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ABSTRACT

Compound decision theory is employed to develop a general statistical

model for classifying image data using spatial context. The classification

algorithm developed from this model exploits the tendency of certain

ground-cover classes to occur more frequently in some spatial contexts than

in others. A key input to this contextual classifier is a quantitative character-

ization of this tendency: the context function. Several methods for estimat-

ing the context function are explored, and two complimentary methods are

recommended. The contextual classifier is shown to produce substantial

improvements in classification accuracy compared to the accuracy produced

by a non-contextual uniform-priors maximum likelihood classifier when these

methods of estimating the context function are used. This improvement in

classification accuracy is paid For by a substantial increase in computational

requirements. An approximate algorithm, which cuts computational require-

ments by over one-half, is presented. Further reduction in computational

requirements may be possible with a suggested hybrid algorithm. The search

for an optimal implementation is furthered by an exploration of the relative

merits of using spectral classes or information classes for classification

and/or context function estimation. finally, an unsuccessful attempt to dev-

ise a context measure for use in conjunction with context function estimation

is described. Recommendations for further research are included in the con-

eluding chapter.
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CHAPTER I - INTRODUCTION

The machine classification of multispeetral image data collected by

remote sensing devices aboard aircraft and spacecraft, has usually been per-

formed such that, each pixel (picture element) is classified individually and

independently [1]. The information used by this classifier- is only spectral or,

in some cases, spectral and temporal. There is no provision for using the spa-

Lial information inherent in the date. In contrast, when scanner data are

displayed in image form, a human analyst routinely uses spatial information

to establish a context for decidLig what a particular pixel in the imagery

might be, Using this context together with spectral information, the analyst

may easily identify roads, delineate boundaries of agricultural fields, and

differentiate between grass in an urban setting (e.g., lawns) and grass in an

agricultural setting (e,g., pasture or forage crops) where a poinL-by-point,

classifier utilizing spectral information alone would have much difficulty in

doing so.

The ECHO (Extraction and Classification of Homogeneous Objects) pro-

cess is a variety of contextual classifier which has been found. useful for clas-

sifying data sets which contain homogeneous objects that are large compared

to the resolution of the imagery [2]. This classifier cannot be used effectively,

however, if the data set, does not contain a significant, number of these large

homogeneous objects.
i
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A general statistics.) classification method which exploits both spatial and

spectral information when classifying multispectral image data is the subject

of this paper. This contextual classifier exploits the tendency alluded to ear-

lier of certain ground-cover classes to be more likely to occur in some con-

texts than in others. In principle, this classifier can be used to advantage on

any image data set, even those that do not have identifiable homogenous

objects such as is generally the case in forested, urban and other inhonio-

geneous areas. However, the relatively high computational complexity of the

contextual classifier limits its use to classification problems where the

expected increase in accuracy is worth the increased computation cost.

The theoretical basis of this statistically based contextual classification

algorithm is presented in Chapter II. This theoretical development is an ela-

boration and clarification of the development given by Swain and Vardeman in

[31. Chanter III presents exploratory experimental results including an

evaluation of the performance of the algorithm on data which is simulated so

as to meet the assumptions of the classification model and preliminary

results of applying the algorithm to real Landsat data. Research problems

indicated by these results are discussed at the end of Cha,-iter III. The ensu-

ing chapters discuss these research problems in detail.



CHAPTER II - THEORETICAL BASIS AND CLASSIFICATION MODEL

Consistent, with the general characteristics of imaging systems for

rer.Lote sensiitg. wo g ssurne a two-dimensional array of N :-N 1 xN 2 random

observations X j having fixed but unknown classification 0 tj , as shown iii Fig-

ure 1. The observation Xti consists of n measurements (usually containing

spectral and/or temporal infcrmation), while the classification 0tj can be any

one of m spectral or information classes* from the set 0 = iw1,w2,...,w,,,,J.

1911 19 12	 191N2

19 21 19 22	 '02N2

19N11	 19N1N2

Figure 1. A two-dimensional array of N=N 1 xNu pixels.

Lot  denote a vector whose components are the ordered observations:

X = [XtjIti= 1,2,...,Nt;j=1.2,...,N2]T.

* Spectral classes are spectrally differentiable subclasses of information
classes (the classes of interest).
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Similarly, let 19 be the vector of states (true classifications) associated with

the observations in X:

= [,6Qjj Ii= 1,2,...,Nl;j=1,2,...,N2]7'.

Let the action (classification) taken with respect to pixel (i,j) be denoted

by agcQ. The loss suf.-Tered by taking action a; ,j when the true class is 19z, is

denoted by NO ij ,aij ), for some fixed non-negative function In the most

general case, the actions aid may be a function of all the observations in X.

For this case, the average loss suffered over the N classifications in the

classification array is

The expected average loss (or risk) is then

	

R,0 = E 1 Z A ( "6i1 ,a j(X ))I	 (1)iN 2 .i	 1

where the expectation is with respect to the distribution of the vector of

observations.

Our goal 'M to determine the dependence of the decision function azj(,)

on X in such a way that, for any given classification array 2, the risk R,y will

be minimurn. One way to approach the problem of making Rey small is to view

29 as a realization of a random process in two dimensions and to derive a deci-

sion rule which is Bayes versus this "prior distribution" for z9. Simplifying

assumptions concerning the nature of this process are generally made to find

an associated Bayes rule which is both simple and has small R ey for most z9.

This is the approach of Welch and Salter [4], who make assumptions on the



5

random process sufficient. to guarantee that the Bayes decision conceri.ing

pixel (i,j) depends on X only through Xij and the four riearest'neighbors of the

pixel.

Rather than looking for a prior distribution for 0 and an associated

Bayes decision rule, we will adopt; an approach for controlling R 'y through

aij () that is more closely related to the large body of statistical literature

traceable to Robbins [5], and known as compound decision theory. See, for

example, the works and references of Van Ryzin [8,7], and Vardeman [8].

The following notation will be useful. Let •i9P EOP and XP E(R")P stand

respectively for p-vectors of classes and n-dimensional measurements; each

component of !9P is a variable which can take on any classification value;

each component of XP is a randon, n-dimensional vector which can Lake on

values in the observation space.

Now we restrict the decision function aij () to depend only on a specified 	 .

subset of the observations in X. This subset includes, along with Xij , p-1

observations spatially near to, but not necessarily adjacent to, Xij . These p-1

observations serve as the spatial context for XV and are taken from the same

spatial positions relative to pixel position (i,j) for all i and j. Call this arrange-

ment of pixels together with Xij the p-context array, several examples of

which are shown in Figure 2. Group the p observations in the p-context array

into a vector of observations Xii = (X i,X2,..,,XP ) T and let t9ij be the vector of

true but unknown classifications associated with the observations in Xij . Note

that the i3ij and Xij are the particular instance of i9P and XP associated with

pixel position (i,j). Correspondence of the components of Oi j , Xij, OP and XP

to the positions in the p-context array is fixed but arbitrary except that the

Pch components always correspond to the pixel being classified.

y
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a p=2 choice	 a p=2 choice

i,j-1	 i,j	 i,j-1	 i,j	 i,j+1

i+l,j

a p=3 choice
a p=5 choice

Figure 2. Examples of p-context arrays.

We shall seek an optimal decision rule of the form

ajj ( ) = d (Xij )	 (2)

for a fixed function d(-) mapping p-vectors of observations to actions. This

decision rule is independent of location, depending only on the values of the

observations in the p-context array and their relative locations. It provides

the classification for the pth pixel in the p-context array. The risk associated

with any rule of this form is, from equation (1),

R 1 =E ' Y, X ( t9 ij, d (Xtij))
1 
= N E EjX(Ojj,d(Xjj)l1

i.j	 i.j

	

1	 r, E L X ( i92 ,dLXij))]N Enp i.j with
3?ij = 9P

(3)
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where 0, is the pth element of Op . If we require that the distribution of X is

such that every Xij for which dij = 3' has the same marginal density, i.e., the

marginal densities depend only on the measurement values in Xij and the set

of classifications in -Oij and not the location (i,j), we can then write

fv t% 1'^ij =19P ) = f (' I a9P ).	 (4)

Writing equation (3) in more detail using the class-cond;tional density

f (- 1 .2P ), we have

	

R,o = Z N 	 f X(i9p.d(XP))f (XP 2P )d:jYP
iOPP-nP	 .j with

3?tj = tiaP

= F, 0 (2P ),f X (i9P d(XP)).f (XP  I i9P)q-`
19 Cap

	

f F, 	 P))f (XP Iz9P )dXP 	 (5)
OP GOP

where C the "context function," is the relative frequency with which '19P

occurs in the array 2. For any array 0, a decision rule d (XP ) minimizing R O

can be obtained by minimizing the integrand in equation (5) for each XP;

thus for a specific Xij (an instance of XP ), an optimal action is:

d (Xij) = the action (classification) a which minimizes

Z C(2P ) a(i9P , a )f (Xij Ii9P)
	

(6)

v9P C nP

rs

x
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In practice, a "0-1 loss function" is usually assumed, i.e.,

_ 0, if 0 = a
^(^' a) — 1, if O X a

Then equation (6) simplifies and the decision rule becomes:

d (Xij ) = the action a which maximizes

F G (?gyp ).f (Xij 12P	 (7)
34P a nP .
lop =a

A further assumption we make at this point is class-conditional indepen-

dence of the observations (pixels) comprising X. In this case,

.f (-ij 12P )  = A  (Xk I 19k)	 (8)
k=1

where Xk and 14 k are the k  elements of Xij and Op , respectively. Evidence

that this is a reasonable assumpution may be found in [9]. An approach for

studying the effect of this assumption on this particular problem is also sug-

gested in Chapter VIII. Invoking the class-conditional independence assump-

tion, the decision rule (7) becomes:

d (Xij ) = the action a which maximizes

Z G (z9p ) h ,f (Xk I 'Ok) •	
(9)

•i9penp,	 k=1

lop =a

If the term f (Xp I a), corresponding to the pixel to be classified, is factored

out of the sum the specific contribution due to context is mad ,: more

apparent:
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Z C (.2P )_"Y f (Xk 1 ,0k) f (Xp I a) ,
2PCnP,	 k=1
^p =a

The context contribution is the term in brackets.

The optimal choice of d(-) cannot be implemented in practice since it

depends on G (2P ) and the f (Xk 1 19k) which are unknown. Methods for

estimating the f (Xk I O k ) are well established from considerable experience in

using the conventional non-contextual maximum likelihood decision rule [1].

When the classification set 0 consists of spectral classes, the f (Xk I13k) are

assumed to be multivariate normal densities. In the case where the

classification set 0 consists of information classes, the f (X)L. 1,00 are assumed

to be weighted sums of multivariate normal densities.

Methods for estimating G (iP) are riot so well established as those for the

f (Xk 1190. We can, however, expect that, at least for large N = N 1 xN 2 , a deci-

sion rule in which G (19r') is replaced by an estimiaLe f;( z9 ) based on the: Xi.

will have risk R,y appoximating that of the optimal rule. (We call this the

"bootstrap effect.") That this is the case when p = 1 (equivalent to an optimal

pointwise classifier with estimated a priori probabilities) and suitable forms

of estimation are used is a consequence of the work of Van Ryzin [6]. The

notion of attempting to approximate the risk of the best rule of the form

shown in equation (2) for p > 1, given its first general treatment in Gilliland

and Hannan [10], has not been as thoroughly studied as the p = 1 version.

But related work for p > 1 in sequence versions of compound decision theory

[11] suggests the validity of the generalization.

Comparing equation (6) with the results of Welch and Salter [4] and rein-

terpreting the C(2P ) as the marginal of an a priori distribution for 0, one

}
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may view equation (6) as a generalization of the Welch and Salter contextual

classification rule. The advantages of the present formulation are that one

need make no possibly unrealistic assumptions about the distribution for 19

and has corriplete freedom to choose both p and the form of the p-context.

array. There are situations (e.g., locating clouds and their associated sha-

dows in a scene) in which context arrays other than those involving immedi-

ately neighboring pixels would be useful, a possibility unique to this approach.

if
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CHAPTER III - EXPLORATORY EXPERIMENTS AND DISCUSSION

The earliest experiments performed with the contextual classifier were

exploratory in nature. The classifier concept feasibility was first established

using simulated data, and the easiest and most obvious implementation of the

contextual classifier was then used for a. real Landsat data test. The test

results from this implementation pointed to several research problems which

are taken up in the following chapters.

Simulated Data Experiments

The initial experiments exploring the effectiveness of contextual

clu sification using the set of discriminant functions defined by equation (9)

to classify multispectral remote sensing data were performed on simulated

data by Kit and Swain [ 12]. Simulated data were used so that the

classification method's characteristics could be investigated undisturbed by

unkown ef3ects due to deviations of real data from the assumptions underly-

ing the classifier. Each simulated. data set was based on a non-contextual

classification of multispectral remote sensing data which had been judged to

be very accurate (produced by careful analysis of multitemporal data). Such

a classification could be expected to embody the contextual content of the

actual ground scene. Using the classification map and the associated

estimated mean vectors and covariance matrices of the classesdevelo ed in(	 P	 ^a

performing the non-cor, ,ext.ual classification), data vectors were produced by

a Guassian random nuraber generator and. composed into a new data set.

i
4
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Thus the new data set had the following characteristics;

1. Each pixel in the simulated data set represented the same class

as in the "template" classification. We will refer to this template as

the "reference classification."

2. Alt ciasses in the data set were known and represented.

3. All classes had multivariate Gaussian distributions with parame-

Lers typical of those found in real data.

4. All pixels were class-conditionally independent of adjacent pixels.

fi. 11icru wcsr• u no rnixLure pixels.

Data simulated in this manner are somewhat of an idealization of real

remote sensing data, but the spatial organization of the simulated data is

consistent with a real world scene and the overall characteristics of the data

are consistent with the contextual classifier model. In essence, then, the

experimental results based on the simulated data demonstrate the

effectiveness of the contextual classifier, given that the underlying assump-

tions are satisfied. Experiments using the real data are discussed in the sub-

sequent section and chapters.

Three classifications were selected and simulated data sets generated

representing a variety of ground cover types and textures. Data set 1 was

agricultural (Williston, North Dakota), with ground resolution and spectral

bands approximating those of the projected Landsat-D Thematic Mapper.

Data set 2a was Landsat-1 data from an urban area (Grand Rapids, Michigan).

Data set 2b was from the same Landsat frame as 2a, but iron: a locale having

significantly different spatial organization. Each of the simulated data sets

was square, 50 pixels on a side.

Y
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Figure 3 shows the classification results obtained. The "rion-contextual"

classification accuracy is plotted coincident with the vertical axis of each

graph. Data set 1 was classified using successively 0, 2, h, Ei and B neighboring

pixels as context; data sets 2a and 2b were classified using 0, 2, 4. and E3

neighboring pixels. The accuracy improvement resulting from the use of con-

textual information in these simulated data sets was found to be quite

significant..

As noted in Chapter 11, to perform contextual clasificaLions using the

discrirriinanL functions defined by equation (9), it is n !ccssary to have avail-

able the class-conditional density functions for the classes to be recognized,

f (Xi i z9 j ), and the context function, G (i9P ). In remote sensing applications,

the class-conditional density functions are typically estimated from training

samples. For the experiments described above, the f (Xi 113j) were taken to

be the multivariate Gaussian distribitions from which the data were gen-

erated (these were originally the class-conditional density functions used to

produce the reference classification used subsequently to produce the simu-

lated data' An important question is how in practice to determine the con-

text function. In the foregoing experiment, these relative frequencies were

simply tabulated from the reference classification (actually, from an area

somewhat, larger than classified in this test). But in a real data situation,

such a reference classification is not available, else there would be no need to

perform any further classification.

Looking towards extending the work of Kit and Swain to the real data

case, we first investigated a straightforward approach to estimating the con-

text function wherein we tabulated the relative frequencies from a uniform-

priors non-coritexLual maximum likelihood classifeation of the same data.
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Conceivably, one might then reflnc the estimate of the context function by

making anothor estimate of the context function from the initial contextual

classification, and even iterate in this way until no further improvements in

classification accuracy were obtainod. The crucial question here is how sensi-

Live the contextual classification method is to the "goodness" of the context

function estimate.

The potential of this iterative "classify-and-count" method was first

tested on the simulated data set 2a. Prior to this test the classifications

using context functions determined by tabulation from the reference

classification were rerun using a tabulation of the context function from just

the 50-pixel-square area classified, rather than from the larger area (276 x

320) used to obtain the estimate for the results presented in Figure 3. This

was done to provide a better comparison to what could be accomplished using

the iterative classify-and-count method. Also, the results were evaluated in

terms of information classes rather than spectral classes, as was the case in

Figure 3, in order to serve as a better comparison with real data tests.

Using the classify-and-count method, seven iterations (classifications fol-

lowed by re-estimation of the context function) produced an improvement of

22.5 percent in overall accuracy compared to the non-contextual

classification using equal a priori probabilities (from 70.5 percent to over 93

percent). Average-by-class accuracy rose only slightly (from 77.5 percent to

61 percent).* This compared with an increase of over 27.5 percent in overall

* Classification performance can be tabulated in two ways. Overall accuracy
is sirnply the overall number of correct classifications divided by the total
number attempted. Average- by- clrzss accuracy is obtained by first comput-
ing the accuracy for each class and then taking the arithmetic average of the
class accuracies. The latter is significant when the classification results oxhi-
bit a tendency to discriminate in favor of or against a subset of the classes.

i
i=j

ii
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accuracy (14.5 percent In average-by-class accuracy) obtained using the con-

text function tabulated from the reference classification. These results are

summarized in Figure 4.

As seen in Figure 4, several values of p (number of pixels in the p-context

array) were used at each step of the iteration process. At each Iteration, the

best classification found by varying p, as judged by trading off overall accu-

racy against average-by-class accuraL, , was used as the template for the esti-

mate of the context function for the next iteration. The best classification on

the first iteration was obtained for p = 3 (nearest neighbors to the north and

west), which was also the case for the second iteration. For the second itera-

tion, the average-by-class accuarry antuaily was slightly better for p=5 (four-

nearest-neighbors), but the overall accuaacy was substantially higher for the

p=3 choice. On the third iteration, the p=5 choice was selected since the

overall accuracy was only slight:y lower than for the p=3 choice while the

average-by-class accuracy was substantially higher for the p=5 choice. The

best classifications for the fourth and ensuing iterations were also the p=5

choice.

This implementation of the classify-and-count method involves a large

number of classifications, usually three or more per iteration. A simpler

approach would be to do just one classification per iteration and increase the

nuinber of nearest neighbors used for each iteration. As shown in figure 5,

for simulated data set 2a the final result using this method was virtually the

same as for the more involved procedure.

Just how much of the accuracy improvement was due to effectively mak-

ing better estimates of the prior probabilities? After five iterations doing

non-contextual classifications using prior probabilities estimated from the

previous classification (the initial classification was a uniform-priors

t
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classification), the improvement in overall accuracy saturated at 87.1 per-

cent, but the average-by-class accuracy had degraded to 64.7 percent. This

compares closely to the non-contextual classification with prior probabilities

tabulated from the reference classification, which had an overall accuracy of

87.5 percent and an average-by-class accuracy of 65.4 percent. It appears

from this result that the context serves to improve the overall accuracy com-

pared to that of the estimated-priors non-contextual result while resisting

degradation in average-by-class accuracy.

Real Data (Lancisat) Experiments

Having observed excellent perfor •rnance of the contextual classifier on

simulated data, the next step was to see how well it would perform on real

data. A 50-pixel-square segment of four-channel Landsat data was chosen

which included approximately equal amounts of urban and agricultural area

located to the southeast of Bloomington, Indiana. Parameters for the spec-

tral classes were estimated using the 100-pixel-square area centered on the

50-pixel-square segment. A very careful non-contextual classification using

14 spectral classes was performed to delineate agricultural, urban and

forested areas. As there were too few forest pixels to delineate forest test

areas reliably, the classification was tested only for accuracy in discriminat-

ing between the agricultural and urban classes. Of the 2500 pixels in the seg-

ment, a total of 867 pixels were manually interpreted as agricultural and 450

pixels as urban. The identification was made by interpretation of color

infrared photography taken by an aircraft on the same day as the Landsat

pass (June 9, 1973).



The results obtained when using the full classify-and-count method on

this data set were not as favorable as the results obtainc d with the simulated

data. See Figure 6. The non-contextual classification using uniform prior

probabilities had an overall accuracy of 63.1 percent and an average-by-class

accuracy of 82.7 percent. The best classification obtained using this result as

a template to estimate the context function was a p = 2 (one-nearest-

neighbor) classification based on the neighbor to the north (65.2 percent

overall, 84.7 percent average-by-class). Interestingly, the one-nearest-

neighbor result based on the neighbor to the west produced a slighty poorer

classification (84.2 percent overall, 83.8 percent average by class), although

this difference may not be statistically significant. No apparent features in

the scene would account for the difference (i.e., seen by visual inspection),

but there is no reason to expect that Landsat data are strictly isotropic. This

phenomenon will be pursued further in Chapter VII.

A second iteration was performed using the one-nearest-neighbor (north)

classification from the first iteration as template for estimating the context

function. Here the two-nearest-neighbor (neighbors to the north and west)

classification was the best with an overall accuracy of 85.3 percent and

average-by-class accuracy of 84.6 percent. Using the best second iteration

result as template, the best classificaton for the third iteration was again the

one-nearest-neighbor (north) case with 65.3 percent overall accuracy and

64.9 percent average-by-class accuracy. The fourth iteration produced no

further improvement. The contextual classifier thus produced just over two

percent improvement in both overall accuracy anct :' :-erage-by-class accu-

racy.

t
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the classify-and-count, method for estimating the context function. "25 win-
dow" refers to one-nearest-neighbor-to-the-north, "45 window" refers to one-
ne --ire st-neighbor-to-th e-wept.



I'
s

22

The classify-and-count method was also tested on a 50-pixel-square agri-

cultural scene. This was the northwest corner of the Large Area Crop Inven-

tory Experiment (LACIE) Segment No. 1660 in Hodgeman County, Kansas.

This data set was a four-channel Landsat data set collected on April 16, 1976.

The class-conditional densities were estimated for the 16 spectral classes

from randomly located training fields scattered throughout the entire 117-

by-194-pixel Landsat data frame. The training fields were chosen by selecting

pixel coordinates from a random number table and surrounding the selected

pixel by the largest homogeneous rectangle up to field size 20-by-20. The

classifications were tested for accuracy over five information classes (pas-

ture, idle, wheat, corn and alfalfa) from "wall-to-wall" pixel-by-pixel ground

truth.

The results obtained using this LACIE data set are summarized in Figure

7. Here the non-contextual classification using uniform prior probabilities

had an overall accuacy of 78.7 percent and an average-by-class accuracy of

72.0 percent. The best classification (after five iterations) was a p=9 (eight-

nearest-neighbors) classification with 80.5 percent overall accuracy and 73.0

average-by-class accuracy. Thus, the contextual classifier could only manage

here a 1.8 percent improvement in overall accuracy and a 1.0 percent

improvement in average-by-class accuracy.

Research Problems Indicated by the ExAloratory Experiments

In the previous sections we saw that, on simulated data, the classify-and-

count method produced estimates of the context function which in turn pro-

duced substantial improvements in classification accuracy. The classify-and-

count method did not produce such good results with real Landsat data. It
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seems that for real data, the uniform-priors non-contextual classification is

not a sufficiently accurate representation of the scene context to serve as

basis for making a context function estimate which would lead to improved

classification results. It may be that the classification of the simulated data

was accurate enough because the class-conditional densities, f (Xk 119 k ), were

modeled exactly, whereas the class-conditional densities were not modeled

exactly for the real data classifications. The inaccuracy of the model in real

data cases may contribute to producing estimates of the context function,

C(2P ), which contain more erroneous class configuration counts than in the

simulated data case. Such erroneous counts would cause poorer contextual

classification results. Also, as we will see in Chapter IV, the classify-and-count

method generally introduces a statistical bias into the context function esti-

mate which would further contribute to the poor results observed. Whatever

the reason for the poor performance of the classify-and-count method on real

data, a better method for estimating the context function,is needed. Chapter

IV addresses this problem.

A second research problem area pointed out by the early experimental

results is that a straightforward implementation of the contextual classifier is

very computationally intensive. Depending on the number of neighbors used

as context, the contextual classifier implemented on a PDP-11/45 computer

needs anywhere from X hour to 6 hours elapsed time to classify a 50-pixcl-

square data set. Chapter V looks into strategies for reducing computational

requirements.

A third research problem area involves certain assumptions which were

made in the implementation of the contextual classifier used for the tests

presented earlier in this chapter. First, the classification set. 0 was assumed
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to consist of spectral classes rather than information classes, and

classifications were always made into spectral classes rather than informa-

tion classes. This assumption is explored in Chapter VI. A second assumption

was the class-conditional independence assumption represented by equation

(B) in Chapter II. An approach for studying this assumption is discussed in

Chapter VIII as a part of a discussion of areas for further research.

Chapters IV through VIII detail various approaches for dealing with these

research problem areas. How these approaches relate to the main research

problems and to our major goals of (a) advancing the theoretical understand-

ing of this problem and (b) developing a contextual classification algorithm

for use in practical problems is summarized in Figure B. The solid lines

represent connections of major significance, while the dotted lines represent

less significant connections.
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CHAPTER IV - CONTEXT FUNCTION ESTIMATION

As we saw in Chapter III, the classify-and-count method of context func-

tion estimation produced unsatisfactory results for real Landsat data. These

poor results spurred us to search for alternative rneLhods of estimating the

context function. Before we can discuss these alternative methods, however,

we must briefly mention the spectral-class-versus-iriformaLion-class question,

since this question has some effect on the estimation methods to be dis-

cussed.

The contextual classifier implementation described in Chapter III per-

formed classifications into spectral classes and used context functions taken

over spectral classes. Information classes could have been used for either or

both of these purposes. One could:

1. estimate the context, function over spectral classes and classify

into spectral classes (a pure spectral-class formulation), or

3. estimate the context function over spectral classes and classify

into information classes, or

3. estimate the context function over information classes and clas-

sify into spectral classes, or

4. estimate the context function over information classes and clas-

sify into information classes (a pure information-class formulation).

r

r.4

ati
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These four options are explored in detail in Chapter VI. Having mentioned

these implementation options, we can now turn to the search for effective

context function estimation methods.

Ground-Truth-Guided Method

One alternative to the classify-and-count method is what we call the

"ground-truth-guided method," The ground-truth-guided method is based on

the idea that ground-truth information, if available, should improve the con-

text function estimate when incorporated into the estimate. In this method,

representative po- Lions of the ground truth data are designated as a training

sct for estimating the context function and a test set for evaluating the

classification results. The ground-truth data used for context function esti-

mation must be in spatially contiguous blocks of size somewhat larger than

the p-context array. The ground-truth data are, of course, represented in

terms of information classes. When the estimation is to be done in terms of

spectral classes rather than information classes, the following method is

used;

1. Perform a non-contextual classification of the training set using

uniform prior probabilities allowing the classifier to choose only
r

among spectral classes associated with the information class desig-

nated by the ground truth.

2. Estimate the context function by tabulation from the resulting

100-percent accurate classification of the training set.

3. Classify the entire scene with the contextual classifier and evalu-

ate the results o\,cr a test set disjoint from the training set.
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Whorl the estimation is to be done in terms of information classes, the res-

tricted spectral class classification in stop 1 above must still be performed. In

this case, however, this classification is used to provide (by tabulation) an

estimate of the weights for the weighted sums of normal densities that make

up the class-conditional densities over information classes. The weights

represent the relative frequency of observing a spectral class given that a

particular information class was observed. The entire scene is then classified

in terms of information classes using the contextual classifier, and evaluated

over a test set disjoint from the training set, as in the spectral-class case,

Both the spectral- and information-class formulations (options 1 and 4)

of the ground-truth-guided method were tested on two 50-pixel-square

Landsat data sets. One data set was a LACIE data set from Hodgeman County,

Kansas, containing pasture, wheat corn and fallow fields. This is the same

data set described in Chapter III, except that two confounding spectral

classes have been eliminated from the set 0, leaving a total of 14 spectral

classes. The other data set was from Tippecanoe County, Indiana, containing

residential and commercial areas in northern Lafayette and West Lafayette as

well as areas of forest, agriculture and water (the Wabash River). This data

set was a four channel Landsat data set collected on June 20, 1976. Ground

truth was obtained by visual inspection of large scale black and white aerial

photographs taken on March 9, 1976 supplemented by ground inspection per-

formed in January 1981. For both the Tippecanoe and LACIE data sets, the

restricted spectral-class classification was performed over the first 25 lines of

the data set and Lhe context function was estimated over those 25 lines. Con-

textual classifications of the scenes were performed and classification
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accuracies were evaluated over the last 25 lines as well as over the entire

data set.

Tables 1 and 2 present the results from contextual classifieations using

four-nearest-neighbor (4nn) estimates of the context function (the p=5

choice in Figure 2) for both the spectral- and information-class formulations

of the ground-truth-guided method (gtgm). These results are also compared

to the accuracies obtained from uniform-priors and estimated-priors non-

contextual maximum likelihood classifications. The prior probabilities for the

estimated-priors non-contextual classifications were estimated by tabulation

from the uniform-priors non-contextual classification. These results show

that contextual classifications using the ground-truth-guided method for

estimating the context function give significantly better results than non-

contextual classifications on these data sets. For these cases, the spectral-
.

class formulation of the ground-truth-guided method generally produces

somewhat higher classification accuracies. However, since the spectral-class

estimate of the context function has substantially more non-zero elements

than the information-class estimate, contextual classifications using the

spectral-class formulation generally take over twice the computer time

required. for the information-class formulation.

While this method produces estimates of the context function which give

the best classification results of all methods discussed in this paper, it suffers

the limitation that it requires large areas of spatially contiguous ground-truth

data. When such detailed ground-truth data are not available, which is often

the case since such ground truth is expensive and time-consuming to obtain,

some other method is needed.
E
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Table 1. Compa q- : - gin of the contextual classifier using the ground-truth-
guided methou ..Lai non-contextual classifiers; Hodgeman County, Kansas,
Landsat data set, (14 spectral classes).
fr- ------	 - -^ -__-._

Accuracy
lines 26-50 lines 1-50

Classiflication Average- Average-
Overall by-Class Overall by-Class

uniform priors 81.5 78.2 82.5 74.3

estimated priors 82.2 78.3 82.8 74.1

4nn gtgm, spectral 85.4 81.6 85.7 77.3

4nn gtgm, information 85.3 81.4 85.0 76.0

Table 2. Comparison of the contextual classifier using the ground-truth-
guided method with non-contextual classifiers; Tippecanoe County, Indiana,
Landsat data set.

Accuracy
lines 26-50 lines 1-50

Classification Average- Average-
Overall by-Class Overall by-Class

uniform priors 82.7 81.7 191.8 83.4

estimated priors 84.2 62.0 83.7 83.7

4nn gLgm, spectral 88.7 91.1 89.3 90.7

4nn gLgm, information 88.2 87.3 88.2 86.2

i

J
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Power Method

The classify-and-count m.ethod requires no ground-truth data besides

that needed to estimate the class-conditional densities, f (Xk 1 ,80. However,

as we have seen earlier, this method does not produce consistently good esti-

mates of the conLexL function. In Chapter III we noted that the uniform-

priors non-contextual classification does not seem to be a sufficiently accu-

rate represenLaLion of Lhe scene eonLext for the classify-and-count method to

perform well. The context function estimates generally contain several

erroneous class configuration counts.

There are several ways in which the context function estimates from

non-contextual classifications of real data could be "cleaned up." Assuming

that the small relative frequency counts are more likely to be erroneous, one

could employ a procedure which deletes all class configurations with fre-

quency counts below a certain threshold. Or one could divide the count for

each class configuration by a fixed number and take the integer part of the

result as Lhe new count., deleting all class configurations with counts that

become zero.

Both of the aforementioned clean-up procedures could result in totally

eliminating rarely occurring but valid classes from the context function. To

avoid this problem, we devised an ad hoc procedure which we call the "power

method."

The power method forms a new estimate of the context function by rais-

ing the relative frequency count for each class confik uration to a power. For

powers greater Lhan one, the class configurations with larger counts are

favored more heavily Lhan Lhose with r • clat.ively small (and possibly orr • one-

ous) counts. Conversely, for powers less than one, the class configurations
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with large counts are not so heavily favored. At the extreme, a power of zero

results in all class configurations being equally favored as in a uniform-priors

non-contextual classification. In no case is an actually occurring class

configuration deleted. from the context function estimate.

The power method was first tested on a simulated data set to investigate

the method's characteristics undisturbed by unknown effects due to inaccu-

rate modeling of the real data sets. Spectral-class classifications using

spectral-class context were performed using data set 3a (described in

Chapter III). See Figure 9 for a summary of results. The results seem to indi-

cate that when the model is exact, as the power is increased (up to a certain

point), the classification results tend towards the results obtained when the

context function is determined from the reference classification. Also, as

expected, as the power used is decreased below unity, the results tend

towards a uniform-priors non-contextual classification.

The power method wa: also tested on the Bloomington, Indiana, data set

described in Chapter III using spectral-class context and classifications. Fig-

ure 10 summarizes the results using the power metnod on two-nearest-

neighbors context (north and east neighbors) based on an estimate of C ( ,OP )

from the non-contextual uniform-priors classification. Trading off overall

accuracy against average-by-class accuracy, the best classification was pro-

duced using a power of 5, for which an overall accuracy of 87.0 percent and

average-by-class accuracy of 86.1 percL. it was achieved. Note that the

results in Figure 10 follow the same general trend as the simulated data

results in Figure 9.

A second iteration of estimating 0(2 P ),  this time over four-nearest-

neighbors context, was then made based on the classifications listed in Figure

i
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Figure 9. Power method results using as context one-nearest-neighbor
(south) on the simulated data set. Context function, G (f ), estimated from
uniform-priors non-contextual classification except where noted otherwise.
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east) context on Bloomington, Indiana, data set. Context function, G (z9^' ),
estimated from uniform-priors non-contextual classification.
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10. The second estimate of C( .22 ) based on the classification using the first

estimate raised to a power of 10 produced the best classification results with

an overall accuracy of 68.5 percent and an average-by-class accuracy of 87.5

percent (using C (± 2') raised to a power of 5). See Table 3 and Figure 11 for a

summary of results. This second estimate of C (i9 P ) gave a total 5.4 percent

improvement in overall accuracy and 4.8 percent improvement in average-

by-class accuracy over the non-contextual classification. This compares with

a 2.2 percent, improvement in overall accuracy produced by the classify-and-

count method in Chapter II1.

Table 3. Second iteration power method results. Best four-nearest-neighbor
classifications with C(2 7') based on the classifications in Figure 10.

Accuracy, %
Ij Power Used	 Power Used in	 Average-

in Figure 10	 this Classification	 Over-all	 by-Class	 I

2	 5	 66.5	 85.6

II
	 3	 5	 86.3	 85.7

I	 5	 5	 87.3	 86.7
j	 7	 5	 88.1	 87.2

10	 5	 88.5	 37.5
15	 3	 87.7	 67.2

The power method was tested again on the Bloomington, Indiana data set,

this time using information-class context and spectral-class cLassifrcations.

(In implementing the power method elements of C( •LYn ) calculated from equa-

tion (33) in Chapter VI were raised to a power rather than elements of H(r).)

Using a power of 7 in this case produced overall and average-by-class accura-

cies of 89.6 and 89.5 percent. These accuracies matched those produced in

two iterations of the power method when spectral-class estimates of Lhe
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89.0

88.5
87.5

L
0
U

	

88.0	 '87.8

V 	 •87.6	
85.6

5 87.5
c0i	 The number at each dot

'872	 is the average - by - class

	

87.0	 •869	
accuracy ( % correct) .

86.5

82.1
86.0

1
	

2 3	 5	 7	 10
Power of Context Distribution Estimate

Figure 11. Power method results using four-nearest-neighbors context on
Bloomington, Indiana, data set. Context function, G (2' ), estimated from
two-nearest-neighbor (north and east) context classification with context
function raised to power 10.
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context function were used. Additional iterations in either case produced no

further improvement in classification accuracies. Figure 12 compares using

information-class estimates with using spectral-class estimates in the power

method for the Bloomington, Indiana, data set.

A Lest of the power method was also performed on the LACIE data set (16

spectral classes) using spectral-class context and classifications. The

specLral-class formulation results were similar to the Bloomington, Indiana,

data set results. Again using two-nearest-neighbor context (neighbors to the

east and west), the best classification was produced using a power of 7. Here

the overall and average-by-class accuracies were 83.7 percent and 73.6 per-

cent, respectively, as compared to overall and average-by-class accuracies of

78.7 and 72.0 percent, respectively, for the uniform-priors non-contextual

case (evaluated over the entire scene). The best second-iteration result,

using four-nearest-neighbor context, was produced with an estimate of C (! P )

made from the power of 15 first iteration classification and raised to a power

of 10. This classification had an overall accuracy of 86.7 percent and

average-by-class accuracy of 75.6 percent for an improvement of 8.0 percent

and 3.6 per-cent., respectively, in overall and average-by-class accuracies.

This compares to improvements of 1.8 percent and 1.0 percent, respectively,

in overall and average-by-class accuracies produced by the spectral-class

classify-and-count method when evaluated over the entire scene. When

information-class context was used, the results were not as good. Two-

nearest-neighbor context (north and west neighbors) raised to a power of 7

produced overall and average-by-class accuracies of 80.2 and 72.5 percent,

respectively.
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(89.4)
88.9)	 (88.2)

8$	 (88.8)
(a8.2)	 Information Class Estimate

v
L Spectral Class Estimate
L
0

86	

4.9)	

(85.7
•.•	 (84.4)
y,	 (8
V
L (84.3)
U	 (84.1)	 (81.7)
084
76 (82.7) The number in parentheses

at each dot is the average -
by-class accuracy (%correct).

0 
82

80 1 	 1	 1	 1	 1	 1	 1	 1	 I	 1

0	 2	 4	 6	 8	 10
Power

Figure 12. Summary of four-nearest-neighbor contextual classification
results from the Bloomington, Indiana, data set. Here the power method is
performed using both spectral-class and information-class estimates of the
context function as tabulated from the uniform-priors non-contextual
classification. Note that the power of zero result is equivalent to the
uniform-priors non-contextual classification.
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Prior to making the second-iteration estimates of G (2P ) in the above

tests, it was assumed that a more accurate classification would necessarily

produce a better estimate of C&).  The results quoted here indicate this is

not always the case. This makes the power method more difficult to use,

since classifications must be made using estimates of G(LP) based on several

classifications from the previous iteration in order to find the best estimate.

Despite the good results possible with the power method, these ambiguities

make this method difficult to use, and not useful for practical applications. A

search for a better generally applicable method for estimating the context .

function has led to the unbiased estimation technique described next.

Unbiased Estimator

One tactic for seeking an optimal estimate of the context function,

G( I'), is to look for an estimator function, T,,LX), which minimizes the

mean-squared error given by

MSE =E IT O,,. (X)  — G(±P ), 2 .	 (10)

Equation (10) can be rewritten as

MSE = Var[T, p LX) ] + b 2	 (11)

where Var [ T , , ( ) ] is the variance of the estimate T1yp LX) and b is the bias

given by

b = E[T gp (X)] — G(2') .	 (12)

Finding the minimum mean-squared-error estimate is generally a difficult

task, but since bias represents a systematic error, a reasonable approach

c_ ,
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would be to control bias before considering the variance. The best one can do

in controlling bias is to seek an unbiased estimator, i. e., one for which b = 0.

As we saw in the previous section, Lhe classify-and-couriL method per-

formed poorly in tests on real Landsat data sets. One reason for this is that

the estimate can be statistically biased. To prove this, consider the

classification model as presented in Chapter I1. In addition to the symbol

definitions given there, we make the following definitions. Let ^ be the vector

of classifications

_ [^jj Ii= 1.2,.,.,N1;j=1, 2,, -N2]T

where i99ij is the classification estimate from a non-contextual classification of

the observation Xaj . Let ;ij be a p-vector of classification estimates associ-

ated with the observations in the p-context array X;j . Similarly, let ^ P be

such an estimate associated with an arbitrary p-context array, Xp . Let

117 P EOP represent an arbitrary p-vector of classes. The classify-and-count

method can be described by the following estimator function for G (ff ):

N 1 NZ

T"' LX)C (z9^) _ _1 
z z I (Xij "9P)	 (13)

Nti=1j=1

where

1, if IF=19ij
I (X—ij ' ) — 0, otherwise.

The expected value of Tz,,(X) is then

^'[T,P L)I °°-E(1 F, E I(Xz;, >) _ ^. F, ^;^^rL^;,^9^}N ^ =1j=1	 Nti=1j =1

14	 . 1
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= 1- E	 E E [r (Xtj, 2p )I = E C ( 77 P ) f f LP 1 2p )gP (14)

	

N np cnp {.1 with	 nPenp	 XPE(Rn)P

	

32if =ZIP	 with j?P =JIP

Equations (12) and (14) show that the bias of the classify-and-count

method is the difference between a weighted sum of C (1? ) and C (±'). Note

that this bias is independent of N, and cannot be reduced by increasing the

sample size. The bias can be non-zero or zero, depending of the values of

C ( P ) and integrals in (14). To show this explicitly, let's consider the simple

special case of a two-class problem (m=2) estimating non-contextual relative

frequencies of classes (p=1) for univariate random observations (n=1). Let

the non-contextual classifier used to produce ^ be the uniform-priors

maximum-likelihood classifier with the decision rule:

d (Xjj ) = the action a which maximizes f (Xjj I a)

for all aEf W1,CJd. The densities, f (X;,j Ia), are assumed to be normal with

mean and variance A, = — 1 and u1 2 = 1 for class w l and mean and variance

A2 = 1 and C'22 = 1 for class w2. For class w l we have:

E'[T,,,(X)]=	 C(Wk)	 f(XIWk)dX= 2C(Wk)fJ'(XIWk)dX
k=1	 !f I W 1 )	 k=1

! V 1 (JZ)

C(W1)[ 2+ 	 erf ()^ 21] + C(w2)[ 
2 

+ erf 
0-/22 ]

= C ( W 1)[ 2 +
erf°i 1 ]+ C ( W 2)[ 2

 +erf 011 ]

= .84C ( w 1 ) + , 16C (w 2 )-	 (15)

The sum in (15) is equal to C(ra l ) only if C(ca 1 ) = C(raa) = ^. Por any other
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values of C (wr) and C(w2) the estimate is biased. Similar comments apply for

class w2 where we have

E[T G,z (X)I = .1GC(w l ) + .84C (w 2 ).	 (16)

We have shown, then, that the classify-and-count method does indeed gen-

erally produce biased estimates of the context. function.

The unbiased estimator we have adopted is presented in the statistical

literature by Van R.yzin [8] and Hannan el al. [ 13j. This unbiased estimator

can be most, easily described by first considering the p=1 case and then gen-

eralizing to the arbitrary p-context array. For p=1, we examine the equation

	

f hk(X)[Zf (X I w t) C ( wt)I dX	 lfh L (X)f (X I wt) dXI G ( w t)	 (17)

where rn, is the number of classes; f (X Iw t ), 1=1,2,.,.,rn, are the class-

conditional densities described earlier; and the functions hk (X), k=1,2.... M.

can be any set of •m. linearly independent functions. Equation (17) is valid

provided all indicated sums and integrals are well defined, which will, for

example, be the case when all of the functions in (17) are bounded. The func-

tions G (ra t ) and f (X ; w t ) are always bounded because G (cw t ) is a relative fre-

quency function and f (X iw t ) is a multivariate norrnal density function. The

functions itk (X) considered in the following development will also always be

bounded.

The left-hand side of (17), which looks like the expected value of hk(X),

can be estirnated from the data X as follows:

l ltk(X)
I
^ f (X I w t) C ( wt)I dX = -1 Z

N, JV2

 Z 14(X^:i) AhkL)	 (18)
t=r	 1	 N2=l,i=t
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where N, N I and N 2 are as defined in Figure 1, and k E F 1,2,..„m J. Combining

equations (17) and (16) we have

1t k(_X ) _ 	 if hk(XV (X I Wl) dX, C ( Wt) _	 Ikt G ( Wt) 	 (19)
tit	 t=t

where

I k1 
4 f hk (X ).f (X I Wt) dX .	 (20)

Applying (19) m times, onre for each class, we can write

h 1(—X )	 111 1 12	 Itm G(WI)

h 2(_) = 121 1 22	 12m C (W2)
	

(21a)

hm(X- )	 Imi Im2 ... Imm G(Wm)

This can be more succinctly represented in vector-matrix notation as

h =IG.	 (21 b)

Now G can be estimated by solving

G=I-thAT
	

(22)

where T = (T 1 (X),T 2( ),.,.,Tm )) T is the vector equivalent of TLX) in (10),

(11) and (12).

To show that T is indeed an unbiased estimator for G, we note that

E(T)=E(I'1h)=I'1 E(h). 	 (23)

.V11



booking at s !i ) element by element we have

L'f 	 A1'% I 1

	

hk (Xij) 	 (24a)
N i=tj=t	 J

N J NP

N 1 ryl ' hk (Xij)

= N Z Z J hk (Xij) f (Xij I 'y ij) dXij
i=1j=1

N

M rZ E f hk (Xij) f (Xij I '9ij) dXij
L=1	 i,j

with
'9ij = CJl

_	 G (w ! ) f hk (X) f (X I ra! ) dX	 (24b)
t=1

Thus

E(h) =I G

and (23) becomes

E'= I -1 E (h) = I' 1 I C= C	 (25)

proving that T is an unbiased estimator for C.

It is convenient to use for the functions hk (X) a function of the class-

n
conditional densities. More specifically, let hk (X) = ( 27r) 2 f (X I wk ) and write

(20) as

n

Ik! = (27T) 2 f f (X I wk )f (X I WL) dX
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where n is the dimensionality of X. Assuming the wk are normally distributed

spectral classes with respective mean vectors µk and covariance matrices E k

(lc =1, 2,... ,m ), we find

I	

{Ik1 _ [det(Ek + Ei)1^ 2 expi— 2 0-k -90 ' ( Ek +E I)_
1 

(µk — AI)3	 (26)

When the wk are information classes, the 1k, are weighted sums of terms of

the form given in (26). The weights are estimated by using the unbiased esti-

mator with p=1 for the spectral classes which make up each information class

being considered.

The calculation of the estimate of G can proceed in one of two alterna-

tive ways. The vector h can be calculated for the entire image (as in (21a)),

then multiplied by 1 -1 to give T = G ; or as the hk (Xil ) are calculated at each

data point (pixel), the product with 1 -1 can be performed. The average of

these products over the entire image is then T = C. The methods are com-

pletely equivalent; the difference between them amounts to a change in order

of summation. However, the second method must be used when this unbiased

estimator is extended to the arbitrary p-context array case, because the use

of the first method for large values of p would require an impractical amount

of storage. In calculating the estimate of G (2P ) at each image data point

using the second method, individual unbiased estimates of the prior probabili-

ties of each class are made for each position in the p-context array, and

cross-products of these prior probabilities are taken to form the unbiased

estimate of G(,9T ) based on that image point. To save computer storage

space, the cross-products having values below a specified threshold are

ignored. The estimate of G(f) for the entire image is the average of the
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estimates of C (iP) based on all the individual image points in the scene.

The unbiased estimator can be implemented so as to provide an adaptive

estimate of the context function. The local context functioi estimate for a

particular n l xn 2 block of image data is made from a m l xm2 block (ml?nl

and M 2?n 2 ). The n j xn 2 block of image data is then classified using this local

estimate of the context function. This process is repeated until the entire

data set is classified. Better results have generally been obtained when

rt l >n l and m 2>n 2 . If m 1 =n 1 and m 2 =n 2 , the context function estimate is not

accurate for the pixels at the edges of the image data block being classified.

Tests on three 50-pixel-square Landsat data sets have indicated good choices

for n t and •n2 ranging from 10 up to 25 with the corresponding choices for ml

and m2 being 8 to 10 pixels larger than the values chosen for n t and n2.

Table 4 presents the accuracies resulting from contextual classifications

for three Landsat data sets using four-nearest-neighbor (4nn) estimates of

the context function. The results using the spectral-class formulation are

shown for the whole scene (non-adaptive) version and for an adaptive version

employing local context function estini.;Aes for 25x25 pixel blocks made from

the same 25x25 pixel. block. The result A using the information-class formula-

tion are shown for an adaptive version employing estimates for various nlxn2

pixel blocks made from a mlxm2 pixel block cenl.cred on each n l xn2 pixel

block. The uniform-priors non-contextual classification results are given for

reference. The adaptive unbiased estimates generally performed best, espe-

cially when m l >n l and m 2>n 2 . The information-class formulation generally

performed as well as the spectral-class formulation, with the information-

class formulation performing substantially better on the Bloomington, Indi-

ana, data set. As noted earlier in the discussion of the ground-truth-guided
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Table 4. Comparison of the contextual classifier using various unbiased esti-
mator formulations and the uniform-priors non-contextual classifier.

%Accuracy
Data Set Classification Average-

! Overall	 by-Class

uniform-priors non-contextual 82.0	 75.9
11mlgeman County,
Kansas, 50-pixel- 4nn unbiased, spectral class
square LandsaL whole image est. (nonadapLive) 83.1	 75.8
(evaluated over
lines and columns 4nn unbiased, spectral class
6 through 50; adaptive est., 25x25 from 25x25 84.0	 77.8
14 spectral
class LACIE) 4nn unbiased, information class

adaptive est., 25x25 from 35x35 84.0	 78.0

^ I
i

uniform-priors non-contextual 83.1	 82.7

Ii 4nn unbiased, spectral class
Bloomington, whole image est. (nonadapLive) 84.4	 84-.4
Indiana, 50-pixel-
square Land.sat 4nn unbiased, spectral class

1
adaptive est., 25x25 from 25x25 84.3	 83.9

4nn unbiased, information class
adaptive est., 17x17 from 25x25 68.9	 88.3

uniform-priors non-contextual 81.8	 83.4

4nn unbiased, spectral class
Tippecanoe County, whole image est. (nonadapLive) 86.2	 87.9
Indiana, 50-pixel-
square Landsat 4nn unbiased, spectral class

I
adaptive est., 25x25 from 25x25 86.7	 88.1

4nn unbiased, information class
adaptive est., 25x25 frcm 25x25 86.2	 89.1

4nn unbiased, information class
adaptive est., 10x10 from 20x20 66.9	 69.7

s
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method, the information-class formulation has the further advantage of hav-

ing substantially fewer non-zero elements in the context function estimate,

causing contextual classifications using an information-class formulation to

require, in these tests, less than half the computer time required for contex-

tual classifications using a corresponding spectral-class formulation.

Figure 13 shows computer generated gray-scale maps of classifications of

the Tippecanoe County, Indiana, Landsat data set. The contextual

classification looks visually closer to the reference classification than might

be expected based on the accuracy improvement over the non-contextual

classifications. This is due to the tendency of the contextual information here

to provide a smoothing effect, making classification maps -tat are not only

more accurate, but also more pleasing to the eye. This srr oothing effect will

not necessarily occur on all data sets. There is nothing inherent in % ae con-

textual classsification algorithm that would force smoothing when none is

called for. The smoothing effect should only occur when the contextual infor-

mation so indicates.

Summary

In our search to find successful methods for estimating the context func-

tion, we have explored the ground-truth-guided method, the power method,

and a method utilizing an unbiased estimator. Tests on 50-pixel-square data

sets have shown that all of these methods can provide estimates of the con-

text function which produce contextual classifications with accuracies sub-

stantially higher than those obtained with a non-contextual classifier. We

have seen, however, that the power method involves ambiguities (the optimal

power value) that make it impractical for general use. Fortunately, the

i
9{{

}
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Figure 13. Visual comparison of classification results, Tippecanoe County,
Indiana, Landsat data set. (a) Uniform-priors non-contextual, (b) estimated-
priors non-contextual, and (c) four-nearest-neighbor adaptive (17x17 from
27x27) unbiased estimator (d) reference classification.



unbiased estimator method performs excellently in Lhose cases for which the

power method would have been used, i.e., where large. areas of spatially con-

tiguous ground-truth are riot. available and hence the ground-truth-guided

method cannot. be employed.

The ground-Lruth-guided method can be used whenever large areas of

spatially conLiguous ground-Lri th data are available. In tests performed on

60-pixel-square data sets, the ground-truth-guided rrrethod outperformed the

unbiased estimation method. However, the unbiased estimator produced con-

textual classifications which .:ere nearly as accurate as those obtained using

the ground-truth-guided method.

A pure spectral-class formulation was seen to perform slightly better

than an inforrfration-class formulation for the gr ound-trut.h-guided method.

An adaptive pure information-class formulation was seen to perform generally

as well as or better than any other formulation of the unbiased estimator. In

either case, the information-class formulation was seen to have a significant

computational advantage.

The results of this chapter suggest candidates for successful implemen-

tations of the contextual classifier which should be tested with larger data

sets. Further discussion of this Lopic will be deferred Lo Chapter Vill, after

the other research areas mentioned in Chapter 111 are explored.
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CHAPTER V - REDUCTION OF COMPUTATIONAL REQUIREMENTS

The contextual classification algorithm is very computationally intensive

in both the spectral-class and information-class formulations, requiring a

large amount of computer time. To reduce execution time, one could exploit

the latest improvements in the raw speed of computer components and/or

one could take advantage of special computer architectures involving multi-

ple processing elements [14]. Alternative tactics explored in this chapter are

(a) looking for a less computationally intensive algorithm which approximates

the original contextual classification algoi-ithm and (b) looking for a way to

selectively apply the contextual classi ier only where there is an advantage in

doing so. We call the latter approach the "hybrid algorithm" because it uses a

uniform-priors neri-contextual classifier whenever that classifier can classify

a given point "confidently," resorting i.o the contextual classifier only on

"difficult" pixels. Before we consider the hybrid algorithm, we will first

explore an algorithm which approximates the contextual classification algo-

rithm as developed in Chapter II. If such an algorithm produces

classifications that do not differ significantly in accuracy from the original

algorithm, the approximate algorithm, possibly combined with the hybrid

idea, would be the preferred algorithm in practical applications using conven-

tional (serial) computers.
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Approximate Algorithm

To come up with a reasonable approximate algorithm, one must examine

the computer implementation of the original decision function*. Consider the

case where the set 0 is defined over spectral classes, classification is into

Spectral classes, and the class-conditional independence assumption is taken.

The densities f (Xk I Ok) in equation (9) are assumed to be multivariate normal

with mean vector M 9k 
and covariance matrix E'^k giving

I
n	

_1

.f (Xk I 0k) = l I I z I Eck I 2e.	 Y,(Xk -M,yk ) f r -I (Xk -M,yk },	 {27}

where n is the dimensionality of the observation Xk (see [1] for the rationale

behind this assumption in the non-contextual case). Using the multivariate

normal assumption, the decision function in equation (9) becomes

d (Xij) = the action a which maximizes d,,, (Xij )

where

n^1?	 1

da ( ij) _	 G (iP)	 2rr, I Eck 
I 

2 exp [— TL(Xk —M ,9k ) T E ,9k (Xk —Mt9d1 . (28)
i9n cap .	 k=1
19n =a

yn

Let da(Xij ) = ln[da (Xij )x(27r) 2 ]. Maximizing dQLXij ) is equivalent to

maximizing da (Xij ). LettingQ19k (Xk ) _ (Xk -M '9k ) T
E19k(Xk -M '9k ), we have

1

	

da (Xij ) = In	 G(iP)	 I E 19k I 2eXp[-
/Q19k(Xk)]

19ncCln.	 k=1

19n = °'

---------------------
* For this study, the algorithm was implemented on a PDP-11/45 computer in
the programming language "C". Test runs were also made on a PDP-11/70
computer.

r
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= In	 expllnC(	 )— j	 jin I F,,y, I +QO,(Xk),!
19P EnP ,	 l	 k=1
19,=a

= In F exp[F(X,;1 , P)]	 (29)
AP EDP,

P =a

where

F(Xij,. P ) A1nC(f )—Xt [Inj 
r"4 1 + Q 'h (Xk)] .

k=1

In the simulated and real data sets studied (see Chapter III), the term

exp[F(Xjj ,jP )] ranges over a larger negative exponential range than available

on the PDP-11/45 (an exponential range of 1037 is available). To circumvent

this problem it was necessary to use the following procedure.

Let

Ma (Xj j) A m ax F (Xtii , 2P )
19P cnP ,
19P=a

and rewrite da(X2j ) as follows:

da(Xzj ) = In exp [Ma(Xd9)] Z eXP[F(Xij,2p)—Ma(^j1)]
,yP G nP ,
19,, a

Ma LXtij ) + In E exp[FLXij ,2P )—M.LXjj )]	 (30)
,9P c nP ,
,9P =a

Calculating da LXtij ) in this way ensures that at least one term of the sum does

not cause undernow because the exponential of the maximum term, Ma(X;j),

I`

i
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need not be calculated. ThLS procedure also makes it less likely that other,

terms in the sum wilt cause underflow (the F(Xjj ,.2°) tend to be large negative

numbers).

In checking out this particular implementation of the decision function,

it was noted that M, , (Xjj ) was in most cases significantly larger than the loga-

rithmic term in equation (30). This observation suggested the following

approximation of the decision function:

d LXti1 ) = the action a which maximizes Ma (Xti1),	 (31a)

or in the notation of equation (9):

d(Xtij ) = the action a which maximizes for all 0 1' EOP with 19p=a

G (±) fIf(Xk I %9').	 (31 b)
k=1

Comparing equations (30) and (31a) one can see that the implementation

of equation (31a) requires less computation and storage than equation (30).

In equation (31a), the logarithmic term in equation (30) need not be calcu-

lated and the individual values o: 'Xtij ,,9r') for a particular action a need not

be stored; only the maximum value is needed. We would expect, then, that

this approximate algorithm will take less computation time than the original

algorithm for any data set. The effect of the approximation on classification

accuracy, however, may be data denendenL.

The performance of the approximate algorithm was compared with the

original algorithm in tests using the simulated data set and the real data sets

described in Chapter III. Included in the comparisons were algorithms that

Lake only the three or five maximum terms in the summation in equation (9).
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These additional algorithms serve to give an indication of how many term n

the summation arc needed to produce classifications equivalent to those pro-

duced by the original algorithm. The results of this study are summarized in

Table 5. The context function for the simulated data set Lest was estimated

by tabulation from the reference classification from which the simulated data

was generated and the context function for the I,ACIIJ data set was tabulated

from the firsL 25 lines of a ground-truth-guided non-contextual cla,siflcation

as described. in Chapter IV. (A ground-truth-guided classification is per-

formed just like the usual non-contextual classification except that the

classifier is restricted to selecting spectral classes from the information class

indicated by the ground truth data.) Both data sets were evaluated over the

entire 50-pixel square area. The context function for the Bloomington, Indi-

ana, data set, was tabulated from the entire 50-pixel square area of a ground-

truth-guided non-conLext.ual classification. Since Lhe Bloomington data scL

has only 1317 ground-truth pixels, the ground-truth-guided classification

degenerated to the usual unguided non-contextual classification over the

remaining 11133 pixels. The Bloomington data set was evaluated over the 1317

ground-LruLh pixels. )light-nearest-neighbor context was used in all cases.

As can be seen in Table 5, the approximate algorithm performed very

well in terms of overall accuracy as compared to the original algorithm. The

table also shows that in the two real data sets, the five largest terms of the

sum in equaLion (9) are all that are needed to produce identical

classifications to those produced. by the full sum (the original algorithm).

The accuracy of the approximate algorithm was also tested in two cases

where the "power method" was used for estimating the context function (see

Chapter IV for a description of the power method). Table 6 displays the
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classification accuracies resulting from applying the power method to the

Bloomington and LACIE data sets in the same manner as described in Chapter

IV.

Table 5. Performance of approximate algorithrn in terms of accuracy. Con-
text function estimated from ground-truth-guided classification.

Overall Accuracy, %

Data Set• Orig, Alg., 5 Largest Terms 3 Largest Terms Approx. Alg.,
P+, q. (9) of Sum in Eq. (9) of Sum in P	 9 E	 31a&b

Simulated 96.84 96.88 97.04 97.04

LACIE 87.52 87.52 67.52 87.47

Bloomington 95.60 95.60 95.52 95.52

Table 6. Performance of approximate algorithm in terms of accuracy. Con-
text function estimated using power method.
r	 I

Overall Accuracy, %

Data Set Original Algorithm,	 Approximate Algorithm,
E uatior. (9)	 Equation	 18a&b

Bloomington 88.46	 88.38

ii
	LACIE 86.70	 86.66

Again the approximate algorithm produced overall accuracies that were

very close to those produced by the original algorithm. To put these minor

accuracy differences in proper, perspective, it helps to note that a conven-

tional uniform-priors non-contextual classifier produced overall accuracies of

83.07 percent on the Bloomington data set and 78.73 percent on the LACIE

data set.
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The approximate algorithm was compared with the original algorithm in

terms of computation time on the simulated data set and the two real

Landsat data sets. Highly optimized versions of each algorithm (written in

the "C" programming language) wore run on PDP-11/45 and PDP-11/70 com-

puters. Also compared to these two algorithms was a highly optimized ver-

sion of the original algorithm that simply ignored underflows rather than

attempting to circumvent them. This version allowed comparison of the

approximate algorithm to a simulated implementation of the original algo-

rithm on a computer with adequate exponential range.

The length of time the classifier took to process the 50-pixel square data

sets depended strongly on the number of nonzero elements of the context

function. (The number of terms that need to be evaluated in the sum in equa-

tion (9) and the number of terms to be compared in the maximization of

equation (31b) is equal to the number of nonzero elements in the context

function.) The ratio of timings between the three programs remained fairly

consistent, however, across all data sets. Tables 7 and 8 display typical quiet

system* timings on a PDP-11/45 computer for cases of few nonzero elements

of the context function (480) and relatively large number of nonzero elements

(2193). Table 9 gives the timings for the case displayed in Table 8, but run on

a PDP-11/70 computer.

The three tables show that the approximate algorithm averaged less than

half the real or user time taken by either of the other two algorithms. This

amounts to a significant improvement in computation time.

* The runs were made du ring early morning hours when few other tasks were.
being performed by the computer.

rt?
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Table 7. Performance of approximate algorithm in Lorms of timings. `i0-
pixel-square LAC11' data set, two-nearost-neighbor context, 480 nonzero ele-
ments in context function, PDP-11/445 computer.

Algorithm Time In Seconds*

Original Algorithm
With Underflow Protection 2636

Original Algorithm
Without Underflow Protection 2386

Approximate Algorithm 1185

Table B. Performance of approximate algorithm in terms of timings. 50-
pixel-square simulated data set, tv.o-noarest-neighbor context, 2193 nonzero
elements in context function, PDP-11/45 computer.

Algorithm Time in Seconds*	 1
Original Algorithm
With Underflow Protection 14702

Original Algorithm
Without Underflow Protection 14290

Approximate Algorithm 8675

* Timings are given in terms of "user time", which is essentially time spent
doing computations.

f

t
r
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Table 9. Performance of approximate algorithm in terms of timings. 50-pixel
square simulated data set, two-nearest-neighbor context, 2193 nonz^ro ele-
ments in context function, PDP-11/70 computer.

AlgL . • iLhm

Original Algorithm

l'irne in Seconds

Ì	 With Underflow Protection 5632

Original Algorithm
I

WiLhouL Underflow Protection 6573

Approximate Algorithm 2526
I

In summary, experimental results from one simulated and two real data

sets show that: on these data sets the approximate algorithm takes

significantly less computer time while producing classifications that do not

differ significantly in accuracy from classifications produced by the original

algorithm. By the nature of the approximate algorithm, it is expected that

similar time savings will occur when the approximate algorithm is used on

other data sets. Whether or not the accuracy results presented here can be

expected with other data sets depends on the extent to which the data sets

tested here are representative of remotely sensed data in general. We feel

that they are fairly representative.

Hybrid Algorithm

A second way to produce classifications with accuracy comparable to the

original contextual classification algorthm but with less computation may be

to use a "hybrid" algorithm which would use a uniform-priors non-contextual

classifier whEnever that classifier can classify a given point "confidently:"

resorting to the contextual classifier only on "difficult" pixels. In other words,

when the multispect.ral information alone at a given pixel were adequate to
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confidently classify the pixel, the contextual information would not be used.

A simple measure of the "confidence" of classification by a uniform-

priors non-contextual classifier would be the magnitude of the iargest

discriminant function at a given pixel. Another measure would be the

difference between the classifier's two largest discriminant function values at

a given pixel divided by the largest discriminant function ("normalized

difference"). If either of these factors exceeded specified thresholds, the

classification indicated by the uniform-priors non-contextual classifier would

be accepted. Otherwise, the contextual classifier would be invoked. Such a

method should save considerable computation Lime, depending on the per-

centage of pixels that must, be classified by the contextual classifier.

Classification accuracy should not suffer significantly because the pixels

classified "confidently" by the uniform-priors non-contextual classifier

presumably would have been classified identically by the contextual classifier.

A confidence measure must be efficient and accurate in order to be used

to good advantage here. A perfectly efficient and accurate confidence meas-

ure for this problem would indicate (or flag) a low confidence classification if

and only if the non-contextual classification would be different than the con-

textual classification. A practical confidence measure could approach the

accuracy ideal of flagging all pixels that have different non-contextual

classifications from the contextual classification. Such a practical confidence

measure could not he expected to be perfectly efficient, however, for any

confidence rneasure would be expected to produce a number of false alarms

(pixels being flagged which have identical non-contextual and contextual

classifications) since we would expect by chance that a portion of the low

confidence rion-conLexl.ual classifications will have the same classification as

f
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the contextual classification. An efficient and accurate confidence measure

would flag all or nearly all the pixels that had different a ., , i. - % ntextual and

contextual classifications, and would also produce a minimum number of false

alarms.

A preliminary test of the hybrid approach was performed using the 50-

pixel-square 'Tippecanoe County, Indiana, data set. In this test, the conLex-

Lual class iflcaLion compared with Lhe uniform-priors non-conLext,uul

classification used a four-nearest-neighbor context function estimated by

using the pure information-class formulation of the adaptive unbiased estima-

tor of context (Chapter IV). The best result, in terms of efficiency and accu

racy, was obtained by flagging those pixels which were below a threshold value

of .90 for the normalized difference or below a threshold of 10-3 for the larg-

est discriminant function. Here 756 pixels were flagged (out of 2500 in the

image), 621 of which were false alarms. There were 287 pixels which were

actually different between the contextual and non-contextual classifications.

Thus, 149 pixels that should have been flagged were not flagged. The non-

contextual classification had an overall accuracy of 81.6 percent and

average-by-class accuracy,- of 83.4 percent. The contextual classification had

overall and average-by-class accuracies of 86.9 and 89.7 percent, respec-

tively. The hybrid classification had overall and average-by-class accuracies

of 84.0 ad 86.6 percent, respectively.

The results indicate that these simple confidence measures are not very

accurate or efficient indicators of pixels that would be classified differently by

the non-contextual and contextual classifiers. It is apparent that a more

sophisticat.r:d approach is nneded. finch an approach w:)t ld Lake into arrnUnt.

the location of each measurement in Lhc mc;asururnenL space in rehihuii Lo
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the multidimensional contours of the class-conditional density functions. A

confidence (or reliability) measure of this Lyhe is suggesLcd in Alvo and Gold-

berg [15], but will riot be pursued further here.

^a
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CHAPTER VI - SPECTRAL CLASSES VERSUS INFORMATION CLASSES

In Chapter IV we briefly mentioned the spectral-class-versus-

information-class question. This chapter addresses this question in detail. To

reiterate, the spectral-class-versus-information-class question involves four

different options. One could:

(1) estimate the context function over spectral classes and classify

into spectral classes (a pure spectral-class formulation), or

(2) estimate the context function over spectral classes and classify

into information classes, or

(3) estimate the context function over information classes and clas-

sify into spectral classes, or

(4) estimate the context function over information classes and clas-

sify into information classes (a pure information-class formulation).

The question is, which option is the best to use?

In Chapter 1V we concluded that a pure spectral-class formulation per-

formed slightly better than an information-class formulation for the ground-

truth -guided method. A pure information-class formulation generally per-

formed as well as or better than any other formulation of the unbiased esti-

mator. In either case we noted that the pure information-class formulation

had a significant computational advantage over the spectral-class formula-

tion. This chapter explores the spectral-class-versus-information-class ques-

tion with respect to the simplest context function estimation method: the
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classify-and-count method. The tests of the classify-and-count method

described i,n Chapter III assumed spectral-class context and. spectral-class

classification (option 1). We will now discuss spectral-class context and

information-class classification (option 2).

Spectral-Class Context and Information-Class Classification

Since classification results are normally evaluated over information

classes rather than spectral classes, it may prove fruitfull to classify directly

into information classes. When a classification problem is formulated so as to

classify into spectral classes, one is actually maximizing accuracy with

respect to spectral classes rather than information classes. In order to max-

imize accuracy with respect to information classes, one must formulate the

classification problem so as to o tassify into information classes. In spite of

this theoretical justification for classifying into information classes, it ias

generally been noted in non-contextual classification problems that

information-class classification does not always produce an improvement in

classification accuracy over that produced by a spectral-class classification.

Hixson et al. [16] could only cautiously report a small improvement in

classification accuracy in certain cases where a non-contextual maximum

likelihood classification was done directly into information classes rather

than into spectral classes. Will information-class classification fulfill its

theoretical promise for the contextual-classifier when utilizing spectral-class

context?

The contextual classification decision rule must be reformulated slightly

to study this question. Let the set 	 represent spectral classes

and the set	 n Vim, represent information classes. Note that
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each element of P is a subset of the spectral classes such that if w j E y; then
n

u1j ^ 7k for k j and U yj = 1. Let OP c- 	 and ff ETV stand for p-vectors of
J=1

classes over spectral and information classes, respectively.

Where the possible actions are defined over information classes, and the

contextual information is defined in terms of spectral classes, the decision

rule is obtained by maximizing a function as in equation (7) surnmed over the

spectral classes contained in the action (information class) considered.

Invoking the class-conditional independence assumption as in equation (9),

the decision rule becomes:

d (Xjj ) = the action a Er which maximizes

F, E G	 A  (Xk 	 (32)
aca 19P cop . 	k=1

'l9p =o

where the Q are the spectral classes making up information class a, and 19k

and Xk are the k 1h elements of i9P and 6j , respectively. Note that this

classification decision rule entails no more computation than a pure

spectral-class decision rule as in equation (9). In fact, slightly less computa-

tion is neF:ded with this decision rule because fewer comparisons are needed

between values for d(-) since there are fewer possible actions a when

classification is done into information classes.

This decision rule was tested on simulated data set 2a. The results are

reported in Table 10. Here the context function was tabulated from the origi-

nal reference classification. In all cases, except the uniform-priors non-

contexLual classificaLion, i.he information-class classification gave results
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which were virtually identical to the spectral -class classification. The

information -class elassiflcation was more accurate than the spectral-class

classification for the uniform-priors non -contextual case. These results would

seem to indicate that the potential of contextual classification into informa-

Lion classes using spectral -class context, is limited in terms of accuracy

improvement. What would be the result if the context function was estimated

in terms of information classes? Wr shall now address this question.

Table 10. Comparison of spectral and information class classification options
using spectral class context, simulated data set 2a, reference classification
as context template.

Classification Information Class
Class'n Accuracy, %

Overall	 Ave.-by-Class

Spectral Class
'	 Class'n Accuracy, %
I	 `

Overall	 Ave.-by-Class

uniform-priors
non-contextual 72.1	 78.2 70.4	 77.5

i

estimated-priors
non-contextual 87.8	 65.6 87.5	 65.4

two-nearest - rrc:ighbors
(

I

(north and east)
1

93.2	 78.5 93.0	 78.4	
I

four-nearest-neighbors

eight-nearest -neighbors

97.1	 67.5

98.2	 92.0

I
97.1	 87.5

98 . 2	 92.0

Information-Class Context and Spectral-Class Classification

Uo to this point we have assumed spectral -class context carries more

usable contextual information than inform ation-c1a.^, context. It may be the

case, though, that the information-class context carries most of the contex-

tual information. Also, for the common case where the number of spectral
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classes may be half or a third the number of spectral classes, estimating over

information classes rather than spectral classes leads to a large reduction of

dimensionality of the context function. The large dimensionality of the con-

text function in the spectral class formulation may in and of itself be a

significant source of estimation error due to our attempting to estimate the

large number of elements in the context function from too small of a sample.

If this is indeed the case, the lower dimensionality of the context function

estimated over information classes should lead to a more accurate estimate.

The combination of the higher accuracy attainable with the information-class

context function estimate and the possibility that information classes carry

most of the contextual information may lead to more accurate classifications

when information-class context is used.

As before, let the set fl=iw l ,w 2,r.•,wm, represent spectral classes and let

the set P=fy,,y,,r.,,y;, n!,m, represent information classes. Let i'ED" and

2C-P stand for p-vectors of classes over spectral and information classes,

respectively. If we assume that the spectral cl. -es carry no contextual

information outside of that carried by their information-class membership,

we can calculate the context function over spectral classes, G (2' ), from the

context function over information classes, H(2), as follows:

G ( 2p ) = ^, H (f ) ftP69k I lk)	 (33)
tPEr	 k=1

The weights, P (14k I ^k ), represent the relative frequency of observing a spec-

tral class, '9k , given that a particular information class was observed. Insert-

ing equation (33) into equation (9) gives the decision rule for information-

class context and spectral-class classification (option 3), viz;

r
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d(Xv) = the action a E 0 which maximizes

 H (f ) P Ok l ^k) f j f (Xk 1'00	 (34)
poop,^'

Z
	

11
Er 	k=1	 k=1

'Op =o

We might expect that spectral classes do carry some contextual informa-

tion outside of their information-class membership. If this were the case we

should observe that, if the context function estimates are very accurate, the

spectral-class estimate would produce better results than the information-

class estimate using equation (33) when used in the contextual decision rule

(9). This is precisely what happens when the context functions are deter-

mined directly from the reference classification for the simulated data set 2a.

Using two neighbor context (north and west neighbors), the spectral-class

estimate produced overall and average-by-class accuracies of 93.0 and 78.4

percent. The corresponding information-class estimate result was 91.2 and

74.0 percent. As expected, the information-class estimate produced a

significantly less accurate classification.

When a iess accurate estimate of the context function is used, one might

expect, that the information-class estimate would produce more accurate

classification results. This is what happened when the uniform-priors non-

contextual classification was used to form the context function estimate for

simulated data set 2a. Using two-neighbor i,, ontLxL (north and west neigh-

bors), the spectral-class estimate of the context function produced overall

and average-by-class accuracies of 78.4 and 81.1 percent. The corresponding

information-class estimate result was 79.8 and 81.7 percent.

These simulated data results show that the information-class estimate of

the context function produces less accurate classifications than those
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produced with a spectral-class estimate when the context function is known

very accurately. However, the information-class estimate produces more

accurate classifications when the context function must be estimated less

accurately as from a uniform-priors non-contextual classification. This indi-

cates that the information-class estimate is sufficiently less sensitive to

errors from an imprecise estimate of the context function so as to produce

better results despite any additional information spectral-class context may

carry.

The first real-data test was performed using the Bloomington, Indiana,

data set. For two-neighbor context (north and west neighbors), the spectral-

class estimate produced overall and average-by-class accuracies of 84.5 and

84.2 percent. The corresponding information-class estimate result was B5.9

and 85.8 percent. These results are quite similar to the ,wo-neighbor simu-

lated data-results.

A test was also performed using four-nearest-neighbor context. The

spectral-class context function calculated from the information-class esti-

mate by equation (33) had to be thresholded in this case, i.e., context vec-

tors, 19p , with relative frequency of occurance less than a threshold value

(here 6X10- 5 ) were eliminated from the sum in equation (34). If a nonthres-

holded context function were used here, there would be so many separate

context vectors to sum over in equation (34) that the computer program

would take an impractical amount of time, even over a small 50-pixel-square

test area. The four-nearest-neighbor spectral class estimate produced

overall and average-by-class accuracies of B4.5 and 84.1 percent. The

information-class estimate produced accuracies of BB.2 and 68.7 percent
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The same tests were repeated using the I.,ACIE data set. For two-

neighbor context (north and west neighbors), the spectral-class estimate pro-

duced overall and average-by-class accuracies of 80.0 and 72.1 percent. The

corresponding information-class estimate produced accuracies of 80.4 and

72.4 percent. This accuracy improvement is much smaller Lhan that obtained

with the Bloomington, Indiana, data set, and may not even be statistically

significant. In the four-nearest-neighbor-context case, two different

information-class estimates (one thresholded at 6x10' 6 , the other a.t 4x10'6)

produced lower accuracies than did the spectral-class estimate.

Before we attempt to draw any further conclusions from these results,

we should investigate the remaining option in the spectral-class-versus-

information-class question. This option (option 4.) est:imaLes the context func-

tion over information classes as does Lhe option just discussed, but it also

classifies into information classes rather than spectral classes.

Information-Class Context and Information-Class Classification

When the contextual classifier decision rule was derived in Chapter II, the

set 0 and the p-vector 29P were not restricted to be spectral classes as they

have been in this chapter. If C is replaced by I' and iP is replaced by_^', the

desired information-class formulation of the decision rule follows directly

from a derivation identical to that leading to equation (9):

d ( ii ) = the action a E r which maximizes

H (2)A9(Xk ilk)	 (35)	 d

s
	

tPerP.	 k=1
fP =^

Here H(2) is the context function over information classes, the g (Xk I ^k) are

r,

°e
's

V;
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the information-class-conditional densities, and ^p is the p th element of t'.

Under the usual methods of estimation, the density g (Xk 16) is a weighted

sum of normal densities, via.,

9 (Xk I ^J = Z P (19k I ^k) .f (Xk 1 19k) 	 (33)
'9k L4

where the p (19k I ^.k) are as in equation (33).

An information-class formulation of the contextual classifier decision

rule identical to LhaL given in equation (35) can be arrived at from a different.

perspective. The contextual classification decision rule defined by equation

(32) classines over information classes as does equation (35). The context

function, C(VP ), used in equation (32) wa.s assumed to be estimated diruct.ly

from a spectral class template. If, rather, Lhe spectral-class context func-

tion, C (491' ), is calculated from 11 (2 ) using (33), equation (32) becomes:

d (Xij ) = the action a c I' which maximizes d,,, (X2l )

where

daLXV) = Z Z C(2P)A f(Xk I 19 k )
aca 19P c:ep 	k=1

^P -a

E	 EZ N (3r) 11 7̂ (19k I ^k)(	 f (Xk Iz4k)
aca ^pPC1lP, Per	 k=1	 k=1

19P=a

_ 57,H ( P)	 Ap ( 19k I ^k ).f (Xk 119k)
tP c 1'p ,	 tf1° a tP k=1
{,, =a

t

a:
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E r-1 (f)[fj Z P( 19k 10,)f (Xk 10k),
kPCrP,	 k=la4PC:SP
tp =a

E H{3.p) 1 A9(Xk I^k)-
kP C; PP,	 k =1
{7, =a

which is identical to equation (33) as suggested. It proved initially to be more

convenient to implement the decision rule given in equation (35) by imple-

menting equation (32) and calculating C(.27 ) using equation (33). This was

because the program implementing the original pure spectral-class formula-

tion could be trivially modified to implement equation (32), and a small pro-

grarn written to calculate the spectral-class context function from the

information-class context function using equation (33).

The classification results obtained using the information-class formula-

tion (option 4) are compared in Tables 11 and 12 with those obtained using

other formulations. In Tables 11 and 12, options 3 and 4 show nearly identical

results. This is consistent with the results shown in Table 10 where options 1

and 2 gave nearly identical results. (Option 2 was not tested in Tables 11 and

12 for this reason.) These results show that information-class classification

produced nearly identical results as those produced by the spectral-class

classification irregardless of whether information-class or spectral-class con-

text was employed.

Tables 11 and 12 also show that information-class context generally pro-

duced better classification results. This result is consistent with the expecta-

tion expressed in the discussion above about the relative merits of

information-class and spectral-class context. For an inaccurate method of

context function estimation such as the classify-and-count method, we

si

w
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Table 11. Comparison of spectral- and information-class classification and
context options, Bloomington, Indiana, data set, uniform-priors non-
contextual classification as context Lernplate.

Context	 Option	 Accuracy,

Overall Ave,-by-Cla

tuiiforrn-priors
non-contextual (-) spectral-class class'n 83.1 82.7

two-nearest-neighbors (1) spectral-class context
(north and west) and spectral-class class'n 84.5 84.2

" (3) inforrnation-class crntext
and speeLral-class class'n 85.9 86.9

(4) information-class context
and information-class class'n 85.7 85.8

four-nearest-neighbors (1) spectral-class context
and spectral-class class'n 84.5 64.1

I

j (3) information ,lass context
and spectral-class class'n 86.2 88.7

(4) information-class context
and information-class class'n 87.9 88.2

expected that information-class context would produce better classification

results.

Earlier we noted that information-class context produced better

classification results with the unbiased estimation method, while spectral-

class context produced better results with Lhe ground-truth-guided method.

This result is consistent with the discussion and results of this chapter. Since

for the Lests performed on the ground-truth-guided method and the unbiased

estimation method, the ground-truth-guided method produced the best.

classificaLion results, we would expect that the spectral-class formulation

would perform relatively better for the ground-truth-guided method than for

the unbiased esUrnat.ion method.
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'fable 12. Comparison of spectra
context, options, 1,ACIE data seL, uniform-priors non-contextual classificat.ion
as conLexL I.cmplat.c.

ConLcxL Optio. Accuracy, %

Overall Ave.-by-Class

unirorrrr-priors
non-cont.exLual spectral-class class'n 78.7 72.0

11 two-nearest-neighbors (1) spectral-class context
(north ,...td wesL) arid spectral-class cl;Ass'n 130.0 72.1

I
(3) information-class crmtexL
and spectral-rla^s ehiss'n 80.4 72.4

" (4) information- cla:is context
arid informatwri-chess class'n 80.6 72.6

four-nearest.-neighbors (1) spect r it	 -hi ,;s oonlcxt
and	 el,:tss'n 79.6 72.1

(3) information-class conLext
and spectral-class rla5,'rn 78.3 71.5

" (4) information-class context
and information-class class'n 78.2 71.4



76

CHAPTER VII - PRE'DICTINC THE OPTIMAL P-CONTEXT ARRAY

Prior to the development of the unbiased estimator, methods were

sought with which to improve the practical effectiveness of the classify-and-

count and power methods for estimating the context function. For both of

these rru:thod.s, R was noLiced that a smaller p-context array (p = 2 or 3) was

generully more efTecLive in early iterations. For general scenes, nearest-

neighbors seem to provide Lhe most useful contextual information, but when

context arrays of fewer than four nearest neighbors are used, it is not clear

which neighbors should be used. The practical effecLiveness of the classify-

and-count and power methods could be improved if an effective predictor of

the optimal p-context, array could be found.

One could discover the optimal p-context arrays at each iteration by sim-

ply performen; .a large number of contextual classificaLions over a training

set. "]'his could be quite Lime consuming, however. A more desirable solution

would be Lo pr • edicL Lhe ophrrial p-context dr• r• ay aL each iteraLion from. some

characteristic of the data such as a "context measure" before actual

classifications are performed.

Suppose Lhat the context function, C(iP) is such that it can be written in

product form, i.e.,

F'

G(±') = Gi(?9')-G2(19„)	 (37)

where i9' and T" are, respectively, q and p-q vectors of classes. The clement.~
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of V are identical to the first q elements of OP , and the elements of 19" are

identical to the last p-q elements of V-P . If t its factorization can indeed be

realized, equation (9) can be rewritten as

d(X1j ) = the action a which maximizes

Z C &6') A f(Xk1 19 k) ^ 	 F, C209") II f(Xkl'9k)	 (38)
cn 7 	k=1	 )	 19"( DP 'r .	 k=q+l

19P

where the O k , k=1,2,...,p, are the elements of i'. Since the term in the first

set of brackets is independent of the decision a, it is just. a constant factor

relative to the decision process and can be ignored when classifying the point

at (i,j).

If C ( •l9r') can be factored as in equation (37), then •i9' and 19" are sLaLisLi-

catty independent. This suggests that, a measure of depar• Lur• e from indepen-

dence of i9' arid T' may be useful as a measure of additional contextual infor-

mation carried by the pixel positions in 19' over that carried by Lhe pixel posi-

tions in 0". One rncasul e of this departure is

2
(39)

19P E nP

where G l (f) and G 2(29") are marginal ,.,- of G(iYP ). Thus the departure of the

factorization of C(z9p ) into its marginals from a true factorization is here

defined as the "context measure" ACQ.

To investigate the use of the context measure OG Q in predicting the

optimal p-context array we use the following approach. Establish &" as a

axed (p-q)-dimensional classification vector which we shall call the "core
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array". Calculate the values of AGq for various q-dimensional classification

vectors 19' with elements distinct from the core array. Only those o-

dimensional arrays that are expected to add significant contextual informa

tion need be investigated. The, best p-context array would he the (p-q) pixel

locations of 19" combined with the q pixel locations of the 19' that produced

the largest, value for- AGq. Of course, this assumes that the contextual infor-

mation contributed by the 19' pixel locations is not so erroneous as to actually

decrease classification accuracy. This may not be a reasonable assumption in

all cases as we will sec in some of the real data tests that are reported later

in Lhis chapter.

AGq was tested as a context measure to predict the best p-context array

in terms of relative pixel locations as shown in Figure 14. Usually pixel loca-

tion 5 was the pixel to be classified. In some cases pixel location 1 was used

as the pixel to be classified.

7	 g	 g
i	 j

j

Figure 14. Pixel locations used in testing AGq.

The first test of AGq was performed on the simulated data with spectral-

class context functions estimated by tabulation frcn, a the reference

classification (the "ground truth"). One-neighbor context was considered. As

can be seen in Table 13, AGq clearly predicted that. Lhc best neighbor to use
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for context, would be one of the four nearest neighbors (pixel positions 2, 4, 6

or 8). It was not conclusive from the tabula Led results whether any particular

nearest neighbor was better than the others as context. Nevertheless, this

test seemed to indicate that ACq works quite well when the context is per-

fectly known.

Table 13. AG-q' tested on simulated data with r.ont.ext, functions determined
from reference classifie:aLion,

AcCur•acy, %

Pixel Pixel DC i x 10^ Overall	 Average-
Loc ation Location _ by-Class

6 5 5.09 92.7	 74.0	 I'

I^
2 5 4.99 91.6	 73.5

4 5 4.90 91.7	 71.8

6 5 4.90 91,7	 73.9

it	 7 5 3,92 90.8 71.2

3 5 3.31 90.4 69.8

j'	 9 5 3.26 90.6 70.6

1 5 3.19 90.6 70.1

7 1 2.58 90.3 68.6	 II

3 1 2.27 90.2 70.3	 1I,

8 1 1.98 69.4 67.9	 I

6 1 1.87 90.4 70.2
i

9 1. 1.53 89.9 69.5
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AC P was tested again on simulated data, but with the context function

estimated using the classify-and-count method. Hare the context should still

be fairly accurate, since the classify-and-count, method did perform well on

the simulated data set. Treble 14 shows that. AC, correlaLes fairly well with

classification accuracy.

Table 14. ACq tested on simulated data with context functions estimated
from uniform-priors non-contextual classification.

Pixel
Loc ation

Pixel
I,ocat.ion

-

AC 2X106

^1

Accuracy,
I

 Overall	 Average-
by-Cla ss

8 5 7.56 79.8	 81.7

2 5 7.30 79.1	 81.9

4 5 6.13 78.8	 80.6

6 5 6.11 79.0	 81.4

7 5 4.71 78.8	 80.9

3 5 4.53 78.6	 80.6

9 5 4.26 78.4	 80.6

1 5 4.22

I

78.3	 79.7

7 1 3.77 76.5	 80.9

8 1 2.73 78.0	 80.0

3 1 2.65 78.0	 80.9

6 1 2.31 78.0	 60.6

9 1 2.17 78.0	 80.1
i,
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The first real-data Lest of AG" was performed on the Bloomington, Indi-

ana, data set described in Chapter III. The results are displayed in Table 15.

Isere the differences in Lhe value of the context, measure AG1 were not well

correlated with the accuracy of the classification results. Similar results

were seen in a test using Lhe LACIP data set described in Chapter IV. It may

be that in Lhese r • eat data cases, the context as est,irnaLed from the non-

contextual classification is not sufficiently accurate for Lhe context measure

to function properly as a predictor of the best p-conl.ext, array.

Table 15. AGn tested on BloorningLon, Indiana, L,andsat. data set. Cor1Lcxt
functions estimated from uniform-prior y non-conLcxtual classification.

11
Accuracy, %

Pixel Pixel AG i x 106 Overall	 Average-
_ Location Location by-Cla ss

i
4 5 7.69 84.2	 83.8

i
6 5 7.68 84,6	 84.1

2 5 5.40 85.2	 84.8

B 5 ,5.31 83.8	 83.4
I

3 b 3.79 84.2	 83.8

7 5 3.61 84.0	 83.5

1i 5 3.04 84.4	 84.1 i

9 5 2. A6 83.7	 63.2
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Tests with the power method were performed on the two real data sets to

see how significant this failure of AG-' to predict some best p-context array is

in these cases. Table 16 summarizes the results of two iterations of the power

bootstrap method in which various two-neighbor contexts were used in the

first iteration. Pour-nearest-neighbor context was used for the second itera-

tion.

Table 16. Power method results for various pixel locations of the two-
neighbors used for first, iteration context. Classified pixel. location is location
5. Second il.eral,ion uses four-nearest-neighbor context.

1sL Iteration
Data Set	 Context

Pixel Locations

Best PowerBest Power
1st	 2nd

Iteration	 Iteration

2nd Iteration Accuracy,

Overall	 Average-
By-Class

LACIE 2 & 4 15 10 86.7 75.6

LACIE 2 & 6 15 10 86.7 75.6

LACIE 4 & 6 15 10 86.7 75.6

Bloomington 2 & 6 10 5 98.5 87.5

Bloomington 2 & 8 10 5 88.6 87.8

Bloomingt.ori 4 & 6 7 3 88.2 88.2

Bloomington 4 & 8 10 5 89.7 89.2

Bloomington 3 & 7 7 3 87.2 87.1

For nearest-neighbor context, the choice of 1st iteration context makes

virtually no difference for the LACIE data set in terms of 2nd iteration accura-

cies. There are some differences in the Bloomington data set results. As

might be expected, the non-nearest-neighbor case (I st iteration pixel loca-

tions 3 and 7) produced a lower 2nd iteration accuracy. It would not be

expected from the results of Table 15 that nearest-neighbor pixel locations 4
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and 8 would produce better classification accuracies.

It should bu remembered that, the 13loorningLon data set results arc

evaluated from just over half the pixels in the 50-pixel square: scene (1317 pix-

els) while the LACIF, data set is evaluated from ground truth over the entire

50-pixel square scene. Also, the Bloomington data set ground truth was

derived from aircraft infrared photography while. the LACIE ground truth was

from a ground survey. The combination of Lhcse facLs may serve to make the

Bloomington data set results sufficiently noisy Lo make: the variations in the

accuracies displayed in Table 16 are not st.ahsLieally significant..

If indeed no one particular nearest, neighbor is boUcr as context, in these

two real data ct^ses, it remains to be explained why ACP produced a larger

value for pixel locat.ions 4 and 6 versus pixel locations 2 and 8 on the Bloom-

ington data set, (Table 15) and on the LACIE data set, (not shown), An interest-

ing fact that corrius to mind is that Lhe Landsat sampling rate is significantly

finer in the across-Lrack direction than for the along-track direction, The

neighboring pixels which are geographically closer Lo the pixel in question

should show more sLat.ist.ical corr • elat.ion to that, pixel than Lhosu neighbors at.

a larger geographical distance. Thus, we should expect Lhat. AC,^ would pro-

duce larger values for the pixels in Lhe across-track direction (pixel locations

4 and 6) than fer the pixels in the along-track direction (pixel locations 2 and

8) from. Landsat sampling characteristics alone. Unfortunately, the sampling

difference reflected in the values of AGR had no consistent effect on the per-

formance of individual nearest.-neighbor pixels as context for contextual

classification.

The above results indicate that ACR is not a useful predictor of Lho

optimal p-conLexL array. However, the results presented in Table 11 suggest

i'^	 i
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that such a predictor may not even be necessary for the optimal use of the

classify-and-court and power methods. Also, in Chapter 1V we saw that the

ground-truth-guided and unbiased context function estirnfal,ion methods per-

formed consistently well with four-nearest-neighbor context. All of these

results tend to obviate the need for a predictor of the optimal p-context

array.



CHAPTER VIII - SUMMARY AND DJRECTIONS FOR FURTHER RESEARCH

This paper has explored the theoretical basis and implementation of a

general statistical classification decision rule which exploits both spatial and

spectral information when classifying rnultispectral image data. A contextual

classifier based on this decision rule depends only on general contextual

information, and can, in principle;, be used to advantage on any remotely-

sensed multispectral image data set.

Summary of Results

Tne theoretical. derivation of the contextual decision rule was presented

in Chapter 1I. This theoretical development was an elaboration and

clarification of a development given by Swain and Vardeman in [3]. It was

noted in Chapter II that the optimal decision rule cannot be implemented in

practice since it depends on the context function, G(f ), and the class-

conditional densities, f (Xk which are unknown. Thus, the performance

of the contextual classifier depends directly on how well G ( P ) and the

f (•(k 1 19k) can be estimated.

Methods for estimating the class-conditional densities are well esta-

blished from considerable experience with the non-contextual maximum likel-

ihood decision rule. One of the principal research topics of this paper has

been the development of effective and practical methods for estimating the

context function. A simple method for estimating the context function, the

classify-and-count method, was explored in Chapter III in tests on simulated

65
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and real Landsat data sets. The results of these early exploratory experi-

ments pointed to the three main areas of research described in the remain-

ing chapters of the paper.

The poor performance of the classify-and-count method on real Landsat

data sets pointed to the need for a better context function estimation

method. Speculation on the reasons for the inadequacy of the classify-and-

count method led to the formulation of two alternative methods: the ground-

truth-guided method and the power method (Chapter IV), The reported tests

have shown the ground-truth-guided method to be an effective and practical

method, provided that sufficient ground truth is available in spatially contigu-

ous blocks. While the power method does not need such special ground truth

and can provide significant improvements in classification accuracy, the

power method turned out to be impractical to use. An unsuccessful attempt

to develop a context measure to use in conjunction with the power method

(and the classify-and-count method) to improve its practicality was described

in Chapter VI.

For cases where sufficient spatially contiguous ground truth is not avail-

able for estimating the context function, an unbiased estimation method was

developed (Chapter IV). This unbiased estimator has the additional advantage

of being amenable to an adaptive implementation, so that the resulting con-

text function estimate is more closely tailored to local conditions in the

image data.

The second research problem area suggested by the early experimental

results is the need to reduce the computational complexity of the contextual

classifier. An approx;mat• e algorithm was developed (Chapter V) which

requires less than half of the computer time taken by the original implemen-

tation in the tests performed. A faster hybrid algorithm was olso suggested in
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Chapter V but is not yet, perfected. It was further noted in Chapter IV that n

pure information-class formulation of the contextual classifier is significantly

less computationally intensive than a formulation involving spectral classes.

The third research problem area involved certain assumptions made in

the original implementation of the contextual classifier. Chapter VI explored

in detail the relative merits of using spectral classes or information classes as

the basis of context function estimation and classification when using the

classify-and-count method. The conclusion drawn was that in this case, for

real Landsat data sets, the contextual classifier performed better when the

context function was estimated in terms of information classes. No

significant difference in performance was observed when the classification

was done in terms of spectral classes or in terms of information classes. In

Chapter IV we noted that a pure spectral-class formulation performed slightly

better with the ground-truth-guided method and that a pure information-

class formulation performed best with the unbiased estimator. This question

will be mentioned again in the discussion of directions for further research.

A second assumption included in the: third research area was the class-

conditional independence assumption represented by equatior (8) in Chapter

11. This assumption has yet to be studied (see below).

Directions for Further Research

The research presented in this paper suggests further study in two direc-

tions. One would be to pursue the theoretical foundations of the contextual

classifier, in particular the effect of the class conditional independence

assumption, Another direction of study would be to investigate a practical

implementation of the contextual classifier which can be used effectively with

data sets larger than the 50-pixel-square data sets en) .oloyed throughout the

r

Y
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present study. We address the implementation question first.

Two particular implementations of the contextual classifier are good can-

di-'ates for further study. These are implementations which use (a) the

::.ind-truth-guided method and (b) an adaptive version of the unbiased esti-

r ation method to estimate the context function. In either case, the approxi-

mate algorithm should be employed. Research into the hybrid algorithm

should be pursued and, if research results are favorable, this algorithm

should be incorporated into the implementation.

Implementation Using the Ground-Truth-Guided Method. On the two 50-

pixel-square data sets tested, the ground-truth-guided method produced

classification accuracies significantly better than those produced using the

unbiased estimation method. It should be noted, however, that in these two

cases fully one-half of the data set was designated as the training set for the

ground-truth-guided method. In practical classification problems using much

larger data sets, it is usually the case that ground truth is available for only

ten percent or less (often less than one percent) of the data set. We expect

that this smaller percentage of grow%d truth data will decrease the

effectiveness of the ground-truth-guided method.

As noted earlier, the spectral-class formulation of the ground-truth-

1J.

guided method produced somewhat higher classification accuracies than the

information-class formulation. Because the information-class formulation

requires less than half the computer time required by the spectral-class for-

mulation, this becomes a factor of importance for larger data sets. If the

information-class formulation continues to give poorer classification results

for larger data sets, it should be attempted to discover a variation on the

present information-class formulation that does not give poorer results. How-

ever, we expect that on larger data sets the present information-class

L -4-,
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	formulation will produce higher clrxssi.fication accuracies than those produced 	 4

by the spectral-class formulation. As noted in the previous paragraph, the

ground-truth-guided method may not produce as accurate an estimate of the

context function for larger data sets. This is likely to cause the information-

class formulation to perform relatively better as it is less sensitive to estima-

tion errors (see Chapter VI).

Implementation Using the Unbiased Estimator. The present adaptive

informaLi.on-c ass formulation of the unbi, sad estimator requires significantly

less computer time than the other formulations tested. This is because this

formulation produces fewer non-zero elements in the estimate of the context:

function than is the case for any other formulation. Further, the adaptive

information-class formulation gave either approximately the same or

sigrrificanFly better classification accuracies than any other unbiased-

estimator formulation. One question that needs to be resolved for the adap-

tive information-class formulation for a larger, practical-sized data set is the

selection of generally optimal classification and estimation data block sizes.

For the three small-scale data sets tested, estimating the context function

from a 20, 25, or 35-pixel-square block of data centered on the corresponding

10, 17, or 25-pixel-square classification block seemed to be optimal depending

on the data set tested. It remains to be seen whether one particular choice of

data block size will be nearly optimal for most or all larger data sets. For-

tunately, classification accuracies do not seem to be highly sensitive to the

size of the data blocks chosen.

Although the present version of the adaptive information-class formula-

tion uses less computer time than other formulations of the unbiased esima-

tor, the present version can still be improved substantially in this regard by

removing redundant calculations and storing the context function estimates
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in main memory rather than writing the estimated relative frequencies in an

external file. It should be noted that, for even moderate values of p (the

number of pixels in the p-context array), storing the context function esti-

mate in main memory would be impossible if a spectral class formulation

were used. There would not be enough space to store all the non-zero entries

of a speotral-class context function.

The Class-Conditional Independence Assumption. The original derivation

of the contextual classification algorithm assumed class-conditional indepen-

dence among all image locations. It would be of interest to investigate the

implications of this assumption. A method for experimentally investigating

these implications is outlined below.

For contextual classifications using an arbitrary p-context array, the

class-conditional density f (Xzj I ±P ) of equation (7) could be estimated. by

clustering in a manner similar to the way the densities f (Xk 119k) of equation

(9) are estimated (see [1]). In this case, however, the clustering would be

done based on the nxp dimension„' X;,j rather than the n-dimensional Xk.

Significant clusters of the observa' , •ectors, 2y-ii, could then be identified

with a particular classification vector, O P , and the multivariate normal

approximation for f (Y;,j 2P ) could be used. Clustering done in such a way

would provide class-conditional densities f (Xj P ) without an independence

assumption for use in comparison to classifier tests using class-conditional

densities assumed to be independent among all image locations.

The use of the class-conditional density f (X1j I i9P ) presents the practical

problem of effectively working with a multispectral data set with a very large

number of channels. Some of the dirnensionality reduction techniques used

in working with other large-dimensioned data sets may be necessary in this

case.

v
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