the implementation.

Implementation Using the Ground-Truth-Guided Method. On the two 50-

pixel-square data sets tested, the ground-truth-guided method produced
classification accuracies significantly better than those produced using the
unbiased estimation method. It should be noted, however, that in these two
cases fully one-half of the data set was designated as the training set for the
ground-truth-guided method. In practical classification problems using much
larger data sets, it is usually the case that ground truth is available for only
ten percent or less (often less than one percent) of the data set. We expect
that this smaller percentage of ground truth data will decrease the
effectiveness of the ground-truth-guided method.

As noted earlier, the spectral-class formulation of the ground-truth-
guided method produced somewhat higher classification accuracies than the
information-class formulation. Because the information-class formulation
requires less than half the computer time required by the spectral-class for-
mulation, this becomes a factor of importance for larger data sets. If Lhe
information-class formulation continues to give poorer classification results
for larger data sets, it should be attempted to discover a variation on the
present information-class formulation that does not give poorer results. How-

ever, we expect that on larger data sets the present information-class
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formulation will produce higher classification accuracies than those produced
by the spectral-class formulation. As nolted in the previous paragraph, the
ground-truth-guided method may not produce as accurate an estimate of the
context function for larger data sets. This is likely to cause the information-
class forrmulation to perform relatively betier as it is less sensilive to estima-
tion errors (see Chapter VI).

Implementation Using the Unbiased Eslimalor. The present adaptive

information-c ass formulation of the unbirsed estimator requires significantly
less computer time than the other formulations tested. This is because this
formulation produces fewer non-zero elements in the estimate of the context
function than is the case for any other formulation. Further, the adaptive
information-class formulation gave either approximately the same or
significantly better classification accuracies than any other unbiased-
estimator formulation. One guestion thal necds to be resolved for the adap-
tive information-class formulation f{or a larger, practical-sized data set is the
selection of generally optimal classification and estimation data block sizes.
For the three small-scale data sets tested, estimating the context function
from a 20, 25, or 35-pixel-square block of data centered on the corresponding
10, 17, or 25-pixel-square classification block seemed to be optimal depending
on the-data set tested. It remains to be seen whether one particular choice of
data block size will be nearly optimal for most or all larger data sets. For-
tunately, classification accuracies do not seem to be highly sensilive to the
size of the dala blocks chosen.

Although the present version of the adaptive information-class formula-
tion uses less computer time than other formulations of the unbiased esima-
tor, the present version can still be improved substantially in this regard by

removing redundant calculations and storing the context function estimates
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in main memory rather than writing the estimated relative frequencies in an
external file. It should be noted that, for even moderate values of p (the
number of pixels in the p-context array), sloring the context function esti-
mate in main memory would be impossible if a spectral class formulation
were used. There would not be enough space to store all the non-zero entries
of a spectral-class context function.

The Class-Conditional I~dependence Assumption. The original derivation

of the contextual classification algorithm assumed class-conditional indepen-
dence among all image locations. It would be of interest to investigate the
implications of this assumption. A method for experimentally investigating
these implications is outlined below.

For contextual classifications using an arbitrary p-context array, the
class-conditional density f(X;;|®) of equation (7) could be estimated by
clustering in a manner similar to the way the densities f (X |¥) of equation
(9) are estimated (see [1]). In this case, however, the clustering would be
done based on the nxp dimensiona' X;; rather than the n-dimensional Xj.
Significant clusters of the observa''~r. .ectors, Xij, could then be identified
with a particular classification vector, QP, and the multivariate normal
approximation for f()_fijlgp) could be used. Clustering done in such a way
would provide class-conditional densities f (X;;|#”) without an independence
assumption for use in comparison to classifier tests using class-conditional
densities assumed to be independent among all image locations.

The use of the class-conditional density f (X |97 ) presents the practical
problem of eflectively working with a multispectral data set with a very large
number of channcls. Some of Lhe dimensionalily reduction technigues used
in working with olher large-dimensioned data sets may be necessary in this

case.
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